JP6277605B2 - Optical fiber manufacturing method and manufacturing apparatus - Google Patents

Optical fiber manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP6277605B2
JP6277605B2 JP2013127308A JP2013127308A JP6277605B2 JP 6277605 B2 JP6277605 B2 JP 6277605B2 JP 2013127308 A JP2013127308 A JP 2013127308A JP 2013127308 A JP2013127308 A JP 2013127308A JP 6277605 B2 JP6277605 B2 JP 6277605B2
Authority
JP
Japan
Prior art keywords
drawing furnace
pressure
gas
optical fiber
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013127308A
Other languages
Japanese (ja)
Other versions
JP2015000840A (en
Inventor
巌 岡崎
巌 岡崎
榎本 正
正 榎本
山崎 卓
卓 山崎
小西 達也
達也 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2013127308A priority Critical patent/JP6277605B2/en
Publication of JP2015000840A publication Critical patent/JP2015000840A/en
Application granted granted Critical
Publication of JP6277605B2 publication Critical patent/JP6277605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

本発明は、光ファイバ用ガラス母材を、アルゴンまたは窒素を含有するガスで満たした線引炉内に挿入し、線引炉内で加熱溶融して光ファイバを線引きする光ファイバの製造方法および製造装置に関する。   The present invention relates to a method of manufacturing an optical fiber in which an optical fiber glass preform is inserted into a drawing furnace filled with a gas containing argon or nitrogen, and the optical fiber is drawn by heating and melting in the drawing furnace. It relates to a manufacturing apparatus.

光ファイバは、石英を主成分とする光ファイバ用ガラス母材(以下、ガラス母材という)を光ファイバ用線引炉(以下、線引炉という)の上方から炉心管内に下降させながらその先端を加熱溶融し、このガラス母材の先端を細径化して線引炉の下方から線引きすることにより製造される。このときの線引炉内の温度は、約2000℃と非常に高温となるので、線引炉内の部品には、耐熱性に優れたカーボンが用いられている。   The optical fiber tip is made by lowering an optical fiber glass base material (hereinafter referred to as a glass base material) mainly composed of quartz from above the optical fiber drawing furnace (hereinafter referred to as a drawing furnace) into the furnace core tube. Is heated and melted, and the tip of the glass base material is reduced in diameter and drawn from below the drawing furnace. Since the temperature in the drawing furnace at this time is as high as about 2000 ° C., carbon having excellent heat resistance is used for the parts in the drawing furnace.

このカーボンは、高温の酸素含有雰囲気中で酸化して消耗する性質を有する。このため、線引炉内は、アルゴンガスやヘリウムガス等の希ガス、窒素ガス(以下、不活性ガス等という)の雰囲気に保つ必要がある。
この場合、線引炉内を陽圧にし、外気(酸素)が線引炉内に入り込むことを防いでいるが、線引炉内の圧力変動が大きくなると、外気を巻き込んだり、光ファイバの外径変動に影響を与えたりする。そこで、例えば、特許文献1には、線引炉内の圧力が一定になるように、不活性ガス等の供給量を制御する構造が開示されている。また、特許文献2には、線引炉内の圧力が一定になるように、マスフローコントローラ(MFC)を用いてシールガス流量を制御する構造が開示されている。また、特許文献3には、線引炉内の圧力が一定になるように、供給ガス流量を調整することが開示されている。
This carbon has the property of being oxidized and consumed in a high-temperature oxygen-containing atmosphere. For this reason, it is necessary to keep the inside of a drawing furnace in the atmosphere of noble gases, such as argon gas and helium gas, and nitrogen gas (henceforth inert gas etc.).
In this case, the inside of the drawing furnace is set to a positive pressure to prevent outside air (oxygen) from entering the drawing furnace. However, if the pressure fluctuation in the drawing furnace becomes large, the outside air is entrained or the outside of the optical fiber It affects the diameter variation. Therefore, for example, Patent Document 1 discloses a structure for controlling the supply amount of an inert gas or the like so that the pressure in the drawing furnace is constant. Patent Document 2 discloses a structure in which a seal gas flow rate is controlled using a mass flow controller (MFC) so that the pressure in the drawing furnace is constant. Patent Document 3 discloses that the supply gas flow rate is adjusted so that the pressure in the drawing furnace is constant.

特開2011−46563号公報JP 2011-46563 A 特開2000−264670号公報JP 2000-264670 A 特開2000−063142号公報JP 2000-063142 A

ところで、例えば、アルゴンガスや窒素ガス等のような不活性ガス等を使用した場合、線引炉内の圧力や光ファイバの外径の変動が大きくなることが知られている。この線引炉内の圧力変動や外径変動の測定結果を周波数解析すると、数Hz程度(〜2Hz)の周波数成分が多く存在することが判明した。つまり、このような周波数成分の線引炉内の圧力変動に対応して圧力が一定になるように調整するには、上記特許文献2に記載のマスフローコントローラのような数秒程度の応答時間(応答速度とも言う)を備えた構造ではなく、0.5秒未満の応答速度を備えた構造が必要になる。しかし、上記特許文献1〜3には、ガス供給手段の具体的な構造や制御方法については開示されておらず、これでは、光ファイバの外径変動を少なくできないという問題がある。   By the way, for example, when an inert gas such as argon gas or nitrogen gas is used, it is known that fluctuations in the pressure in the drawing furnace and the outer diameter of the optical fiber increase. A frequency analysis of the pressure fluctuation and outer diameter fluctuation measurement results in the drawing furnace revealed that there are many frequency components of about several Hz (˜2 Hz). That is, in order to adjust the pressure to be constant in response to the pressure fluctuation in the drawing furnace having such a frequency component, a response time (response time) of about several seconds as in the mass flow controller described in Patent Document 2 above. A structure having a response speed of less than 0.5 seconds is required instead of a structure having a speed). However, the above Patent Documents 1 to 3 do not disclose the specific structure and control method of the gas supply means, and there is a problem in that fluctuations in the outer diameter of the optical fiber cannot be reduced.

本発明は、上述のような実情に鑑みてなされたもので、光ファイバの外径変動の少ない光ファイバの製造方法および製造装置の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an optical fiber manufacturing method and manufacturing apparatus with less fluctuation in the outer diameter of the optical fiber.

本発明による光ファイバの製造方法は、光ファイバ用ガラス母材を、アルゴンまたは窒素を含有するガスで満たした線引炉内に挿入し、前記線引炉内で加熱溶融して光ファイバを線引きする光ファイバの製造方法であって、ガス供給部により、前記線引炉内の圧力が予め設定された前記線引炉内の圧力の目標値よりも低い値になるようにガスを前記線引炉内に一定量送り込み、測定部により、前記線引炉内の圧力を測定し、制御部により、前記目標値と前記測定部で測定された前記線引炉内の圧力の測定値とを比較し、開度を調整することにより前記線引炉内にガスを供給して前記線引炉内の圧力を上げる自動開閉バルブを制御し、前記線引炉内の圧力変動の周波数成分のうち、5Hz以下の周波数成分の圧力変動に追従するよう前記自動開閉バルブの開度を調整することにより、前記測定値が前記目標値となるようにガスを前記線引炉内に供給する。 An optical fiber manufacturing method according to the present invention includes an optical fiber glass preform inserted into a drawing furnace filled with a gas containing argon or nitrogen, and heated and melted in the drawing furnace to draw the optical fiber. An optical fiber manufacturing method, wherein the gas is drawn by the gas supply unit so that the pressure in the drawing furnace is lower than a preset target value of the pressure in the drawing furnace. A certain amount is fed into the furnace, the pressure in the drawing furnace is measured by the measuring unit, and the target value is compared with the measured value of the pressure in the drawing furnace measured by the measuring unit by the control unit. And by controlling the automatic opening and closing valve that raises the pressure in the drawing furnace by supplying gas into the drawing furnace by adjusting the opening , among the frequency components of the pressure fluctuation in the drawing furnace, 5Hz said automatic opening so as to follow the pressure variations of the following frequency components By adjusting the opening of the valve and supplies a gas such that the measurement value becomes the target value in the line drawing furnace.

本発明による光ファイバの製造装置は、光ファイバ用ガラス母材を、アルゴンまたは窒素を含有するガスで満たした線引炉内に挿入し、前記線引炉内で加熱溶融して光ファイバを線引きする光ファイバの製造装置であって、ガスを前記線引炉内に一定量送り込むガス供給部と、前記線引炉内の圧力を測定する測定部と、開度を調整することにより前記線引炉内にさらにガスを供給して前記線引炉内の圧力を上げる自動開閉バルブと、予め設定された前記線引炉内の圧力の目標値と前記測定部で測定された前記線引炉内の圧力の測定値とを比較し、前記ガス供給部からのガス流量および前記自動開閉バルブの開度を制御する制御部とを備え、前記ガス供給部は、前記線引炉内の圧力が前記目標値よりも低い値になるようにガスを前記線引炉内に送り込み、前記自動開閉バルブは、前記線引炉内の圧力変動の周波数成分のうち、5Hz以下の周波数成分の圧力変動に追従するよう開度を調整することにより前記測定値が前記目標値となるようにガスを前記線引炉内に供給する。 An optical fiber manufacturing apparatus according to the present invention inserts an optical fiber glass preform into a drawing furnace filled with a gas containing argon or nitrogen, and heats and melts the optical fiber in the drawing furnace. An optical fiber manufacturing apparatus for supplying a certain amount of gas into the drawing furnace, a measuring unit for measuring the pressure in the drawing furnace, and adjusting the opening to draw the drawing. An automatic opening / closing valve for further supplying gas into the furnace to increase the pressure in the drawing furnace, a preset target value of the pressure in the drawing furnace, and the inside of the drawing furnace measured by the measurement unit And a control unit that controls the gas flow rate from the gas supply unit and the opening degree of the automatic opening and closing valve, and the gas supply unit is configured such that the pressure in the drawing furnace is Gas is drawn into the draw furnace so that the value is lower than the target value. Interrupt, the automatic opening and closing valve, among the frequency components of the pressure fluctuations in the line drawing furnace, and the target value the measured value by adjusting the degree of opening so as to follow the pressure variations in the frequency components lower than 5Hz The gas is supplied into the drawing furnace so that

本発明によれば、ガス供給部により線引炉内の圧力が目標値よりも低い値になるようにガスを線引炉内に送り込む一方、速い応答速度で開閉できる自動開閉バルブをガス供給部とは別に給気ラインに設けているため、数十Hz以上の変動に追従することは難しいものの、上記した数Hz程度の圧力変動には追従して線引炉内圧力を調整することができ、光ファイバの外径変動を抑えることができる。
さらに、ガスを線引炉内から強制的に排出せず、線引炉内にガスを供給して線引炉内の圧力変動を所定値に保持できるため、ガスの使用量が減って光ファイバの製造コストをより低減可能となる。
According to the present invention, the gas supply unit is provided with an automatic opening / closing valve capable of opening and closing at a fast response speed while feeding gas into the drawing furnace so that the pressure in the drawing furnace is lower than the target value by the gas supply unit. Since it is provided in the air supply line separately, it is difficult to follow fluctuations of several tens of Hz or more, but the pressure in the drawing furnace can be adjusted following the pressure fluctuations of about several Hz described above. The fluctuation of the outer diameter of the optical fiber can be suppressed.
Furthermore, since the gas can be supplied into the drawing furnace and the pressure fluctuation in the drawing furnace can be maintained at a predetermined value without forcibly discharging the gas from the drawing furnace, the amount of gas used is reduced and the optical fiber is reduced. The manufacturing cost can be further reduced.

本発明の一形態による光ファイバの製造装置の概略を説明する図である。It is a figure explaining the outline of the manufacturing apparatus of the optical fiber by one form of this invention. アルゴンガスの比率と光ファイバの外径変動の関係を示す図である。It is a figure which shows the relationship between the ratio of argon gas, and the outer diameter fluctuation | variation of an optical fiber. 線引炉内の圧力変動と光ファイバの外径変動の関係を示す図である。It is a figure which shows the relationship between the pressure fluctuation in a drawing furnace, and the outer diameter fluctuation | variation of an optical fiber. 線引炉内の圧力および光ファイバの外径の時間変化の一例を示す図である。It is a figure which shows an example of the time change of the pressure in a drawing furnace, and the outer diameter of an optical fiber. 図4の周波数解析の結果を示す図である。It is a figure which shows the result of the frequency analysis of FIG. 線引炉内の圧力変動に対する光ファイバの外径変動のゲイン特性を示す図である。It is a figure which shows the gain characteristic of the outer diameter fluctuation | variation of the optical fiber with respect to the pressure fluctuation | variation in a drawing furnace. 上部チャンバーの圧力変動および下部チャンバーの圧力変動の一例を示す図である。It is a figure which shows an example of the pressure fluctuation of an upper chamber, and the pressure fluctuation of a lower chamber. 制御内容を示す図である。It is a figure which shows the control content.

図1により、本発明が適用される光ファイバの製造装置の概略を説明する。なお、以下ではヒータにより炉心管を加熱する抵抗炉を例に説明するが、コイルに高周波電源を印加し、炉心管を誘導加熱する誘導炉にも、本発明は適用可能である。
図において、10は線引炉、11は光ファイバ用ガラス母材、12は光ファイバ、13はダミー棒、14は連結部分、15は炉心管、16はヒータ、17は断熱材、18は炉筐体、19は下部チャンバー、20は上部チャンバー、21は蓋体、21aは上端開口、22はガス導入路、23はガス供給部、24はガス給気路、25は自動開閉バルブ、26は測定部、30は制御部を示す。
An outline of an optical fiber manufacturing apparatus to which the present invention is applied will be described with reference to FIG. In the following, a resistance furnace that heats the core tube with a heater will be described as an example. However, the present invention can also be applied to an induction furnace in which a high-frequency power source is applied to the coil to induction-heat the core tube.
In the figure, 10 is a drawing furnace, 11 is an optical fiber glass base material, 12 is an optical fiber, 13 is a dummy rod, 14 is a connecting portion, 15 is a core tube, 16 is a heater, 17 is a heat insulating material, and 18 is a furnace. Housing, 19 is a lower chamber, 20 is an upper chamber, 21 is a lid, 21a is an upper end opening, 22 is a gas introduction path, 23 is a gas supply section, 24 is a gas supply path, 25 is an automatic opening / closing valve, and 26 is A measurement unit 30 indicates a control unit.

線引炉10は、炉筐体18、下部チャンバー19、上部チャンバー20からなる。炉心管15は、炉筐体18の中央部に円筒状で形成され、下部チャンバー19および上部チャンバー20と連通している。炉心管15はカーボン製で、この炉心管15内には、光ファイバ用ガラス母材11(以下、ガラス母材という)が上部チャンバー20を介して挿入される。
上部チャンバー20は、炉心管15と同程度の内径を有し、その上端に蓋体21を配して封止(シール)される。蓋体21には上端開口21aが形成され、ガラス母材11と同種のガラスロッドからなるダミー棒13を挿通させる。
The drawing furnace 10 includes a furnace casing 18, a lower chamber 19, and an upper chamber 20. The core tube 15 is formed in a cylindrical shape at the center of the furnace casing 18 and communicates with the lower chamber 19 and the upper chamber 20. The core tube 15 is made of carbon, and an optical fiber glass base material 11 (hereinafter referred to as a glass base material) is inserted into the core tube 15 through the upper chamber 20.
The upper chamber 20 has an inner diameter comparable to that of the core tube 15, and is sealed (sealed) with a lid 21 disposed on the upper end thereof. An upper end opening 21 a is formed in the lid 21, and a dummy rod 13 made of the same kind of glass rod as the glass base material 11 is inserted therethrough.

炉筐体18内には、ヒータ16が炉心管15を囲むように配され、断熱材17がヒータ16の外側を覆うように収納される。ヒータ16は、炉心管15の内部に挿入されたガラス母材11を加熱溶融し、溶融縮径した光ファイバ12を下部チャンバー19から垂下させる。
ガラス母材11は、ダミー棒13に連結する連結部分14にて溶着、若しくは、連結部材を介して接続一体化される。ガラス母材11は、移動機構(図示省略)により線引方向(下方向)に移動可能となっている。
A heater 16 is arranged in the furnace casing 18 so as to surround the furnace core tube 15, and a heat insulating material 17 is accommodated so as to cover the outside of the heater 16. The heater 16 heats and melts the glass base material 11 inserted into the core tube 15, and causes the optical fiber 12 that has been melted and reduced in diameter to hang down from the lower chamber 19.
The glass base material 11 is welded at a connecting portion 14 connected to the dummy bar 13 or connected and integrated through a connecting member. The glass base material 11 can be moved in a drawing direction (downward) by a moving mechanism (not shown).

線引炉10には不活性ガス等による炉内ガスの供給機構が設けられている。詳しくは、上部チャンバー20には、ガス導入路22が設けられており、例えば、アルゴンガスとヘリウムガスとを混合した不活性ガス等が炉心管15内に一定量送り込まれる。これにより、炉心管15内やヒータ16の周りの酸化や劣化防止を図る。この不活性ガス等の供給量は、ガス供給部(マスフローコントローラ(MFC)とも言う)23で制御され、供給される。また、このMFCとは別に、小容量を制御可能な別のMFCを並列配置して流量の高精度制御を図ってもよい。   The drawing furnace 10 is provided with an in-furnace gas supply mechanism such as an inert gas. Specifically, the upper chamber 20 is provided with a gas introduction path 22. For example, an inert gas or the like obtained by mixing argon gas and helium gas is fed into the furnace core tube 15 in a certain amount. This prevents oxidation and deterioration in the furnace core tube 15 and around the heater 16. The supply amount of the inert gas or the like is controlled and supplied by a gas supply unit (also referred to as a mass flow controller (MFC)) 23. In addition to this MFC, another MFC capable of controlling a small capacity may be arranged in parallel to achieve high-precision flow rate control.

なお、この不活性ガス等は、ガラス母材11と炉心管15の隙間を通り、線引きされた光ファイバ12と共に、下部チャンバー19の下方のシャッター部分などからも外部に放出されるが、別の排気路を設けて一定量排気するようにしても良い。
一方、上部チャンバー20には測定部26が設けられ、線引炉10内の圧力を測定している。この測定結果は制御部30に出力される。線引炉内の圧力変動の位相差はほとんど無い為、圧力は炉内のどの位置で測定してもよい。
The inert gas or the like passes through the gap between the glass base material 11 and the core tube 15 and is released to the outside along with the drawn optical fiber 12 from the shutter portion below the lower chamber 19. An exhaust path may be provided to exhaust a certain amount.
On the other hand, a measurement unit 26 is provided in the upper chamber 20 to measure the pressure in the drawing furnace 10. The measurement result is output to the control unit 30. Since there is almost no phase difference of pressure fluctuation in the drawing furnace, the pressure may be measured at any position in the furnace.

線引炉10には、不活性ガス等による炉内ガスの供給機構が設けられている。具体的には、上部チャンバー20のうち下端部近傍には、自動開閉バルブ25を有したガス給気路24が設けられている。
このガス給気路24を経て線引炉10の内部に供給される流量は、自動ニードルバルブ等の自動開閉バルブ25の開度で調整される。この自動開閉バルブ25は、例えば、比例制御弁で構成され、1秒未満の応答速度(例えば、0.05秒〜0.3秒程度)を備えており、制御部30からの信号に基づき、ソレノイド(図示省略)の磁力を用いて開閉駆動する。
The drawing furnace 10 is provided with an in-furnace gas supply mechanism using an inert gas or the like. Specifically, a gas supply passage 24 having an automatic opening / closing valve 25 is provided near the lower end of the upper chamber 20.
The flow rate supplied into the drawing furnace 10 through the gas supply passage 24 is adjusted by the opening degree of an automatic opening / closing valve 25 such as an automatic needle valve. The automatic opening / closing valve 25 is composed of, for example, a proportional control valve, and has a response speed of less than 1 second (for example, about 0.05 seconds to 0.3 seconds). Based on a signal from the control unit 30, It is opened and closed using the magnetic force of a solenoid (not shown).

制御部30は、ガス導入路22およびガス給気路24から線引炉10内への給気量を制御し、線引炉10内の圧力変動を所定値に保持する。   The control unit 30 controls the amount of air supplied from the gas introduction path 22 and the gas supply path 24 into the drawing furnace 10 and holds the pressure fluctuation in the drawing furnace 10 at a predetermined value.

図2は、アルゴンガスの比率と光ファイバの外径変動の関係を示す図である。
熱伝導率の低いアルゴンガスを熱伝導率の高いヘリウムガスに混ぜることにより、ヘリウムガスを100%使用する場合に比べて温度むらに起因した圧力変動が発生しやすくなり、図2に示すように、光ファイバの外径変動が大きくなる。
FIG. 2 is a diagram showing the relationship between the ratio of argon gas and fluctuations in the outer diameter of the optical fiber.
By mixing argon gas with low thermal conductivity with helium gas with high thermal conductivity, pressure fluctuations due to temperature unevenness are more likely to occur than when helium gas is used at 100%, as shown in FIG. The fluctuation of the outer diameter of the optical fiber increases.

この光ファイバの外径変動は、例えば光ファイバの外径のばらつき(標準偏差σ)を3倍した値(3σ)で表すことができる。そして、アルゴンガスを混ぜない場合(ヘリウムガスを100%使用した場合)、光ファイバの外径変動(3σ)は±0.09μmに抑えられるが、アルゴンガスを12.5%使用した場合(ヘリウムガスを87.5%使用した場合)、光ファイバの外径変動(3σ)は±0.68μmになる。   This variation in the outer diameter of the optical fiber can be represented by, for example, a value (3σ) obtained by triple the variation in the outer diameter of the optical fiber (standard deviation σ). When argon gas is not mixed (when helium gas is used at 100%), the outer diameter fluctuation (3σ) of the optical fiber can be suppressed to ± 0.09 μm, but when argon gas is used at 12.5% (helium) When gas is used at 87.5%), the outer diameter variation (3σ) of the optical fiber becomes ± 0.68 μm.

また、アルゴンガスを25%使用した場合(ヘリウムガスを75%使用した場合)、光ファイバの外径変動(3σ)は±0.61μm、アルゴンガスを50%使用した場合(ヘリウムガスを50%使用した場合)、光ファイバの外径変動(3σ)は±1.11μm、アルゴンガスを100%使用した場合(ヘリウムガスを使用しない場合)、光ファイバの外径変動(3σ)は±1.40μmまで大きくなる。なお、アルゴンガスに替えて窒素ガスを用いても概ね似たような結果となる。   When 25% argon gas is used (75% helium gas is used), the optical fiber outer diameter variation (3σ) is ± 0.61 μm, and 50% argon gas is used (50% helium gas is used) When used), the outer diameter variation (3σ) of the optical fiber is ± 1.11 μm, when 100% argon gas is used (when helium gas is not used), the outer diameter variation (3σ) of the optical fiber is ± 1.1. Increases to 40 μm. Even if nitrogen gas is used instead of argon gas, a similar result is obtained.

図3は、線引炉(上部チャンバー)内の圧力変動と光ファイバの外径変動の関係を示す図である。線引炉内の圧力変動と光ファイバの外径変動とは相関があり、例えば、線引炉内の圧力変動を±2.2Paまで低くすれば、光ファイバの外径変動を±1μmにまで抑制でき、線引炉内の圧力変動を±1.0Paまで低減すれば、光ファイバの外径変動を±0.40μmに抑制可能になる。この場合の光ファイバは、多心光コネクタへの光ファイバ付けの歩留まりが良好になると共に、接続損失を小さくすることができる。さらに、線引炉内の圧力変動を±0.5Paまで低減できれば、光ファイバの外径変動を±0.15μm程度に抑えることが可能である。   FIG. 3 is a diagram showing the relationship between the pressure fluctuation in the drawing furnace (upper chamber) and the outer diameter fluctuation of the optical fiber. There is a correlation between the pressure fluctuation in the drawing furnace and the outer diameter fluctuation of the optical fiber. For example, if the pressure fluctuation in the drawing furnace is lowered to ± 2.2 Pa, the outer diameter fluctuation of the optical fiber is reduced to ± 1 μm. If the pressure fluctuation in the drawing furnace can be reduced to ± 1.0 Pa, the outer diameter fluctuation of the optical fiber can be suppressed to ± 0.40 μm. The optical fiber in this case can improve the yield of attaching the optical fiber to the multi-fiber optical connector and reduce the connection loss. Further, if the pressure fluctuation in the drawing furnace can be reduced to ± 0.5 Pa, the outer diameter fluctuation of the optical fiber can be suppressed to about ± 0.15 μm.

この図3に示した線引炉内の圧力変動と光ファイバの外径変動とは相関がある点について詳述する。線引炉内のガスをAr50%、He50%とし、線引炉内の圧力および光ファイバの外径を測定すると、図4に太線で示すように、線引炉内の圧力(大気圧との差圧)が、例えば、9Pa〜13Paの範囲内で変化した場合、図4に細線で示すように、光ファイバの外径は、例えば、−1.0μm〜+1.5μmの範囲内で、線引炉内の圧力に追従するように上下方向に変化することが分かる。   The fact that there is a correlation between the pressure fluctuation in the drawing furnace shown in FIG. 3 and the outer diameter fluctuation of the optical fiber will be described in detail. When the gas in the drawing furnace is Ar 50% and He 50%, and the pressure in the drawing furnace and the outer diameter of the optical fiber are measured, the pressure in the drawing furnace (with respect to the atmospheric pressure) is shown in FIG. For example, when the differential pressure changes within a range of 9 Pa to 13 Pa, the outer diameter of the optical fiber is within a range of −1.0 μm to +1.5 μm, for example, as shown by a thin line in FIG. It turns out that it changes to an up-down direction so that the pressure in a furnace may be followed.

図5は、図4の周波数解析の結果を示す図であり、図5に太線で示した線引炉内の圧力変動周期と図5に細線で示した光ファイバの外径変動周期とは、周波数の比較的低い約2Hz以下の領域でほぼ一致している。また、この図5に示すように、線引炉内の圧力および光ファイバの外径は、2Hz未満で強度が大きくなっている。このため、線引炉内の2Hz未満での圧力変動を減らせば、光ファイバの外径変動をより一層小さくできることが分かる。その一方で、周波数が高くなるほど、圧力変動と光ファイバの外径変動の相関は小さくなるので、5Hz程度までの圧力変動を減らせば、ほぼ十分であると言える。このことについて、次に説明する。   FIG. 5 is a diagram showing the results of frequency analysis of FIG. 4. The pressure fluctuation period in the drawing furnace indicated by the thick line in FIG. 5 and the outer diameter fluctuation period of the optical fiber indicated by the thin line in FIG. In the region where the frequency is relatively low, which is about 2 Hz or less, they are almost the same. Further, as shown in FIG. 5, the pressure in the drawing furnace and the outer diameter of the optical fiber are less than 2 Hz and the strength is increased. For this reason, it can be seen that if the pressure fluctuation at less than 2 Hz in the drawing furnace is reduced, the outer diameter fluctuation of the optical fiber can be further reduced. On the other hand, the higher the frequency, the smaller the correlation between the pressure fluctuation and the optical fiber outer diameter fluctuation. Therefore, it can be said that it is almost sufficient to reduce the pressure fluctuation to about 5 Hz. This will be described next.

図6は、圧力変動に対する光ファイバの外径変動のゲイン特性を示す図である。ゲイン特性は、伝達関数G(s)を、G(s)=ガラス外径/炉内圧力としたときの、振幅の周波数特性を示す。この図より、周波数が高くなるほど振幅(ゲイン)は小さくなり、したがって、高い周波数成分の圧力変動を制御しても、光ファイバの外径変動にはほとんど影響しない(効果が無い)ことが分かる。周波数が5Hzのときのゲインは−11dB程度(振幅1/4程度)にまで下がる為、図5の結果と合わせ、5Hz程度までの圧力変動を制御して減らせば十分であると言える。なお、図6は、Ar50%、He50%の時のゲイン特性であり、ガスの成分により、ゲイン特性は若干変わるが、大きくは変わらない。   FIG. 6 is a diagram illustrating gain characteristics of the outer diameter variation of the optical fiber with respect to the pressure variation. The gain characteristic indicates the frequency characteristic of amplitude when the transfer function G (s) is G (s) = glass outer diameter / furnace pressure. From this figure, it can be seen that the amplitude (gain) becomes smaller as the frequency becomes higher, and therefore, even if the pressure fluctuation of the high frequency component is controlled, the outer diameter fluctuation of the optical fiber is hardly influenced (ineffective). Since the gain when the frequency is 5 Hz is reduced to about −11 dB (amplitude is about ¼), it can be said that it is sufficient to control and reduce the pressure fluctuation up to about 5 Hz in combination with the result of FIG. FIG. 6 shows the gain characteristics when Ar is 50% and He is 50%. The gain characteristics slightly change depending on the gas components, but not greatly.

また、サンプリング周期0.1秒にて、上部チャンバーの圧力と下部チャンバーの圧力とをそれぞれ測定すると、図7(A)に示すように、上部チャンバーの圧力(大気圧との差圧)は40Pa〜54Paの範囲内で、下部チャンバーの圧力は0Pa(大気圧に相当)〜14Paの範囲内でそれぞれ測定され、下部チャンバーの圧力は上部チャンバーの圧力よりも小さくなるものの、上部チャンバーと下部チャンバーの圧力の変動周期はほぼ一致している。図7(B)に、この図7(A)の5秒〜8秒の区間を拡大した図を示すが、上部チャンバーの圧力の変動周期と下部チャンバーの圧力の変動周期とが一致していることがよく分かる。つまり、線引炉内の圧力変動の位相差はほとんど無く、圧力は炉内のどの位置で測定してもよい。   Further, when the pressure in the upper chamber and the pressure in the lower chamber are measured at a sampling period of 0.1 second, as shown in FIG. 7A, the pressure in the upper chamber (differential pressure from the atmospheric pressure) is 40 Pa. The pressure in the lower chamber is measured in the range of 0 Pa (corresponding to atmospheric pressure) to 14 Pa in the range of ~ 54 Pa, and the pressure in the lower chamber is smaller than the pressure in the upper chamber. The fluctuation cycle of pressure is almost the same. FIG. 7 (B) shows an enlarged view of the section of 5 to 8 seconds in FIG. 7 (A). The fluctuation cycle of the pressure in the upper chamber and the fluctuation cycle of the pressure in the lower chamber are the same. I understand that well. That is, there is almost no phase difference of pressure fluctuation in the drawing furnace, and the pressure may be measured at any position in the furnace.

このように、上部チャンバーあるいは下部チャンバーの圧力変動は、いずれも線引炉内の圧力変動として同様に考えることができ、また、線引炉内の圧力変動と光ファイバの外径変動とは相関がある。一方、図2で説明したように、光ファイバの外径変動は、アルゴンガスの比率が高くなるほど大きくなる。   Thus, the pressure fluctuation in the upper chamber or the lower chamber can be considered in the same way as the pressure fluctuation in the drawing furnace, and the pressure fluctuation in the drawing furnace is correlated with the outer diameter fluctuation of the optical fiber. There is. On the other hand, as described with reference to FIG. 2, the outer diameter variation of the optical fiber increases as the ratio of argon gas increases.

アルゴンガスの比率が高くなっても外径変動を小さく抑えるためには、線引炉10内の圧力変動を小さくする必要がある。この圧力変動を制御するために、制御部30は、まず線引炉10内の圧力の目標値Psetを設定する。このPsetは、線引炉内を陽圧に保つ、などの最低限必要な圧力より高くなるような値に、設定する。
そして、この制御部30は、測定部26で測定された線引炉10内の圧力(測定値P)が設定した目標値Psetと一致するように、自動開閉バルブ25の開度を制御する。目標値Psetと測定値Pとの偏差から自動開閉バルブ25の開度を設定する制御には、P制御(Proportional Control:比例制御)、I制御(Integral Control:積分制御)、D制御(Derivative Control:微分制御)、あるいは、これらを適宜組み合わせた各種制御が適用される。
In order to keep the outer diameter fluctuation small even when the ratio of the argon gas is increased, it is necessary to reduce the pressure fluctuation in the drawing furnace 10. In order to control this pressure fluctuation, the control unit 30 first sets a target value Pset of the pressure in the drawing furnace 10. This Pset is set to a value that is higher than the minimum required pressure, such as keeping the drawing furnace at a positive pressure.
And this control part 30 controls the opening degree of the automatic opening-and-closing valve 25 so that the pressure (measurement value P) in the drawing furnace 10 measured by the measurement part 26 may correspond with the set target value Pset. For the control to set the opening degree of the automatic opening / closing valve 25 from the deviation between the target value Pset and the measured value P, P control (Proportional Control), I control (Integral Control), D control (Derivative Control) : Differential control), or various controls combining these appropriately.

具体的には、制御部30は、線引炉10内の自然対流などによる圧力変動を抑える(補正する)ために、この圧力変動を見込んだ圧力値(例えば、Psetより3Pa程度低くした値)を求め、ガス供給部23に指示する。ガス供給部23は、制御部30の指示圧力(図8の二点鎖線(Pset)よりも低い値であり、図8の破線で示す)を満たす量の不活性ガス等を線引炉10内に送り込む。   Specifically, in order to suppress (correct) pressure fluctuation due to natural convection in the drawing furnace 10, the control unit 30 expects this pressure fluctuation (for example, a value about 3 Pa lower than Pset). To the gas supply unit 23. The gas supply unit 23 supplies an inert gas or the like that satisfies the command pressure of the control unit 30 (a value lower than the two-dot chain line (Pset) in FIG. 8 and indicated by a broken line in FIG. 8) into the drawing furnace 10. To send.

続いて、制御部30は、炉内圧力の測定値Pが目標値Psetとなるように、測定値Pの偏差を補正するよう、自動開閉バルブ25の開度を指示する。自動開閉バルブ25は、測定値Pが大きい場合には開度を小さくして少量のガスを給気し、測定値Pが小さい場合には開度を大きくして大量のガスを給気するように、給気量を測定値Pの大きさに追従させる。図5に示すように、圧力変動は周波数が低い成分ほど強度が高く、また、図6に示すように、周波数が低い成分ほど光ファイバの外径変動に影響することから、バルブの応答速度は0.3s以下、より好ましくは0.2s以下とし、特に低周波成分の圧力変動に追従するように制御する。   Subsequently, the control unit 30 instructs the opening degree of the automatic opening / closing valve 25 so as to correct the deviation of the measured value P so that the measured value P of the in-furnace pressure becomes the target value Pset. When the measured value P is large, the automatic opening / closing valve 25 reduces the opening to supply a small amount of gas, and when the measured value P is small, the automatic opening / closing valve 25 increases the opening to supply a large amount of gas. In addition, the air supply amount is made to follow the magnitude of the measured value P. As shown in FIG. 5, the pressure fluctuation has a higher intensity as the frequency is lower, and as shown in FIG. 6, the lower frequency component affects the outer diameter fluctuation of the optical fiber. It is set to 0.3 s or less, more preferably 0.2 s or less, and control is performed so as to follow the pressure fluctuation of the low frequency component.

線引炉内ガスをAr50%、He50%とし、上記の給気制御を実施した結果、5Hz以下の圧力変動は、制御前の1/10程度にすることができた。その結果、従来±1.11μmだった光ファイバの外径変動(3σ)も、±0.15μm以下にすることができた。   The drawing furnace gas was Ar 50% and He 50%, and the above air supply control was performed. As a result, the pressure fluctuation of 5 Hz or less could be reduced to about 1/10 before the control. As a result, the outer diameter fluctuation (3σ) of the optical fiber, which was conventionally ± 1.11 μm, can be reduced to ± 0.15 μm or less.

以上のように、ガス供給部とは別に、ガス給気路に自動開閉バルブを設け、線引炉内の圧力の目標値Psetと測定値Pとの偏差から自動開閉バルブの開度を設定し、ガス供給部により線引炉内の圧力が目標値よりも低い値になるようにガスを線引炉内に送り込む一方、速い応答速度で自動開閉バルブを開閉することによってガスを給気することにより、例えば、アルゴンや窒素を混ぜた場合であっても線引炉内の圧力変動を低減することが可能となり、光ファイバの外径変動を抑えることができる。   As described above, an automatic opening / closing valve is provided in the gas supply path separately from the gas supply unit, and the opening degree of the automatic opening / closing valve is set from the deviation between the target value Pset of the pressure in the drawing furnace and the measured value P. The gas supply unit supplies gas by opening and closing the automatic open / close valve at a fast response speed while sending the gas into the drawing furnace so that the pressure in the drawing furnace is lower than the target value. Thus, for example, even when argon or nitrogen is mixed, it is possible to reduce the pressure fluctuation in the drawing furnace, and to suppress the outer diameter fluctuation of the optical fiber.

さらに、ガスを線引炉内から強制的に排出せず、線引炉内にガスを供給して線引炉内の圧力変動を所定値に保持できるため、ガスの使用量が減って光ファイバの製造コストをより低減可能となる。   Furthermore, since the gas can be supplied into the drawing furnace and the pressure fluctuation in the drawing furnace can be maintained at a predetermined value without forcibly discharging the gas from the drawing furnace, the amount of gas used is reduced and the optical fiber is reduced. The manufacturing cost can be further reduced.

10…線引炉、11…光ファイバ用ガラス母材、12…光ファイバ、13…ダミー棒、14…連結部分、15…炉心管、16…ヒータ、17…断熱材、18…炉筐体、19…下部チャンバー、20…上部チャンバー、21…蓋体、21a…上端開口、22…ガス導入路、23…ガス供給部、24…ガス給気路、25…自動開閉バルブ、26…測定部、30…制御部。 DESCRIPTION OF SYMBOLS 10 ... Drawing furnace, 11 ... Glass base material for optical fibers, 12 ... Optical fiber, 13 ... Dummy rod, 14 ... Connection part, 15 ... Core tube, 16 ... Heater, 17 ... Heat insulating material, 18 ... Furnace housing, DESCRIPTION OF SYMBOLS 19 ... Lower chamber, 20 ... Upper chamber, 21 ... Cover body, 21a ... Upper end opening, 22 ... Gas introduction path, 23 ... Gas supply part, 24 ... Gas supply path, 25 ... Automatic opening / closing valve, 26 ... Measurement part, 30: Control unit.

Claims (3)

光ファイバ用ガラス母材を、アルゴンまたは窒素を含有するガスで満たした線引炉内に挿入し、前記線引炉内で加熱溶融して光ファイバを線引きする光ファイバの製造方法であって、
ガス供給部により、前記線引炉内の圧力が予め設定された前記線引炉内の圧力の目標値よりも低い値になるようにガスを前記線引炉内に一定量送り込み、測定部により、前記線引炉内の圧力を測定し、制御部により、前記目標値と前記測定部で測定された前記線引炉内の圧力の測定値とを比較し、開度を調整することにより前記線引炉内にガスを供給して前記線引炉内の圧力を上げる自動開閉バルブを制御し、前記線引炉内の圧力変動の周波数成分のうち、5Hz以下の周波数成分の圧力変動に追従するよう前記自動開閉バルブの開度を調整することにより、前記測定値が前記目標値となるようにガスを前記線引炉内に供給する光ファイバの製造方法。
An optical fiber manufacturing method for drawing an optical fiber by inserting a glass base material for an optical fiber into a drawing furnace filled with a gas containing argon or nitrogen, and heating and melting in the drawing furnace.
A certain amount of gas is fed into the drawing furnace by a gas supply unit so that the pressure in the drawing furnace is lower than a preset target value of the pressure in the drawing furnace. The pressure in the drawing furnace is measured, and the control unit compares the target value with the measured value of the pressure in the drawing furnace measured by the measurement unit, and adjusts the opening degree. Controls an automatic open / close valve that supplies gas into the drawing furnace to increase the pressure in the drawing furnace, and follows pressure fluctuations of frequency components of 5 Hz or less among frequency components of pressure fluctuations in the drawing furnace An optical fiber manufacturing method for supplying gas into the drawing furnace so that the measured value becomes the target value by adjusting the opening of the automatic opening and closing valve.
前記線引炉内を満たすガスは、アルゴンまたは窒素を50%以上含有する、請求項1に記載の光ファイバの製造方法。 The method for producing an optical fiber according to claim 1, wherein the gas filling the drawing furnace contains 50% or more of argon or nitrogen . 光ファイバ用ガラス母材を、アルゴンまたは窒素を含有するガスで満たした線引炉内に挿入し、前記線引炉内で加熱溶融して光ファイバを線引きする光ファイバの製造装置であって、  An optical fiber manufacturing apparatus for drawing an optical fiber by inserting a glass base material for an optical fiber into a drawing furnace filled with a gas containing argon or nitrogen, and heating and melting in the drawing furnace.
ガスを前記線引炉内に一定量送り込むガス供給部と、前記線引炉内の圧力を測定する測定部と、開度を調整することにより前記線引炉内にさらにガスを供給して前記線引炉内の圧力を上げる自動開閉バルブと、予め設定された前記線引炉内の圧力の目標値と前記測定部で測定された前記線引炉内の圧力の測定値とを比較し、前記ガス供給部からのガス流量および前記自動開閉バルブの開度を制御する制御部とを備え、  A gas supply unit for feeding a certain amount of gas into the drawing furnace, a measurement unit for measuring the pressure in the drawing furnace, and adjusting the opening to further supply gas into the drawing furnace An automatic open / close valve for raising the pressure in the drawing furnace, and comparing a preset target value of the pressure in the drawing furnace with a measured value of the pressure in the drawing furnace measured by the measurement unit; A control unit that controls a gas flow rate from the gas supply unit and an opening degree of the automatic opening and closing valve;
前記ガス供給部は、前記線引炉内の圧力が前記目標値よりも低い値になるようにガスを前記線引炉内に送り込み、前記自動開閉バルブは、前記線引炉内の圧力変動の周波数成分のうち、5Hz以下の周波数成分の圧力変動に追従するよう開度を調整することにより前記測定値が前記目標値となるようにガスを前記線引炉内に供給する光ファイバの製造装置。  The gas supply unit feeds gas into the drawing furnace so that the pressure in the drawing furnace is lower than the target value, and the automatic open / close valve is configured to reduce pressure fluctuations in the drawing furnace. An apparatus for manufacturing an optical fiber that supplies gas into the drawing furnace so that the measured value becomes the target value by adjusting the opening degree so as to follow the pressure fluctuation of the frequency component of 5 Hz or less among the frequency components. .
JP2013127308A 2013-06-18 2013-06-18 Optical fiber manufacturing method and manufacturing apparatus Active JP6277605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013127308A JP6277605B2 (en) 2013-06-18 2013-06-18 Optical fiber manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013127308A JP6277605B2 (en) 2013-06-18 2013-06-18 Optical fiber manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2015000840A JP2015000840A (en) 2015-01-05
JP6277605B2 true JP6277605B2 (en) 2018-02-14

Family

ID=52295585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013127308A Active JP6277605B2 (en) 2013-06-18 2013-06-18 Optical fiber manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP6277605B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279326A (en) * 1997-04-02 1998-10-20 Yazaki Corp Drawing and heating furnace for optical fiber
JP4228420B2 (en) * 1998-08-18 2009-02-25 住友電気工業株式会社 Optical fiber drawing furnace and optical fiber drawing method
JP2002356344A (en) * 2001-05-31 2002-12-13 Hitachi Cable Ltd Method for drawing optical fiber and wire drawing furnace for optical fiber

Also Published As

Publication number Publication date
JP2015000840A (en) 2015-01-05

Similar Documents

Publication Publication Date Title
JP5880522B2 (en) Optical fiber manufacturing method and optical fiber drawing furnace
CN105073664B (en) Optical fiber drawing method and optic fibre drawing apparatus
CN102897995B (en) A kind of silica tube, quartz pushrod continuous induction melting furnace
JP2015074600A (en) Method of manufacturing optical fiber
KR102594267B1 (en) Manufacturing method of optical fiber
JP6299088B2 (en) Optical fiber manufacturing method and manufacturing apparatus
CN103954128B (en) Heating furnace
KR102241284B1 (en) Silicon single crystal production device
CN107621169B (en) A kind of small size vacuum induction melting furnace and its method of smelting
JP5073257B2 (en) Single crystal manufacturing apparatus and method
JP6277605B2 (en) Optical fiber manufacturing method and manufacturing apparatus
JP5096264B2 (en) Sample vaporizer
JP2014125404A (en) Sapphire single crystal growth apparatus
WO2015050103A1 (en) Method for manufacturing optical fiber
CN112708935B (en) Control method of semiconductor phosphide injection synthesis system
WO2018101228A1 (en) Seal structure for optical fiber wire drawing oven and optical fiber production method
JP4404203B2 (en) Optical fiber manufacturing method
JP6421569B2 (en) Optical fiber manufacturing method and optical fiber manufacturing apparatus
KR20200135357A (en) Furnace gas supply device, optical fiber manufacturing device, optical fiber manufacturing method
US20050066690A1 (en) Method of and apparatus for producing optical fiber
JP6638432B2 (en) Method and apparatus for manufacturing optical fiber
JPH10279326A (en) Drawing and heating furnace for optical fiber
JPWO2004000740A1 (en) Method for drawing glass base material and drawing apparatus used therefor
JP2014111271A (en) Temperature measurement device for electro-slag-remelting and temperature measurement method for electro-slag-remelting
JPS60112638A (en) Manufacture of optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180101

R150 Certificate of patent or registration of utility model

Ref document number: 6277605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250