JP6816670B2 - Seal structure of optical fiber drawing furnace, optical fiber manufacturing method - Google Patents

Seal structure of optical fiber drawing furnace, optical fiber manufacturing method Download PDF

Info

Publication number
JP6816670B2
JP6816670B2 JP2017140653A JP2017140653A JP6816670B2 JP 6816670 B2 JP6816670 B2 JP 6816670B2 JP 2017140653 A JP2017140653 A JP 2017140653A JP 2017140653 A JP2017140653 A JP 2017140653A JP 6816670 B2 JP6816670 B2 JP 6816670B2
Authority
JP
Japan
Prior art keywords
optical fiber
housing
furnace
drawing furnace
seal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017140653A
Other languages
Japanese (ja)
Other versions
JP2019019034A (en
Inventor
巌 岡崎
巌 岡崎
山崎 卓
卓 山崎
智 吉川
智 吉川
崇広 斎藤
崇広 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2017140653A priority Critical patent/JP6816670B2/en
Publication of JP2019019034A publication Critical patent/JP2019019034A/en
Application granted granted Critical
Publication of JP6816670B2 publication Critical patent/JP6816670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光ファイバ用線引炉のシール構造、光ファイバの製造方法に関し、詳細には、光ファイバ用線引炉の上端開口部と上端開口部から炉心管に挿入される光ファイバ用ガラス母材との間の隙間を塞ぐための光ファイバ用線引炉のシール構造、光ファイバの製造方法に関する。 The present invention relates to a seal structure of an optical fiber drawing furnace and a method for manufacturing an optical fiber. In detail, the present invention relates to an optical fiber drawing furnace and a glass for an optical fiber inserted into a core tube from the upper end opening. The present invention relates to a seal structure of an optical fiber drawing furnace for closing a gap between a base material and an optical fiber, and a method for manufacturing an optical fiber.

光ファイバは、石英を主成分とする光ファイバ用ガラス母材(以下、ガラス母材という)を光ファイバ用線引炉(以下、線引炉という)の上端開口部から炉心管内に挿入し、ガラス母材の先端が加熱溶融して細径化されることにより、線引炉の下方から線引きされ、製造される。このときの線引炉内の温度は、約2000℃と非常に高温となるので、線引炉内の部品には、耐熱性に優れたカーボン製のものが使われることが多い。 In the optical fiber, a glass base material for an optical fiber containing quartz as a main component (hereinafter referred to as a glass base material) is inserted into the core tube from the upper end opening of a drawing furnace for an optical fiber (hereinafter referred to as a drawing furnace). The tip of the glass base material is heated and melted to reduce the diameter, so that the glass base material is drawn from below the drawing furnace and manufactured. Since the temperature inside the drawing furnace at this time is extremely high, about 2000 ° C., carbon parts having excellent heat resistance are often used for the parts inside the drawing furnace.

カーボン部品の熱劣化を防ぐため、一般的には、線引炉内を陽圧にし、外気(酸素)が線引炉内に入り込むことを防いでいるが、線引炉の上端開口部とガラス母材との隙間でうまく気密が取れていないと(シールされていないと)、外気を線引炉内に巻き込んでしまうことがある。これを防ぐため、例えば、特許文献1には、線引炉の上端開口部とガラス母材との隙間を塞ぐためのシール構造の技術が開示されている。 In order to prevent thermal deterioration of carbon parts, generally, the inside of the drawing furnace is made positive pressure to prevent outside air (oxygen) from entering the drawing furnace, but the upper end opening of the drawing furnace and the glass If the gap between the base metal and the base metal is not properly airtight (unsealed), the outside air may be caught in the wire drawing furnace. In order to prevent this, for example, Patent Document 1 discloses a technique of a seal structure for closing the gap between the upper end opening of the drawing furnace and the glass base material.

特開2014−152083号公報Japanese Unexamined Patent Publication No. 2014-152803

しかしながら、上記特許文献1の構造の場合、ブレード部材(シール部材)が筐体内に収容され、この筐体の一部(収納部)が炉内空間に露出している。炉内空間(上部)の温度は線引中に約1000℃程度まで達する場合があり、前記筐体が金属製であると、熱劣化してしまうため、筐体の一部を、例えば水等で冷却する場合がある。しかしながら、このように炉内空間に面する筐体が冷却されていると、炉内空間内で局所的に温度が変化するところができてしまい、この筐体付近でガス流れ(自然対流ともいう)が変化し、このガス流れの乱れが光ファイバの品質に影響を与える場合がある。 However, in the case of the structure of Patent Document 1, the blade member (seal member) is housed in the housing, and a part (storage part) of the housing is exposed in the furnace space. The temperature of the space inside the furnace (upper part) may reach about 1000 ° C during drawing, and if the housing is made of metal, it will be thermally deteriorated. Therefore, a part of the housing, for example, water, etc. May be cooled with. However, when the housing facing the furnace space is cooled in this way, there is a place where the temperature changes locally in the furnace space, and gas flow (also called natural convection) near this housing. And this turbulence in the gas flow may affect the quality of the optical fiber.

本発明は、上述のような実情に鑑みてなされたもので、線引炉内のガス流れの乱れを抑える光ファイバ用線引炉のシール構造、光ファイバの製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a seal structure for an optical fiber drawing furnace that suppresses turbulence of gas flow in the drawing furnace, and a method for manufacturing an optical fiber. To do.

本発明の一態様に係る光ファイバ用線引炉のシール構造は、光ファイバ用線引炉の上端開口部と該上端開口部から前記線引炉の炉心管に挿入される光ファイバ用ガラス母材との間の隙間を塞ぐための光ファイバ用線引炉のシール構造であって、前記炉心管に連通する炉内空間に面し、外部から冷却される部材と、前記部材の、前記炉心管に連通する炉内空間に面する箇所を断熱する断熱部材と、を備える。 The seal structure of the optical fiber drawing furnace according to one aspect of the present invention includes an upper end opening of the optical fiber drawing furnace and a glass mother for optical fiber inserted into the core tube of the drawing furnace from the upper end opening. A seal structure for an optical fiber drawing furnace for closing a gap between materials, facing a space inside the furnace communicating with the core tube, and being cooled from the outside, and the core of the member. It is provided with a heat insulating member that insulates a portion facing the space inside the furnace that communicates with the pipe.

上記によれば、線引炉内のガス流れが乱れにくくなり、光ファイバのガラス径変動の増加を抑えることができる。 According to the above, the gas flow in the drawing furnace is less likely to be disturbed, and an increase in the glass diameter fluctuation of the optical fiber can be suppressed.

本発明の一実施形態による光ファイバ用線引炉の概略を説明する図である。It is a figure explaining the outline of the optical fiber drawing furnace according to one Embodiment of this invention. シール構造の一例を示す図である。It is a figure which shows an example of a seal structure. 図2のシール構造におけるブレード部材の動作を説明する図である。It is a figure explaining the operation of the blade member in the seal structure of FIG. シール構造の他の例を示す図である。It is a figure which shows another example of a seal structure.

[本発明の実施形態の説明]
最初に本発明の実施形態の内容を列記して説明する。
本発明の一態様に係る光ファイバ用線引炉のシール構造は、(1)光ファイバ用線引炉の上端開口部と該上端開口部から前記線引炉の炉心管に挿入される光ファイバ用ガラス母材との間の隙間を塞ぐための光ファイバ用線引炉のシール構造であって、前記炉心管に連通する炉内空間に面し、外部から冷却される部材と、前記部材の、前記炉心管に連通する炉内空間に面する箇所を断熱する断熱部材と、を備える。外部から冷却される部材の炉内空間に面する箇所が断熱されているため、この近傍での温度差が小さくなる。よって、線引炉内のガス流れが乱れにくくなり、光ファイバのガラス径変動の増加を抑えることができる。
[Explanation of Embodiments of the Present Invention]
First, the contents of the embodiments of the present invention will be listed and described.
The seal structure of the optical fiber drawing furnace according to one aspect of the present invention is as follows: (1) An optical fiber inserted into the core tube of the drawing furnace from the upper end opening of the optical fiber drawing furnace and the upper end opening. A seal structure for an optical fiber drawing furnace for closing a gap between a glass base material for glass, a member that faces the space inside the furnace communicating with the core tube and is cooled from the outside, and a member of the member. A heat insulating member for insulating a portion facing the space inside the furnace communicating with the core tube is provided. Since the portion of the member cooled from the outside facing the space inside the furnace is insulated, the temperature difference in the vicinity thereof becomes small. Therefore, the gas flow in the drawing furnace is less likely to be disturbed, and an increase in the glass diameter fluctuation of the optical fiber can be suppressed.

(2)前記光ファイバ用ガラス母材の周方向側面に当接するように設けたブレード部材と、該ブレード部材と該ブレード部材を支持するガイド部材とを収容する筐体と、を備え、前記部材は、前記筐体である。外部から冷却される筐体の炉内空間に面する箇所が断熱されているため、この近傍での温度差が小さくなる。よって、線引炉内のガス流れが乱れにくくなり、光ファイバのガラス径変動の増加を抑えることができる。
(3)前記光ファイバ用ガラス母材の周方向側面に当接するように設けたカーボンシート部材またはカーボンフェルト部材と、該カーボンシート部材または該カーボンフェルト部材を支持する筐体と、を備え、前記部材は、前記筐体である。外部から冷却される筐体の炉内空間に面する箇所が断熱されているため、この近傍での温度差が小さくなる。よって、線引炉内のガス流れが乱れにくくなり、光ファイバのガラス径変動の増加を抑えることができる。
(2) The member includes a blade member provided so as to abut on the circumferential side surface of the glass base material for an optical fiber, and a housing for accommodating the blade member and a guide member for supporting the blade member. Is the housing. Since the part of the housing that is cooled from the outside facing the space inside the furnace is insulated, the temperature difference in the vicinity is small. Therefore, the gas flow in the drawing furnace is less likely to be disturbed, and an increase in the glass diameter fluctuation of the optical fiber can be suppressed.
(3) A carbon sheet member or a carbon felt member provided so as to abut on the circumferential side surface of the glass base material for an optical fiber, and a housing for supporting the carbon sheet member or the carbon felt member. The member is the housing. Since the part of the housing that is cooled from the outside facing the space inside the furnace is insulated, the temperature difference in the vicinity is small. Therefore, the gas flow in the drawing furnace is less likely to be disturbed, and an increase in the glass diameter fluctuation of the optical fiber can be suppressed.

(4)前記断熱部材と前記部材との間に空間を設ける。断熱部材と部材との間に空間を設ければ、冷却された部材の熱がより炉内空間に伝わりにくくなり、断熱効果をさらに高めることができる。
(5)本発明の一態様に係る光ファイバの製造方法は、上記いずれかの光ファイバ用線引炉のシール構造を用いて光ファイバを線引きする。上述のシール構造を用いているため、線引炉内のガス流れを乱れにくくすることができ、光ファイバのガラス径変動の増加を抑えることができる。
(4) A space is provided between the heat insulating member and the member. If a space is provided between the heat insulating member, the heat of the cooled member is less likely to be transferred to the space inside the furnace, and the heat insulating effect can be further enhanced.
(5) In the method for manufacturing an optical fiber according to one aspect of the present invention, the optical fiber is drawn by using the seal structure of any of the above-mentioned optical fiber drawing furnaces. Since the above-mentioned seal structure is used, it is possible to prevent the gas flow in the drawing furnace from being disturbed, and it is possible to suppress an increase in the fluctuation of the glass diameter of the optical fiber.

[本発明の実施形態の詳細]
以下、添付図面を参照しながら、本発明による光ファイバ用線引炉のシール構造、光ファイバの製造方法の好適な実施の形態について説明する。なお、以下ではヒータにより炉心管を加熱する抵抗炉を例に説明するが、コイルに高周波電源を印加し、炉心管を誘導加熱する誘導炉にも、本発明は適用可能である。また、炉心管や、断熱材の構成なども、下記で説明するのは一例であり、これに限定されるものではない。
[Details of Embodiments of the present invention]
Hereinafter, a preferred embodiment of the seal structure of the optical fiber drawing furnace and the method for manufacturing an optical fiber according to the present invention will be described with reference to the accompanying drawings. In the following, a resistance furnace in which the core tube is heated by a heater will be described as an example, but the present invention can also be applied to an induction furnace in which a high frequency power source is applied to the coil to induce and heat the core tube. Further, the structure of the core tube and the heat insulating material is also described below as an example, and is not limited to this.

図1は、本発明の一実施形態による光ファイバ用線引炉の概略を説明する図である。線引炉1は、炉筐体2と、炉心管3と、加熱源(ヒータ)4と、シール構造10とを備えている。炉筐体2は、上端開口部2aと下端開口部2bを有し、例えばステンレス鋼で形成されている。炉心管3は、炉筐体2の中央部に円筒状で形成され、例えば上端開口部2aと連通している。炉心管3は例えばカーボン製であり、この炉心管3内には、ガラス母材5が上端開口部2aからシール構造10でシールされた状態で挿入される。 FIG. 1 is a diagram illustrating an outline of an optical fiber drawing furnace according to an embodiment of the present invention. The wire drawing furnace 1 includes a furnace housing 2, a core tube 3, a heating source (heater) 4, and a seal structure 10. The furnace housing 2 has an upper end opening 2a and a lower end opening 2b, and is made of, for example, stainless steel. The core tube 3 is formed in a cylindrical shape in the central portion of the furnace housing 2, and communicates with, for example, the upper end opening 2a. The core tube 3 is made of carbon, for example, and the glass base material 5 is inserted into the core tube 3 in a state of being sealed by the seal structure 10 from the upper end opening 2a.

炉筐体2内には、ヒータ4が炉心管3を囲むように配置され、断熱材7がヒータ4の外側を覆うように収納されている。ヒータ4は、炉心管3の内部に挿入されたガラス母材5を加熱溶融し、その下端部5aから溶融縮径された光ファイバ5bを垂下させる。ガラス母材5は、別途設けた移動機構により線引方向(下側方向)に移動可能であり、ガラス母材5の上側には、ガラス母材5を吊り下げて支持するための支持棒6が連結されている。また、線引炉1には不活性ガス等による炉内ガスの供給機構(図示省略)が設けられ、炉心管3内やヒータ4の周りに、酸化劣化防止のための不活性ガス等を供給することが可能である。 In the furnace housing 2, the heater 4 is arranged so as to surround the core tube 3, and the heat insulating material 7 is housed so as to cover the outside of the heater 4. The heater 4 heats and melts the glass base material 5 inserted inside the core tube 3, and causes the melt-reduced optical fiber 5b to hang down from the lower end portion 5a thereof. The glass base material 5 can be moved in the drawing direction (downward direction) by a separately provided moving mechanism, and the support rod 6 for suspending and supporting the glass base material 5 is above the glass base material 5. Are concatenated. Further, the drawing furnace 1 is provided with an in-core gas supply mechanism (not shown) using an inert gas or the like, and supplies the inert gas or the like in the core tube 3 or around the heater 4 to prevent oxidative deterioration. It is possible to do.

なお、図1では、炉心管3の内壁の上端部がそのまま上端開口部2aを形成している例を挙げているが、これに限ったものではない。例えば、炉心管3の内径dよりさらに狭い上端開口部を炉心管3の上側に設けてもよく、この場合にシール対象となる隙間は、この狭い上端開口部とガラス母材5との間に生じる隙間となる。また、ガラス母材5の断面形状は、基本的に真円を目指して生成されたものとするが、その精度を問わず一部で非円が存在してもよく、また楕円形などであってもよい。また、上端開口部2aの断面は円形としておけばよいが、この精度は問わない。 Note that FIG. 1 gives an example in which the upper end portion of the inner wall of the core tube 3 directly forms the upper end opening 2a, but the present invention is not limited to this. For example, an upper end opening narrower than the inner diameter d of the core tube 3 may be provided on the upper side of the core tube 3, and in this case, the gap to be sealed is between the narrow upper end opening and the glass base material 5. It becomes a gap that occurs. Further, the cross-sectional shape of the glass base material 5 is basically generated aiming at a perfect circle, but regardless of its accuracy, a non-circle may be present in a part thereof, or an ellipse or the like. You may. Further, the cross section of the upper end opening 2a may be circular, but the accuracy is not limited.

本発明の一実施形態は、線引炉1の上端開口部2aと上端開口部2aから炉心管3に挿入されるガラス母材5の外周との間の隙間Sを塞ぐためのシール構造10を対象とするものであり、特に、上端開口部2aに設けたシール構造10によって炉外の外気を巻き込まないようにしながら、線引炉内のガラス母材5をヒータ4により加熱するものである。 In one embodiment of the present invention, a seal structure 10 for closing a gap S between the upper end opening 2a of the drawing furnace 1 and the outer periphery of the glass base material 5 inserted into the core tube 3 from the upper end opening 2a is provided. This is a target, and in particular, the glass base material 5 in the drawing furnace is heated by the heater 4 while the seal structure 10 provided in the upper end opening 2a prevents the outside air from being entrained outside the furnace.

図2はシール構造の一例を示す図であり、図3は図2のシール構造におけるブレード部材の動作を説明する図である。
シール構造10は、耐熱性を持った複数のブレード部材14,15と、これらブレード部材14,15を収容し、ブレード部材14,15を直線的にスライド移動させるためのガイド部材16,17と、ブレード部材14,15やガイド部材16,17を収容する筐体11と、ブレード部材14,15を、例えば気体の圧力差を利用して内方に押し付けたり、外方に引っ張ったりする作用を有した機構と、を備えている。
FIG. 2 is a diagram showing an example of the seal structure, and FIG. 3 is a diagram for explaining the operation of the blade member in the seal structure of FIG.
The seal structure 10 includes a plurality of heat-resistant blade members 14, 15 and guide members 16, 17 for accommodating the blade members 14, 15 and linearly sliding the blade members 14, 15. The housing 11 accommodating the blade members 14 and 15 and the guide members 16 and 17 and the blade members 14 and 15 have an action of pushing inward or pulling outward by using, for example, a pressure difference of gas. It is equipped with a mechanism that has been used.

図2に示すように、筐体11は、同心の貫通孔を有した円盤状の部材であり、筐体11の内周面上に、ブレード部材14,15を挿通させるための開口が設けられている。筐体11の内周面は、図1で説明した炉心管3に連通する炉内空間Iに位置しており、筐体近傍の炉内空間Iの温度は、線引中に約1000℃程度に達する場合がある。
筐体11は、例えばステンレス鋼で形成され、ブレード部材14,15やガイド部材16,17を例えば400℃以下(各部材の材質にカーボンを用いている場合には300℃以下にすることが好ましい)となるように冷却する機構(例えば水冷方式、図示省略)を有する。これにより、ブレード部材14,15やガイド部材16,17、筐体11に使用するカーボンや金属が、線引炉の輻射熱により劣化するのを抑制することができる。
As shown in FIG. 2, the housing 11 is a disk-shaped member having concentric through holes, and an opening for inserting the blade members 14 and 15 is provided on the inner peripheral surface of the housing 11. ing. The inner peripheral surface of the housing 11 is located in the furnace space I communicating with the core tube 3 described with reference to FIG. 1, and the temperature of the furnace space I in the vicinity of the housing is about 1000 ° C. during drawing. May reach.
The housing 11 is made of stainless steel, for example, and the blade members 14, 15 and the guide members 16, 17 are preferably 400 ° C. or lower (preferably 300 ° C. or lower when carbon is used as the material of each member). ) (For example, a water cooling system, not shown). As a result, it is possible to prevent the carbon and metal used for the blade members 14, 15 and the guide members 16, 17 and the housing 11 from deteriorating due to the radiant heat of the drawing furnace.

ブレード部材14,15は、筐体11の中心軸に対してそれぞれ放射状に延びて、筐体11内に例えば上下2段で設置され、ブレード部材14は筐体11の内周面に沿って略等間隔で複数設けられ、ブレード部材15も、ブレード部材14の下側で、筐体11の内周面に沿って略等間隔で複数設けられている。ブレード部材14,15は、例えば、移動方向に垂直な面での断面形状が略長方形となる略直方体形状であり、上下2段で互い違いに配され、筐体11から突出してガラス母材の側面に当接する。 The blade members 14 and 15 extend radially with respect to the central axis of the housing 11, and are installed in the housing 11 in, for example, two upper and lower stages, and the blade members 14 are substantially along the inner peripheral surface of the housing 11. A plurality of blade members 15 are provided at equal intervals, and a plurality of blade members 15 are also provided below the blade member 14 at substantially equal intervals along the inner peripheral surface of the housing 11. The blade members 14 and 15 have, for example, a substantially rectangular parallelepiped shape having a substantially rectangular cross-sectional shape on a plane perpendicular to the moving direction, are arranged alternately in two upper and lower stages, and protrude from the housing 11 to be a side surface of the glass base material. To abut.

ブレード部材14,15の材料はカーボンであることが好ましいが、カーボンの他に、例えば、石英ガラス、SiCコートカーボンなどを採用することもできる。
なお、上述したブレード部材14,15の幅や枚数は、使用するガラス母材の外径や外径変動量や曲がり量などに応じて、適宜選べばよい。
The material of the blade members 14 and 15 is preferably carbon, but in addition to carbon, for example, quartz glass, SiC coated carbon and the like can also be adopted.
The width and the number of the blade members 14 and 15 described above may be appropriately selected according to the outer diameter of the glass base material to be used, the amount of variation in the outer diameter, the amount of bending, and the like.

ガイド部材16,17は、例えばブレード部材14,15を挿通可能に形成され、ガイド部材16はブレード部材14の上側に、ガイド部材17はブレード部材15の下側にそれぞれ設置される。なお、ガイド部材16,17は、一体であってもよい。
ガイド部材16,17の材料もカーボンであることが好ましいが、窒化ボロン(BN)や、ステンレス、二硫化モリブテン(MoS)などの金属を採用することもできる。
The guide members 16 and 17 are formed so that the blade members 14 and 15 can be inserted, for example, the guide member 16 is installed on the upper side of the blade member 14, and the guide member 17 is installed on the lower side of the blade member 15. The guide members 16 and 17 may be integrated.
The materials of the guide members 16 and 17 are preferably carbon, but metals such as boron nitride (BN), stainless steel, and molybdenum disulfide (MoS 2 ) can also be used.

図3に示すように、筐体11には、内部の圧力付与空間40にガスを供給、および排出する給排ポート12が設けられ、給排ポート12を介してガス供給部51からのガスを圧力付与空間40に溜めることができる。また、圧力付与空間40に溜まったガスは、給排ポート12を介してガス排出部52から排出する(吸い出す)ことも可能である。ガス供給部51やガス排出部52はコントローラ50に電気的に接続されている。 As shown in FIG. 3, the housing 11 is provided with a supply / discharge port 12 for supplying and discharging gas to the internal pressure applying space 40, and gas from the gas supply unit 51 is supplied through the supply / discharge port 12. It can be stored in the pressure applying space 40. Further, the gas accumulated in the pressure applying space 40 can be discharged (sucked out) from the gas discharge unit 52 via the supply / discharge port 12. The gas supply unit 51 and the gas discharge unit 52 are electrically connected to the controller 50.

ところで、図2に示す、筐体11の炉内空間側の面11aは、ブレード部材14の上側の位置で炉内空間Iを囲むように湾曲して設けられている。同じく面11bは、ブレード部材15の下側の位置で、炉内空間Iを囲むように湾曲して設けられている。上記のように、筐体11は冷却されているため、面11a,11b近傍の箇所では、炉内空間Iとの間に大きな温度差が生じ、ガス流れの乱れが発生する原因となる。 By the way, the surface 11a on the furnace space side of the housing 11 shown in FIG. 2 is provided so as to be curved so as to surround the furnace space I at a position above the blade member 14. Similarly, the surface 11b is provided at a position below the blade member 15 in a curved manner so as to surround the furnace space I. As described above, since the housing 11 is cooled, a large temperature difference is generated between the housing 11 and the space I in the furnace at the locations near the surfaces 11a and 11b, which causes turbulence of the gas flow.

そこで、本実施形態では、筐体11の面11a,11bを、例えば筒状の断熱部材20で覆っている。具体的には、断熱部材20は、炉内空間Iと面11aとの間に配される上方断熱部21と、炉内空間Iと面11bとの間に配される下方断熱部22とからなる。上方断熱部21および下方断熱部22は、例えばカップ形状で形成され、このカップ形状の開口が筐体11で塞がれるように配置される。上方断熱部21は、炉内空間Iを囲むように湾曲して面11aを覆い、下方断熱部22は、炉内空間Iを囲むように湾曲して面11bを覆っている。 Therefore, in the present embodiment, the surfaces 11a and 11b of the housing 11 are covered with, for example, a tubular heat insulating member 20. Specifically, the heat insulating member 20 is composed of an upper heat insulating portion 21 arranged between the furnace space I and the surface 11a and a lower heat insulating portion 22 arranged between the furnace space I and the surface 11b. Become. The upper heat insulating portion 21 and the lower heat insulating portion 22 are formed in a cup shape, for example, and are arranged so that the cup-shaped opening is closed by the housing 11. The upper heat insulating portion 21 is curved so as to surround the furnace space I and covers the surface 11a, and the lower heat insulating portion 22 is curved so as to surround the furnace space I and covers the surface 11b.

このように、筐体11の面11a,11bのような局所的に冷却される部分が、断熱部材20によって覆われ、冷却された部材が直接炉内空間Iに面しないような構造としているので、面11a,11b近傍における炉内空間Iとの温度差を小さくできる。よって、線引炉内のガス流れが乱れにくくなり、光ファイバのガラス径変動の増加を抑えることができる。具体的には、断熱部材20で筐体11を断熱しなかった場合の光ファイバの外径変動(3σ)が0.6〜1μmであったのに対し、断熱した場合は、光ファイバの外径変動(3σ)を0.5μmに抑えることができた。 In this way, the locally cooled portions such as the surfaces 11a and 11b of the housing 11 are covered with the heat insulating member 20, and the cooled member does not directly face the furnace space I. , The temperature difference from the furnace space I in the vicinity of the surfaces 11a and 11b can be reduced. Therefore, the gas flow in the drawing furnace is less likely to be disturbed, and an increase in the glass diameter fluctuation of the optical fiber can be suppressed. Specifically, the outer diameter variation (3σ) of the optical fiber was 0.6 to 1 μm when the housing 11 was not insulated by the heat insulating member 20, whereas when it was insulated, it was outside the optical fiber. The diameter variation (3σ) could be suppressed to 0.5 μm.

断熱部材20の材料は、例えば石英ガラスを採用できる。この場合、透明ではなく、例えば半透明にすれば、断熱部材による筐体11に対する断熱の効果をより高めることができる。なお、石英ガラス以外の材料としては、例えば、カーボンを採用してもよい。また、断熱部材の酸化劣化を防止するために、SiCコートカーボンなどを採用することもできる。
なお、図2では、上方断熱部21および下方断熱部22を設ける構成を記載しているが、上方断熱部21、または下方断熱部22のみを設けても、ガラス径変動の増加を抑える効果がある。
As the material of the heat insulating member 20, for example, quartz glass can be adopted. In this case, if it is made translucent instead of transparent, for example, the effect of heat insulating the housing 11 by the heat insulating member can be further enhanced. As the material other than quartz glass, for example, carbon may be adopted. Further, in order to prevent oxidative deterioration of the heat insulating member, SiC coated carbon or the like can be adopted.
Although FIG. 2 shows a configuration in which the upper heat insulating portion 21 and the lower heat insulating portion 22 are provided, even if only the upper heat insulating portion 21 or the lower heat insulating portion 22 is provided, the effect of suppressing an increase in the glass diameter fluctuation can be suppressed. is there.

図2,3に示すように、断熱部材20の上方断熱部21や下方断熱部22の内部には空間31,32が設けられている。空間31,32は、図3で説明したガス供給部51などのガスで満たされており、特に断熱性の高い、熱伝導率の低いガス(例えばアルゴンガス)を用いることが好ましい。 As shown in FIGS. 2 and 3, spaces 31 and 32 are provided inside the upper heat insulating portion 21 and the lower heat insulating portion 22 of the heat insulating member 20. The spaces 31 and 32 are filled with a gas such as the gas supply unit 51 described with reference to FIG. 3, and it is preferable to use a gas having particularly high heat insulating properties and low thermal conductivity (for example, argon gas).

このように、例えば熱伝導率の低いアルゴンガスよるガス層を設ければ、炉内空間Iに対する筐体11の断熱効果をさらに高めることができる。なお、空間31,32を満たすのは、アルゴンガスなどの気体に限定されるものではなく、断熱性の高い部材であれば、固体であってもよい。例えば、石英ウールやカーボンフェルトなどを用いることができる。
そして、上述のシール構造を用いた光ファイバの製造方法によれば、線引炉内のガス流れを乱れにくくすることができるため、光ファイバのガラス径変動が発生しにくくなる。
In this way, for example, if a gas layer made of argon gas having a low thermal conductivity is provided, the heat insulating effect of the housing 11 on the furnace space I can be further enhanced. The spaces 31 and 32 are not limited to a gas such as argon gas, and may be a solid as long as it is a member having high heat insulating properties. For example, quartz wool, carbon felt, or the like can be used.
According to the method for manufacturing an optical fiber using the seal structure described above, the gas flow in the drawing furnace can be made less likely to be disturbed, so that the glass diameter of the optical fiber is less likely to fluctuate.

なお、上記実施例では、ブレード部材を備えたシール構造の例で説明したが、カーボンシート部材やカーボンフェルト部材を備えたシール構造であってもよい。また、ブレード部材や、カーボンシート、カーボンフェルトなどのカーボン部材を用いず、ガスのみでシールする構造であってもよい。ここでは、カーボンフェルト部材を用いたシール構造の例について、図4で詳しく説明する。
図4に示したシール構造10は、ガラス母材5の外径φ以下の内径をもつ、例えば2枚のカーボンフェルトリング14a,15aを有しており、筐体11から突出してガラス母材5の側面に当接する。カーボンフェルトは、カーボン繊維で形成されたフェルトであって、ある程度の気密性を確保する際に用いられる。カーボンの材料としては、不純物混入の観点から、高純度カーボンと呼ばれるものを用いるのが好ましい。
In the above embodiment, the example of the seal structure including the blade member has been described, but the seal structure may be provided with the carbon sheet member and the carbon felt member. Further, the structure may be such that the blade member, the carbon sheet, the carbon felt and the like are not used, and the seal is sealed only with gas. Here, an example of a seal structure using a carbon felt member will be described in detail with reference to FIG.
The seal structure 10 shown in FIG. 4 has, for example, two carbon felt rings 14a and 15a having an inner diameter equal to or less than the outer diameter φ of the glass base material 5, and protrudes from the housing 11 to form the glass base material 5. Abut on the side of. Carbon felt is a felt made of carbon fiber and is used to ensure a certain degree of airtightness. As the carbon material, it is preferable to use what is called high-purity carbon from the viewpoint of mixing impurities.

カーボンフェルトリング14a,15a間にはシートリング64が設けられ、カーボンフェルトリング15aの下側にはシートリング63が設けられ、カーボンフェルトリング14aの上側にはシートリング65が設けられている。シートリング63,64,65は、カーボンフェルトリング14a,15aより内径が大きい。シートリング63,64,65の材料としては、高純度カーボンであることが好ましいが、それに限らず石英など、他の耐熱性素材を用いてもよい。 A seat ring 64 is provided between the carbon felt rings 14a and 15a, a seat ring 63 is provided below the carbon felt ring 15a, and a seat ring 65 is provided above the carbon felt ring 14a. The seat rings 63, 64, 65 have a larger inner diameter than the carbon felt rings 14a, 15a. The material of the seat rings 63, 64, 65 is preferably high-purity carbon, but the material is not limited to this, and other heat-resistant materials such as quartz may be used.

カーボンフェルトリング14a,15aおよびシートリング63,64,65は、例えば図示する順番で重ねられて筐体11に支持されており、シートリング65の上側には、カーボンフェルトリング14a,15aやカーボンシートリング63,64,65が浮いて気密性を損なわないように、石英リング66が設けられている。
筐体11は、冷却する機構(図示省略)を有し、炉筐体2の上端部2cに設置されている。筐体11の炉内空間側の面は、シートリング63の下側の位置で、炉内空間を囲むように湾曲して設けられている。そこで、筐体11の炉内空間側の面を断熱部材20で覆っている。よって、この例の場合にも、筐体11の炉内空間側の面近傍における炉内空間との温度差を小さくできる。
The carbon felt rings 14a, 15a and the seat rings 63, 64, 65 are stacked in the order shown, for example, and supported by the housing 11, and the carbon felt rings 14a, 15a and the carbon sheet are placed on the upper side of the seat ring 65. A quartz ring 66 is provided so that the rings 63, 64, and 65 do not float and impair airtightness.
The housing 11 has a cooling mechanism (not shown) and is installed at the upper end 2c of the furnace housing 2. The surface of the housing 11 on the inner space side is curved so as to surround the inner space at the position below the seat ring 63. Therefore, the surface of the housing 11 on the furnace space side is covered with the heat insulating member 20. Therefore, also in the case of this example, the temperature difference from the furnace space in the vicinity of the surface of the housing 11 on the furnace space side can be reduced.

なお、上記の実施形態では、外部から冷却される部材が、ブレード部材14,15あるいはカーボンフェルトリング14a,15aを収容する筐体11であり、筐体11を断熱している例を挙げて説明した。しかし、本発明はこの例に限定されるものではなく、外部から冷却される部材が炉内空間に面する箇所であれば、適用できる。詳しくは、本発明の部材は、図1で説明したシール構造10の下側に位置した炉筐体2、あるいは、図示は省略するが、シール構造の上側に配置される上部チャンバ(金属製)であってもよい。したがって、本発明の部材の面とは、炉筐体2の上蓋(上端開口部2a付近に位置する)の円筒形状の内面部分、あるいは、上部チャンバ下端の円筒形状の内面部分も該当する。 In the above embodiment, the member to be cooled from the outside is the housing 11 accommodating the blade members 14, 15 or the carbon felt rings 14a, 15a, and the housing 11 is heat-insulated. did. However, the present invention is not limited to this example, and can be applied as long as the member cooled from the outside faces the space inside the furnace. Specifically, the member of the present invention is a furnace housing 2 located below the seal structure 10 described with reference to FIG. 1, or an upper chamber (made of metal) arranged above the seal structure (not shown). It may be. Therefore, the surface of the member of the present invention also corresponds to the cylindrical inner surface portion of the upper lid (located near the upper end opening 2a) of the furnace housing 2, or the cylindrical inner surface portion of the lower end of the upper chamber.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. The scope of the present invention is indicated by the scope of claims, not the above-mentioned meaning, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

1…光ファイバ用線引炉、2…炉筐体、2a…上端開口部、2b…下端開口部、2c…上端部、3…炉心管、4…ヒータ、5…光ファイバ用ガラス母材、5a…下端部、5b…光ファイバ、6…支持棒、7…断熱材、10…シール構造、11…筐体、11a,11b…面、12…給排ポート、14,15…ブレード部材、14a,15a…カーボンフェルトリング、16,17…ガイド部材、20…断熱部材、21…上方断熱部、22…下方断熱部、31,32…空間、40…圧力付与空間、50…コントローラ、51…ガス供給部、52…ガス排出部、63,64,65…シートリング、66…石英リング。 1 ... Optical fiber drawing furnace, 2 ... Furnace housing, 2a ... Upper end opening, 2b ... Lower end opening, 2c ... Upper end, 3 ... Core tube, 4 ... Heater, 5 ... Glass base material for optical fiber, 5a ... Lower end, 5b ... Optical fiber, 6 ... Support rod, 7 ... Insulation material, 10 ... Seal structure, 11 ... Housing, 11a, 11b ... Surface, 12 ... Supply / discharge port, 14, 15 ... Blade member, 14a , 15a ... Carbon felt ring, 16,17 ... Guide member, 20 ... Insulation member, 21 ... Upper insulation part, 22 ... Lower insulation part, 31, 32 ... Space, 40 ... Pressure application space, 50 ... Controller, 51 ... Gas Supply unit, 52 ... gas discharge unit, 63, 64, 65 ... seat ring, 66 ... quartz ring.

Claims (5)

光ファイバ用線引炉の上端開口部と該上端開口部から前記線引炉の炉心管に挿入される光ファイバ用ガラス母材との間の隙間を塞ぐための光ファイバ用線引炉のシール構造であって、
前記炉心管に連通する炉内空間に面し、外部から冷却される部材と、
前記部材の、前記炉心管に連通する炉内空間に面する箇所を断熱する断熱部材と、
を備える、光ファイバ用線引炉のシール構造。
Seal of the optical fiber drawing furnace for closing the gap between the upper end opening of the optical fiber drawing furnace and the glass base material for optical fiber inserted into the core tube of the drawing furnace from the upper end opening. It's a structure
A member that faces the space inside the furnace that communicates with the core tube and is cooled from the outside,
A heat insulating member that insulates a portion of the member facing the space inside the furnace that communicates with the core tube.
The seal structure of the optical fiber drawing furnace.
前記光ファイバ用ガラス母材の周方向側面に当接するように設けたブレード部材と、
該ブレード部材と該ブレード部材を支持するガイド部材とを収容する筐体と、を備え、
前記部材は、前記筐体である、請求項1に記載の光ファイバ用線引炉のシール構造。
A blade member provided so as to abut on the circumferential side surface of the glass base material for an optical fiber, and
A housing for accommodating the blade member and a guide member for supporting the blade member is provided.
The seal structure of the optical fiber drawing furnace according to claim 1, wherein the member is the housing.
前記光ファイバ用ガラス母材の周方向側面に当接するように設けたカーボンシート部材またはカーボンフェルト部材と、
該カーボンシート部材または該カーボンフェルト部材を支持する筐体と、を備え、
前記部材は、前記筐体である、請求項1に記載の光ファイバ用線引炉のシール構造。
A carbon sheet member or a carbon felt member provided so as to abut on the circumferential side surface of the glass base material for an optical fiber.
The carbon sheet member or the housing that supports the carbon felt member is provided.
The seal structure of the optical fiber drawing furnace according to claim 1, wherein the member is the housing.
前記断熱部材と前記部材との間に空間を設ける、請求項1〜3のいずれか一項に記載の光ファイバ用線引炉のシール構造。 The seal structure for an optical fiber drawing furnace according to any one of claims 1 to 3, wherein a space is provided between the heat insulating member and the member. 請求項1〜4のいずれか一項に記載の光ファイバ用線引炉のシール構造を用いて光ファイバを線引きする、光ファイバの製造方法。 A method for manufacturing an optical fiber, wherein the optical fiber is drawn by using the seal structure of the optical fiber drawing furnace according to any one of claims 1 to 4.
JP2017140653A 2017-07-20 2017-07-20 Seal structure of optical fiber drawing furnace, optical fiber manufacturing method Active JP6816670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017140653A JP6816670B2 (en) 2017-07-20 2017-07-20 Seal structure of optical fiber drawing furnace, optical fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017140653A JP6816670B2 (en) 2017-07-20 2017-07-20 Seal structure of optical fiber drawing furnace, optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JP2019019034A JP2019019034A (en) 2019-02-07
JP6816670B2 true JP6816670B2 (en) 2021-01-20

Family

ID=65355204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017140653A Active JP6816670B2 (en) 2017-07-20 2017-07-20 Seal structure of optical fiber drawing furnace, optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP6816670B2 (en)

Also Published As

Publication number Publication date
JP2019019034A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP5394360B2 (en) Vertical heat treatment apparatus and cooling method thereof
JP5544121B2 (en) Heating apparatus, substrate processing apparatus, and semiconductor device manufacturing method
US20080308551A1 (en) Induction furnace susceptor for heating a workpiece in an inert atmosphere or in a vacuum
JP2016025296A (en) Thermal treatment device and thermal treatment method
JP2015074600A (en) Method of manufacturing optical fiber
JP2013007549A (en) Heat treatment furnace, and heat treatment apparatus
JP6816670B2 (en) Seal structure of optical fiber drawing furnace, optical fiber manufacturing method
JP5877920B1 (en) Rapid heating / cooling heat treatment furnace
US10053797B2 (en) Crystal growth apparatus and thermal insulation cover of the same
TWI786178B (en) Mount, heater having the mount, and deposition apparatus having the heater
US20130233241A1 (en) Single crystal pulling apparatus and low heat conductive member used for single crystal pulling apparatus
JP6802929B2 (en) Heat treatment furnace
JP6665695B2 (en) Seal structure of drawing furnace for optical fiber, method of manufacturing optical fiber
US20220024800A1 (en) Seal structure of wire drawing furnace for optical fiber, and production method for optical fiber
JP6729171B2 (en) Optical fiber drawing furnace seal structure and optical fiber manufacturing method
JPWO2019182136A1 (en) In-core gas supply equipment, optical fiber manufacturing equipment, optical fiber manufacturing method
JP5555860B2 (en) Immersion heater and method of using immersion heater
JP6421569B2 (en) Optical fiber manufacturing method and optical fiber manufacturing apparatus
JP7421407B2 (en) Porous glass body sintering equipment
JP6135082B2 (en) Induction heating furnace
JP2007211336A (en) Apparatus and method for vapor phase epitaxy
JP5757192B2 (en) Optical fiber drawing furnace
JP5497860B2 (en) Heat treatment furnace and support for heat treatment furnace
JP5757193B2 (en) heating furnace
JP5824082B2 (en) Heating apparatus, substrate processing apparatus, and semiconductor device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201207

R150 Certificate of patent or registration of utility model

Ref document number: 6816670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250