JP4407648B2 - Heating furnace and heating method of object to be heated - Google Patents

Heating furnace and heating method of object to be heated Download PDF

Info

Publication number
JP4407648B2
JP4407648B2 JP2006031575A JP2006031575A JP4407648B2 JP 4407648 B2 JP4407648 B2 JP 4407648B2 JP 2006031575 A JP2006031575 A JP 2006031575A JP 2006031575 A JP2006031575 A JP 2006031575A JP 4407648 B2 JP4407648 B2 JP 4407648B2
Authority
JP
Japan
Prior art keywords
core tube
partition wall
heating furnace
oxygen
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006031575A
Other languages
Japanese (ja)
Other versions
JP2007210828A (en
Inventor
治良 棚田
知巳 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006031575A priority Critical patent/JP4407648B2/en
Publication of JP2007210828A publication Critical patent/JP2007210828A/en
Application granted granted Critical
Publication of JP4407648B2 publication Critical patent/JP4407648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating furnace, which is provided with a quartz-made core tube, capable of surely preventing the deterioration of a heater due to oxidation and to provide a method of heating a material to be heated. <P>SOLUTION: The heating furnace 1 includes the quartz-made core tube 2, the heater 3 of a heating source arranged around the core tube, a partition wall 4 covering the surroundings of the heater 3 and an oxygen consumption member 31 arranged between the core tube 2 and the partition wall 4. The heating furnace 1 also includes a purge gas introducing pipe 12 for passing an inert gas through a housing space S surrounded by the partition wall 4 and the core tube 2. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、石英製の炉心管を有する加熱炉、及び石英製の炉心管を有する加熱炉によって被加熱物を加熱する加熱方法に関する。   The present invention relates to a heating furnace having a quartz core tube and a heating method for heating an object to be heated by a heating furnace having a quartz core tube.

ガラス体を製造する際にガラス微粒子堆積体を焼結して透明ガラス化する場合、ガラス体を延伸する場合、あるいはガラス体を線引きして光ファイバを製造する場合などには、一般に筒状の炉心管を備えた加熱炉が用いられている。
この種の加熱炉では、炉心管の周囲にカーボンやタングステン等からなるヒータが設けられ、さらに、ヒータは、隔壁によって囲われている。そして、この加熱炉では、隔壁内に不活性なパージガスを導入することにより、高温となったヒータの酸化による劣化を防いでいる。
また、炉心管内の酸素の除去及び炉心管内への酸素の侵入抑制を図るべく、酸素と反応する酸素消費手段を設けることが知られている(例えば、特許文献1参照)。
When manufacturing a glass body, a glass particulate deposit is sintered into a transparent glass, when a glass body is stretched, or when an optical fiber is manufactured by drawing a glass body, a cylindrical shape is generally used. A heating furnace equipped with a core tube is used.
In this type of heating furnace, a heater made of carbon, tungsten, or the like is provided around the furnace core tube, and the heater is surrounded by a partition wall. In this heating furnace, an inert purge gas is introduced into the partition walls to prevent deterioration of the heater that has become hot due to oxidation.
In addition, it is known to provide oxygen consuming means that reacts with oxygen in order to remove oxygen in the core tube and suppress intrusion of oxygen into the core tube (see, for example, Patent Document 1).

特開2003−238183号公報JP 2003-238183 A

ところで、加熱炉には、炉心管と隔壁との隙間、隔壁におけるケーブル引き込み部分あるいはガス導入管の挿入部分に隙間があり、この隙間から酸素が混入してヒータが酸化するようなことがないように、これらの隙間をシール材によってシールする必要がある。
しかしながら、シール材の耐熱性には限界があるため、加熱温度の高い加熱炉(最大1500℃等)の場合、シール材が熱により劣化する。このため、シール材による完全な気密は困難であった。
また、石英製の炉心管を備えた加熱炉では、その石英ガラスが失透(クリストバライト化)した場合、その後の降温(約800℃程度)により亀裂等の損傷が生じることがある。したがって、炉心管の温度を800℃程度から下げることができず、炉心管の温度を下げて劣化したシール材を新たなものに交換することが困難であった。
By the way, in the heating furnace, there is a gap between the furnace core tube and the partition wall, a cable drawing portion in the partition wall or a insertion portion of the gas introduction tube, so that oxygen is not mixed from this gap and the heater is not oxidized. In addition, it is necessary to seal these gaps with a sealing material.
However, since the heat resistance of the sealing material is limited, in the case of a heating furnace having a high heating temperature (up to 1500 ° C. or the like), the sealing material is deteriorated by heat. For this reason, complete hermetic sealing with a sealing material has been difficult.
Further, in a heating furnace equipped with a quartz core tube, when the quartz glass is devitrified (made cristobalite), damage such as cracks may occur due to subsequent temperature drop (about 800 ° C.). Therefore, the temperature of the core tube cannot be lowered from about 800 ° C., and it has been difficult to replace the deteriorated sealing material with a new one by lowering the temperature of the core tube.

本発明は、石英製の炉心管を備えた加熱炉において、ヒータが酸化により劣化することを確実に防止することが可能な加熱炉及び被加熱物の加熱方法を提供することを目的としている。   An object of the present invention is to provide a heating furnace and a method for heating an object to be heated that can reliably prevent the heater from being deteriorated by oxidation in a heating furnace including a quartz core tube.

上記課題を解決することのできる本発明に係る加熱炉は、石英製の炉心管を有し、その周囲に熱源を配置して、前記熱源を隔壁で覆ってなる加熱炉であって、前記炉心管と前記隔壁との隙間ならびに隔壁に設けられた導入管接続口およびケーブル引き込み口の隙間に、酸素により酸化されることにより当該酸素を消費する酸素消費手段が配置されていることを特徴としている。   A heating furnace according to the present invention capable of solving the above problems is a heating furnace having a quartz core tube, a heat source disposed around the core tube, and the heat source being covered with a partition wall, wherein the core Oxygen consuming means for consuming oxygen by being oxidized by oxygen is disposed in a gap between the pipe and the partition wall, and a gap between the inlet pipe connection port and the cable lead-in port provided in the partition wall. .

本発明に係る加熱炉において、前記隔壁と前記炉心管で囲まれる空間に不活性ガスを流す、ガス導入手段を有することが好ましい。   In the heating furnace according to the present invention, it is preferable to have gas introduction means for flowing an inert gas into a space surrounded by the partition wall and the furnace core tube.

また、上記課題を解決することのできる本発明に係る被加熱物の加熱方法は、石英製の炉心管外に熱源を配置し、さらに前記熱源を隔壁で覆い、前記炉心管と前記隔壁との間に酸素消費手段を配置して、前記隔壁内の空間の酸素を前記酸素消費手段で消費させることにより、前記熱源が酸化されることを防ぎながら前記炉心管内で被加熱物を加熱することを特徴としている。   Further, in the method for heating an object to be heated according to the present invention, which can solve the above-described problem, a heat source is disposed outside a quartz core tube, the heat source is further covered with a partition wall, and the core tube and the partition wall are An oxygen consuming means is disposed between the two and the oxygen in the space in the partition is consumed by the oxygen consuming means, thereby heating the object to be heated in the core tube while preventing the heat source from being oxidized. It is a feature.

本発明によれば、石英製の炉心管を備えた加熱炉において、隔壁内の空間の酸素を酸素消費手段で消費させることにより、ヒータが酸化により劣化することを確実に防止することができ、ヒータの長寿命化を図ることができる。   According to the present invention, in a heating furnace equipped with a quartz core tube, oxygen in the space in the partition wall is consumed by the oxygen consuming means, so that the heater can be reliably prevented from being deteriorated by oxidation. The life of the heater can be extended.

以下、本発明に係る加熱炉及び被加熱物の加熱方法の実施形態の例について図面を参照して説明する。
図1は、加熱炉の構造を示す概略断面図である。
図1に示すように、この加熱炉1は、円筒形状の炉心管2と、炉心管2の周囲に配置された加熱源であるヒータ3とを備えている。ヒータ3の周囲は隔壁4によって覆われている。炉心管2は、石英により形成されており、ヒータ3の発熱により炉心管2が昇温させられる。そして、炉心管2の内部に被加熱物であるガラス体を挿入すると、ガラス体が所望の温度に加熱される。なお、炉心管2の上部には、ガラス体の挿入、取り出し時に開閉される上蓋2aが設けられている。また、隔壁4及び炉心管2は、さらに筐体によって覆われている。
Hereinafter, an example of an embodiment of a heating furnace and a method for heating an object to be heated according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing the structure of a heating furnace.
As shown in FIG. 1, the heating furnace 1 includes a cylindrical core tube 2 and a heater 3 that is a heating source disposed around the core tube 2. The periphery of the heater 3 is covered with a partition wall 4. The core tube 2 is made of quartz, and the temperature of the core tube 2 is increased by the heat generated by the heater 3. And if the glass body which is a to-be-heated material is inserted in the core tube 2, a glass body will be heated to desired temperature. Note that an upper lid 2 a that is opened and closed when the glass body is inserted and removed is provided at the upper portion of the core tube 2. Moreover, the partition wall 4 and the core tube 2 are further covered with a housing.

また、炉心管2の下端には、ガス導入口2bが設けられ、上蓋2aには、ガス排出管2cが設けられている。そして、このガス導入口2bを介して炉心管2内へのガスの導入が行われ、排出管2cを介して炉心管2内からのガスの排出が行われる。   A gas inlet 2b is provided at the lower end of the core tube 2, and a gas discharge pipe 2c is provided at the upper lid 2a. Then, the gas is introduced into the core tube 2 through the gas inlet 2b, and the gas is discharged from the core tube 2 through the discharge pipe 2c.

隔壁4には、導入管接続口11が形成されており、この導入管接続口11には、パージガス導入管12が差し込まれて接続されている。そして、この隔壁4によって囲われたヒータ3を収納する収納空間S内には、パージガス導入管12を介して、窒素ガス(N)などの不活性ガスが導入される。また、導入管接続口11には、隔壁4の外側部分にシール材13が設けられ、導入管接続口11とパージガス導入管12との間がシールされている。 An inlet pipe connection port 11 is formed in the partition wall 4, and a purge gas introduction pipe 12 is inserted into and connected to the inlet pipe connection port 11. Then, an inert gas such as nitrogen gas (N 2 ) is introduced into the storage space S for storing the heater 3 surrounded by the partition wall 4 via the purge gas introduction pipe 12. The introduction pipe connection port 11 is provided with a sealing material 13 on the outer side of the partition wall 4, and the space between the introduction pipe connection port 11 and the purge gas introduction pipe 12 is sealed.

また、隔壁4には、ケーブル引き込み口21が形成されており、このケーブル引き込み口21には、電源22に接続された電力ケーブル23が引き込まれている。そして、この電力ケーブル23はヒータ3からの引き出し線3aに接続され、ヒータ3には電力ケーブル23を介して電源22からの電力が供給される。
このケーブル引き込み口21にも、隔壁4の外側部分にシール材24が設けられ、ケーブル引き込み口21と電力ケーブル23との間がシールされている。
また、隔壁4には温度測定用窓25が設けられており、この温度測定用窓25の外側から非接触型の温度計でヒータ3の温度測定を行うことができるようになっている。
In addition, a cable lead-in port 21 is formed in the partition wall 4, and a power cable 23 connected to a power source 22 is drawn into the cable lead-in port 21. The power cable 23 is connected to the lead-out line 3 a from the heater 3, and power from the power source 22 is supplied to the heater 3 through the power cable 23.
The cable inlet 21 is also provided with a sealing material 24 on the outer portion of the partition wall 4 to seal between the cable inlet 21 and the power cable 23.
Further, the partition wall 4 is provided with a temperature measurement window 25, and the temperature of the heater 3 can be measured from the outside of the temperature measurement window 25 with a non-contact type thermometer.

上記構造の加熱炉1には、炉心管2と隔壁4との隙間に、酸素消費部材(酸素消費手段)31が設けられている。
また、導入管接続口11及びケーブル引き込み口21における隔壁4の内側部分にも、酸素消費部材(酸素消費手段)32,33が設けられている。
これら酸素消費部材31,32,33は、例えば、カーボンから形成されており、酸素と酸化反応を起こすことで周囲の酸素を消費するものである。なお、この酸素消費部材31,32,33としては、セラミック製の容器内にカーボンの粒を入れたものでも良い。
In the heating furnace 1 having the above structure, an oxygen consuming member (oxygen consuming means) 31 is provided in the gap between the furnace core tube 2 and the partition wall 4.
In addition, oxygen consuming members (oxygen consuming means) 32 and 33 are also provided on the inner side of the partition wall 4 at the inlet pipe connection port 11 and the cable lead-in port 21.
These oxygen consuming members 31, 32, 33 are made of, for example, carbon, and consume surrounding oxygen by causing an oxidation reaction with oxygen. The oxygen consuming members 31, 32, and 33 may be made of carbon particles in a ceramic container.

次に、上記加熱炉1を使用した被加熱物の加熱方法について、光ファイバ用のガラス母材を形成する場合を例に挙げて説明する。
まず、炉心管2の上部開口部からガラス微粒子堆積体である多孔質のガラス体を導入し、上蓋2aによって炉心管2の上部開口部を閉じる。
この状態にて、ヒータ3の温度を上げて、炉心管2内の温度を上げるとともに、塩素ガス(Cl)とヘリウムガス(He)との混合ガスを、ガス導入口2bから炉心管2内に吹き込む。また、吹き込むガスと同流量のガスを排出管2cから排出する。
Next, a method for heating an object to be heated using the heating furnace 1 will be described by taking as an example a case where a glass preform for an optical fiber is formed.
First, a porous glass body, which is a glass particulate deposit, is introduced from the upper opening of the core tube 2, and the upper opening of the core tube 2 is closed by the upper lid 2a.
In this state, the temperature of the heater 3 is raised to raise the temperature in the core tube 2, and a mixed gas of chlorine gas (Cl 2 ) and helium gas (He) is supplied from the gas inlet 2 b into the core tube 2. Infuse. Further, the gas having the same flow rate as the gas to be blown is discharged from the discharge pipe 2c.

そして、炉心管2内を上記混合ガスの雰囲気とした状態で、炉心管2内の温度を1000℃〜1350℃(好ましくは1100℃〜1250℃)の温度範囲に保持し、数十分程度の所定時間の間加熱して脱水処理を行う。
次いで、炉心管2内の温度をヒータ3によって、1400℃〜1600℃に昇温させると同時に、所定比率の塩素ガス(Cl)とヘリウムガス(He)との混合ガス、または、ヘリウムガス(He)のみをガス導入口2bから導入し、導入したガスと同流量のガスを排出管2cから排出し、ガラス体を所定時間加熱して、透明なガラス母材とする。その後、上蓋2aを外し、炉心管2の上部開口部から透明化したガラス母材を取り出す。
And in the state which made the inside of the core tube 2 the atmosphere of the said mixed gas, the temperature in the core tube 2 is hold | maintained in the temperature range of 1000 to 1350 degreeC (preferably 1100 to 1250 degreeC), and about several tens of minutes Dehydration is performed by heating for a predetermined time.
Next, the temperature inside the furnace core tube 2 is raised to 1400 ° C. to 1600 ° C. by the heater 3 and at the same time, a mixed gas of a predetermined ratio of chlorine gas (Cl 2 ) and helium gas (He) or helium gas ( Only He) is introduced from the gas inlet 2b, a gas having the same flow rate as the introduced gas is discharged from the discharge pipe 2c, and the glass body is heated for a predetermined time to obtain a transparent glass base material. Thereafter, the upper lid 2 a is removed, and the transparent glass base material is taken out from the upper opening of the core tube 2.

ところで、上記のようにガラスを加熱処理する際に、炉心管2と隔壁4との隙間、導入管接続口11及びケーブル引き込み口21の隙間から収納空間S内に酸素が混入すると、高温状態のカーボンあるいはタングステン製のヒータ3が酸化してしまう。   By the way, when the glass is heat-treated as described above, if oxygen is mixed into the storage space S from the gap between the core tube 2 and the partition wall 4, the gap between the introduction pipe connection port 11 and the cable lead-in port 21, The heater 3 made of carbon or tungsten is oxidized.

そこで、本実施形態の加熱炉1では、炉心管2と隔壁4との間、導入管接続口11及びケーブル引き込み口21における隔壁4の内側部分に、それぞれ酸素消費部材31,32,33が設けられている。これにより、酸素消費部材31,32,33が、ヒータ3の収納空間S内へ侵入する酸素と反応を起こして酸素を消費し、収納空間S内への酸素の侵入が抑制される。
しかも、収納空間S内に、窒素ガス(N)などの不活性ガスを導入するので、収納空間S内における酸素濃度を低く抑えることができる。不活性ガスの導入量は、例えば標準状態の体積にして10リットル/分程度が好ましい。
Therefore, in the heating furnace 1 of the present embodiment, oxygen consuming members 31, 32, and 33 are provided between the core tube 2 and the partition wall 4, and inside the partition wall 4 at the introduction tube connection port 11 and the cable lead-in port 21, respectively. It has been. As a result, the oxygen consuming members 31, 32, 33 react with oxygen that enters the storage space S of the heater 3 to consume oxygen, and the oxygen intrusion into the storage space S is suppressed.
In addition, since an inert gas such as nitrogen gas (N 2 ) is introduced into the storage space S, the oxygen concentration in the storage space S can be kept low. The introduction amount of the inert gas is preferably about 10 liters / minute in terms of the standard volume, for example.

具体的には、上記加熱炉1では、酸素消費部材31,32,33を使用することと不活性ガスを導入することにより、収納空間S内の酸素濃度を100ppm以下にすることができ、ヒータ3の酸化の進行を大幅に抑制することができる。   Specifically, in the heating furnace 1, the oxygen concentration in the storage space S can be reduced to 100 ppm or less by using the oxygen consuming members 31, 32, 33 and introducing an inert gas. The progress of oxidation of 3 can be greatly suppressed.

このように、上記実施形態によれば、失透(クリストバライト化)した場合に降温に制限が生じる石英製の炉心管2を備えることにより炉心管2の温度を下げてシール材13などを交換することが困難な加熱炉1においても、隔壁4内の収納空間Sの酸素を酸素消費部材31,32,33で消費させることにより、収納空間S内における酸素濃度を極力小さくすることができ、ヒータ3が酸化されることを防ぎながら炉心管2内で被加熱物であるガラス体を加熱することができる。このように、上記加熱炉1では、ヒータ3の酸化による劣化を抑えてヒータ3の長寿命化を図ることができる。   As described above, according to the above-described embodiment, the temperature of the core tube 2 is lowered and the sealing material 13 and the like are replaced by providing the quartz core tube 2 in which the temperature drop is restricted when devitrification (cristobalite) occurs. Even in the heating furnace 1 that is difficult to perform, the oxygen concentration in the storage space S can be reduced as much as possible by consuming the oxygen in the storage space S in the partition wall 4 by the oxygen consuming members 31, 32, 33. While preventing oxidation of 3, the glass body as the object to be heated can be heated in the furnace core tube 2. As described above, in the heating furnace 1, the heater 3 can be prevented from being deteriorated due to oxidation, and the life of the heater 3 can be extended.

なお、上記実施形態では、縦型の加熱炉1を例に挙げて説明したが、横型の加熱炉の場合にも上記実施形態と同様な構造とすることにより、収納空間S内における酸素の侵入を抑制することができる。   In the above embodiment, the vertical heating furnace 1 has been described as an example. However, even in the case of a horizontal heating furnace, oxygen intrusion into the storage space S can be achieved by adopting the same structure as in the above embodiment. Can be suppressed.

また、ヒータ3を発熱させる方式は、上記の抵抗加熱に限らない。ヒータ3の周囲にコイルを配置してそのコイルに電流を流すことでヒータ3に誘導電流を生じさせて発熱させる(所謂誘導加熱)ようにしても良い。   Further, the method of causing the heater 3 to generate heat is not limited to the resistance heating described above. A coil may be arranged around the heater 3 and an electric current may be passed through the coil to generate an induced current in the heater 3 to generate heat (so-called induction heating).

また、上記実施形態では、多孔質のガラス体を加熱炉1によって加熱して光ファイバ用のガラス母材とする例を示したが、本発明の加熱炉1は、ガラスの加熱加工の全般に使用できるものである。例えば、加工するガラスとしては多孔質のガラス体に限らず、透明なガラス体も使用できる。例えば、透明なガラス体を延伸する加工や、透明なガラス体(光ファイバ母材)を線引きして光ファイバとする際の加熱炉としても有効に使用できる。   Moreover, in the said embodiment, although the example which heats a porous glass body with the heating furnace 1 and made it the glass preform | base_material for optical fibers was shown, the heating furnace 1 of this invention is general in the heat processing of glass. It can be used. For example, the glass to be processed is not limited to a porous glass body, and a transparent glass body can also be used. For example, it can be used effectively as a heating furnace when drawing a transparent glass body or drawing a transparent glass body (optical fiber preform) into an optical fiber.

本発明に係る加熱炉の構造の例を示す概略断面図である。It is a schematic sectional drawing which shows the example of the structure of the heating furnace which concerns on this invention.

符号の説明Explanation of symbols

1 加熱炉
2 炉心管
3 ヒータ(熱源)
4 隔壁
12 パージガス導入管(ガス導入手段)
31、32、33 酸素消費部材(酸素消費手段)
S 収納空間(空間)
1 Heating furnace 2 Core tube 3 Heater (heat source)
4 Bulkhead 12 Purge gas introduction pipe (gas introduction means)
31, 32, 33 Oxygen consuming member (oxygen consuming means)
S Storage space (space)

Claims (3)

石英製の炉心管を有し、その周囲に熱源を配置して、前記熱源を隔壁で覆ってなる加熱炉であって、
前記炉心管と前記隔壁との隙間ならびに隔壁に設けられた導入管接続口およびケーブル引き込み口の隙間に、酸素により酸化されることにより当該酸素を消費する酸素消費手段が配置されていることを特徴とする加熱炉。
A heating furnace having a quartz core tube, a heat source disposed around the core tube, and the heat source covered with a partition wall,
Oxygen consuming means for consuming the oxygen by being oxidized by oxygen is disposed in the gap between the core tube and the partition wall, and the introduction pipe connection port and the cable lead-in port provided in the partition wall. A heating furnace.
請求項1に記載の加熱炉であって、
前記隔壁と前記炉心管で囲まれる空間に不活性ガスを流す、ガス導入手段を有することを特徴とする加熱炉。
The heating furnace according to claim 1,
A heating furnace comprising gas introduction means for flowing an inert gas into a space surrounded by the partition wall and the furnace core tube.
石英製の炉心管外に熱源を配置し、さらに前記熱源を隔壁で覆い、前記炉心管と前記隔壁との間に酸素消費手段を配置して、前記隔壁内の空間の酸素を前記酸素消費手段で消費させることにより、前記熱源が酸化されることを防ぎながら前記炉心管内で被加熱物を加熱することを特徴とする被加熱物の加熱方法。   A heat source is arranged outside the quartz core tube made of quartz, the heat source is further covered with a partition wall, oxygen consuming means is disposed between the core tube and the partition wall, and oxygen in the space in the partition wall is converted into the oxygen consuming means. The method for heating an object to be heated is characterized in that the object to be heated is heated in the furnace core tube while preventing the heat source from being oxidized.
JP2006031575A 2006-02-08 2006-02-08 Heating furnace and heating method of object to be heated Active JP4407648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006031575A JP4407648B2 (en) 2006-02-08 2006-02-08 Heating furnace and heating method of object to be heated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006031575A JP4407648B2 (en) 2006-02-08 2006-02-08 Heating furnace and heating method of object to be heated

Publications (2)

Publication Number Publication Date
JP2007210828A JP2007210828A (en) 2007-08-23
JP4407648B2 true JP4407648B2 (en) 2010-02-03

Family

ID=38489594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006031575A Active JP4407648B2 (en) 2006-02-08 2006-02-08 Heating furnace and heating method of object to be heated

Country Status (1)

Country Link
JP (1) JP4407648B2 (en)

Also Published As

Publication number Publication date
JP2007210828A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
JP5202810B2 (en) Graphite heating furnace and optical fiber manufacturing method
JP2015074600A (en) Method of manufacturing optical fiber
TWI545298B (en) Heat treatment furnace
JP2014201513A (en) Sintering apparatus
JP4407648B2 (en) Heating furnace and heating method of object to be heated
JP4737031B2 (en) Glass base material manufacturing method and manufacturing apparatus
US9499430B2 (en) Sintering apparatus and sintering method for glass preform for optical fiber
JP3210660U (en) Reaction device for chemiluminescence detector and chemiluminescence detector provided with the same
JP2008179517A (en) Apparatus and method for producing glass preform
JP6421569B2 (en) Optical fiber manufacturing method and optical fiber manufacturing apparatus
JP2008184372A (en) Apparatus and method for manufacturing glass preform
JP2003171139A (en) Optical fiber drawing furnace
JP3843860B2 (en) Dehydration sintering furnace for optical fiber preform production
JP4403011B2 (en) Optical fiber preform manufacturing method and optical fiber preform manufacturing apparatus
JP4973440B2 (en) Glass article heating method and induction furnace
JP2004231482A (en) Method of detecting abnormality of core tube, and heating furnace
JP2003226541A (en) Method and apparatus for manufacturing glass preform
JP2008064387A (en) Heating furnace and heating method for heating object
JP2003212561A (en) Method and apparatus for manufacturing glass preform
JP2007091545A (en) Manufacturing method and device of fluorine-doped quartz glass
JPH10265235A (en) Production of transparent glass preform and apparatus for its production
JP2022116761A (en) Manufacturing apparatus of metal oxide single crystal
JPH0646982Y2 (en) Heating furnace for producing high-purity quartz base material
JPH026348A (en) Furnace for drawing optical fiber
JP2022187545A (en) Manufacturing apparatus of glass preform, and manufacturing method of glass preform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

R150 Certificate of patent or registration of utility model

Ref document number: 4407648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250