JP2013244465A - Flue gas desulfurization system - Google Patents

Flue gas desulfurization system Download PDF

Info

Publication number
JP2013244465A
JP2013244465A JP2012120125A JP2012120125A JP2013244465A JP 2013244465 A JP2013244465 A JP 2013244465A JP 2012120125 A JP2012120125 A JP 2012120125A JP 2012120125 A JP2012120125 A JP 2012120125A JP 2013244465 A JP2013244465 A JP 2013244465A
Authority
JP
Japan
Prior art keywords
seawater
flue gas
gas desulfurization
tank
residual chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012120125A
Other languages
Japanese (ja)
Other versions
JP5991664B2 (en
Inventor
Masamichi Asano
昌道 浅野
Nobuyuki Ukai
展行 鵜飼
Hiroshi Mizutani
洋 水谷
Tatsuya Matsumura
達也 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Original Assignee
Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd filed Critical Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Priority to JP2012120125A priority Critical patent/JP5991664B2/en
Priority to CN201380021541.6A priority patent/CN104245092B/en
Priority to KR1020147032164A priority patent/KR101701015B1/en
Priority to PCT/JP2013/063554 priority patent/WO2013176018A1/en
Publication of JP2013244465A publication Critical patent/JP2013244465A/en
Application granted granted Critical
Publication of JP5991664B2 publication Critical patent/JP5991664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/507Sulfur oxides by treating the gases with other liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1481Removing sulfur dioxide or sulfur trioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • B01D2252/1035Sea water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/60Additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/005Valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the volume and the area of an oxidation treatment tank by improving the oxidation rate in the oxidation treatment tank.SOLUTION: A flue gas desulfurization system 1 includes: a flue gas desulfurization apparatus 3 using sea water as an absorption liquid for absorbing sulfur oxides in an exhaust gas exhausted from a predetermined plant, and an oxidation treatment tank 4 for oxidizing sulfurous acids contained in the used sea water exhausted from this flue gas desulfurization apparatus, wherein an oxidation auxiliary agent is added to the sea water in a prior step of bringing the exhausted gas and the sea water into contact.

Description

本発明は、排煙脱硫システムに係り、特に発電プラントのボイラなどの燃焼機器から排出される排気ガス中の硫黄酸化物を除去する排煙脱硫装置と、排煙脱硫装置から排出される排水に含まれる亜硫酸類を酸化する酸化処理槽とを備えた排煙脱硫システムに関する。   The present invention relates to a flue gas desulfurization system, and in particular, to a flue gas desulfurization device that removes sulfur oxides in exhaust gas discharged from combustion equipment such as a boiler of a power plant, and wastewater discharged from the flue gas desulfurization device. The present invention relates to a flue gas desulfurization system including an oxidation treatment tank that oxidizes contained sulfurous acid.

一般に、発電プラントなどにおいては、石炭焚きボイラなどから排出される排気ガスから二酸化硫黄(SO)を吸収除去する必要があるため、排煙脱硫装置が設けられている。沿岸部の発電所などでは、低コストであることを理由に、吸収液として海水を使用する排煙脱硫装置(海水法)が利用されている。 Generally, in a power plant or the like, since it is necessary to absorb and remove sulfur dioxide (SO 2 ) from exhaust gas discharged from a coal-fired boiler or the like, a flue gas desulfurization device is provided. In a power plant in a coastal area, a flue gas desulfurization apparatus (seawater method) that uses seawater as an absorbent is used because of its low cost.

海水法による排煙脱硫装置では、排気ガス中のSOを海水で吸収除去するため、脱硫に使用した海水(排水)中には亜硫酸イオン(SO 2−)や重亜硫酸イオン(HSO )、亜硫酸(HSO)といった亜硫酸類が高濃度に含まれている。よって、脱硫に使用した排水を海に排出するために、通常、HSO やSO 2−を化学的に無害な硫酸イオン(HSO やSO 2−)に酸化する処理が行われている(例えば特許文献1参照)。 In flue gas desulfurization apparatus according seawater method for absorbing and removing SO 2 in the exhaust gas in seawater, the seawater used for desulfurization (effluent) sulfite ions (SO 3 2-) and bisulfite ions (HSO 3 - ) And sulfites such as sulfurous acid (H 2 SO 3 ) are contained in a high concentration. Therefore, in order to discharge the wastewater used for desulfurization to the sea, a process of oxidizing HSO 3 or SO 3 2− to a chemically harmless sulfate ion (HSO 4 or SO 4 2− ) is usually performed. (For example, refer to Patent Document 1).

特許第3901559号公報Japanese Patent No. 3901559

ところで、上記酸化処理は、上部が開放された長い水路内を流れる排水に、水路の底面に設置したエアレーション装置から微細気泡を流出させるエアレーションによって脱炭酸(爆気)することが一般的である。しかしながら、従来のエアレーション装置では、酸化処理の酸化速度が小さく、酸化処理槽(水槽)の容積・面積が非常に大きくなってしまうという問題があった。酸化処理槽の容積・面積が大きい場合、より多くの建設費がかかるとともに、建設期間が長くなり、場合によっては所要面積の制限によって建設に至らないことも想定される。   By the way, the above oxidation treatment is generally decarboxylated (explosion) by aeration that causes fine bubbles to flow out from the aeration apparatus installed on the bottom surface of the water channel into the waste water flowing through the long water channel having an open top. However, the conventional aeration apparatus has a problem that the oxidation rate of the oxidation treatment is small, and the volume and area of the oxidation treatment tank (water tank) become very large. When the volume / area of the oxidation treatment tank is large, more construction costs are required and the construction period becomes longer. In some cases, it is assumed that the construction is not completed due to the restriction of the required area.

この発明は、このような事情を考慮してなされたもので、その目的は、排煙脱硫装置から排出される排水に含まれる亜硫酸類を酸化する酸化処理槽を備えた排煙脱硫システムにおいて、酸化処理槽における酸化速度を向上させ、酸化処理槽の容積・面積を低減することができる排煙脱硫システムを提供することにある。   This invention was made in view of such circumstances, and its purpose is in a flue gas desulfurization system including an oxidation treatment tank that oxidizes sulfites contained in waste water discharged from the flue gas desulfurization apparatus. An object of the present invention is to provide a flue gas desulfurization system capable of improving the oxidation rate in an oxidation treatment tank and reducing the volume and area of the oxidation treatment tank.

上記課題を解決するために、この発明は以下の手段を提供している。
本発明の排煙脱硫システムは、所定のプラントから排出される排気ガス中の硫黄酸化物を吸収する吸収液として海水を用いる排煙脱硫装置と、該排煙脱硫装置から排出される使用済海水に含まれる亜硫酸類を酸化する酸化処理槽とを備えた排煙脱硫システムであって、前記排気ガスと前記海水とを接触させる前段において、前記海水に対して酸化助剤を添加することを特徴とする。
In order to solve the above problems, the present invention provides the following means.
The flue gas desulfurization system of the present invention includes a flue gas desulfurization device that uses seawater as an absorbing liquid that absorbs sulfur oxides in exhaust gas discharged from a predetermined plant, and spent seawater discharged from the flue gas desulfurization device. A flue gas desulfurization system comprising an oxidation treatment tank that oxidizes sulfites contained in the water, wherein an oxidation aid is added to the seawater in a previous stage of bringing the exhaust gas into contact with the seawater. And

上記構成によれば、海水に酸化助剤が添加されることによって酸化速度が向上し、酸化処理槽の容積・面積を低減することができる。   According to the said structure, an oxidation speed | rate improves by adding an oxidation adjuvant to seawater, and the volume and area of an oxidation treatment tank can be reduced.

上記排煙脱硫システムにおいて、さらに前記酸化処理槽に前記酸化助剤を添加することが好ましい。
上記構成によれば、酸化処理が行われる槽に直接酸化助剤を添加することによって、さらに酸化速度の向上を図ることができる。
In the above flue gas desulfurization system, it is preferable that the oxidation aid is further added to the oxidation treatment tank.
According to the said structure, an oxidation rate can further be improved by adding an oxidation adjuvant directly to the tank in which an oxidation process is performed.

上記排煙脱硫システムにおいて、前記酸化助剤は、次亜塩素酸であることが好ましい。   In the above flue gas desulfurization system, it is preferable that the oxidation aid is hypochlorous acid.

上記排煙脱硫システムにおいて、海水を電気分解することにより前記次亜塩素酸を生成する電解装置を備えることが好ましい。
上記構成によれば、海水を取水できる場合は、容易に次亜塩素酸を生成することができる。
The flue gas desulfurization system preferably includes an electrolysis device that generates the hypochlorous acid by electrolyzing seawater.
According to the said structure, when seawater can be taken in, hypochlorous acid can be produced | generated easily.

上記排煙脱硫システムにおいて、前記酸化処理槽の下流に設けられ、海水を導入することにより前記吸収液を希釈する希釈槽と、前記希釈槽内の残留塩素濃度を測定する残留塩素測定装置と、前記残留塩素濃度が所定濃度以下となるように前記電解装置の次亜塩素酸の供給速度を調整する制御装置と、を備えることが好ましい。   In the flue gas desulfurization system, provided in the downstream of the oxidation treatment tank, a dilution tank for diluting the absorbent by introducing seawater, a residual chlorine measuring device for measuring the residual chlorine concentration in the dilution tank, And a control device that adjusts the hypochlorous acid supply rate of the electrolysis device so that the residual chlorine concentration is a predetermined concentration or less.

上記構成によれば、排煙脱硫システムより放出される使用済海水に含まれる残留塩素を低減することができる。   According to the said structure, the residual chlorine contained in the used seawater discharge | released from a flue gas desulfurization system can be reduced.

上記排煙脱硫システムにおいて、前記排煙脱硫装置に供給する海水を受け入れる海水受入槽と、前記海水受入槽内の残留塩素濃度を測定する残留塩素測定装置と、前記残留塩素濃度が所定濃度以下となるように前記電解装置の次亜塩素酸の供給速度を調整する制御装置と、を備える構成としてもよい。   In the flue gas desulfurization system, a seawater receiving tank that receives seawater to be supplied to the flue gas desulfurization apparatus, a residual chlorine measuring device that measures a residual chlorine concentration in the seawater receiving tank, and the residual chlorine concentration is a predetermined concentration or less. It is good also as a structure provided with the control apparatus which adjusts the supply speed | rate of hypochlorous acid of the said electrolysis apparatus.

上記構成によれば、排煙脱硫装置における不具合を防止することができる。即ち、残留塩素の濃度が高過ぎる場合、排煙脱硫装置の吸収液が過酸化状態となる。過酸化状態となると、吸収したSOが過酸化され、過酸化物(S,S)が生成される。これらはCODの濃度を増加せしめる。このため、海水受入槽での残留塩素濃度を測定し制御することで、上記の過酸化物の生成を抑制し、COD濃度を低減せしめることができる。 According to the said structure, the malfunction in a flue gas desulfurization apparatus can be prevented. That is, when the concentration of residual chlorine is too high, the absorption liquid of the flue gas desulfurization device is in a peroxidized state. In the peroxidized state, the absorbed SO 2 is peroxidized and peroxides (S 2 O 6 , S 2 O 8 ) are generated. These increase the concentration of COD. For this reason, by measuring and controlling the residual chlorine concentration in the seawater receiving tank, it is possible to suppress the generation of the above-described peroxide and reduce the COD concentration.

上記排煙脱硫システムにおいて、前記酸化処理槽の下流に設けられ、海水を導入することにより前記吸収液を希釈する希釈槽と、前記排煙脱硫装置に供給する海水を受け入れる海水受入槽と、前記希釈槽内の残留塩素濃度を測定する第一残留塩素測定装置と、前記海水受入槽内の残留塩素濃度を測定する第二残留塩素測定装置と、前記希釈槽内及び前記海水受入槽内の残留塩素濃度が所定濃度以下となるように前記電解装置の次亜塩素酸の供給速度を調整する制御装置と、を備える構成としてもよい。   In the flue gas desulfurization system, provided in the downstream of the oxidation treatment tank, a dilution tank for diluting the absorbent by introducing seawater, a seawater receiving tank for receiving seawater supplied to the flue gas desulfurization device, A first residual chlorine measuring device for measuring the residual chlorine concentration in the dilution tank; a second residual chlorine measuring device for measuring the residual chlorine concentration in the seawater receiving tank; and the residual in the dilution tank and the seawater receiving tank. It is good also as a structure provided with the control apparatus which adjusts the supply rate of the hypochlorous acid of the said electrolysis apparatus so that a chlorine concentration may become below a predetermined concentration.

上記構成によれば、希釈槽及び海水受入槽の両方の残留塩素の濃度を測定することができる。これにより、複数の場所、例えば排気ガスと前記海水とを接触させる前段、海水受入槽、酸化処理槽毎に酸化剤(次亜塩素酸)の添加量を調整することができる。   According to the said structure, the density | concentration of the residual chlorine of both a dilution tank and a seawater receiving tank can be measured. Thereby, the addition amount of an oxidizing agent (hypochlorous acid) can be adjusted for several places, for example, the front | former stage which makes exhaust gas and the said seawater contact, a seawater receiving tank, and an oxidation treatment tank.

上記排煙脱硫システムにおいて、前記制御装置は、電気分解の際の電流量を制御することによって前記次亜塩素酸の供給速度を調整することが好ましい。   In the above flue gas desulfurization system, it is preferable that the control device adjusts the supply rate of the hypochlorous acid by controlling the amount of current during electrolysis.

上記排煙脱硫システムにおいて、前記次亜塩素酸の供給量を調整する供給量調整手段を備え、前記制御装置は、前記供給量調整手段を制御する構成としてもよい。   The flue gas desulfurization system may include a supply amount adjusting unit that adjusts a supply amount of the hypochlorous acid, and the control device may control the supply amount adjusting unit.

上記排煙脱硫システムにおいて、前記酸化処理槽に酸化助剤を噴霧、滴下する少なくとも一つのノズルを備えていることが好ましい。
上記構成によれば、海水と酸化助剤との混合をより促進させることができる。
In the above-described flue gas desulfurization system, it is preferable that the oxidation treatment tank is provided with at least one nozzle for spraying and dropping an oxidation assistant.
According to the said structure, mixing with seawater and an oxidation adjuvant can be promoted more.

本発明によれば、排煙脱硫装置から排出される排水に含まれる亜硫酸類を酸化する酸化処理槽を備えた排煙脱硫システムにおいて、排気ガスと海水とを接触させる前段において、海水に対して酸化助剤を添加することによって、酸化処理槽における酸化速度を向上させ、酸化処理槽の容積・面積を低減することができる。   According to the present invention, in a flue gas desulfurization system including an oxidation treatment tank that oxidizes sulfites contained in waste water discharged from a flue gas desulfurization apparatus, in the previous stage where exhaust gas and sea water are brought into contact with each other, By adding an oxidation aid, the oxidation rate in the oxidation treatment tank can be improved, and the volume and area of the oxidation treatment tank can be reduced.

本発明の第一実施形態に係る排煙脱硫システムの系統図である。1 is a system diagram of a flue gas desulfurization system according to a first embodiment of the present invention. 本発明の第二実施形態に係る排煙脱硫システムの系統図である。It is a systematic diagram of the flue gas desulfurization system which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係る排煙脱硫システムの系統図である。It is a systematic diagram of the flue gas desulfurization system which concerns on 3rd embodiment of this invention.

(第一実施形態)
以下、本発明の第一実施形態について図面を参照して詳細に説明する。
図1に示すように、本実施形態の排煙脱硫システム1は、石炭焚き又は重油焚きのボイラ2と、このボイラ2から排出される排気ガス中のSOを海水に吸収させて除去する排煙脱硫装置3と、この排煙脱硫装置3から排出される使用済海水を酸化処理する酸化処理槽4などからなる連結槽5と、酸化処理槽4などに供給される次亜塩素酸ソーダ(以下、次亜塩素酸と呼ぶ)を生成するための電解装置15と、電解装置15を制御するための制御装置30と、を有している。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the flue gas desulfurization system 1 according to the present embodiment absorbs and removes SO 2 in exhaust gas discharged from the boiler 2 and coal 2 or heavy oil-fired boiler 2 by seawater. Smoke desulfurization device 3, a connecting tank 5 comprising an oxidation treatment tank 4 for oxidizing the used seawater discharged from the flue gas desulfurization apparatus 3, and sodium hypochlorite ( Hereinafter, the electrolysis apparatus 15 for producing | generating a hypochlorous acid) and the control apparatus 30 for controlling the electrolysis apparatus 15 are provided.

ボイラ2は、このボイラ2で生成した蒸気で駆動する蒸気タービン(図示せず)と、この蒸気タービンの駆動により発電を行う発電機(図示せず)と、蒸気タービンの駆動に用いた蒸気を、海から取水する海水と熱交換により冷却、凝縮して水に戻す復水器6とが設けられている。復水器6には、第一海水導入ライン26を介して海水が導入される。
ボイラ2と排煙脱硫装置3との間には、NOxの除去するための脱硝装置7と、排気ガス中の粉塵を分離、捕集する電気集塵機8とが設けられている。
The boiler 2 includes a steam turbine (not shown) driven by steam generated by the boiler 2, a generator (not shown) that generates electric power by driving the steam turbine, and steam used for driving the steam turbine. A condenser 6 is provided which cools, condenses and returns to water by heat exchange with seawater taken from the sea. Seawater is introduced into the condenser 6 via the first seawater introduction line 26.
Between the boiler 2 and the flue gas desulfurization device 3, a denitration device 7 for removing NOx and an electric dust collector 8 for separating and collecting dust in the exhaust gas are provided.

連結槽5は、復水器6から排出される海水が導入される海水受入槽10と、排煙脱硫装置3においてSOを吸収した使用済海水が導入される混合槽11と曝気槽12とからなる酸化処理槽4と、酸化処理槽4の後段に配置された希釈槽13とを有している。これらは上流側より順に、海水受入槽10、混合槽11、曝気槽12、希釈槽13の順に互いに隣り合うように配置されている。そして、より上流側の槽から溢れた海水が、隣り合う下流側の槽に受け入れられるように構成されている。 The connecting tank 5 includes a seawater receiving tank 10 into which seawater discharged from the condenser 6 is introduced, a mixing tank 11 into which used seawater that has absorbed SO 2 in the flue gas desulfurization device 3 is introduced, and an aeration tank 12. And a dilution tank 13 disposed downstream of the oxidation treatment tank 4. These are arranged so that the seawater receiving tank 10, the mixing tank 11, the aeration tank 12, and the dilution tank 13 are adjacent to each other in this order from the upstream side. And it is comprised so that the seawater which overflowed from the more upstream tank may be received by the adjacent downstream tank.

海水受入槽10には、復水器6で蒸気の冷却に用いられた海水の一部を排煙脱硫装置3に送る脱硫用海水配管16及びポンプ17が設けられている。
排煙脱硫装置3内には、復水器6からの海水を吸収液として排気ガスと気液接触させるための噴霧ノズルが複数設けられている。排煙脱硫装置3の排気ガス出口には、脱硫処理されたガスを大気に放出する煙突19が設けられている。排煙脱硫装置3と混合槽11との間には、排煙脱硫装置3から排出されるSOを吸収した使用済海水を、混合槽11に送る排水導管20が敷設されている。
The seawater receiving tank 10 is provided with a desulfurization seawater pipe 16 and a pump 17 for sending a part of the seawater used for cooling the steam in the condenser 6 to the flue gas desulfurization device 3.
In the flue gas desulfurization apparatus 3, a plurality of spray nozzles are provided for bringing the seawater from the condenser 6 into gas-liquid contact with the exhaust gas using the absorbing liquid. At the exhaust gas outlet of the flue gas desulfurization apparatus 3, a chimney 19 for releasing the desulfurized gas to the atmosphere is provided. Between the flue gas desulfurization apparatus 3 and the mixing tank 11, a drainage pipe 20 is laid that sends used seawater that has absorbed SO 2 discharged from the flue gas desulfurization apparatus 3 to the mixing tank 11.

混合槽11は、海水受入槽10から溢れ出た海水を受け入れるとともに、排煙脱硫装置3から排出される使用済海水が導入されるように構成されている。
曝気槽12は、混合槽11から溢れ出た使用済海水を含んだ海水を受け入れ、この海水が一端から他端まで流れるように構成されている。
The mixing tank 11 is configured to receive the seawater overflowing from the seawater receiving tank 10 and to introduce the used seawater discharged from the flue gas desulfurization device 3.
The aeration tank 12 is configured so as to receive seawater containing spent seawater overflowing from the mixing tank 11 and this seawater flows from one end to the other end.

曝気槽12の底部には、上流側から下流側に向かって空気配管21が敷設されている。空気配管21には、海水の流れ方向に対して空気を多段階に吹き込めるように複数の空気吹込ノズル22が設けられている。空気配管21には、大気中の空気を空気吹込ノズル22へと送る酸化空気用ブロア23が設置されている。   An air pipe 21 is laid on the bottom of the aeration tank 12 from the upstream side toward the downstream side. The air pipe 21 is provided with a plurality of air blowing nozzles 22 so as to blow air in multiple stages with respect to the flow direction of seawater. The air pipe 21 is provided with a blower 23 for oxidizing air that sends air in the atmosphere to the air blowing nozzle 22.

希釈槽13は、曝気槽12から溢れ出た使用済海水を受け入れるとともに、希釈用海水配管24を介して使用済海水を希釈するための海水が投入されるように構成されている。希釈槽13の下流側端部には、海水を放出するための放出口25が設けられている。
また、希釈槽13には、希釈槽13内の使用済海水の残留塩素の濃度を測定する残留塩素測定装置31が設けられている。残留塩素測定装置31によって測定された残留塩素の濃度は、制御装置30に送信されるように構成されており、制御装置30は、残留塩素の濃度が0.01mgCl/リットル以上となった場合は、電解速度を下げるように直流電源装置29の制御を行うように設定されている。
The dilution tank 13 is configured to receive the used seawater overflowing from the aeration tank 12 and to receive seawater for diluting the used seawater through the dilution seawater piping 24. A discharge port 25 for discharging seawater is provided at the downstream end of the dilution tank 13.
The dilution tank 13 is provided with a residual chlorine measuring device 31 that measures the concentration of residual chlorine in the used seawater in the dilution tank 13. The concentration of residual chlorine measured by the residual chlorine measuring device 31 is configured to be transmitted to the control device 30. The control device 30 is configured so that the residual chlorine concentration becomes 0.01 mgCl / liter or more. The DC power supply 29 is set to be controlled so as to reduce the electrolysis rate.

また、本実施形態の排煙脱硫システム1は、酸化処理槽4における酸化を促進させる酸化助剤としての次亜塩素酸を生成する電解装置15を備えている。電解装置15は、第二海水導入ライン27を介して塩化物イオン源としての海水が導入される電解槽28と、電解槽28内に配置された一対の電極に接続される直流電源装置29と、を有している。   Moreover, the flue gas desulfurization system 1 of this embodiment includes an electrolysis device 15 that generates hypochlorous acid as an oxidation aid that promotes oxidation in the oxidation treatment tank 4. The electrolyzer 15 includes an electrolyzer 28 into which seawater as a chloride ion source is introduced via a second seawater introduction line 27, and a DC power supply device 29 connected to a pair of electrodes disposed in the electrolyzer 28. ,have.

電解装置15は、これらの電極間に直流電源装置29により直流電圧を印加することにより電解槽28内の処理液の電気分解を行う。また、直流電源装置29は制御装置30によって制御されるように構成されている。   The electrolyzer 15 performs electrolysis of the treatment liquid in the electrolytic cell 28 by applying a DC voltage between these electrodes by a DC power supply device 29. The DC power supply device 29 is configured to be controlled by the control device 30.

また、電解装置15によって生成された次亜塩素酸は、酸化助剤供給ライン32によって、第一海水導入ライン26、海水受入槽10、混合槽11、及び曝気槽12に投入される。
第一海水導入ライン26に添加される次亜塩素酸は、酸化助剤供給ライン32が第一海水導入ライン26と直接接続されていることにより、第一海水導入ライン26を流れる海水に直接添加される。
海水受入槽10、混合槽11、及び曝気槽12に添加される次亜塩素酸は、海水受入槽10、混合槽11、及び曝気槽12の上方に設けられたノズル33を介してこれらの槽内に噴霧、滴下される。
In addition, hypochlorous acid generated by the electrolysis device 15 is input to the first seawater introduction line 26, the seawater receiving tank 10, the mixing tank 11, and the aeration tank 12 through the oxidation aid supply line 32.
Hypochlorous acid added to the first seawater introduction line 26 is directly added to the seawater flowing through the first seawater introduction line 26 by connecting the oxidation auxiliary agent supply line 32 directly to the first seawater introduction line 26. Is done.
Hypochlorous acid added to the seawater receiving tank 10, the mixing tank 11, and the aeration tank 12 is supplied to these tanks via the nozzle 33 provided above the seawater receiving tank 10, the mixing tank 11, and the aeration tank 12. It is sprayed and dropped inside.

次に本実施形態に係る排煙脱硫システム1の作用について説明する。
まず、ボイラ2では、復水器6から給水した水を蒸発させて蒸気とし、この蒸気を用いて蒸気タービンを駆動し、発電機で発電を行う。蒸気タービンで使用した蒸気は、第一海水導入ライン26を介して復水器6に導入された海水により冷却されて水に戻り、再びボイラ2に供給される。ボイラ2からの排気ガスは、脱硝装置でNOxが除去され、電気集塵機8で除塵された後、排煙脱硫装置3に導入される。また、第一海水導入ライン26には、電解装置15にて生成された次亜塩素酸が酸化助剤供給ライン32を介して投入される。
Next, the operation of the flue gas desulfurization system 1 according to this embodiment will be described.
First, in the boiler 2, the water supplied from the condenser 6 is evaporated into steam, the steam turbine is driven using this steam, and power is generated by the generator. The steam used in the steam turbine is cooled by seawater introduced into the condenser 6 via the first seawater introduction line 26, returns to water, and is supplied to the boiler 2 again. The exhaust gas from the boiler 2 is introduced into the flue gas desulfurization device 3 after NOx is removed by the denitration device and dust is removed by the electric dust collector 8. In addition, hypochlorous acid generated by the electrolysis device 15 is introduced into the first seawater introduction line 26 via the oxidation aid supply line 32.

また、復水器6において蒸気により加熱された海水は、連結槽5の最上流側に配置された海水受入槽10に導入される。さらに、海水受入槽10には、酸化助剤供給ライン32を介して次亜塩素酸が投入される。そして、海水は、脱硫用海水配管16を介して排煙脱硫装置3に供給される。   Further, the seawater heated by the steam in the condenser 6 is introduced into the seawater receiving tank 10 disposed on the most upstream side of the connection tank 5. Further, hypochlorous acid is introduced into the seawater receiving tank 10 through the oxidation aid supply line 32. And seawater is supplied to the flue gas desulfurization apparatus 3 via the desulfurization seawater piping 16.

排煙脱硫装置3においては、加熱された海水が吸収液として排気ガスに対して噴霧され、これにより、排気ガス中のSOは海水に吸収されて海水中で亜硫酸(HSO)、重亜硫酸イオン(HSO )、及び亜硫酸イオン(SO 2−)といった亜硫酸類となる。SOが除去された排気ガスは、煙突19から大気へ開放される。SOを吸収した排水は、排煙脱硫装置3から排出され、排水導管20を介して酸化処理槽4の混合槽11に導入される。 In the flue gas desulfurization apparatus 3, heated seawater is sprayed on the exhaust gas as an absorbing liquid, whereby SO 2 in the exhaust gas is absorbed by the sea water and sulfurous acid (H 2 SO 3 ), It becomes sulfites such as bisulfite ion (HSO 3 ) and sulfite ion (SO 3 2− ). The exhaust gas from which SO 2 has been removed is released from the chimney 19 to the atmosphere. The waste water that has absorbed SO 2 is discharged from the flue gas desulfurization apparatus 3 and introduced into the mixing tank 11 of the oxidation treatment tank 4 through the drain pipe 20.

混合槽11においては、海水受入槽10より溢れ出た海水と、排煙脱硫装置3から排出された排水とが混合・希釈される。さらに、混合槽11には、酸化助剤供給ライン32を介して次亜塩素酸が投入される。   In the mixing tank 11, the seawater overflowing from the seawater receiving tank 10 and the wastewater discharged from the flue gas desulfurization device 3 are mixed and diluted. Further, hypochlorous acid is introduced into the mixing tank 11 through the oxidation aid supply line 32.

排煙脱硫装置3から排出される使用済海水は、通常、pHが低い。よって、混合槽11で希釈されることにより、排水のpHを曝気により迅速に酸化反応が進行する値(例えばpH6以上)にまで上げることができる。   The spent seawater discharged from the flue gas desulfurization apparatus 3 usually has a low pH. Therefore, by diluting in the mixing tank 11, the pH of the wastewater can be increased to a value (for example, pH 6 or more) at which the oxidation reaction proceeds rapidly by aeration.

また、排煙脱硫装置3から排出される使用済海水は、通常、SO 2−濃度が高い。よって、この希釈により使用済海水中のSO 2−濃度を、SOが気相に放散しない値(例えば1.2mmol/リットル以下)にまで下げることができる。混合された使用済海水は、混合槽11より溢れ出ることで曝気槽12に導入される。 Also, it used seawater discharged from the flue gas desulfurization unit 3, usually, SO 3 2-concentration is high. Therefore, by this dilution, the SO 3 2− concentration in the used seawater can be lowered to a value (for example, 1.2 mmol / liter or less) at which SO 2 does not diffuse into the gas phase. The mixed used seawater overflows from the mixing tank 11 and is introduced into the aeration tank 12.

次に、曝気槽12内を流れる使用済海水中に、空気吹込ノズル22から空気を吹き込み、曝気処理を行う。これにより使用済海水中のSO 2−をSO 2−に酸化し、化学的に無害化する。
さらに、曝気槽12には、酸化助剤供給ライン32を介して次亜塩素酸が投入される。曝気槽12において酸化された使用済海水は、曝気槽12から溢れ出ることで希釈槽13に導入される。
Next, air is blown into the used seawater flowing in the aeration tank 12 from the air blowing nozzle 22 to perform an aeration process. As a result, SO 3 2− in the used seawater is oxidized to SO 4 2− and chemically detoxified.
Further, hypochlorous acid is introduced into the aeration tank 12 through the oxidation aid supply line 32. Spent seawater oxidized in the aeration tank 12 is introduced into the dilution tank 13 by overflowing from the aeration tank 12.

ここで、使用済海水の酸化反応式は、以下の反応式(1)である。
SO 2− + 1/2 O → SO 2− ・・・ (1)
また、酸化の反応速度rOXは、以下の速度式(2)より、反応速度係数k、SO 2−の濃度、及びOの濃度の積に比例する。
OX ∝ k[SO 2−][O2(L)0.5 ・・・ (2)
本実施形態では、海水に酸化助剤としての次亜塩素酸が投入されているため、酸化の反応速度が向上する。具体的には上記速度式(2)の反応速度係数kが増加する。
Here, the oxidation reaction formula of used seawater is the following reaction formula (1).
SO 3 2− +1/2 O 2 → SO 4 2− (1)
Further, the oxidation reaction rate r OX is proportional to the product of the reaction rate coefficient k, the concentration of SO 3 2− , and the concentration of O 2 from the following rate equation (2).
r OX k k [SO 3 2− ] [O 2 (L) ] 0.5 (2)
In the present embodiment, hypochlorous acid as an oxidizing aid is introduced into seawater, so that the oxidation reaction rate is improved. Specifically, the reaction rate coefficient k in the rate equation (2) increases.

次に、希釈槽13内を流れる使用済海水中に希釈用海水配管24を介して海水を投入し、使用済海水の希釈を行う。これにより、使用済海水のpHを向上させることができる。最後に、放出口25よりSO 2−濃度が排出基準未満までに下がった使用済海水が放出される。 Next, seawater is thrown into the used seawater flowing through the dilution tank 13 through the seawater piping 24 for dilution, and the used seawater is diluted. Thereby, pH of used seawater can be raised. Finally, the used seawater whose SO 3 2− concentration has been lowered to below the emission standard is discharged from the discharge port 25.

電解装置15において生成される次亜塩素酸の量は、希釈槽13の残留塩素の濃度に基づいて制御される。即ち、第一海水導入ライン26、海水受入槽10、混合槽11、及び曝気槽12への次亜塩素酸の供給量は、残留塩素の濃度に応じて決定される。具体的には、制御装置30は、残留塩素の濃度が0.01mgCl/リットル以上となった場合は、電解速度を下げるように直流電源装置29の制御を行う。   The amount of hypochlorous acid produced in the electrolyzer 15 is controlled based on the concentration of residual chlorine in the dilution tank 13. That is, the amount of hypochlorous acid supplied to the first seawater introduction line 26, the seawater receiving tank 10, the mixing tank 11, and the aeration tank 12 is determined according to the concentration of residual chlorine. Specifically, the control device 30 controls the DC power supply device 29 so as to reduce the electrolysis rate when the residual chlorine concentration becomes 0.01 mgCl / liter or more.

上記実施形態によれば、酸化助剤供給ライン32を介して、第一海水導入ライン26、海水受入槽10、混合槽11、及び曝気槽12の海水に次亜塩素酸が添加される。これにより、酸化速度が向上し、酸化処理槽4の容積・面積を低減することができ、酸化処理槽4の建設費、建設期間を低減することができる。   According to the embodiment, hypochlorous acid is added to the seawater in the first seawater introduction line 26, the seawater receiving tank 10, the mixing tank 11, and the aeration tank 12 through the oxidation aid supply line 32. Thereby, an oxidation rate improves, the volume and area of the oxidation treatment tank 4 can be reduced, and the construction cost and construction period of the oxidation treatment tank 4 can be reduced.

また、第一海水導入ライン26のみならず、海水受入槽10、混合槽11、及び曝気槽12に直接次亜塩素酸を添加することによって、酸化速度のさらなる向上を図ることができる。   Further, by adding hypochlorous acid directly to the seawater receiving tank 10, the mixing tank 11, and the aeration tank 12 as well as the first seawater introduction line 26, the oxidation rate can be further improved.

また、次亜塩素酸は、海水を電気分解することにより得られるため、海水の取得が容易な場合には、容易に次亜塩素酸を生成することができる。
また、残留塩素の濃度に応じて電解速度を調整する構成としたことによって、放出される使用済海水に含まれる残留塩素を低減することができる。
Moreover, since hypochlorous acid is obtained by electrolyzing seawater, when acquisition of seawater is easy, hypochlorous acid can be produced | generated easily.
Moreover, the residual chlorine contained in the used seawater discharged | emitted can be reduced by having set it as the structure which adjusts an electrolysis rate according to the density | concentration of residual chlorine.

さらに、海水受入槽10、混合槽11、及び曝気槽12に添加される次亜塩素酸は、ノズル33を介してこれらの槽内に噴霧、滴下されるため、海水と次亜塩素酸との混合をより促進させることができる。   Furthermore, since hypochlorous acid added to the seawater receiving tank 10, the mixing tank 11, and the aeration tank 12 is sprayed and dropped into these tanks via the nozzle 33, the seawater and hypochlorous acid are mixed. Mixing can be further promoted.

なお、電解装置15に供給される海水は、第二海水導入ライン27を介して直接導入する構成としたがこれに限ることはない。例えば、第一海水導入ライン26から分岐させて配管を介して電解装置15に導入してもよいし、海水受入槽10内の海水を配管を介して電解装置15に導入してもよい。   In addition, although the seawater supplied to the electrolysis apparatus 15 was set as the structure introduce | transduced directly via the 2nd seawater introduction line 27, it does not restrict to this. For example, the water may be branched from the first seawater introduction line 26 and introduced into the electrolysis apparatus 15 via a pipe, or the seawater in the seawater receiving tank 10 may be introduced into the electrolysis apparatus 15 via a pipe.

(第二実施形態)
以下、本発明に係る排煙脱硫システムの第二実施形態を図面に基づいて説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
(Second embodiment)
Hereinafter, 2nd embodiment of the flue gas desulfurization system which concerns on this invention is described based on drawing. In the present embodiment, differences from the first embodiment described above will be mainly described, and description of similar parts will be omitted.

本実施形態の排煙脱硫システム1Bは、第一実施形態の排煙脱硫システム1と比較して、次亜塩素酸の供給量の制御方法が異なる。即ち、第一実施形態の制御装置30は、電解装置15の直流電源装置29を制御することにより次亜塩素酸の量を変更する構成であったが、本実施形態の制御装置30は、酸化助剤供給ライン32に設けられたポンプ35,36,37,38を制御することにより、次亜塩素酸の供給量を変更する。   The flue gas desulfurization system 1B of the present embodiment is different from the flue gas desulfurization system 1 of the first embodiment in the method of controlling the amount of hypochlorous acid supplied. That is, the control device 30 of the first embodiment is configured to change the amount of hypochlorous acid by controlling the DC power supply device 29 of the electrolysis device 15, but the control device 30 of the present embodiment is an oxidation device. By controlling the pumps 35, 36, 37, and 38 provided in the auxiliary agent supply line 32, the amount of hypochlorous acid supplied is changed.

上述したように、本実施形態の酸化助剤供給ライン32には、複数のポンプ35〜38が設けられている。ポンプ35は、酸化助剤供給ライン32上に設けられており、第一海水導入ライン26に供給される次亜塩素酸の供給量を調整可能とされている。同様に、ポンプ36は、海水受入槽10、混合槽11、及び曝気槽12のそれぞれに供給される次亜塩素酸の供給量を調整可能とされている。   As described above, the oxidation auxiliary agent supply line 32 of the present embodiment is provided with a plurality of pumps 35 to 38. The pump 35 is provided on the oxidation auxiliary agent supply line 32 and can adjust the supply amount of hypochlorous acid supplied to the first seawater introduction line 26. Similarly, the pump 36 can adjust the amount of hypochlorous acid supplied to each of the seawater receiving tank 10, the mixing tank 11, and the aeration tank 12.

次亜塩素酸の供給量が希釈槽13に設けられた残留塩素測定装置31によって測定される残留塩素の濃度に基づいて制御される点は第一実施形態と同様である。また、制御装置30は、複数のポンプ35をそれぞれ独立して制御することができる。例えば、第一海水導入ライン26に添加される次亜塩素酸の量を多くする一方で、海水受入槽10、混合槽11、及び曝気槽12に添加される次亜塩素酸の量を少なくすることができる。   The point that the supply amount of hypochlorous acid is controlled based on the concentration of residual chlorine measured by the residual chlorine measuring device 31 provided in the dilution tank 13 is the same as in the first embodiment. Further, the control device 30 can independently control the plurality of pumps 35. For example, while increasing the amount of hypochlorous acid added to the first seawater introduction line 26, the amount of hypochlorous acid added to the seawater receiving tank 10, the mixing tank 11, and the aeration tank 12 is decreased. be able to.

上記実施形態によれば、第一海水導入ライン26、海水受入槽10、混合槽11、及び曝気槽12に供給される次亜塩素酸の供給量が、複数のポンプ35〜38によって個別に調整されるため、酸化速度をより細かく調整することができる。   According to the above embodiment, the supply amount of hypochlorous acid supplied to the first seawater introduction line 26, the seawater receiving tank 10, the mixing tank 11, and the aeration tank 12 is individually adjusted by the plurality of pumps 35 to 38. Therefore, the oxidation rate can be adjusted more finely.

(第三実施形態)
以下、本発明に係る排煙脱硫システムの第二実施形態を図面に基づいて説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
(Third embodiment)
Hereinafter, 2nd embodiment of the flue gas desulfurization system which concerns on this invention is described based on drawing. In the present embodiment, differences from the first embodiment described above will be mainly described, and description of similar parts will be omitted.

本実施形態の排煙脱硫システム1Cは、第一実施形態の排煙脱硫システム1と比較して、残留塩素測定装置の設置場所が異なる。第一実施形態の残留塩素測定装置31は、希釈槽13内の残留塩素を測定する構成であったが、本実施形態の残留塩素測定装置39は、海水受入槽10内の残留塩素を測定するように構成されている。
本実施形態の制御装置30は、海水受入槽10内の残留塩素の濃度が1.0mgCl/リットル以下となるように電解装置15の直流電源装置29を制御する。
The flue gas desulfurization system 1C of the present embodiment differs from the flue gas desulfurization system 1 of the first embodiment in the installation location of the residual chlorine measuring device. The residual chlorine measuring device 31 of the first embodiment is configured to measure the residual chlorine in the dilution tank 13, but the residual chlorine measuring device 39 of the present embodiment measures the residual chlorine in the seawater receiving tank 10. It is configured as follows.
The control device 30 of the present embodiment controls the DC power supply device 29 of the electrolysis device 15 so that the concentration of residual chlorine in the seawater receiving tank 10 is 1.0 mgCl / liter or less.

上記実施形態によれば、海水受入槽10内の残留塩素濃度を測定することによって、排煙脱硫装置3における不具合を防止することができる。即ち、残留塩素の濃度が高過ぎる場合、排煙脱硫装置3の吸収液が過酸化状態となる。過酸化状態となると、吸収したSOが過酸化され、過酸化物(S,S)が生成される。これらはCODの濃度を増加せしめる。このため、海水受入槽10での残留塩素濃度を測定し制御することで、上記の過酸化物の生成を抑制し、COD濃度を低減せしめることができる。 According to the said embodiment, the malfunction in the flue gas desulfurization apparatus 3 can be prevented by measuring the residual chlorine concentration in the seawater receiving tank 10. FIG. That is, when the concentration of residual chlorine is too high, the absorption liquid of the flue gas desulfurization device 3 is in a peroxidized state. In the peroxidized state, the absorbed SO 2 is peroxidized and peroxides (S 2 O 6 , S 2 O 8 ) are generated. These increase the concentration of COD. For this reason, by measuring and controlling the residual chlorine concentration in the seawater receiving tank 10, it is possible to suppress the generation of the peroxide and reduce the COD concentration.

なお、上記実施形態においては、第二実施形態と同様に、酸化助剤供給ライン32に複数のポンプを設けて、次亜塩素酸の供給量を変更する構成としてもよい。   In addition, in the said embodiment, it is good also as a structure which provides a some pump in the oxidation adjuvant supply line 32 and changes the supply amount of hypochlorous acid similarly to 2nd embodiment.

また、第二実施形態の排煙脱硫システム1Bに海水受入槽10内の残留塩素の濃度を測定する残留塩素測定装置39を追加してもよい。この場合、海水受入槽10と、希釈槽13の両方の残留塩素の濃度を測定することができる。これにより、複数の場所、即ち第一海水導入ライン26、海水受入槽10、混合槽11、曝気槽12毎に酸化剤(次亜塩素酸)の添加量を調整することができる。   Moreover, you may add the residual chlorine measuring apparatus 39 which measures the density | concentration of the residual chlorine in the seawater receiving tank 10 to the flue gas desulfurization system 1B of 2nd embodiment. In this case, the concentration of residual chlorine in both the seawater receiving tank 10 and the dilution tank 13 can be measured. Thereby, the addition amount of an oxidizing agent (hypochlorous acid) can be adjusted for every several place, ie, the 1st seawater introduction line 26, the seawater receiving tank 10, the mixing tank 11, and the aeration tank 12. FIG.

なお、本発明の技術範囲は上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、種々の変更を加えることが可能である。例えば、上記各実施形態では、次亜塩素酸は復水器6の前段、海水受入槽10、混合槽11、及び曝気槽12のそれぞれに供給する構成としたがこれに限ることはない。例えば、次亜塩素酸を復水器6の前段の第一海水導入ライン26みに供給する構成としてもよい。   The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, in each of the above-described embodiments, hypochlorous acid is supplied to each of the preceding stage of the condenser 6, the seawater receiving tank 10, the mixing tank 11, and the aeration tank 12, but is not limited thereto. For example, it is good also as a structure which supplies hypochlorous acid to the 1st seawater introduction line 26 of the front | former stage of the condenser 6 only.

また、上記各実施形態では、電解装置15に供給される海水は、直接海洋から導入される構成としたが、例えば、第一海水導入ライン26から分岐させたり、海水受入槽10から導入する構成としてもよい。   Moreover, in each said embodiment, although the seawater supplied to the electrolyzer 15 was set as the structure introduce | transduced directly from the ocean, the structure branched from the 1st seawater introduction line 26, or introduce | transduced from the seawater receiving tank 10, for example. It is good.

1 排煙脱硫システム
2 ボイラ(プラント)
3 排煙脱硫装置
4 酸化処理槽
10 海水受入槽
11 混合槽
12 曝気槽
13 希釈槽
15 電解装置
30 制御装置
31 残留塩素測定装置
33 ノズル
35,36,37,38 ポンプ(供給量調整手段)
39 残留塩素測定装置
1 Flue gas desulfurization system 2 Boiler (plant)
DESCRIPTION OF SYMBOLS 3 Flue gas desulfurization apparatus 4 Oxidation processing tank 10 Seawater receiving tank 11 Mixing tank 12 Aeration tank 13 Dilution tank 15 Electrolysis apparatus 30 Control apparatus 31 Residual chlorine measuring apparatus 33 Nozzle 35, 36, 37, 38 Pump (supply amount adjustment means)
39 Residual chlorine measuring device

Claims (10)

所定のプラントから排出される排気ガス中の硫黄酸化物を吸収する吸収液として海水を用いる排煙脱硫装置と、該排煙脱硫装置から排出される使用済海水に含まれる亜硫酸類を酸化する酸化処理槽とを備えた排煙脱硫システムであって、
前記排気ガスと前記海水とを接触させる前段において、前記海水に対して酸化助剤を添加することを特徴とする排煙脱硫システム。
Flue gas desulfurization device that uses seawater as an absorbing liquid that absorbs sulfur oxides in exhaust gas discharged from a predetermined plant, and oxidation that oxidizes sulfurous acids contained in used seawater discharged from the flue gas desulfurization device A flue gas desulfurization system comprising a treatment tank,
An exhaust gas desulfurization system, wherein an oxidation aid is added to the seawater before the exhaust gas is brought into contact with the seawater.
さらに前記酸化処理槽に前記酸化助剤を添加することを特徴とする請求項1に記載の排煙脱硫システム。   The flue gas desulfurization system according to claim 1, further comprising adding the oxidation aid to the oxidation treatment tank. 前記酸化助剤は、次亜塩素酸であることを特徴とする請求項1又は請求項2に記載の排煙脱硫システム。   The flue gas desulfurization system according to claim 1 or 2, wherein the oxidation aid is hypochlorous acid. 海水を電気分解することにより前記次亜塩素酸を生成する電解装置を備えることを特徴とする請求項3に記載の排煙脱硫システム。   The flue gas desulfurization system according to claim 3, further comprising an electrolyzer that generates hypochlorous acid by electrolyzing seawater. 前記酸化処理槽の下流に設けられ、海水を導入することにより前記吸収液を希釈する希釈槽と、
前記希釈槽内の残留塩素濃度を測定する残留塩素測定装置と、
前記残留塩素濃度が所定濃度以下となるように前記電解装置の次亜塩素酸の供給速度を調整する制御装置と、を備えることを特徴とする請求項4に記載の排煙脱硫システム。
A dilution tank that is provided downstream of the oxidation treatment tank and dilutes the absorbent by introducing seawater;
A residual chlorine measuring device for measuring the residual chlorine concentration in the dilution tank;
The flue gas desulfurization system according to claim 4, further comprising: a control device that adjusts a supply rate of hypochlorous acid of the electrolyzer so that the residual chlorine concentration is equal to or lower than a predetermined concentration.
前記排煙脱硫装置に供給する海水を受け入れる海水受入槽と、
前記海水受入槽内の残留塩素濃度を測定する残留塩素測定装置と、
前記残留塩素濃度が所定濃度以下となるように前記電解装置の次亜塩素酸の供給速度を調整する制御装置と、を備えることを特徴とする請求項4に記載の排煙脱硫システム。
A seawater receiving tank for receiving seawater to be supplied to the flue gas desulfurization device;
A residual chlorine measuring device for measuring the residual chlorine concentration in the seawater receiving tank;
The flue gas desulfurization system according to claim 4, further comprising: a control device that adjusts a supply rate of hypochlorous acid of the electrolyzer so that the residual chlorine concentration is equal to or lower than a predetermined concentration.
前記酸化処理槽の下流に設けられ、海水を導入することにより前記吸収液を希釈する希釈槽と、
前記排煙脱硫装置に供給する海水を受け入れる海水受入槽と、
前記希釈槽内の残留塩素濃度を測定する第一残留塩素測定装置と、
前記海水受入槽内の残留塩素濃度を測定する第二残留塩素測定装置と、
前記希釈槽内及び前記海水受入槽内の残留塩素濃度が所定濃度以下となるように前記電解装置の次亜塩素酸の供給速度を調整する制御装置と、を備えることを特徴とする請求項4に記載の排煙脱硫システム。
A dilution tank that is provided downstream of the oxidation treatment tank and dilutes the absorbent by introducing seawater;
A seawater receiving tank for receiving seawater to be supplied to the flue gas desulfurization device;
A first residual chlorine measuring device for measuring the residual chlorine concentration in the dilution tank;
A second residual chlorine measuring device for measuring the residual chlorine concentration in the seawater receiving tank;
5. A control device for adjusting a hypochlorous acid supply rate of the electrolyzer so that a residual chlorine concentration in the dilution tank and in the seawater receiving tank is equal to or lower than a predetermined concentration. The flue gas desulfurization system described in 1.
前記制御装置は、電気分解の際の電流量を制御することによって前記次亜塩素酸の供給速度を調整することを特徴とする請求項5から請求項7のいずれか一項に記載の排煙脱硫システム。   The flue gas according to any one of claims 5 to 7, wherein the control device adjusts a supply rate of the hypochlorous acid by controlling an amount of current during electrolysis. Desulfurization system. 前記次亜塩素酸の供給量を調整する供給量調整手段を備え、
前記制御装置は、前記供給量調整手段を制御することを特徴とする請求項5から請求項7のいずれか一項に記載の排煙脱硫システム。
A supply amount adjusting means for adjusting the supply amount of the hypochlorous acid;
The flue gas desulfurization system according to any one of claims 5 to 7, wherein the control device controls the supply amount adjusting means.
前記酸化処理槽に酸化助剤を噴霧、滴下する少なくとも一つのノズルを備えていることを特徴とする請求項1から請求項9のいずれか一項に記載の排煙脱硫システム。   The flue gas desulfurization system according to any one of claims 1 to 9, further comprising at least one nozzle for spraying and dripping the oxidation assistant in the oxidation treatment tank.
JP2012120125A 2012-05-25 2012-05-25 Flue gas desulfurization system Active JP5991664B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012120125A JP5991664B2 (en) 2012-05-25 2012-05-25 Flue gas desulfurization system
CN201380021541.6A CN104245092B (en) 2012-05-25 2013-05-15 System of flue-gas desulfurization
KR1020147032164A KR101701015B1 (en) 2012-05-25 2013-05-15 Flue gas desulfurization system
PCT/JP2013/063554 WO2013176018A1 (en) 2012-05-25 2013-05-15 Flue gas desulfurization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012120125A JP5991664B2 (en) 2012-05-25 2012-05-25 Flue gas desulfurization system

Publications (2)

Publication Number Publication Date
JP2013244465A true JP2013244465A (en) 2013-12-09
JP5991664B2 JP5991664B2 (en) 2016-09-14

Family

ID=49623712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012120125A Active JP5991664B2 (en) 2012-05-25 2012-05-25 Flue gas desulfurization system

Country Status (4)

Country Link
JP (1) JP5991664B2 (en)
KR (1) KR101701015B1 (en)
CN (1) CN104245092B (en)
WO (1) WO2013176018A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3144051B1 (en) * 2015-09-15 2019-04-17 General Electric Technology GmbH Mercury control in a seawater flue gas desulfurization system
CN109126458A (en) * 2018-09-19 2019-01-04 青岛双瑞海洋环境工程股份有限公司 Ship fume desulphurization method and device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161480A (en) * 1974-11-27 1976-05-28 Toyo Soda Mfg Co Ltd Aryusangasu oyobi chitsusosankabutsunoshorihoho
JPS5561921A (en) * 1978-11-02 1980-05-10 Shimizu Constr Co Ltd Method and apparatus for treating malodor gas
JPS5644025A (en) * 1979-09-19 1981-04-23 Toshiba Corp Cleaning method and its device
JPS6470130A (en) * 1987-09-11 1989-03-15 Nippon Kokan Kk Removing method of mercury contained in exhaust gas
JPH0352623A (en) * 1989-07-21 1991-03-06 Babcock Hitachi Kk Wet type flue gas desulfurization facility utilizing sea water
JPH0459026A (en) * 1990-06-25 1992-02-25 Mitsubishi Heavy Ind Ltd Stack gas desulfurizing method
JP2001000831A (en) * 1999-06-22 2001-01-09 Mitsubishi Heavy Ind Ltd Treatment of absorbed liquid slurry and flue gas desulfurization system
JP2003284919A (en) * 2002-03-29 2003-10-07 Masanori Tashiro Exhaust gas cleaning method and apparatus therefor
JP2010234334A (en) * 2009-03-31 2010-10-21 Mitsubishi Heavy Ind Ltd Oxidation tank, apparatus for treating seawater, and system for desulfurizing seawater

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4029719B2 (en) 2002-11-19 2008-01-09 Jfeエンジニアリング株式会社 Waste water disinfection method and apparatus
JP4432359B2 (en) 2003-05-06 2010-03-17 栗田工業株式会社 Hypochlorite injector
IL177901A (en) * 2006-09-05 2014-02-27 Clue As Flue gas desulfurization process
JP2010269248A (en) * 2009-05-21 2010-12-02 Mitsubishi Heavy Ind Ltd Apparatus for desulfurizing/absorbing flue gas, and method of treating flue gas
CN201581013U (en) * 2009-12-04 2010-09-15 刘尧 Flue gas desulfurized seawater electrolytic oxidation device
JP5709438B2 (en) * 2010-08-30 2015-04-30 三菱日立パワーシステムズ株式会社 Exhaust gas treatment equipment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161480A (en) * 1974-11-27 1976-05-28 Toyo Soda Mfg Co Ltd Aryusangasu oyobi chitsusosankabutsunoshorihoho
JPS5561921A (en) * 1978-11-02 1980-05-10 Shimizu Constr Co Ltd Method and apparatus for treating malodor gas
JPS5644025A (en) * 1979-09-19 1981-04-23 Toshiba Corp Cleaning method and its device
JPS6470130A (en) * 1987-09-11 1989-03-15 Nippon Kokan Kk Removing method of mercury contained in exhaust gas
JPH0352623A (en) * 1989-07-21 1991-03-06 Babcock Hitachi Kk Wet type flue gas desulfurization facility utilizing sea water
JPH0459026A (en) * 1990-06-25 1992-02-25 Mitsubishi Heavy Ind Ltd Stack gas desulfurizing method
JP2001000831A (en) * 1999-06-22 2001-01-09 Mitsubishi Heavy Ind Ltd Treatment of absorbed liquid slurry and flue gas desulfurization system
JP2003284919A (en) * 2002-03-29 2003-10-07 Masanori Tashiro Exhaust gas cleaning method and apparatus therefor
JP2010234334A (en) * 2009-03-31 2010-10-21 Mitsubishi Heavy Ind Ltd Oxidation tank, apparatus for treating seawater, and system for desulfurizing seawater

Also Published As

Publication number Publication date
CN104245092A (en) 2014-12-24
WO2013176018A1 (en) 2013-11-28
CN104245092B (en) 2016-10-12
KR20150008122A (en) 2015-01-21
JP5991664B2 (en) 2016-09-14
KR101701015B1 (en) 2017-01-31

Similar Documents

Publication Publication Date Title
JP5773687B2 (en) Seawater flue gas desulfurization system and power generation system
JP6462359B2 (en) Method and apparatus for desulfurization of exhaust gas containing sulfurous acid gas
JP6313945B2 (en) Air diffuser for seawater desulfurization, seawater desulfurizer equipped with the same, and water quality improvement method
WO2010116482A1 (en) Seawater desulfation treatment apparatus, method for treating desulfurized seawater, and power generation system to which the method has been applied
WO2014156984A1 (en) Seawater flue gas desulfurization apparatus and operating method therefor
TWI488682B (en) Seawater desulfurization system and power generation system
JP2012179521A5 (en)
JP6269844B2 (en) Exhaust gas treatment device and waste water treatment method of exhaust gas treatment device
WO2013118683A1 (en) Desulfurization seawater processing system
JP2013086054A (en) Wet type limestone-gypsum method desulfurization apparatus using seawater
JP2012115764A (en) Wastewater channel of seawater desulfurization apparatus and seawater flue gas desulfurization system
TWI531538B (en) Oxidation tank, seawater desulfurization system and power generation system
JP5991664B2 (en) Flue gas desulfurization system
JP2010162510A (en) Desulfurization apparatus by sea water
JP6285773B2 (en) Wastewater treatment method for exhaust gas treatment equipment
JP2015058430A (en) Method and system for seawater foam control
JP2014233702A (en) Seawater desulfurization device and seawater desulfurization system
CN106256776B (en) Seawater equipment with inclined aeration and automatic mixing recovery
JP2012148246A (en) Flue gas desulfurization method for oxygen combustion system and device for flue gas desulfurization method
JP3692219B2 (en) Smoke exhaust treatment method and smoke exhaust treatment apparatus
JP7164344B2 (en) Oxidation-reduction potential determination device, desulfurization device provided with the same, and oxidation-reduction potential determination method
JP2012239922A (en) Seawater flue gas desulfurization apparatus
JP2012020216A (en) Wet-type apparatus for desulfurizing flue gas

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20150512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160808

R150 Certificate of patent or registration of utility model

Ref document number: 5991664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150