JP2013243886A - 永久磁石モータ、永久磁石モータの製造方法及び永久磁石 - Google Patents

永久磁石モータ、永久磁石モータの製造方法及び永久磁石 Download PDF

Info

Publication number
JP2013243886A
JP2013243886A JP2012116710A JP2012116710A JP2013243886A JP 2013243886 A JP2013243886 A JP 2013243886A JP 2012116710 A JP2012116710 A JP 2012116710A JP 2012116710 A JP2012116710 A JP 2012116710A JP 2013243886 A JP2013243886 A JP 2013243886A
Authority
JP
Japan
Prior art keywords
standard
permanent magnet
magnet
magnets
magnet motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012116710A
Other languages
English (en)
Inventor
Izumi Ozeki
出光 尾関
Katsuya Kume
克也 久米
Toshiaki Okuno
利昭 奥野
Tomohiro Omure
智弘 大牟礼
Takashi Ozaki
孝志 尾崎
Keisuke Taihaku
啓介 太白
Takashi Yamamoto
貴士 山本
Takasuke Kaneda
敬右 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Toyota Motor Corp
Original Assignee
Nitto Denko Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp, Toyota Motor Corp filed Critical Nitto Denko Corp
Priority to JP2012116710A priority Critical patent/JP2013243886A/ja
Priority to CN201380027040.9A priority patent/CN104335455A/zh
Priority to PCT/JP2013/064052 priority patent/WO2013176116A1/ja
Priority to TW102118113A priority patent/TW201401728A/zh
Publication of JP2013243886A publication Critical patent/JP2013243886A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/0221Mounting means for PM, supporting, coating, encapsulating PM
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

【課題】規格形状の永久磁石を組み合わせて用いることによって製造効率を飛躍的に上昇させた永久磁石モータ、永久磁石モータの製造方法及び永久磁石を提供する。
【解決手段】永久磁石モータ1のロータコア7に形成されたスロット9に収容する永久磁石4を、所定の規格形状を有する永久磁石である規格磁石10を複数組み合わせることにより構成するとともに、スロット9の形状を、規格磁石10を複数組み合わせた形状に対応する形状に設計するように構成する。
【選択図】図2

Description

本発明は、永久磁石モータ、永久磁石モータの製造方法及び永久磁石モータに収容される永久磁石に関する。
近年、ハイブリッドカーやハードディスクドライブ等に使用される永久磁石モータでは、小型軽量化、高出力化、高効率化が要求されている。このような永久磁石モータとしては、永久磁石をロータ(回転子)に設置する回転界磁型のモータや、永久磁石をステータ(固定子)に設置する回転電機子型のモータ等がある。特に、永久磁石をロータ内部に埋め込んでなる磁石埋め込み型モータ(IPMモータ)は、コイルと永久磁石の吸引力/反発力に起因するマグネットトルクに加えてリラクタンストルクを得ることができるので、高出力性能が要求されるハイブリット車、電気自動車の駆動用モータ等に使用されている。
また、このようなIPMモータでは、例えば渦電流の発生による磁石性能の低下を防止する為に、ロータに埋め込まれる永久磁石を複数の小型の磁石に分割して構成することが行われている(例えば特開2009−142091号公報、特開2009−44819号公報)。また、特に特開2009−44819号公報には、永久磁石を分割して構成した場合であっても、モータの製造効率を低下させない為に、永久磁石をロータに埋め込んだ後に分割する方法について提案されている。
一方、特開2006−261433号公報には、ロータに埋め込まれる永久磁石を単一性能の永久磁石から構成するのではなく、性能の異なる複数種類の磁石を複合した複合磁石により構成することにより、製造コストの低減を図る技術について提案されている。
特開2009−142091号公報(第9頁〜第10頁、図6) 特開2009−44819号公報(第6頁、図1〜図3) 特開2006−261433号公報(第7頁〜第8頁、図2)
上記特許文献1〜3に記載されているIPMモータのように、モータを構成するロータ(回転子)やステータ(固定子)に永久磁石を埋め込む型の永久磁石モータでは、ロータやステータに永久磁石を収容する為のスロット(収容部)を形成する一方で、スロットに対応する形状に加工した永久磁石を別途用意し、用意した永久磁石をスロットに収容することにより構成している。
ここで、永久磁石モータに形成されるスロットの形状はモータのサイズ、規格、形式等によって様々である。従って、従来では先ず永久磁石モータに対して規格等に合わせた適当なスロットの形状を設計した後に、そのスロットの形状に対応する形状の永久磁石を製造していた。即ち、収容する対象となる永久磁石モータ毎に異なる形状の永久磁石を製造しなければならず、製造効率が非常に悪かった。また、予め大きいサイズの永久磁石を量産し、その後に所望の形状へ修正加工することによって様々な形状の永久磁石を製造することも可能であるが、その場合には永久磁石の製造工程が増加するとともに、歩留まりが低下する要因となる。
また、特許文献1に記載されているIPMモータでは、永久磁石を分割して構成することについて記載されているものの、特許文献1に記載された技術では、予めスロットの形状に対応する形状の永久磁石を製造した後に、その永久磁石を複数個に分割して、スロットに収納する構成としている。従って、収容する対象となる永久磁石モータ毎に異なる形状の永久磁石を製造する必要があるという問題点は解決できない。
また、特許文献2に記載されているIPMモータでは、永久磁石をスロットに収納した後に分割するので、特許文献1と同様に予めスロットの形状に対応する形状の永久磁石を製造する必要がある。従って、収容する対象となる永久磁石モータ毎に異なる形状の永久磁石を製造する必要があるという問題点は解決できない。
また、特許文献3に記載されているIPMモータでは、特許文献3の段落(0045)及び図2に示すように、磁石性能の異なる磁石が内側部と外側部にそれぞれ配置される2層式の永久磁石となるように、磁石粉末を圧粉成形することによって永久磁石を製造している。即ち、特許文献3に記載された技術においても、特許文献1、2と同様に予めスロットの形状に対応する形状の永久磁石を製造する必要がある。従って、収容する対象となる永久磁石モータ毎に異なる形状の永久磁石を製造する必要があるという問題点は解決できない。
本発明は前記従来における問題点を解消するためになされたものであり、永久磁石モータの収容部に収容する永久磁石を所定の規格形状を有する永久磁石(規格磁石)を複数組み合わせることにより構成するとともに、収容部の形状を、規格磁石を複数組み合わせた形状に対応する形状に設計することで、同一形状を有する規格磁石の組合せによって様々な種類の永久磁石モータに対応した永久磁石を形成することが可能となり、永久磁石モータ毎に異なる形状の永久磁石を製造する必要が無くなるので、製造効率を飛躍的に上昇させた永久磁石モータ、永久磁石モータの製造方法及び永久磁石モータに収容される永久磁石を提供することを目的とする。
前記目的を達成するため本願の請求項1に係る永久磁石モータは、固定子または可動子に形成された収容部に永久磁石を収容する永久磁石型モータであって、前記収容部を所定の規格形状を有する永久磁石である規格磁石を複数組み合わせた形状と対応する形状に設計し、複数の前記規格磁石を組み合わせて前記収容部内に収容することを特徴とする。
また、請求項2に係る永久磁石モータは、請求項1に記載の永久磁石モータにおいて、磁気性能の異なる複数種類の前記規格磁石が存在することを特徴とする。
また、請求項3に係る永久磁石モータは、請求項2に記載の永久磁石モータにおいて、保磁力と残留磁束密度の組み合わせによって前記磁気性能を規定することを特徴とする。
また、請求項4に係る永久磁石モータは、請求項3に記載の永久磁石モータにおいて、前記永久磁石モータ内において磁束密度の変化が大きい場所ほど、保磁力の高い前記規格磁石を配置することを特徴とする。
また、請求項5に係る永久磁石モータは、請求項3又は請求項4に記載の永久磁石モータにおいて、前記規格磁石を組み合わせる場合に、内側に位置する前記規格磁石よりも外側に位置する前記規格磁石の方が、保磁力の高い前記規格磁石となるように組み合わせることを特徴とする。
また、請求項6に係る永久磁石モータは、請求項2乃至請求項5のいずれかに記載の永久磁石モータにおいて、前記規格磁石は、磁気性能毎に異なる色を有することを特徴とする。
また、請求項7に係る永久磁石モータは、請求項1乃至請求項6のいずれかに記載の永久磁石モータにおいて、サイズの異なる複数種類の前記規格磁石が存在することを特徴とする。
また、請求項8に係る永久磁石モータは、請求項7に記載の永久磁石モータにおいて、前記永久磁石モータ内において磁束密度の変化が大きい場所ほど、より小さいサイズの前記規格磁石を配置することを特徴とする。
また、請求項9に係る永久磁石モータは、請求項7又は請求項8に記載の永久磁石モータにおいて、前記規格磁石を組み合わせる場合に、内側に位置する前記規格磁石よりも外側に位置する前記規格磁石の方が、小さいサイズを有する前記規格磁石となるように組み合わせることを特徴とする。
また、請求項10に係る永久磁石モータは、請求項1乃至請求項9のいずれかに記載の永久磁石モータにおいて、前記規格磁石は、異方性磁石であって、複数の前記規格磁石を、各規格磁石のC軸方向が同一方向となるように組み合わせて前記収容部に収容することを特徴とする。
また、請求項11に係る永久磁石モータは、請求項1乃至請求項9のいずれかに記載の永久磁石モータにおいて、前記規格磁石は、異方性磁石であって、組み合わされて前記収容部に収容された複数の前記規格磁石がハルバッハ配列で着磁されるように、各規格磁石のC軸方向を連続的に変更して組み合わせることを特徴とする。
また、請求項12に係る永久磁石モータは、請求項10又は請求項11に記載の永久磁石モータにおいて、前記規格磁石を複数組み合わせて前記収容部に収容した後に、各規格磁石のC軸方向に平行に磁場を印加し着磁を行うことを特徴とする。
また、請求項13に係る永久磁石モータは、請求項10乃至請求項12のいずれかに記載の永久磁石モータにおいて、前記規格磁石は、C軸方向と他の軸方向とで異なる形状を有することを特徴とする。
また、請求項14に係る永久磁石モータは、請求項13に記載の永久磁石モータにおいて、前記規格磁石は、C軸方向の長さを他の軸方向の長さより短く又は長くしたことを特徴とする。
また、請求項15に係る永久磁石モータは、請求項14に記載の永久磁石モータにおいて、前記規格磁石は、C軸方向を高さ方向とした柱体形状を有することを特徴とする。
また、請求項16に係る永久磁石モータは、請求項15に記載の永久磁石モータにおいて、前記規格磁石は、直方体であってC軸方向の辺の長さが他の辺の長さよりも短い又は長いことを特徴とする。
また、請求項17に係る永久磁石モータは、請求項13乃至請求項16のいずれかに記載の永久磁石モータにおいて、前記規格磁石は、C軸方向と直交する一方の面に係合部を形成するとともに、他方の面に前記係合部と係合する被係合部を形成することを特徴とする。
また、請求項18に係る永久磁石モータは、請求項1乃至請求項17のいずれかに記載の永久磁石モータにおいて、組み合わされた際に隣り合う前記規格磁石の境界に絶縁層を形成することを特徴とする。
また、請求項19に係る永久磁石モータは、請求項18に記載の永久磁石モータにおいて、前記永久磁石モータ内において生じる磁界の向きに対して平行となる前記境界に対して前記絶縁層を形成することを特徴とする。
また、請求項20に係る永久磁石モータは、請求項1乃至請求項19のいずれかに記載の永久磁石モータにおいて、前記収容部を形成する外縁部の形状を、前記規格磁石の形状と対応する形状とすることを特徴とする。
また、請求項21に係る永久磁石モータは、請求項1乃至請求項20のいずれかに記載の永久磁石モータにおいて、前記収容部は、前記規格磁石の収容方向に対して扇型形状の断面を有し、前記規格磁石を組み合わせる場合に、隣接する前記規格磁石同士の位置関係を前記扇型形状に従って設定することを特徴とする。
また、請求項22に係る永久磁石モータは、請求項1乃至請求項21のいずれかに記載の永久磁石モータにおいて、前記規格磁石を複数組み合わせて前記収容部に対応する形状とした状態で、該組み合わされた複数の前記規格磁石を互いに固定し、前記固定された複数の前記規格磁石を前記収容部に収容することを特徴とする。
また、請求項23に係る永久磁石モータは、請求項22に記載の永久磁石モータにおいて、組み合わされた際に隣り合う前記規格磁石の境界に絶縁層が配置され、前記絶縁層を介して該隣り合う前記規格磁石を互いに固定することを特徴とすることを特徴とする。
また、請求項24に係る永久磁石モータは、請求項1乃至請求項23のいずれかに記載の永久磁石モータにおいて、複数の前記規格磁石を前記収容部に順次収容することにより前記収容部に対応する形状に組み合わせることを特徴とする。
また、請求項25に係る永久磁石モータは、請求項1乃至請求項24のいずれかに記載の永久磁石モータにおいて、組み合わせる前の前記規格磁石に対して1段階目の着磁を行い、前記第1段階の着磁を行った複数の前記規格磁石を組み合わせて前記収容部内に収容し、前記収容部内に収容された前記規格磁石に対して2段階目の着磁を行うことを特徴とする。
また、請求項26に係る永久磁石モータは、請求項1乃至請求項25のいずれかに記載の永久磁石モータにおいて、前記収容部に充填剤を充填することにより、前記収容部に収容された複数の前記規格磁石を前記収容部に対して固定することを特徴とする。
また、請求項27に係る永久磁石モータは、請求項1乃至請求項26のいずれかに記載の永久磁石モータにおいて、前記収容部は、ロータコアの軸方向に沿って形成されることを特徴とする。
また、請求項28に係る永久磁石モータは、請求項1乃至請求項27のいずれかに記載の永久磁石モータにおいて、前記規格磁石は、磁石原料を磁石粉末に粉砕する工程と、前記粉砕された磁石粉末とバインダーとが混合された混合物を生成する工程と、前記混合物をシート状に成形したグリーンシートを作製する工程と、前記グリーンシートに対して磁場を印加することにより磁場配向する工程と、前記グリーンシートを前記規格形状に分割する工程と、前記規格形状に分割された前記グリーンシートを焼結する工程と、により製造されることを特徴とする。
また、請求項29に係る永久磁石モータは、請求項1乃至請求項27のいずれかに記載の永久磁石モータにおいて、前記規格磁石は、磁石原料を磁石粉末に粉砕する工程と、前記粉砕された磁石粉末とバインダーとが混合された混合物を生成する工程と、前記混合物をシート状で且つ前記規格形状に分割されたグリーンシートに成形する工程と、前記グリーンシートに対して磁場を印加することにより磁場配向する工程と、前記グリーンシートを焼結する工程と、により製造されることを特徴とする。
また、請求項30に係る永久磁石モータは、請求項1乃至請求項29のいずれかに記載の永久磁石モータにおいて、前記規格磁石は、Nd系希土類磁石であることを特徴とする。
また、請求項31に係る永久磁石モータの製造方法は、請求項1乃至請求項30のいずれかの前記永久磁石モータを製造することを特徴とする。
更に、請求項32に係る永久磁石は、請求項1乃至請求項30のいずれかの前記永久磁石モータに収容される前記規格磁石であることを特徴とする。
前記構成を有する請求項1に記載の永久磁石モータによれば、永久磁石モータの収容部に収容する永久磁石を所定の規格形状を有する永久磁石(規格磁石)を複数組み合わせることにより構成するとともに、収容部の形状を、規格磁石を複数組み合わせた形状に対応する形状に設計することで、同一形状を有する規格磁石の組合せによって様々な種類の永久磁石モータに対応した永久磁石を形成することが可能となる。その結果、永久磁石モータ毎に異なる形状の永久磁石を製造する必要が無くなるので、製造効率を飛躍的に上昇させることが可能となる。
また、一体成型の永久磁石を用いる場合と比較して、規格磁石の組み合わせを変更することによって複雑な形状を有する永久磁石を容易に形成することが可能となる。
また、永久磁石の保磁力を向上させる為に粒界拡散法によってDyやTb等を添加する場合には、規格磁石の表面にDyやTb等を付着させることによって、規格磁石全体に対して均一にDyやTb等を拡散することが可能である。即ち、磁石内部の磁気特性の測定を必要とせず、一定の品質保証を得ることが可能となる。一方で、規格磁石の組み合わせによって構成しない従来の大型の永久磁石では、内部の粒界相までDyやTb等の拡散距離を伸ばせない。従って、品質保証を得る為には磁石内部の磁気特性の検査が必要となる。
また、請求項2に記載の永久磁石モータによれば、磁気性能の異なる複数種類の規格磁石が存在するので、用途(例えば、ハイブリッドカー用、空調用、ハードディスク用等)によって組み合わせる規格磁石の種類を変更することによって、用途に沿った磁気性能を有する永久磁石を形成することが可能となる。
また、請求項3に記載の永久磁石モータによれば、保磁力と残留磁束密度の異なる複数種類の規格磁石が存在するので、用途(例えば、ハイブリッドカー用、空調用、ハードディスク用等)によって組み合わせる規格磁石の種類を変更することによって、用途に沿った磁気性能を有する永久磁石を形成することが可能となる。
また、請求項4に記載の永久磁石モータによれば、永久磁石モータ内において磁束密度の変化が大きい場所ほど、保磁力の高い規格磁石を配置するので、永久磁石が磁石としての機能を保持した状態(即ち渦電流によって温度が上昇したとしても逆磁界以上の保磁力を保つことができる状態)でDyやTbの使用量削減、製造コストの削減等が可能となる。
また、請求項5に記載の永久磁石モータによれば、規格磁石を組み合わせる場合に、内側に位置する規格磁石よりも外側に位置する規格磁石の方が、保磁力の高い規格磁石となるように組み合わせるので、永久磁石が磁石としての機能を保持した状態(即ち渦電流によって温度が上昇したとしても逆磁界以上の保磁力を保つことができる状態)でDyやTbの使用量削減、製造コストの削減等が可能となる。
また、請求項6に記載の永久磁石モータによれば、規格磁石は磁気性能毎に異なる色を有するので、磁気性能の異なる複数種類の規格磁石が存在したとしても、ユーザは規格磁石の磁気性能を外観から容易に判別することが可能となる。
また、請求項7に記載の永久磁石モータによれば、サイズの異なる複数種類の規格磁石が存在するので、収容部の形状に合わせて組み合わせる規格磁石のサイズを変更することにより、収容部がどのような形状をしていたとしても規格磁石の組み合わせによって収容部の形状に沿った永久磁石を形成することが可能となる。
また、請求項8に記載の永久磁石モータによれば、永久磁石モータ内において磁束密度の変化が大きい場所ほど、より小さいサイズの規格磁石を配置するので、永久磁石の生産性を特に落とすことなく、永久磁石において発生する渦電流の規模を更に小さくすることができる。
また、請求項9に記載の永久磁石モータによれば、規格磁石を組み合わせる場合に、内側に位置する規格磁石よりも外側に位置する規格磁石の方が、小さいサイズを有する規格磁石となるように組み合わせるので、永久磁石の生産性を特に落とすことなく、永久磁石において発生する渦電流の規模を更に小さくすることができる。
また、請求項10に記載の永久磁石モータによれば、規格磁石は異方性磁石であって、複数の規格磁石を、各規格磁石のC軸方向(磁化容易軸)が同一方向となるように組み合わせて収容部に収容するので、等方性磁石を用いた場合や異方性磁石を用いてもC軸方向を同一方向に組み合わせなかった場合と比較して、着磁を行った際に永久磁石の磁気性能を大きく向上させることが可能となる。
また、請求項11に記載の永久磁石モータによれば、規格磁石は、異方性磁石であって、組み合わされて収容部に収容された複数の規格磁石がハルバッハ配列で着磁されるように、各規格磁石のC軸方向(磁化容易軸)を連続的に変更して組み合わせるので、組み合わせた規格磁石をハルバッハ配列で配列することが可能となる。その結果、より強い磁場を発生させることが可能となる。
また、請求項12に記載の永久磁石モータによれば、規格磁石を複数組み合わせて収容部に収容した後に、各規格磁石のC軸方向に平行に磁場を印加し着磁を行うので、収容部に収容する永久磁石を複数に分割して構成した場合であっても、一体成形した異方性磁石を用いる場合と同様に永久磁石の磁気性能を大きく向上させることが可能となる。
また、請求項13に記載の永久磁石モータによれば、規格磁石はC軸方向と他の軸方向とで異なる形状を有するので、規格磁石のC軸方向を外観形状から容易に判別することが可能となる。その結果、各規格磁石のC軸方向が同一方向となるように組み合わせる際にも、組合せ作業を容易に行うことが可能となる。
また、請求項14に記載の永久磁石モータによれば、規格磁石はC軸方向の長さを他の軸方向の長さより短く又は長くした形状を有するので、規格磁石のC軸方向を外観形状から容易に判別することが可能となる。その結果、各規格磁石のC軸方向が同一方向となるように組み合わせる際にも、組合せ作業を容易に行うことが可能となる。
また、請求項15に記載の永久磁石モータによれば、規格磁石はC軸方向を高さ形状とした柱体形状を有するので、規格磁石の組合せ作業を容易に行うことが可能となる。また、C軸方向の長さを他の軸方向の長さより短く又は長くするので、規格磁石のC軸方向を外観形状から容易に判別することが可能となる。
また、請求項16に記載の永久磁石モータによれば、規格磁石は直方体であってC軸方向の辺の長さが他の辺の長さよりも短い又は長い形状を有するので、規格磁石のC軸方向を外観形状から容易に判別することが可能となる。その結果、各規格磁石のC軸方向が同一方向となるように組み合わせる際にも、組合せ作業を容易に行うことが可能となる。
また、請求項17に記載の永久磁石モータによれば、規格磁石のC軸方向と直交する一方の面に係合部を形成するとともに、他方の面に係合部と係合する被係合部を形成するので、係合部及び被係合部を目印にして規格磁石のC軸方向を容易に判別することが可能となる。また、係合部と被係合部を係合させることによって複数の規格磁石間の組み合わせを容易に行うことが可能となる。
また、請求項18に記載の永久磁石モータによれば、組み合わされた際に隣り合う規格磁石の境界に絶縁層を形成するので、永久磁石モータを高速回転させた場合であっても、永久磁石内に発生する渦電流を小さくすることができる。従って、永久磁石の温度上昇及び保磁力の低下を防止し、高出力の小型モータを提供することが可能となる。
また、請求項19に記載の永久磁石モータによれば、永久磁石モータ内において生じる磁界の向きに対して平行となる境界に対して絶縁層を形成するので、絶縁層を形成する箇所を最小限としつつ渦電流の防止効果を奏することが可能となる。
また、請求項20に記載の永久磁石モータによれば、収容部を形成する外縁部の形状を、永久磁石を構成する規格磁石の形状と対応する形状とするので、収容部や規格磁石の形状を特殊な形状とした場合であっても、規格磁石を収容部に対して適切に収容し、固定することが可能となる。また、規格磁石を特殊な形状に組み合わせた場合においても、規格磁石を収容部に対して適切に収容し、固定することが可能となる。
また、請求項21に記載の永久磁石モータによれば、収容部を規格磁石の収容方向に対して扇型形状の断面を有する形状とし、規格磁石を組み合わせる場合に、隣接する規格磁石同士の位置関係をその扇型形状に従って設定するので、収容部を複雑な形状とした場合であっても一体成型の永久磁石を用いる場合のように永久磁石を収容部に対応する複雑な形状に成型する必要が無い。そして、規格磁石の組み合わせによって永久磁石を収容部に対応する形状とすることが可能となる。
また、請求項22に記載の永久磁石モータによれば、規格磁石を複数組み合わせて収容部に対応する形状とした状態で、該組み合わされた複数の規格磁石を互いに固定し、その後に固定された複数の規格磁石を収容部に収容するので、永久磁石を複数の規格磁石に分割して構成した場合であっても、規格磁石を収容部に容易に収容することが可能となる。
また、請求項23に記載の永久磁石モータによれば、組み合わされた際に隣り合う規格磁石を、境界に配置された絶縁層を介して互いに固定するので、磁気特性を低下させることなく規格磁石同士の固定を適切に行うことができるとともに永久磁石内に発生する渦電流を小さくすることができる。従って、永久磁石の温度上昇及び保磁力の低下を防止し、高出力の小型モータを提供することが可能となる。
また、請求項24に記載の永久磁石モータによれば、複数の規格磁石を収容部に順次収容することにより収容部に対応する形状に組み合わせるので、永久磁石を複数の規格磁石に分割して構成した場合であっても、規格磁石を収容部に適切に収用することが可能となる。また、規格磁石を組み合わせる工程と収容部に収容する工程を同時に行うことができるので、製造工程を簡略化することが可能となる。
また、請求項25に記載の永久磁石モータによれば、規格磁石を組み合わせる前に予め1段階目の着磁をしておくので、規格磁石の組み合わせを容易に行うことが可能となる。
また、請求項26に記載の永久磁石モータによれば、収容部に充填剤を充填することにより、収容部に収容された複数の規格磁石を収容部に対して固定するので、永久磁石を複数の規格磁石により分割して構成する場合であっても、各規格磁石を収容部に対して適切に固定することが可能となる。
また、請求項27に記載の永久磁石モータによれば、永久磁石を収容する為の収容部はロータコアの軸方向に沿って形成されるので、ハイブリッド車両や電気自動車等に使用されるIPMモータ等の永久磁石の埋め込み型のモータについて、製造効率を飛躍的に上昇させることが可能となる。
また、請求項28に記載の永久磁石モータによれば、磁石粉末とバインダーとを混合し、成形したグリーンシートを焼結した磁石により規格磁石を構成するので、焼結による収縮が均一となることにより焼結後の反りや凹みなどの変形が生じず、また、プレス時の圧力むらが無くなることから、従来行っていた焼結後の修正加工をする必要がなく、製造工程を簡略化することができる。それにより、高い寸法精度で所定の規格形状を有する規格磁石を成形可能となる。また、規格磁石を微小な形状とした場合であっても、材料歩留まりを低下させることなく、加工工数が増加することも防止できる。
また、請求項29に記載の永久磁石モータによれば、磁石粉末とバインダーとを混合した混合物を、規格形状に分割されたグリーンシートに成形し、成形したグリーンシートを焼結した磁石により規格磁石を構成するので、焼結による収縮が均一となることにより焼結後の反りや凹みなどの変形が生じず、また、プレス時の圧力むらが無くなることから、従来行っていた焼結後の修正加工をする必要がなく、製造工程を簡略化することができる。それにより、高い寸法精度で所定の規格形状を有する規格磁石を成形可能となる。また、規格磁石を微小な形状とした場合であっても、材料歩留まりを低下させることなく、加工工数が増加することも防止できる。更に、予めグリーンシートを規格形状に分割することによって、その後の打ち抜き加工等が不要となり、生産効率を向上させることが可能となる。
また、請求項30に記載の永久磁石モータによれば、特に高保磁力を確保することができるNd系希土類磁石を収容した永久磁石モータについて、製造効率を飛躍的に上昇させることが可能となる。
また、請求項31に記載の永久磁石モータの製造方法によれば、永久磁石モータ毎に異なる形状の永久磁石を製造する必要が無くなるので、製造効率を飛躍的に上昇させることが可能となる。
更に、請求項32に記載の永久磁石によれば、所定の規格形状を有する永久磁石(規格磁石)であるので、複数組み合わせることによって様々な種類の永久磁石モータに対応させた永久磁石を構成することが可能となる。
本発明に係る永久磁石モータの内部構成を示した図である。 ロータコアの特にスロット周辺を拡大して示した拡大図である。 本発明に係る永久磁石を示した全体図である。 規格磁石を磁気性能に基づいて複数種類製造する例について示した図である。 規格磁石をサイズに基づいて複数種類製造する例について示した図である。 永久磁石を構成する複数の規格磁石の一つを示した図である。 規格磁石の一例を示した図である。 規格磁石の一例を示した図である。 規格磁石の一例を示した図である。 従来の永久磁石と本願発明に係る永久磁石とに発生する渦電流を比較した図である。 規格磁石の境界に絶縁層を配置する例を示した図である。 ハルバッハ配列を満たすように着磁された永久磁石を示した図である。 本発明に係る永久磁石と永久磁石が収容されるスロットを示した全体図である。 ロータコアに形成されるスロットの一例を示した図である。 扇型の断面形状を有するスロットの一例を示した図である。 扇型の断面形状を有するスロットの一例を示した図である。 永久磁石モータにおいて特に磁束密度の変化が大きい箇所を示した図である。 磁気性能の異なる複数種類の規格磁石を組み合わせた例を示した図である。 磁気性能の異なる複数種類の規格磁石を組み合わせた例を示した図である。 磁気性能の異なる複数種類の規格磁石を組み合わせた例を示した図である。 サイズの異なる複数種類の規格磁石を組み合わせた例を示した図である。 サイズの異なる複数種類の規格磁石を組み合わせた例を示した図である。 サイズの異なる複数種類の規格磁石を組み合わせた例を示した図である。 本発明に係る永久磁石モータの製造工程の内、特に規格磁石を製造するまでの製造工程について説明した図である。 本発明に係る永久磁石の製造工程の内、特にグリーンシートの成形工程を示した説明図である。 規格形状に分割したグリーンシートを成形する成形工程を示した説明図である。 本発明に係る永久磁石の製造工程の内、特にグリーンシートの加熱工程及び磁場配向工程を示した説明図である。 グリーンシートの面内垂直方向に磁場を配向する例について示した図である。 熱媒体(シリコーンオイル)を用いた加熱装置について説明した図である。 本発明に係る永久磁石の製造工程の内、特にグリーンシートの加圧焼結工程を示した説明図である。 本発明に係る永久磁石モータの製造工程の内、特に規格磁石を用いて永久磁石モータを製造するまでの製造工程について説明した図である。
以下、本発明に係る永久磁石モータ、永久磁石モータの製造方法及び永久磁石について具体化した一実施形態について以下に図面を参照しつつ詳細に説明する。先ず、本発明に係る永久磁石モータ1の構成について図1に基づき説明する。図1は本発明に係る永久磁石モータ1の内部構成を示した図である。
図1に示すように、永久磁石モータ1は、ステータ(固定子)2と、ステータ2の内部に回転自在に配置されたロータ(回転子)3とから基本的に構成され、ロータ3の内部に永久磁石4を埋め込んでなる所謂磁石埋め込み型のIPMモータである。
先ず、ステータ2について説明すると、ステータ2は、ステータ鉄心5と、ステータ鉄心5に巻装された複数のステータ巻線6とから構成される。また、ステータ巻線6はステータ2の内周面で等間隔に所定数配置され、ステータ巻線6が通電されるとロータ3を回転させるための回転磁界を発生させる。
一方、ロータ3について説明すると、ロータ3は、ロータコア7と、ロータコア7と連結したシャフト8と、ロータコア7に形成されたスロット(収容部)9に収容され、固定された永久磁石4とから構成される。
ここで、ロータコア7は、薄板状の電磁鋼板等の積層体からなり、その中心部分に軸穴が形成され、この軸穴にシャフト8が嵌合される。一方、ロータコア7の外周付近には、ロータコア7の軸方向に沿って略ハの字状になるように配置された複数(図1では16個)のスロット9が形成され、永久磁石4が収容される。ここで、図2はロータコア7の特にスロット9周辺を拡大して示した拡大図である。
そして、本発明に係る永久磁石モータ1では、永久磁石4を後述のように所定の規格形状を有する永久磁石(以下、規格磁石10という)を複数組み合わせることにより形成することを特徴とする。また、スロット9を、規格磁石10を複数組み合わせた永久磁石4の形状と対応する形状に設計することを特徴とする。尚、規格磁石10とスロット9の詳細については後述する。また、複数の規格磁石10が組み合わされて形成された永久磁石4は、スロット9に充填された充填剤11を介してスロット9に固定される。充填剤11は、熱硬化性樹脂を用いることができ、例えば、エポキシ樹脂やシリコーン樹脂を用いることができる。尚、スロット9に収納された永久磁石4がスロット9に対して固定された状態となるのであれば、充填剤11を用いなくても良い。
[永久磁石の構成]
次に、図3〜図11を用いて永久磁石モータ1に埋設される永久磁石4の構成について説明する。尚、永久磁石モータ1に埋設される複数の永久磁石4は基本的に全て同一構造を有している。従って、以下では埋設される複数の永久磁石4の内、一の永久磁石4のみを例に挙げて説明することとする。
図3は本発明に係る永久磁石4を示した全体図である。本発明に係る永久磁石4は前記したように所定の規格形状を有する規格磁石10を複数組み合わせることにより形成される。ここで、永久磁石4を構成する規格磁石10は希土類永久磁石であり、特にNd−Fe−B系の異方性磁石を用いる。尚、各成分の含有量はNd:27〜40wt%、B:0.8〜2wt%、Fe(電解鉄):60〜70wt%とする。また、磁気特性向上の為、Dy、Tb、Co、Cu、Al、Si、Ga、Nb、V、Pr、Mo、Zr、Ta、Ti、W、Ag、Bi、Zn、Mg等の他元素を少量含んでも良い。
また、規格磁石10は例えば1mm〜5mm程度の規格形状を備えた永久磁石である。そして、後述のように圧粉成形により成形された成形体や磁石粉末とバインダーとが混合された混合物(スラリーやコンパウンド)からシート状に成形された成形体(グリーンシート)を焼結することによって作製される。また、複数の規格磁石10が組み合わさることによって形成される永久磁石4は、ロータコア7に形成されたスロット9に対応する形状となり、例えば図3に示す永久磁石4は10×4×25個の1辺2mmの立方体からなる規格磁石10を組み合わせることによって20mm×8mm×50mmの直方体形状を有する。
また、規格磁石10としては、磁気性能の異なる複数種類の規格磁石10が存在する。更に、磁気性能毎に複数のサイズの規格磁石10が存在する。即ち、3種類の磁気性能の異なる規格磁石10があって、それぞれに3種類のサイズがあるのであれば、計9種類の規格磁石10が存在することとなる。
ここで、規格磁石10の磁気性能は、例えば保磁力(Hcj)と残留磁束密度(Br)の組み合わせによって規定される。尚、ここで、一般的にNd−Fe−B等の希土類永久磁石は、保磁力を上昇させる為に、DyやTb等の添加が行われる。その結果、渦電流の発生によって高温状態(例えば200℃)となったとしても、逆磁界以上の保磁力を保つことができる。しかしながら、DyやTb等が添加されると、図4に示すように保磁力(Hcj)は上昇するが、一方で残留磁束密度(Br)が低下する。従って、永久磁石を用いる用途(例えば、ハイブリッドカー用、空調用、ハードディスク用等)によって適切な磁気性能の永久磁石を使い分ける必要がある。
そこで、本発明では例えば、図4に示すA、B、Cの保磁力(Hcj)と残留磁束密度(Br)の組み合わせとなる3種類の規格磁石10をそれぞれ作製する。その結果、用途によって組み合わせる規格磁石10の種類を変更することによって、用途に沿った磁気性能を有する永久磁石4を形成することが可能となる。尚、保磁力を向上させる方法としては、磁気異方性の高いDyやTb等の金属を添加する以外に、磁石の結晶構造を単磁区構造とすることによっても可能となる。また、後述のように、同じ永久磁石4内でも磁気性能の異なる複数の種類の規格磁石10を組み合わせることも可能である。更に、磁気性能の異なる複数種類の規格磁石10は、ユーザに見分けがつくように種類毎に異なる色とすることが望ましい。尚、規格磁石10に着色する手段としては、焼結後に規格磁石10の表面を塗装しても良いし、予め色素となる材料を包含させた状態で成形及び焼結を行うことにより規格磁石10を製造することとしても良い。
尚、DyやTb等を添加する方法としては、磁石の粒界にDyやTb等を偏在配置させれば、添加量を微量としつつ磁石性能を向上させることが可能となる。そして、磁石の粒界にDyやTb等を偏在配置させる方法としては、例えば、焼結後の磁石の表面にDyやTb等を付着させ、拡散させる粒界拡散法や、主相と粒界相に対応する粉末を別々に製造し、混合(ドライブレンド)する2合金法や、DyやTb等を含む有機金属化合物を磁石粒子の表面に付着させて、その後に焼結する方法等がある。ここで、特に粒界拡散法によってDyやTb等を添加する場合には、規格磁石10の表面にDyやTb等を付着させることによって、規格磁石10全体に対して均一にDyやTb等を拡散することが可能である。即ち、磁石内部の磁気特性の測定を必要とせず、一定の品質保証を得ることが可能となる。一方で、規格磁石10の組み合わせによって構成しない従来の大型の永久磁石では、内部の粒界相までDyやTbの拡散距離を伸ばせない。従って、品質保証を得る為には磁石内部の磁気特性の検査が必要となる。
また、規格磁石10のサイズは、適宜設定することが可能であるが、例えば図5に示すように1辺4mmの立方体、1辺2mmの立方体、1辺1mmの立方体の3種類とする。尚、規格磁石10のサイズの種類は2種類や4種類以上としても良く、種類毎にサイズ以外に形状も任意に設定することが可能である。例えば、1×1×1mmの立方体と、2×2×4mmの直方体の2種類で規定しても良い。その結果、スロット9の形状に合わせて組み合わせる規格磁石10のサイズを変更することにより、スロット9がどのような形状をしていたとしても規格磁石10の組み合わせによってスロット9の形状に沿った永久磁石4を形成することが可能となる。また、後述のように、同じ永久磁石4内でもサイズの異なる複数の種類の規格磁石10を組み合わせることも可能である。
また、図6に示すように規格磁石10は異方性磁石であり後述のように磁場配向を行うことによって磁石結晶13のC軸(磁化容易軸)が一方向に配向されている。そして、規格磁石10を組み合わせて永久磁石4を形成する場合には、各規格磁石10のC軸方向が同一方向となるように組み合わせる。そして、規格磁石10を複数組み合わせてスロット9に収容した後に、各規格磁石10のC軸方向に平行に磁場を印加し着磁を行う。それによって、永久磁石4の磁気特性を大きく向上させることが可能となる。
また、複数の規格磁石10のC軸方向が同一方向となるように組み合わせる際に、組み合わせを容易に行わせる為に、規格磁石10はC軸方向が容易に判別できるような形状とすることが望ましい。具体的には、規格磁石10をC軸方向と他の軸方向とで異なる形状とする。
例えば、図7に示すように、規格磁石10の形状を、C軸方向を高さ方向とした柱体形状(角柱、円柱等)とし、更にC軸方向の長さを他の軸方向の長さより長くした形状(特に直方体であればC軸方向の辺の長さが他の辺の長さよりも長い形状)とすれば、規格磁石10のC軸方向を容易に判別することが可能となる。
また、図8に示すように、規格磁石10の形状を、C軸方向を高さ方向とした柱体形状(角柱、円柱等)とし、更にC軸方向の長さを他の軸方向の長さより短くした形状(特に直方体であればC軸方向の辺の長さが他の辺の長さよりも短い形状)とすれば、同じく規格磁石10のC軸方向を容易に判別することが可能となる。尚、図7、図8に示す例では規格磁石10を直方体としているが、円柱や六角柱等であっても良い。また、C軸方向が判別できるのであれば柱体形状以外に回転楕円体(扁球、長球)等であっても良い
一方、図7、8に示すように規格磁石10自体の形状によりC軸方向を判別させるのではなく、図9に示すように規格磁石10に目印となる部材を付加することによりC軸方向を判別させることとしても良い。例えば、図9に示す例では、規格磁石10のC軸方向と直交する一方の面14に係合部15を形成するとともに、他方の面16に係合部15と係合する被係合部17を形成する。その結果、係合部15及び被係合部17を目印にすることによって規格磁石10のC軸方向を容易に判別することが可能となる。また、係合部15と被係合部17とを係合させることによって、規格磁石10同士の組み合わせを容易に行うことが可能となる。尚、図9に示す例では係合部15を凸形状の部材とし、被係合部17を凹形状の部材としているが、形状は逆であっても良いし、互いに係合する形状であれば他の形状としても良い。また、面14、16に対して係合部15や被係合部17を夫々複数形成する構成としても良い。更に、C軸方向と直交する面14、16以外の面に対しても係合部15や被係合部17を形成する構成としても良い。但し、その場合にはC軸方向が判別できるようにC軸方向と直交する面14、16に形成された係合部15や被係合部17について形状や設置数を他の面と異なるようにすることが望ましい。
また、規格磁石10を組み合わせて永久磁石4を形成する際には、組み合わされた際に隣り合う規格磁石10の境界に絶縁層を配置させる構成としても良い。ここで、近年においては永久磁石モータ1を小型軽量化する要請が高まっているが、永久磁石モータ1を小型化した場合に、小型化する前と同トルクを維持する為には、シャフト8を高速回転させる必要がある。そして、高速回転を行うと永久磁石モータ1に埋設された永久磁石4において渦電流が発生し、永久磁石4の温度が上昇する。永久磁石4は温度が上昇すると保磁力が低下するので、渦電流の発生を防止することが望まれていた。ここで、図10に示すように一体成形の永久磁石19を永久磁石モータ1に用いた場合には、永久磁石19内部の全体に渡って渦電流が発生することとなる。一方、本発明に係る永久磁石4では、上述したように永久磁石4を一体成型するのではなく複数の規格磁石10に分割するので、永久磁石4内部で発生する渦電流の規模を小さくすることができ、永久磁石モータ1を高速回転させた場合であっても、永久磁石の温度の上昇を抑えることが可能となる。更に、隣り合う規格磁石10の境界に絶縁層を配置することとすれば、絶縁層によって渦電流経路をより確実に遮断し、永久磁石4内部で発生する渦電流の規模を小さくすることができる。
ここで、組み合わされた際に隣り合う規格磁石10の境界に絶縁層を配置させる方法としては、例えば規格磁石10を組み合わせる前に、各規格磁石10の表面を予め絶縁層でコーティングする方法が有る。尚、コーティングする絶縁層としては、例えばセラミックや樹脂等がある。また、規格磁石10を組み合わせて永久磁石4を形成する際に、隣接する規格磁石10を互いに固定する接着剤として絶縁層となる材料(例えば樹脂)を用いる方法もある。また、際に隣り合う規格磁石10の境界に絶縁層を形成する場合には、規格磁石10の全ての境界部分に絶縁層を配置する必要は無く、図11に示すように永久磁石モータ1内において生じる磁界の向きに対して平行となる境界に対して絶縁層20を形成することとすれば、上記渦電流の防止効果を奏する。
また、規格磁石10を組み合わせて永久磁石4を形成する場合には、基本的に各規格磁石10のC軸方向が同一方向となるように組み合わせるが、C軸方向が同一方向とならない組み合わせとしても良い。例えば、永久磁石4がハルバッハ配列を満たすように異方性着磁できる組み合わせで規格磁石10を組み合せても良い。ここで、図12はハルバッハ配列を満たすように異方性着磁された永久磁石4を示した図である。例えば、図12に示す例では、隣接するエリアa〜eによって永久磁石4を構成し、エリアa〜e毎にC軸方向が連続的に変更されるように規格磁石10を組み合わせて永久磁石4を構成し、スロット9に収容する。その後、N極(又はS極)の方向が連続的に変更するように各エリアa〜eのC軸方向に沿って永久磁石4に対する着磁を行うことによって、ハルバッハ配列を満たす永久磁石4を構成することが可能となる。
また、本発明では特にグリーンシート成形により規格磁石10を製造する場合において、磁石粉末に混合されるバインダーは、樹脂や長鎖炭化水素や脂肪酸メチルエステルやそれらの混合物等が用いられる。
更に、バインダーに樹脂を用いる場合には、構造中に酸素原子を含まず、且つ解重合性のあるポリマーを用いるのが好ましい。また、後述のようにホットメルト成形によりグリーンシートを成形する場合には、成形されたグリーンシートを加熱して軟化した状態で磁場配向を行う為に、熱可塑性樹脂が用いられる。具体的には以下の一般式(1)に示されるモノマーから選ばれる1種又は2種以上の重合体又は共重合体からなるポリマーが該当する。
Figure 2013243886
(但し、R1及びR2は、水素原子、低級アルキル基、フェニル基又はビニル基を表す)
上記条件に該当するポリマーとしては、例えばイソブチレンの重合体であるポリイソブチレン(PIB)、イソプレンの重合体であるポリイソプレン(イソプレンゴム、IR)、1,3−ブタジエンの重合体であるポリブタジエン(ブタジエンゴム、BR)、スチレンの重合体であるポリスチレン、スチレンとイソプレンの共重合体であるスチレン−イソプレンブロック共重合体(SIS)、イソブチレンとイソプレンの共重合体であるブチルゴム(IIR)、スチレンとブタジエンの共重合体であるスチレン−ブタジエンブロック共重合体(SBS)、2−メチル−1−ペンテンの重合体である2−メチル−1−ペンテン重合樹脂、2−メチル−1−ブテンの重合体である2−メチル−1−ブテン重合樹脂、α−メチルスチレンの重合体であるα−メチルスチレン重合樹脂等がある。尚、α−メチルスチレン重合樹脂は柔軟性を与えるために低分子量のポリイソブチレンを添加することが望ましい。また、バインダーに用いる樹脂としては、酸素原子を含むモノマーの重合体又は共重合体(例えば、ポリブチルメタクリレートやポリメチルメタクリレート等)を少量含む構成としても良い。更に、上記一般式(1)に該当しないモノマーが一部共重合していても良い。その場合であっても、本願発明の目的を達成することが可能である。
尚、バインダーに用いる樹脂としては、磁場配向を適切に行う為に250℃以下で軟化する熱可塑性樹脂、より具体的にはガラス転移点又は融点が250℃以下の熱可塑性樹脂を用いることが望ましい。
一方、バインダーに長鎖炭化水素を用いる場合には、室温で固体、室温以上で液体である長鎖飽和炭化水素(長鎖アルカン)を用いるのが好ましい。具体的には炭素数が18以上である長鎖飽和炭化水素を用いるのが好ましい。そして、後述のようにホットメルト成形により成形されたグリーンシートを磁場配向する際には、グリーンシートを長鎖炭化水素の融点以上で加熱して軟化した状態で磁場配向を行う。
また、バインダーに脂肪酸メチルエステルを用いる場合においても同様に、室温で固体、室温以上で液体であるステアリン酸メチルやドコサン酸メチル等を用いるのが好ましい。そして、後述のようにホットメルト成形により成形されたグリーンシートを磁場配向する際には、グリーンシートを脂肪酸メチルエステルの融点以上で加熱して軟化した状態で磁場配向を行う。
グリーンシートを作製する際に磁石粉末に混合されるバインダーとして上記条件を満たすバインダーを用いることによって、磁石内に含有する炭素量及び酸素量を低減させることが可能となる。具体的には、焼結後に磁石に残存する炭素量を2000ppm以下、より好ましくは1000ppm以下とする。また、焼結後に磁石に残存する酸素量を5000ppm以下、より好ましくは2000ppm以下とする。
また、バインダーの添加量は、スラリーや加熱溶融したコンパウンドをシート状に成形する際にシートの厚み精度を向上させる為に、磁石粒子間の空隙を適切に充填する量とする。例えば、磁石粉末とバインダーの合計量に対するバインダーの比率が、1wt%〜40wt%、より好ましくは2wt%〜30wt%、更に好ましくは3wt%〜20wt%とする。
[スロットの構成]
次に、図13〜図16を用いてロータコア7に形成され、永久磁石4が収容されるスロット9の構成について説明する。尚、ロータコア7に形成される複数のスロット9は基本的に全て同一構造を有している。従って、以下では形成される複数のスロット9の内、一のスロット9のみを例に挙げて説明することとする。
図13は本発明に係る永久磁石4と永久磁石4が収容されるスロット9を示した全体図である。本発明に係る永久磁石4は前記したように所定の規格形状を有する規格磁石10を複数組み合わせることにより形成される。そして、スロット9は、規格磁石10を複数組み合わせた永久磁石4の形状と対応する形状に設計することを特徴とする。
例えば、図13に示すように永久磁石4を、10×4×25個の1辺2mmの立方体の規格磁石10を組み合わせることによって20mm×8mm×50mmの直方体形状とした場合には、スロット9は、その直方体形状に対応させた形状とする。具体的には、永久磁石4の形状に所定の猶予距離(例えば0.5〜3mm)を加算した直方体形状(例えば22mm×8.5mm×51mm)とする。また、図14に示すようにスロット9に永久磁石4が収容された状態において、永久磁石4の両側部とスロット9の壁面との間には一定の空隙21、22を形成することが望ましい。永久磁石4の両側部に磁気抵抗となる空隙21、22を形成することにより、永久磁石4により発生される磁束をロータコア7に対して適切に通過させることが可能となる。また、猶予距離については必ずしも持たせる必要は無く、永久磁石4を収容及び固定できる形状であれば良い。更に、スロット9の形状は直方体形状である必要は無く、円筒形状等であっても良い。
また、スロット9の形状を図15に示すように、規格磁石の収容方向に対して扇型形状の断面を有する形状としても良い。そして、図15に示すような扇型形状を有するスロット9に対して永久磁石4を収容する場合には、規格磁石10を組み合わせる場合に、隣接する規格磁石10同士の位置関係を扇型形状に従って設定する。それによって、扇型形状のような曲線形状を描くスロット9に対しても、永久磁石4を適切に収容することが可能となる。一方、従来のように一体成型の永久磁石を図15に示すような扇型形状を有するスロット9に対して収容しようとすると、永久磁石を扇型形状等の複雑な形状に加工しなければならず、製造工程が非常に煩雑化する問題があった。
また、スロット9を形成する外縁部の形状については、規格磁石10の形状と対応する形状とすることも可能である。例えば、図16に示すように永久磁石4を直方体以外の扇型形状等の特殊な形状に組み合わせた場合には、スロット9を形成する外縁部の形状を規格磁石10の形状と対応する形状(階段形状)とすることが可能である。その結果、規格磁石10を特殊な形状に組み合わせた場合であっても、規格磁石10をスロット9に対して適切に収容し、固定することが可能となる。
[規格磁石の組み合わせ]
永久磁石モータ1を稼働させた場合には、スロット9に収容された規格磁石10に対して一様に磁束密度の変化が生じるのではなく、特定の箇所において大きな磁束密度の変化が生じる。例えば、図1に示すようにロータコア7の軸方向に沿って略ハの字状になるようにスロット9が配置された場合には、図17に示すように対となる永久磁石4の中央付近の角部において特に大きな磁束密度の変化が生じる。即ち、同箇所において強い渦電流が発生する虞が高く、一方、他の箇所においては強い渦電流が発生する虞が少ない。
そこで、永久磁石4を構成する規格磁石10を全て同じ磁気性能の規格磁石10を組み合わせるのではなく、永久磁石モータ1で磁束密度の変化が大きい箇所のみに特に保磁力の高い規格磁石10を配置することとすれば、永久磁石4が磁石としての機能を保持した状態(即ち渦電流によって温度が上昇したとしても逆磁界以上の保磁力を保つことができる状態)でDyやTbの使用量削減、製造コストの削減等が可能となる。例えば、図18に示すように磁束密度の変化が大きい箇所に対して他の箇所よりも保磁力の高い規格磁石10が配置されるように組み合わせて収納することが可能である。また、図19に示すように磁束密度の変化が大きい箇所に近づくに従って、段階的に保磁力の高い規格磁石10が配置されるように組み合わせて収納することも可能である。更に、図20に示すように内側に位置する規格磁石10よりも外側に位置する規格磁石10の方が、保磁力の高い規格磁石10となるように組み合わせることも可能である。また、図20では、内側と外側の2区分で2種類の保磁力の異なる規格磁石10をそれぞれ組み合わせているが、3段階以上に区分しても良い。尚、永久磁石モータ1で磁束密度の変化が大きい箇所に保磁力の高い規格磁石10が配置されるのであれば、図18〜図20に示す組み合わせ以外でも良い。
また、永久磁石4を構成する規格磁石10を全て同じサイズの規格磁石10を組み合わせるのではなく、永久磁石モータ1で磁束密度の変化が大きい箇所のみに特にサイズの小さい規格磁石10を配置することとすれば、永久磁石4の生産性を特に落とすことなく、永久磁石4において発生する渦電流の規模を更に小さくすることができる。例えば、図21に示すように磁束密度の変化が大きい箇所に対して他の箇所よりもサイズの小さい規格磁石10が配置されるように組み合わせて収納することが可能である。また、図22に示すように磁束密度の変化が大きい箇所に近づくに従って、段階的にサイズを小さくした規格磁石10が配置されるように組み合わせて収納することも可能である。更に、図23に示すように内側に位置する規格磁石10よりも外側に位置する規格磁石10の方が、サイズの小さい規格磁石10となるように組み合わせることも可能である。また、図23では、内側と外側の2区分で2種類のサイズの規格磁石10をそれぞれ組み合わせているが、3段階以上に区分しても良い。尚、永久磁石モータ1で磁束密度の変化が大きい箇所にサイズの小さい規格磁石10が配置されるのであれば、図21〜図23に示す組み合わせ以外でも良い。
[永久磁石モータの製造方法]
次に、本発明に係る永久磁石モータ1の製造方法について図24乃至図31を用いて説明する。先ず、本発明に係る永久磁石モータ1の製造工程の内、特に規格磁石10を製造するまでの製造工程について図24を用いて説明する。図24は規格磁石10を製造するまでの製造工程を示した説明図である。
先ず、所定分率のNd−Fe−B(例えばNd:32.7wt%、Fe(電解鉄):65.96wt%、B:1.34wt%)からなる、インゴットを製造する。その後、インゴットをスタンプミルやクラッシャー等によって200μm程度の大きさに粗粉砕する。若しくは、インゴットを溶解し、ストリップキャスト法でフレークを作製し、水素解砕法で粗粉化する。それによって、粗粉砕磁石粉末30を得る。
次いで、粗粉砕磁石粉末30をビーズミル31による湿式法又はジェットミルを用いた乾式法等によって微粉砕する。例えば、ビーズミル31による湿式法を用いた微粉砕では有機溶媒中で粗粉砕磁石粉末30を所定範囲の粒径(例えば0.1μm〜5.0μm)に微粉砕するとともに有機溶媒中に磁石粉末を分散させる。その後、湿式粉砕後の有機溶媒に含まれる磁石粉末を真空乾燥などで乾燥させ、乾燥した磁石粉末を取り出す。また、粉砕に用いる溶媒は有機溶媒であるが、溶媒の種類に特に制限はなく、イソプロピルアルコール、エタノール、メタノールなどのアルコール類、酢酸エチル等のエステル類、ペンタン、ヘキサンなどの低級炭化水素類、ベンゼン、トルエン、キシレンなど芳香族類、ケトン類、それらの混合物等が使用できる。尚、好ましくは、溶媒中に酸素原子を含まない炭化水素系溶媒が用いられる。
一方、ジェットミルによる乾式法を用いた微粉砕では、粗粉砕した磁石粉末を、(a)酸素含有量が実質的に0%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中、又は(b)酸素含有量が0.0001〜0.5%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中で、ジェットミルにより微粉砕し、所定範囲の粒径(例えば1.0μm〜5.0μm)の平均粒径を有する微粉末とする。尚、酸素濃度が実質的に0%とは、酸素濃度が完全に0%である場合に限定されず、微粉の表面にごく僅かに酸化被膜を形成する程度の量の酸素を含有しても良いことを意味する。
次に、ビーズミル31等で微粉砕された磁石粉末を所望形状に成型する。尚、磁石粉末の成形には、例えば金型を用いて所望の形状へと成形する圧粉成形や、磁石粉末を一旦シート状に成形した後に所望の形状へと打ち抜くグリーンシート成形がある。更に、圧粉成形には、乾燥した微粉末をキャビティに充填する乾式法と、磁石粉末を含むスラリーを乾燥させずにキャビティに充填する湿式法がある。一方、グリーンシート成形は、例えば磁石粉末とバインダーとが混合したコンパウンドをシート状に成形するホットメルト塗工や、磁石粉末とバインダーと有機溶媒とを含むスラリーを基材上に塗工することによりシート状に成形するスラリー塗工等による成形が有る。
以下では、特にホットメルト塗工を用いたグリーンシート成形について説明する。
先ず、磁石粉末にバインダーを混合することにより、磁石粉末とバインダーからなる粉末状の混合物(コンパウンド)32を作製する。ここで、バインダーとしては、上述したように樹脂や長鎖炭化水素や脂肪酸メチルエステルやそれらの混合物等が用いられる。例えば、樹脂を用いる場合には構造中に酸素原子を含まず、且つ解重合性のあるポリマーからなる熱可塑性樹脂を用い、一方、長鎖炭化水素を用いる場合には、室温で固体、室温以上で液体である長鎖飽和炭化水素(長鎖アルカン)を用いるのが好ましい。また、脂肪酸メチルエステルを用いる場合には、ステアリン酸メチルやドコサン酸メチル等を用いるのが好ましい。また、バインダーの添加量は、上述したように添加後のコンパウンド12における磁石粉末とバインダーの合計量に対するバインダーの比率が、1wt%〜40wt%、より好ましくは2wt%〜30wt%、更に好ましくは3wt%〜20wt%となる量とする。尚、バインダーの添加は、窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気で行う。尚、磁石粉末とバインダーとの混合は、例えば有機溶媒に磁石粉末とバインダーとをそれぞれ投入し、攪拌機で攪拌することにより行う。そして、攪拌後に磁石粉末とバインダーとを含む有機溶媒を加熱して有機溶媒を気化させることにより、コンパウンド12を抽出する。また、磁石粉末とバインダーとの混合は、窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気で行うことが望ましい。また、特に磁石粉末を湿式法で粉砕した場合においては、粉砕に用いた有機溶媒から磁石粉末を取り出すことなくバインダーを有機溶媒中に添加して混練し、その後に有機溶媒を揮発させて後述のコンパウンド12を得る構成としても良い。
続いて、コンパウンド32をシート状に成形することによりグリーンシートを作成する。特に、ホットメルト塗工では、コンパウンド32を加熱することによりコンパウンド32を溶融し、流体状にしてからセパレータ等の支持基材33上に塗工する。その後、放熱して凝固させることにより、支持基材33上に長尺シート状のグリーンシート34を形成する。尚、コンパウンド32を加熱溶融する際の温度は、用いるバインダーの種類や量によって異なるが50〜300℃とする。但し、用いるバインダーの融点よりも高い温度とする必要がある。尚、スラリー塗工を用いる場合には、トルエン等の有機溶媒中に磁石粉末とバインダーとを分散させ、スラリーをセパレータ等の支持基材33上に塗工する。その後、乾燥して有機溶媒を揮発させることにより、支持基材33上に長尺シート状のグリーンシート34を形成する。
ここで、溶融したコンパウンド32の塗工方式は、スロットダイ方式やカレンダーロール方式等の層厚制御性に優れる方式を用いることが好ましい。例えば、スロットダイ方式では、加熱して流体状にしたコンパウンド32をギアポンプにより押し出してダイに挿入することにより塗工を行う。また、カレンダーロール方式では、加熱した2本ロールのギャップにコンパウンド32を一定量仕込み、ロールを回転させつつ支持基材33上にロールの熱で溶融したコンパウンド32を塗工する。また、支持基材33としては、例えばシリコーン処理ポリエステルフィルムを用いる。更に、消泡剤を用いたり、加熱真空脱泡を行うこと等によって展開層中に気泡が残らないよう充分に脱泡処理することが好ましい。また、支持基材33上に塗工するのではなく、押出成型によって溶融したコンパウンド32をシート状に成型するとともに支持基材33上に押し出すことによって、支持基材33上にグリーンシート34を成形する構成としても良い。
以下に、図25を用いて特にスロットダイ方式によるグリーンシート34の形成工程についてより詳細に説明する。図25はスロットダイ方式によるグリーンシート34の形成工程を示した模式図である。
図25に示すようにスロットダイ方式に用いられるダイ35は、ブロック36、37を互いに重ね合わせることにより形成されており、ブロック36、37との間の間隙によってスリット38やキャビティ(液溜まり)39を形成する。キャビティ39はブロック37に設けられた供給口40に連通される。そして、供給口40はギアポンプ(図示せず)等によって構成される塗布液の供給系へと接続されており、キャビティ39には供給口40を介して、計量された流体状のコンパウンド32が定量ポンプ等により供給される。更に、キャビティ39に供給された流体状のコンパウンド32はスリット38へ送液されて単位時間一定量で幅方向に均一な圧力でスリット38の吐出口41から予め設定された塗布幅により吐出される。一方で、支持基材33はコーティングロール42の回転に伴って予め設定された速度で連続搬送される。その結果、吐出した流体状のコンパウンド32が支持基材33に対して所定厚さで塗布され、その後、放熱して凝固することにより支持基材33上に長尺シート状のグリーンシート34が成形される。
また、スロットダイ方式によるグリーンシート34の形成工程では、塗工後のグリーンシート34のシート厚みを実測し、実測値に基づいてダイ35と支持基材33間のギャップDをフィードバック制御することが望ましい。また、ダイ35に供給する流体状のコンパウンド32の量の変動は極力低下させ(例えば±0.1%以下の変動に抑える)、更に塗工速度の変動についても極力低下させる(例えば±0.1%以下の変動に抑える)ことが望ましい。それによって、グリーンシート34の厚み精度を更に向上させることが可能である。尚、形成されるグリーンシート34の厚み精度は、設計値(例えば2mm)に対して±10%以内、より好ましくは±3%以内、更に好ましくは±1%以内とする。尚、他方のカレンダーロール方式では、カレンダー条件を同様に実測値に基づいて制御することで、支持基材33へのコンパウンド32の転写膜厚を制御することが可能である。
尚、グリーンシート34の設定厚みは、0.05mm〜20mmの範囲で設定することが望ましい。厚みを0.05mmより薄くすると、多層積層しなければならないので生産性が低下することとなる。
また、グリーンシート34を成形する際には、予め規格磁石10の規格形状に分割されたグリーンシートを成形しても良い。例えば、図26に示すような規格形状の型43が並列して複数形成された成形枠44を支持基材33上に設置し、磁石粉末とバインダーとが混合されたスラリーや溶融されたコンパウンドを成形枠44上から塗工することによりグリーンシートを成形する。その結果、予め規格形状に分割されたグリーンシートを成形することが可能となる。上記のような構成とすれば、磁場配向後に成形枠44からグリーンシートを取り外すことにより後述のような規格形状への打ち抜き加工を行うことなく、規格磁石10への成形が可能となる。また、支持基材33に対して図26に示すような規格形状の型43を形成する構成としても良い。
次に、上述したホットメルト塗工によって支持基材33上に形成されたグリーンシート34の磁場配向を行う。具体的には、先ず支持基材33とともに連続搬送されるグリーンシート34を加熱することによりグリーンシート34を軟化させる。尚、グリーンシート34を加熱する際の温度及び時間は、用いるバインダーの種類や量によって異なるが、例えば100〜250℃で0.1〜60分とする。但し、グリーンシート34を軟化させる為に、用いるバインダーのガラス転移点又は融点以上の温度とする必要がある。また、グリーンシート34を加熱する加熱方式としては、例えばホットプレートによる加熱方式や熱媒体(シリコーンオイル)を熱源に用いた加熱方式が有る。次に、加熱により軟化したグリーンシート34の面内方向且つ長さ方向に対して磁場を印加することにより磁場配向を行う。印加する磁場の強さは5000[Oe]〜150000[Oe]、好ましくは、10000[Oe]〜120000[Oe]とする。その結果、グリーンシート34に含まれる磁石結晶のC軸(磁化容易軸)が一方向に配向される。尚、磁場を印加する方向としてはグリーンシート34の面内方向且つ幅方向に対して磁場を印加することとしても良い。また、複数枚のグリーンシート34に対して同時に磁場を配向させる構成としても良い。
更に、グリーンシート34に磁場を印加する際には、加熱工程と同時に磁場を印加する工程を行う構成としても良いし、加熱工程を行った後であってグリーンシートが凝固する前に磁場を印加する工程を行うこととしても良い。また、ホットメルト塗工により塗工されたグリーンシート34が凝固する前に磁場配向する構成としても良い。その場合には、加熱工程は不要となる。
次に、図27を用いてグリーンシート34の加熱工程及び磁場配向工程についてより詳細に説明する。図27はグリーンシート34の加熱工程及び磁場配向工程を示した模式図である。尚、図27に示す例では、加熱工程と同時に磁場配向工程を行う例について説明する。
図27に示すように、上述したスロットダイ方式により塗工されたグリーンシート34に対する加熱及び磁場配向は、ロールによって連続搬送された状態の長尺シート状のグリーンシート34に対して行う。即ち、加熱及び磁場配向を行う為の装置を塗工装置(ダイ等)の下流側に配置し、上述した塗工工程と連続した工程により行う。
具体的には、ダイ35やコーティングロール42の下流側において、搬送される支持基材33及びグリーンシート34がソレノイド45内を通過するようにソレノイド45を配置する。更に、ホットプレート46をソレノイド45内においてグリーンシート34に対して上下一対に配置する。そして、上下一対に配置されたホットプレート46によりグリーンシート34を加熱するとともに、ソレノイド45に電流を流すことによって、長尺シート状のグリーンシート34の面内方向(即ち、グリーンシート34のシート面に平行な方向)で且つ長さ方向に磁場を生じさせる。それによって、連続搬送されるグリーンシート34を加熱により軟化させるとともに、軟化したグリーンシート34の面内方向且つ長さ方向(図27の矢印47方向)に対して磁場を印加し、グリーンシート34に対して適切に均一な磁場を配向させることが可能となる。特に、磁場を印加する方向を面内方向とすることによって、グリーンシート34の表面が逆立つことを防止できる。
また、磁場配向した後に行うグリーンシート34の放熱及び凝固は、搬送状態で行うことが好ましい。それによって、製造工程をより効率化することが可能となる。
尚、磁場配向をグリーンシート34の面内方向且つ幅方向に対して行う場合には、ソレノイド45の代わりに搬送されるグリーンシート34の左右に一対の磁場コイルを配置するように構成する。そして、各磁場コイルに電流を流すことによって、長尺シート状のグリーンシート34の面内方向で且つ幅方向に磁場を生じさせることが可能となる。
また、磁場配向をグリーンシート34の面内垂直方向とすることも可能である。磁場配向をグリーンシート34の面内垂直方向に対して行う場合には、例えばポールピース等を用いた磁場印加装置により行う。具体的には、図28に示すようにポールピース等を用いた磁場印加装置50は、中心軸が同一になるように平行配置された2つのリング状のコイル部51、52と、コイル部51、52のリング孔にそれぞれ配置された2つの略円柱状のポールピース53、54とを有し、搬送されるグリーンシート34に対して所定間隔離間されて配置される。そして、コイル部51、52に電流を流すことにより、グリーンシート34の面内垂直方向に磁場を生成し、グリーンシート34の磁場配向を行う。尚、磁場配向方向をグリーンシート34の面内垂直方向とする場合には、図28に示すようにグリーンシート34に対して支持基材33が積層された反対側の面にもフィルム55を積層することが好ましい。それによって、グリーンシート34の表面の逆立ちを防止することが可能となる。
また、上述したホットプレート46による加熱方式の代わりに熱媒体(シリコーンオイル)を熱源とした加熱方式を用いても良い。ここで、図29は熱媒体を用いた加熱装置60の一例を示した図である。
図29に示すように、加熱装置60は発熱体となる平板部材61の内部に略U字型の空洞62を形成し、空洞62内に所定温度(例えば100〜300℃)に加熱された熱媒体であるシリコーンオイルを循環させる構成とする。そして、図27に示すホットプレート46の代わりに、加熱装置60をソレノイド45内においてグリーンシート34に対して上下一対に配置する。それによって、連続搬送されるグリーンシート34を、熱媒体により発熱された平板部材61を介して加熱し、軟化させる。尚、平板部材61はグリーンシート34に対して当接させても良いし、所定間隔離間させて配置しても良い。そして、軟化したグリーンシート34の周囲に配置されたソレノイド45によって、グリーンシート34の面内方向且つ長さ方向(図27の矢印47方向)に対して磁場が印加され、グリーンシート34に対して適切に均一な磁場を配向させることが可能となる。尚、図29に示すような熱媒体を用いた加熱装置60では、一般的なホットプレート46のように内部に電熱線を有さないので、磁場中に配置した場合であってもローレンツ力によって電熱線が振動したり切断される虞が無く、適切にグリーンシート34の加熱を行うことが可能となる。また、電流による制御を行う場合には、電源のON又はOFFで電熱線が振動することにより疲労破壊の原因となる問題が有るが、熱媒体を熱源とした加熱装置60を用いることによって、そのような問題を解消することが可能となる。
ここで、ホットメルト成形を用いずに一般的なスロットダイ方式やドクターブレード方式等によりスラリー等の流動性の高い液状物によってグリーンシート34を成形した場合には、磁場の勾配が生じているところにグリーンシート34が搬入されると、磁場が強い方にグリーンシート34に含まれる磁石粉末が引き寄せられることとなり、グリーンシート34を形成するスラリーの液寄り、即ち、グリーンシート34の厚みの偏りが生じる虞がある。それに対して、本発明のようにコンパウンド32をホットメルト成形によりグリーンシート34に成形する場合には、室温付近での粘度は数万Pa・sに達し、磁場勾配通過時の磁性粉末の寄りが生じることが無い。更に、均一磁場中に搬送され、加熱されることでバインダーの粘度低下が生じ、均一磁場中の回転トルクのみで、一様なC軸配向が可能となる。
また、ホットメルト成形を用いずに一般的なスロットダイ方式やドクターブレード方式等により有機溶媒を含むスラリー等の流動性の高い液状物によってグリーンシート34を成形した場合には、厚さ1mmを越えるシートを作成しようとすると乾燥時においてスラリー等に含まれる有機溶媒が気化することによる発泡が課題となる。更に、発泡を抑制する為に乾燥時間を長時間化すれば、磁石粉末の沈降が生じ、それに伴って重力方向に対する磁石粉末の密度分布の偏りが生じ、焼成後の反りの原因となる。従って、スラリーからの成形では、厚みの上限値が実質上規制される為、1mm以下の厚みでグリーンシートを成形し、その後に積層する必要がある。しかし、その場合にはバインダー同士の絡まり合いが乏しくなり、その後の脱バインダー工程(仮焼処理)で層間剥離を生じ、それがC軸(磁化容易軸)配向性の低下、即ち残留磁束密度(Br)の低下原因となる。それに対して、本発明のようにコンパウンド32をホットメルト成形によりグリーンシート34に成形する場合には、有機溶媒を含まないので、厚さ1mmを越えるシートを作成した場合でも上述したような発泡の懸念が解消する。そして、バインダーが十分に絡まり合った状態にあるので、脱バインダー工程での層間剥離が生じる虞が無い。
また、複数枚のグリーンシート34に対して同時に磁場を印加させる場合には、例えばグリーンシート34を複数枚(例えば6枚)積層した状態で連続搬送し、積層したグリーンシート34がソレノイド45内を通過するように構成する。それによって生産性を向上させることが可能となる。
その後、磁場配向を行ったグリーンシート34を所望の規格形状(例えば、図7〜図9に示す直方体形状)に打ち抜きし、成形体65を成形する。
続いて、成形された成形体65を大気圧、又は大気圧より高い圧力や低い圧力(例えば、1.0Paや1.0MPa)に加圧した非酸化性雰囲気(特に本発明では水素雰囲気又は水素と不活性ガスの混合ガス雰囲気)においてバインダー分解温度で数時間(例えば5時間)保持することにより仮焼処理を行う。水素雰囲気下で行う場合には、例えば仮焼中の水素の供給量は5L/minとする。仮焼処理を行うことによって、バインダーを解重合反応等によりモノマーに分解し飛散させて除去することが可能となる。即ち、成形体65中の炭素量を低減させる所謂脱カーボンが行われることとなる。また、仮焼処理は、成形体65中の炭素量が2000ppm以下、より好ましくは1000ppm以下とする条件で行うこととする。それによって、その後の焼結処理で永久磁石全体を緻密に焼結させることが可能となり、残留磁束密度や保磁力を低下させることが無い。また、上述した仮焼処理を行う際の加圧条件を大気圧より高い圧力で行う場合には、15MPa以下とすることが望ましい。
尚、バインダー分解温度は、バインダー分解生成物および分解残渣の分析結果に基づき決定する。具体的にはバインダーの分解生成物を補集し、モノマー以外の分解生成物が生成せず、かつ残渣の分析においても残留するバインダー成分の副反応による生成物が検出されない温度範囲が選ばれる。バインダーの種類により異なるが200℃〜900℃、より好ましくは400℃〜600℃(例えば600℃)とする。
また、特に磁石原料を有機溶媒中で湿式粉砕により粉砕した場合には、有機溶媒を構成する有機化合物の熱分解温度且つバインダー分解温度で仮焼処理を行う。それによって、残留した有機溶媒についても除去することが可能となる。有機化合物の熱分解温度については、用いる有機溶媒の種類によって決定されるが、上記バインダー分解温度であれば基本的に有機化合物の熱分解についても行うことが可能となる。
また、仮焼処理によって仮焼された成形体65を続いて真空雰囲気で保持することにより脱水素処理を行っても良い。脱水素処理では、仮焼処理によって生成された成形体65中のNdH(活性度大)を、NdH(活性度大)→NdH(活性度小)へと段階的に変化させることによって、仮焼処理により活性化された成形体65の活性度を低下させる。それによって、仮焼処理によって仮焼された成形体65をその後に大気中へと移動させた場合であっても、Ndが酸素と結び付くことを防止し、残留磁束密度や保磁力を低下させることが無い。また、磁石結晶の構造をNdH等からNdFe14B構造へと戻す効果も期待できる。
続いて、仮焼処理によって仮焼された成形体65を焼結する焼結処理を行う。尚、成形体65の焼結方法としては、一般的な真空焼結以外に成形体65を加圧した状態で焼結する加圧焼結等も用いることが可能である。例えば、真空焼結で焼結を行う場合には、所定の昇温速度で800℃〜1080℃程度の焼成温度まで昇温し、0.1〜2時間程度保持する。この間は真空焼成となるが真空度としては5Pa以下、好ましくは10−2Pa以下とすることが好ましい。その後冷却し、再び300℃〜1000℃で2時間熱処理を行う。そして、焼結の結果、規格磁石10が製造される。
一方、加圧焼結としては、例えば、ホットプレス焼結、熱間静水圧加圧(HIP)焼結、超高圧合成焼結、ガス加圧焼結、放電プラズマ(SPS)焼結等がある。但し、焼結時の磁石粒子の粒成長を抑制するとともに焼結後の磁石に生じる反りを抑える為に、一軸方向に加圧する一軸加圧焼結であって且つ通電焼結により焼結するSPS焼結を用いることが好ましい。尚、SPS焼結で焼結を行う場合には、加圧値を例えば0.01MPa〜100MPaとし、数Pa以下の真空雰囲気で940℃まで10℃/分で上昇させ、その後5分保持することが好ましい。その後冷却し、再び300℃〜1000℃で2時間熱処理を行う。そして、焼結の結果、規格磁石10が製造される。
以下に、図30を用いてSPS焼結による成形体65の加圧焼結工程についてより詳細に説明する。図30はSPS焼結による成形体65の加圧焼結工程を示した説明図である。
図30に示すようにSPS焼結を行う場合には、先ず、グラファイト製の焼結型71に成形体65を設置する。尚、上述した仮焼処理についても成形体65を焼結型71に設置した状態で行っても良い。そして、焼結型71に設置された成形体65を真空チャンパー72内に保持し、同じくグラファイト製の上部パンチ73と下部パンチ74をセットする。そして、上部パンチ73に接続された上部パンチ電極75と下部パンチ74に接続された下部パンチ電極76とを用いて、低電圧且つ高電流の直流パルス電圧・電流を印加する。それと同時に、上部パンチ73及び下部パンチ74に対して加圧機構(図示せず)を用いて夫々上下方向から荷重を付加する。その結果、焼結型71内に設置された成形体65は、加圧されつつ焼結が行われる。また、生産性を向上させる為に、複数(例えば10個)の成形体に対して同時にSPS焼結を行うことが好ましい。尚、複数の成形体65に対して同時にSPS焼結を行う場合には、一の空間に複数の成形体65を配置しても良いし、成形体65毎に異なる空間に配置するようにしても良い。尚、成形体65毎に異なる空間に配置する場合には、空間毎に成形体65を加圧する上部パンチ73や下部パンチ74は各空間の間で一体とする(即ち同時に加圧ができる)ように構成する。
尚、具体的な焼結条件を以下に示す。
加圧値:1MPa
焼結温度:940℃まで10℃/分で上昇させ、5分保持
雰囲気:数Pa以下の真空雰囲気
続いて、本発明に係る永久磁石モータ1の製造工程の内、特に規格磁石10を用いて永久磁石モータ1を製造するまでの製造工程について図31を用いて説明する。図31は規格磁石10を用いて永久磁石モータ1を製造するまでの製造工程を示した説明図である。
先ず、図24に示す製造工程により製造された規格磁石10を複数組み合わせて永久磁石4を形成するとともに、スロット9に対して収容する。尚、規格磁石10を組み合わせる工程とスロット9へ収容する工程は、同時に行う構成としても良いし、規格磁石10を組み合わせる工程を先に行った後にスロット9へ収容する工程を行っても良い。また、組み合わせる前の規格磁石10に対して軽く着磁(1段階目の着磁)しておいても良い。それによって、規格磁石10の組み合わせを容易に行うことが可能となる。そして、軽く着磁した規格磁石10をスロット9に収容した後に最終的な着磁(2段階目の着磁)を行うように構成しても良い。
例えば、規格磁石10を組み合わせる工程を先に行う場合には、規格磁石10を複数組み合わせてスロット9に対応する形状とした状態で、該組み合わされた複数の規格磁石10を固定し、固定された複数の規格磁石10をスロット9に収容することとする。尚、組み合わされた規格磁石10を固定する方法としては、前記したように絶縁層となる樹脂等を用いて規格磁石10を互いに固定することが望ましい。それによって、永久磁石4内に発生する渦電流を小さくすることが可能となる。
また、規格磁石10を組み合わせる工程とスロット9へ収容する工程を同時に行う場合には、規格磁石10をスロット9に順次収容することによりスロット9に対応する形状に組み合わせる。その場合には、組み合わされた複数の規格磁石10同士は必ずしも固定する必要は無い。
また、規格磁石10を組み合わせる場合には、各規格磁石10のC軸方向が同一方向となるように組み合わせる。
また、後述のように本発明では各規格磁石10のC軸方向に平行に磁場を印加し着磁を行う。従って、着磁する方向を考慮して規格磁石10を組み合わせ、スロット9に収容する必要がある。具体的には、ロータコア7の径方向と規格磁石10のC軸方向とが一致するように規格磁石10を組み合わせてスロット9に収容する。但し、上述したように永久磁石4をハルバッハ配列で着磁させる場合には、各規格磁石10のC軸方向を連続的に変更して組み合わせ、スロット9に収容する(図12参照)。
その後、スロット9に充填剤11を充填することにより、スロット9に収容された永久磁石4をスロット9に対して固定する。
次に、スロット9に収容された永久磁石4に対して磁場を印加することにより着磁を行う。具体的には、ロータコア7に収容された複数の永久磁石4の内、一対の永久磁石4のロータ外周側の極性が同一となるように着磁し、且つ、隣り合う対同士で極性が異なるように着磁する。即ち、図31に示すように8対で計16個の永久磁石4が収容されたロータコア7では、8組の一対の永久磁石4により、8つの磁極が構成される。そして、ロータコア7の周方向に沿って、N極とS極とが交互に配置される。また、前記したようにロータコア7の径方向と規格磁石10のC軸方向とが一致するように規格磁石10が組み合わせてスロット9に収容されているので、各規格磁石10のC軸方向に平行に磁場が印加される。但し、上述したように永久磁石4をハルバッハ配列で着磁させる場合には、N極(又はS極)の方向が連続的に変更するように永久磁石4に対する着磁を行う(図12参照)。尚、永久磁石4の着磁には、例えば着磁コイル、着磁ヨーク、コンデンサー式着磁電源装置等が用いられる。
その後、シャフト8やステータ2等のロータコア7以外の部材を組み付けることにより永久磁石モータ1が製造される。
以上説明したように、本実施形態に係る永久磁石モータ1及び永久磁石モータ1の製造方法では、永久磁石モータ1のロータコア7に形成されたスロット9に収容する永久磁石4を、所定の規格形状を有する永久磁石である規格磁石10を複数組み合わせることにより構成するとともに、スロット9の形状を、規格磁石10を複数組み合わせた形状に対応する形状に設計することで、同一形状を有する規格磁石10の組合せによって様々な種類の永久磁石モータ1に対応した永久磁石4を形成することが可能となる。その結果、永久磁石モータ毎に異なる形状の永久磁石4を製造する必要が無くなるので、製造効率を飛躍的に上昇させることが可能となる。
また、一体成型の永久磁石を用いる場合と比較して、規格磁石10の組み合わせを変更することによって複雑な形状を有する永久磁石4を容易に形成することが可能となる。
また、保磁力や残留磁束密度等の磁気性能の異なる複数種類の規格磁石10が存在するので、用途(例えば、ハイブリッドカー用、空調用、ハードディスク用等)によって組み合わせる規格磁石10の種類を変更することによって、用途に沿った磁気性能を有する永久磁石4を形成することが可能となる。
そして、永久磁石モータ1内において磁束密度の変化が大きい場所ほど、保磁力の高い規格磁石10を配置することとすれば、永久磁石4が磁石としての機能を保持した状態(即ち渦電流によって温度が上昇したとしても逆磁界以上の保磁力を保つことができる状態)でDyやTbの使用量削減、製造コストの削減等が可能となる。
また、規格磁石10を組み合わせる場合に、内側に位置する規格磁石10よりも外側に位置する規格磁石10の方が、保磁力の高い規格磁石10となるように組み合わせることとすれば、永久磁石4が磁石としての機能を保持した状態(即ち渦電流によって温度が上昇したとしても逆磁界以上の保磁力を保つことができる状態)でDyやTbの使用量削減、製造コストの削減等が可能となる。
また、規格磁石10は磁気性能毎に異なる色を有するので、磁気性能の異なる複数種類の規格磁石10が存在したとしても、ユーザは規格磁石10の磁気性能を外観から容易に判別することが可能となる。
また、サイズの異なる複数種類の規格磁石10が存在するので、スロット9の形状に合わせて組み合わせる規格磁石10のサイズを変更することにより、スロット9がどのような形状をしていたとしても規格磁石10の組み合わせによって収容部の形状に沿った永久磁石4を形成することが可能となる。
また、永久磁石モータ1内において磁束密度の変化が大きい場所ほど、より小さいサイズの規格磁石10を配置することとすれば、永久磁石4の生産性を特に落とすことなく、永久磁石4において発生する渦電流の規模を更に小さくすることができる。
また、規格磁石10を組み合わせる場合に、内側に位置する規格磁石10よりも外側に位置する規格磁石10の方が、小さいサイズを有する規格磁石10となるように組み合わせることとすれば、永久磁石4の生産性を特に落とすことなく、永久磁石4において発生する渦電流の規模を更に小さくすることができる。
また、規格磁石10は異方性磁石であって、複数の規格磁石10を、各規格磁石10のC軸方向(磁化容易軸)が同一方向となるように組み合わせてスロット9に収容するので、等方性磁石を用いた場合や異方性磁石を用いてもC軸方向を同一方向に組み合わせなかった場合と比較して、着磁を行った際に永久磁石4の磁気性能を大きく向上させることが可能となる。
また、規格磁石10を複数組み合わせてスロット9に収容した後に、各規格磁石10のC軸方向に平行に磁場を印加し着磁を行うので、スロット9に収容する永久磁石4を複数に分割して構成した場合であっても、一体成形した異方性磁石を用いる場合と同様に永久磁石4の磁気性能を大きく向上させることが可能となる。
また、規格磁石10はC軸方向と他の軸方向とで異なる形状を有するので、規格磁石10のC軸方向を外観形状から容易に判別することが可能となる。その結果、各規格磁石10のC軸方向が同一方向となるように組み合わせる際にも、組合せ作業を容易に行うことが可能となる。
また、規格磁石10はC軸方向の長さを他の軸方向の長さより短く又は長くした形状を有するので、規格磁石10のC軸方向を外観形状から容易に判別することが可能となる。その結果、各規格磁石10のC軸方向が同一方向となるように組み合わせる際にも、組合せ作業を容易に行うことが可能となる。
また、規格磁石10はC軸方向を高さ形状とした柱体形状を有するので、規格磁石10の組合せ作業を容易に行うことが可能となる。また、C軸方向の長さを他の軸方向の長さより短く又は長くするので、規格磁石10のC軸方向を外観形状から容易に判別することが可能となる。
また、規格磁石10は直方体であってC軸方向の辺の長さが他の辺の長さよりも短い又は長い形状を有するので、規格磁石10のC軸方向を外観形状から容易に判別することが可能となる。その結果、各規格磁石10のC軸方向が同一方向となるように組み合わせる際にも、組合せ作業を容易に行うことが可能となる。
また、規格磁石10のC軸方向と直交する一方の面に係合部15を形成するとともに、他方の面に係合部15と係合する被係合部17を形成すれば、係合部15及び被係合部17を目印にして規格磁石10のC軸方向を容易に判別することが可能となる。また、係合部15と被係合部17を係合させることによって複数の規格磁石10間の組み合わせを容易に行うことが可能となる。
また、組み合わされた際に隣り合う規格磁石10の境界に絶縁層20を形成すれば、永久磁石モータ1を高速回転させた場合であっても、永久磁石4内に発生する渦電流を小さくすることができる。従って、永久磁石4の温度上昇及び保磁力の低下を防止し、高出力の小型モータを提供することが可能となる。
また、永久磁石モータ1内において生じる磁界の向きに対して平行となる境界に対して絶縁層20を形成するので、絶縁層20を形成する箇所を最小限としつつ渦電流の防止効果を奏することが可能となる。
また、スロット9を形成する外縁部の形状を、永久磁石4を構成する規格磁石10の形状と対応する形状とすれば、スロット9や規格磁石10の形状を特殊な形状とした場合であっても、規格磁石10をスロット9に対して適切に収容し、固定することが可能となる。また、規格磁石10を特殊な形状に組み合わせた場合においても、規格磁石10をスロット9に対して適切に収容し、固定することが可能となる。
また、スロット9を規格磁石10の収容方向に対して扇型形状の断面を有する形状とし、規格磁石10を組み合わせる場合に、隣接する規格磁石10同士の位置関係をその扇型形状に従って設定するので、スロット9を複雑な形状とした場合であっても一体成型の永久磁石を用いる場合のように永久磁石をスロット9に対応する複雑な形状に成型する必要が無い。そして、規格磁石10の組み合わせによって永久磁石4をスロット9に対応する形状とすることが可能となる。
また、規格磁石10を複数組み合わせてスロット9に対応する形状とした状態で、該組み合わされた複数の規格磁石10を互いに固定し、その後に固定された複数の規格磁石10をスロット9に収容することとすれば、永久磁石4を複数の規格磁石10に分割して構成した場合であっても、規格磁石10をスロット9に容易に収容することが可能となる。
特に、組み合わされた際に隣り合う規格磁石10を、境界に配置された絶縁層を介して互いに固定することとすれば、磁気特性を低下させることなく規格磁石10同士の固定を適切に行うことができるとともに永久磁石4内に発生する渦電流を小さくすることができる。従って、永久磁石4の温度上昇及び保磁力の低下を防止し、高出力の小型モータを提供することが可能となる。
また、複数の規格磁石10をスロット9に順次収容することによりスロット9に対応する形状に組み合わせるので、永久磁石4を複数の規格磁石10に分割して構成した場合であっても、規格磁石10をスロット9に適切に収用することが可能となる。また、規格磁石10を組み合わせる工程とスロット9に収容する工程を同時に行うことができるので、製造工程を簡略化することが可能となる。
また、規格磁石10を組み合わせる前に予め1段階目の着磁をしておくので、規格磁石10の組み合わせを容易に行うことが可能となる。
また、永久磁石4を収容する為のスロット9はロータコア7の軸方向に沿って形成されるので、ハイブリッド車両や電気自動車等に使用されるIPMモータ等の永久磁石の埋め込み型のモータについて、製造効率を飛躍的に上昇させることが可能となる。
また、スロット9に充填剤11を充填することにより、スロット9に収容された複数の規格磁石10をスロット9に対して固定するので、永久磁石4を複数の規格磁石10により分割して構成する場合であっても、各規格磁石10をスロット9に対して適切に固定することが可能となる。
また、磁石粉末とバインダーとを混合し、成形したグリーンシート34を焼結した磁石により規格磁石を構成するので、焼結による収縮が均一となることにより焼結後の反りや凹みなどの変形が生じず、また、プレス時の圧力むらが無くなることから、従来行っていた焼結後の修正加工をする必要がなく、製造工程を簡略化することができる。それにより、高い寸法精度で所定の規格形状を有する規格磁石を成形可能となる。また、規格磁石を微小な形状とした場合であっても、材料歩留まりを低下させることなく、加工工数が増加することも防止できる。
また、磁石粉末とバインダーとを混合した混合物を、規格形状に分割されたグリーンシート34に成形することとすれば、その後の打ち抜き加工等が不要となり、生産効率を向上させることが可能となる。
また、規格磁石10は、Nd系希土類磁石であるので、特に高保磁力を確保することができるNd系希土類磁石を収容した永久磁石モータについて、製造効率を飛躍的に上昇させることが可能となる。
また、永久磁石4をハルバッハ配列とすることも可能である。その場合には、組み合わされてスロット9に収容された複数の規格磁石10がハルバッハ配列で着磁されるように、各規格磁石10のC軸方向(磁化容易軸)を連続的に変更して組み合わせる。それによって、組み合わせた規格磁石10(即ち永久磁石4)をハルバッハ配列で配列することが可能となる。その結果、より強い磁場を発生させることが可能となる。
尚、本発明は前記実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形が可能であることは勿論である。
例えば、規格磁石10を製造する際の磁石粉末の粉砕条件、混練条件、仮焼条件、焼結条件などは上記実施例に記載した条件に限られるものではない。例えば、上記実施例ではジェットミルを用いた乾式粉砕により磁石原料を粉砕しているが、ビーズミルによる湿式粉砕により粉砕することとしても良い。また、上記実施例では、スロットダイ方式によりグリーンシートを形成しているが、他の方式(例えばカレンダーロール方式、コンマ塗工方式、押出成型、射出成型、金型成型、ドクターブレード方式等)を用いてグリーンシートを形成しても良い。また、有機溶媒に磁石粉末やバインダーを混合したスラリーを生成し、その後に生成したスラリーをシート状に成形することによってグリーンシートを作成することとしても良い。その場合にはバインダーとして熱可塑性樹脂以外の樹脂を用いることも可能である。また、仮焼を行う際の雰囲気は非酸化性雰囲気であれば水素雰囲気以外(例えば窒素雰囲気、He雰囲気等、Ar雰囲気等)で行っても良い。
また、規格磁石はグリーンシート成形以外の成形(例えば圧粉成形)により成形した成形体を仮焼及び焼結することにより製造しても良い。その場合であっても、バインダー以外の成形体中に残存するC含有物(添加した有機金属化合物や、湿式粉砕を行うことにより残存した有機化合物等)に対して、仮焼による脱炭効果が期待できる。更に、グリーンシート成形以外の成形(例えば圧粉成形)により成形した成形体を仮焼及び焼結することにより製造する場合には、成形前の磁石粉末に対して仮焼処理を行い、仮焼体である磁石粉末を成形体に成形し、その後に焼結を行うことによって規格磁石を製造することとしても良い。このような構成とすれば、粉末状の磁石粒子に対して仮焼を行うので、成形後の磁石粒子に対して仮焼を行う場合と比較して、仮焼対象となる磁石の表面積を大きくすることができる。即ち、仮焼体中の炭素量をより確実に低減させることが可能となる。
また、仮焼処理は省略しても良い。その場合であっても焼結中にバインダーや有機溶媒等の有機化合物が熱分解し、一定の脱炭効果を期待することができる。
また、上記実施例では、バインダーとして樹脂や長鎖炭化水素や脂肪酸メチルエステルを用いることとしているが、他の材料を用いても良い。
また、上記実施例では、磁気性能毎に複数のサイズの規格磁石10が存在することとしているが、サイズは1種類のみとしても良い。また、磁気性能は共通とし、サイズのみ複数種類存在することとしても良い。また、磁気性能は保磁力と残留磁束密度以外で規定しても良い。
また、上記実施例では、グリーンシート34の加熱工程と磁場配向工程とを同時に行うこととしているが、加熱工程を行った後であってグリーンシート34が凝固する前に磁場配向工程を行っても良い。また、塗工されたグリーンシート34が凝固する前(即ち、加熱工程を行わなくてもグリーンシート34が既に軟化された状態)に磁場配向を行う場合には、加熱工程を省略しても良い。
また、上記実施例では、スロットダイ方式による塗工工程と加熱工程と磁場配向工程とを連続した一連の工程により行っているが、連続した工程により行わないように構成しても良い。その場合には、塗工されたグリーンシート34を所定長さに切断し、静止した状態のグリーンシート34に対して加熱及び磁場印加を行うことにより磁場配向を行うように構成することが可能である。
また、上記実施例ではハイブリッドカーに搭載されるIPMモータを例に挙げて説明しているが、本発明は携帯電話機に搭載される振動モータ、ハードディスクドライブのヘッドを駆動するボイスコイルモータ、ハードディスクドライブのディスクを回転させるスピンドルモータ、その他の空調用モータ、サーボモータ、OA/FAモータ等の永久磁石モータに対して適用することも当然に可能である。更に、上記実施例では、永久磁石4をロータ(回転子)3に設置する回転界磁型のモータを例として説明したが、本発明は永久磁石4をステータ(固定子)2に設置する回転電機子型のモータや、同様に回転電機である発電機、さらにはリニアモータの界磁側にも適用することができる。
また、上記実施例ではNd−Fe−B系磁石を用いた永久磁石モータを例に挙げて説明したが、他の磁石(例えばコバルト磁石、アルニコ磁石、フェライト磁石等)を用いても良い。また、磁石の合金組成は本発明ではNd成分を量論組成より多くしているが、量論組成としても良い。また、異方性磁石だけでなく等方性磁石に対しても本発明を適用することが可能である。その場合には、グリーンシート34に対する磁場配向工程を省略可能である。
1 永久磁石モータ
2 ステータ
3 ロータ
4 永久磁石
7 ロータコア
9 スロット
10 規格磁石
31 ジェットミル
32 コンパウンド
33 支持基材
34 グリーンシート
35 ダイ
45 ソレノイド

Claims (32)

  1. 固定子または可動子に形成された収容部に永久磁石を収容する永久磁石型モータであって、
    前記収容部を所定の規格形状を有する永久磁石である規格磁石を複数組み合わせた形状と対応する形状に設計し、
    複数の前記規格磁石を組み合わせて前記収容部内に収容することを特徴とする永久磁石モータ。
  2. 磁気性能の異なる複数種類の前記規格磁石が存在することを特徴とする請求項1に記載の永久磁石モータ。
  3. 保磁力と残留磁束密度の組み合わせによって前記磁気性能を規定することを特徴とする請求項2に記載の永久磁石モータ。
  4. 前記永久磁石モータ内において磁束密度の変化が大きい場所ほど、保磁力の高い前記規格磁石を配置することを特徴とする請求項3に記載の永久磁石モータ。
  5. 前記規格磁石を組み合わせる場合に、内側に位置する前記規格磁石よりも外側に位置する前記規格磁石の方が、保磁力の高い前記規格磁石となるように組み合わせることを特徴とする請求項3又は請求項4に記載の永久磁石モータ。
  6. 前記規格磁石は、磁気性能毎に異なる色を有することを特徴とする請求項2乃至請求項5のいずれかに記載の永久磁石モータ。
  7. サイズの異なる複数種類の前記規格磁石が存在することを特徴とする請求項1乃至請求項6のいずれかに記載の永久磁石モータ。
  8. 前記永久磁石モータ内において磁束密度の変化が大きい場所ほど、より小さいサイズの前記規格磁石を配置することを特徴とする請求項7に記載の永久磁石モータ。
  9. 前記規格磁石を組み合わせる場合に、内側に位置する前記規格磁石よりも外側に位置する前記規格磁石の方が、小さいサイズを有する前記規格磁石となるように組み合わせることを特徴とする請求項7又は請求項8に記載の永久磁石モータ。
  10. 前記規格磁石は、異方性磁石であって、
    複数の前記規格磁石を、各規格磁石のC軸方向が同一方向となるように組み合わせて前記収容部に収容することを特徴とする請求項1乃至請求項9のいずれかに記載の永久磁石モータ。
  11. 前記規格磁石は、異方性磁石であって、
    組み合わされて前記収容部に収容された複数の前記規格磁石がハルバッハ配列で着磁されるように、各規格磁石のC軸方向を連続的に変更して組み合わせることを特徴とする請求項1乃至請求項9のいずれかに記載の永久磁石モータ。
  12. 前記規格磁石を複数組み合わせて前記収容部に収容した後に、各規格磁石のC軸方向に平行に磁場を印加し着磁を行うことを特徴とする請求項10又は請求項11に記載の永久磁石モータ。
  13. 前記規格磁石は、C軸方向と他の軸方向とで異なる形状を有することを特徴とする請求項10乃至請求項12のいずれかに記載の永久磁石モータ。
  14. 前記規格磁石は、C軸方向の長さを他の軸方向の長さより短く又は長くしたことを特徴とする請求項13に記載の永久磁石モータ。
  15. 前記規格磁石は、C軸方向を高さ方向とした柱体形状を有することを特徴とする請求項14に記載の永久磁石モータ。
  16. 前記規格磁石は、直方体であってC軸方向の辺の長さが他の辺の長さよりも短い又は長いことを特徴とする請求項15に記載の永久磁石モータ。
  17. 前記規格磁石は、C軸方向と直交する一方の面に係合部を形成するとともに、他方の面に前記係合部と係合する被係合部を形成することを特徴とする請求項13乃至請求項16のいずれかに記載の永久磁石モータ。
  18. 組み合わされた際に隣り合う前記規格磁石の境界に絶縁層を形成することを特徴とする請求項1乃至請求項17のいずれかに記載の永久磁石モータ。
  19. 前記永久磁石モータ内において生じる磁界の向きに対して平行となる前記境界に対して前記絶縁層を形成することを特徴とする請求項18に記載の永久磁石モータ。
  20. 前記収容部を形成する外縁部の形状を、前記規格磁石の形状と対応する形状とすることを特徴とする請求項1乃至請求項19のいずれかに記載の永久磁石モータ。
  21. 前記収容部は、前記規格磁石の収容方向に対して扇型形状の断面を有し、
    前記規格磁石を組み合わせる場合に、隣接する前記規格磁石同士の位置関係を前記扇型形状に従って設定することを特徴とする請求項1乃至請求項20のいずれかに記載の永久磁石モータ。
  22. 前記規格磁石を複数組み合わせて前記収容部に対応する形状とした状態で、該組み合わされた複数の前記規格磁石を互いに固定し、
    前記固定された複数の前記規格磁石を前記収容部に収容することを特徴とする請求項1乃至請求項21のいずれかに記載の永久磁石モータ。
  23. 組み合わされた際に隣り合う前記規格磁石の境界に絶縁層が配置され、
    前記絶縁層を介して該隣り合う前記規格磁石を互いに固定することを特徴とする請求項22に記載の永久磁石モータ。
  24. 複数の前記規格磁石を前記収容部に順次収容することにより前記収容部に対応する形状に組み合わせることを特徴とする請求項1乃至請求項23のいずれかに記載の永久磁石モータ。
  25. 組み合わせる前の前記規格磁石に対して1段階目の着磁を行い、
    前記第1段階の着磁を行った複数の前記規格磁石を組み合わせて前記収容部内に収容し、
    前記収容部内に収容された前記規格磁石に対して2段階目の着磁を行うことを特徴とする請求項1乃至請求項24のいずれかに記載の永久磁石モータ。
  26. 前記収容部に充填剤を充填することにより、前記収容部に収容された複数の前記規格磁石を前記収容部に対して固定することを特徴とする請求項1乃至請求項25のいずれかに記載の永久磁石モータ。
  27. 前記収容部は、ロータコアの軸方向に沿って形成されることを特徴とする請求項1乃至請求項26のいずれかに記載の永久磁石モータ。
  28. 前記規格磁石は、
    磁石原料を磁石粉末に粉砕する工程と、
    前記粉砕された磁石粉末とバインダーとが混合された混合物を生成する工程と、
    前記混合物をシート状に成形したグリーンシートを作製する工程と、
    前記グリーンシートに対して磁場を印加することにより磁場配向する工程と、
    前記グリーンシートを前記規格形状に分割する工程と、
    前記規格形状に分割された前記グリーンシートを焼結する工程と、により製造されることを特徴とする請求項1乃至請求項27のいずれかに記載の永久磁石モータ。
  29. 前記規格磁石は、
    磁石原料を磁石粉末に粉砕する工程と、
    前記粉砕された磁石粉末とバインダーとが混合された混合物を生成する工程と、
    前記混合物をシート状で且つ前記規格形状に分割されたグリーンシートに成形する工程と、
    前記グリーンシートに対して磁場を印加することにより磁場配向する工程と、
    前記グリーンシートを焼結する工程と、により製造されることを特徴とする請求項1乃至請求項27のいずれかに記載の永久磁石モータ。
  30. 前記規格磁石は、Nd系希土類磁石であることを特徴とする請求項1乃至請求項29のいずれかに記載の永久磁石モータ。
  31. 請求項1乃至請求項30のいずれかの前記永久磁石モータを製造する永久磁石モータの製造方法。
  32. 請求項1乃至請求項30のいずれかの前記永久磁石モータに収容される前記規格磁石であることを特徴とする永久磁石。
JP2012116710A 2012-05-22 2012-05-22 永久磁石モータ、永久磁石モータの製造方法及び永久磁石 Pending JP2013243886A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012116710A JP2013243886A (ja) 2012-05-22 2012-05-22 永久磁石モータ、永久磁石モータの製造方法及び永久磁石
CN201380027040.9A CN104335455A (zh) 2012-05-22 2013-05-21 永磁电动机、永磁电动机的制造方法和永久磁铁
PCT/JP2013/064052 WO2013176116A1 (ja) 2012-05-22 2013-05-21 永久磁石モータ、永久磁石モータの製造方法及び永久磁石
TW102118113A TW201401728A (zh) 2012-05-22 2013-05-22 永久磁石馬達、永久磁石馬達之製造方法及永久磁石

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012116710A JP2013243886A (ja) 2012-05-22 2012-05-22 永久磁石モータ、永久磁石モータの製造方法及び永久磁石

Publications (1)

Publication Number Publication Date
JP2013243886A true JP2013243886A (ja) 2013-12-05

Family

ID=49623806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012116710A Pending JP2013243886A (ja) 2012-05-22 2012-05-22 永久磁石モータ、永久磁石モータの製造方法及び永久磁石

Country Status (4)

Country Link
JP (1) JP2013243886A (ja)
CN (1) CN104335455A (ja)
TW (1) TW201401728A (ja)
WO (1) WO2013176116A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207687A (ja) * 2014-04-22 2015-11-19 日東電工株式会社 永久磁石及び永久磁石の製造方法
JP2016032026A (ja) * 2014-07-29 2016-03-07 日東電工株式会社 永久磁石、永久磁石の製造方法、回転電機及び回転電機の製造方法
JP2016032027A (ja) * 2014-07-29 2016-03-07 日東電工株式会社 永久磁石、永久磁石の製造方法、回転電機及び回転電機の製造方法
JP2016042763A (ja) * 2014-08-18 2016-03-31 日東電工株式会社 回転電機用永久磁石、回転電機用永久磁石の製造方法、回転電機及び回転電機の製造方法
JP2016178816A (ja) * 2015-03-20 2016-10-06 トヨタ自動車株式会社 ロータ、電動モータ
CN107256754A (zh) * 2017-05-31 2017-10-17 安徽大地熊新材料股份有限公司 一种内禀矫顽力三维分布的磁体及其制备方法
WO2018216805A1 (ja) * 2017-05-26 2018-11-29 日東電工株式会社 磁石の製造方法および磁石の着磁方法
JP2019054724A (ja) * 2018-11-07 2019-04-04 日東電工株式会社 回転電機用永久磁石、回転電機用永久磁石の製造方法、回転電機及び回転電機の製造方法
JP2020036518A (ja) * 2018-08-31 2020-03-05 日産自動車株式会社 可変磁束型回転電機
JP2020511924A (ja) * 2017-03-22 2020-04-16 ホワイロット エスアエス 単位磁石を含む磁石構造を備えるロータと、同心巻線を備えるステータと、を有する電磁モータまたは発電機
WO2021081372A1 (en) * 2019-10-25 2021-04-29 Jacobi Motors LLC Variable-flux memory motor
JP2021511766A (ja) * 2018-01-26 2021-05-06 ホワイロット 隣接する磁石間の接触領域の一部を形成することを目的とした凹部形状を有する単位磁石
JP2021078208A (ja) * 2019-11-07 2021-05-20 株式会社デンソー 回転電機
US11017928B2 (en) 2016-09-08 2021-05-25 Tdk Corporation Magnet, magnet stack, and motor
JP2022012547A (ja) * 2020-07-01 2022-01-17 トヨタ自動車株式会社 回転機のロータおよびその製造方法
KR20220040077A (ko) * 2020-09-23 2022-03-30 성림첨단산업(주) 전기차 구동용 모터의 성능 향상을 위한 적층분할형 희토류 마그넷의 제조방법
WO2022149527A1 (ja) * 2021-01-07 2022-07-14 株式会社マグネイチャー 界磁子、並びに、回転子およびこれを備える回転電機
US11657939B2 (en) 2021-03-09 2023-05-23 Fuji Electric Co., Ltd. Magnetic field generator, method for manufacturing magnetic field generator, and linear motor using magnetic field generator

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3180141T3 (en) * 2014-08-12 2019-03-11 Abb Schweiz Ag Magnet with regions of different magnetic properties and method for forming such a magnet
WO2017126694A1 (ja) * 2016-01-22 2017-07-27 ヤマハ発動機株式会社 回転電機
EP3457416A1 (en) * 2016-05-16 2019-03-20 Bolymedia Holdings Co., Ltd. Electromagnetic induction device and manufacturing method therefor
US20190173339A1 (en) * 2016-08-25 2019-06-06 Mitsubishi Electric Corporation Rotary electric machine
DE102016119654A1 (de) * 2016-10-14 2018-04-19 Hochschule Aalen Verfahren zur Herstellung eines weichmagnetischen Kernmaterials
CN106782977B (zh) * 2017-01-24 2019-08-09 湖南航天磁电有限责任公司 一种大尺寸烧结钐钴永磁体的制备方法
DE112018001759T5 (de) 2017-03-30 2019-12-24 Nidec Sankyo Corporation Aktuator
EP3729475B1 (en) 2017-12-19 2023-09-06 ABB Schweiz AG Multicomponent magnet assemblies for electrical machines
CN111371264B (zh) * 2018-12-25 2022-05-31 株洲中车机电科技有限公司 一种永磁电机转子的制造方法
CN111064289B (zh) * 2019-12-30 2022-05-17 智车优行科技(上海)有限公司 一种永磁同步电机、转子、转子磁钢及车辆
EP4086926A1 (de) 2021-05-04 2022-11-09 Siemens Aktiengesellschaft Verfahren zur herstellung eines permanentmagneten, läufer und gerät
DE102022129227A1 (de) 2022-11-04 2024-05-08 Mimplus Technologies Gmbh & Co. Kg Verfahren zur Herstellung eines Rohmagneten

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62217608A (ja) * 1986-03-19 1987-09-25 Tohoku Metal Ind Ltd 磁化容易軸方向表示を有する異方性永久磁石個片の製造方法
JP2003164085A (ja) * 2001-11-29 2003-06-06 Sawafuji Electric Co Ltd 回転電機
JP2007166888A (ja) * 2005-11-15 2007-06-28 Shin Etsu Chem Co Ltd 永久磁石回転電機
JP2009027847A (ja) * 2007-07-20 2009-02-05 Daido Steel Co Ltd 永久磁石およびこれを用いた埋込磁石型モータ
WO2009116540A1 (ja) * 2008-03-18 2009-09-24 日東電工株式会社 モータ用永久磁石及びモータ用永久磁石の製造方法
WO2010150362A1 (ja) * 2009-06-24 2010-12-29 トヨタ自動車株式会社 焼結磁石とその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62217608A (ja) * 1986-03-19 1987-09-25 Tohoku Metal Ind Ltd 磁化容易軸方向表示を有する異方性永久磁石個片の製造方法
JP2003164085A (ja) * 2001-11-29 2003-06-06 Sawafuji Electric Co Ltd 回転電機
JP2007166888A (ja) * 2005-11-15 2007-06-28 Shin Etsu Chem Co Ltd 永久磁石回転電機
JP2009027847A (ja) * 2007-07-20 2009-02-05 Daido Steel Co Ltd 永久磁石およびこれを用いた埋込磁石型モータ
WO2009116540A1 (ja) * 2008-03-18 2009-09-24 日東電工株式会社 モータ用永久磁石及びモータ用永久磁石の製造方法
WO2010150362A1 (ja) * 2009-06-24 2010-12-29 トヨタ自動車株式会社 焼結磁石とその製造方法

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207687A (ja) * 2014-04-22 2015-11-19 日東電工株式会社 永久磁石及び永久磁石の製造方法
JP2016032026A (ja) * 2014-07-29 2016-03-07 日東電工株式会社 永久磁石、永久磁石の製造方法、回転電機及び回転電機の製造方法
JP2016032027A (ja) * 2014-07-29 2016-03-07 日東電工株式会社 永久磁石、永久磁石の製造方法、回転電機及び回転電機の製造方法
JP2016042763A (ja) * 2014-08-18 2016-03-31 日東電工株式会社 回転電機用永久磁石、回転電機用永久磁石の製造方法、回転電機及び回転電機の製造方法
JP2016178816A (ja) * 2015-03-20 2016-10-06 トヨタ自動車株式会社 ロータ、電動モータ
US11017928B2 (en) 2016-09-08 2021-05-25 Tdk Corporation Magnet, magnet stack, and motor
JP2020511924A (ja) * 2017-03-22 2020-04-16 ホワイロット エスアエス 単位磁石を含む磁石構造を備えるロータと、同心巻線を備えるステータと、を有する電磁モータまたは発電機
JP7365695B2 (ja) 2017-03-22 2023-10-20 ホワイロット ブロックの形態の複数の単位磁石を含む磁石構造体
JP7307950B2 (ja) 2017-03-22 2023-07-13 ホワイロット 単位磁石を含む磁石構造を備えるロータと、同心巻線を備えるステータと、を有する電磁モータまたは発電機
JP2020515225A (ja) * 2017-03-22 2020-05-21 ホワイロット エスアエス パッドの形態の複数の単位磁石を含む磁石構造体
WO2018216805A1 (ja) * 2017-05-26 2018-11-29 日東電工株式会社 磁石の製造方法および磁石の着磁方法
US11623276B2 (en) 2017-05-26 2023-04-11 Nitto Denko Corporation Method for manufacturing magnet and method for magnetizing magnet
CN107256754A (zh) * 2017-05-31 2017-10-17 安徽大地熊新材料股份有限公司 一种内禀矫顽力三维分布的磁体及其制备方法
JP2021511766A (ja) * 2018-01-26 2021-05-06 ホワイロット 隣接する磁石間の接触領域の一部を形成することを目的とした凹部形状を有する単位磁石
JP7290871B2 (ja) 2018-01-26 2023-06-14 ホワイロット 隣接する磁石間の接触領域の一部を形成することを目的とした凹部形状を有する単位磁石
JP2020036518A (ja) * 2018-08-31 2020-03-05 日産自動車株式会社 可変磁束型回転電機
JP2019054724A (ja) * 2018-11-07 2019-04-04 日東電工株式会社 回転電機用永久磁石、回転電機用永久磁石の製造方法、回転電機及び回転電機の製造方法
WO2021081372A1 (en) * 2019-10-25 2021-04-29 Jacobi Motors LLC Variable-flux memory motor
JP2021078208A (ja) * 2019-11-07 2021-05-20 株式会社デンソー 回転電機
JP7331643B2 (ja) 2019-11-07 2023-08-23 株式会社デンソー 回転電機
JP2022012547A (ja) * 2020-07-01 2022-01-17 トヨタ自動車株式会社 回転機のロータおよびその製造方法
JP7338570B2 (ja) 2020-07-01 2023-09-05 トヨタ自動車株式会社 回転機のロータおよびその製造方法
KR20220040077A (ko) * 2020-09-23 2022-03-30 성림첨단산업(주) 전기차 구동용 모터의 성능 향상을 위한 적층분할형 희토류 마그넷의 제조방법
KR102428568B1 (ko) 2020-09-23 2022-08-03 성림첨단산업(주) 전기차 구동용 모터의 성능 향상을 위한 적층분할형 희토류 마그넷의 제조방법
WO2022149527A1 (ja) * 2021-01-07 2022-07-14 株式会社マグネイチャー 界磁子、並びに、回転子およびこれを備える回転電機
US11657939B2 (en) 2021-03-09 2023-05-23 Fuji Electric Co., Ltd. Magnetic field generator, method for manufacturing magnetic field generator, and linear motor using magnetic field generator

Also Published As

Publication number Publication date
TW201401728A (zh) 2014-01-01
CN104335455A (zh) 2015-02-04
WO2013176116A1 (ja) 2013-11-28

Similar Documents

Publication Publication Date Title
WO2013176116A1 (ja) 永久磁石モータ、永久磁石モータの製造方法及び永久磁石
JP2015228762A (ja) 永久磁石、永久磁石の製造方法、回転電機及び回転電機の製造方法
JP5411956B2 (ja) 希土類永久磁石、希土類永久磁石の製造方法及び希土類永久磁石の製造装置
WO2013137134A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP2013219322A (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5969781B2 (ja) 希土類永久磁石の製造方法
WO2015182545A1 (ja) 回転電機用永久磁石、回転電機用永久磁石の製造方法、回転電機及び回転電機の製造方法
JP6556984B2 (ja) 永久磁石の製造方法及び回転電機の製造方法
WO2013137132A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5411957B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JPWO2015121917A1 (ja) Spmモータ用リング磁石、spmモータ用リング磁石の製造方法、spmモータ及びspmモータの製造方法
JP2016042763A (ja) 回転電機用永久磁石、回転電機用永久磁石の製造方法、回転電機及び回転電機の製造方法
WO2015121915A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP2016032023A (ja) 永久磁石、永久磁石の製造方法、回転電機及び回転電機の製造方法
JP6147505B2 (ja) 希土類永久磁石の製造方法
JP6408820B2 (ja) 回転電機用永久磁石、回転電機用永久磁石の製造方法、回転電機及び回転電機の製造方法
JP5969782B2 (ja) 希土類永久磁石の製造方法
WO2015121916A1 (ja) 永久磁石、永久磁石の製造方法、spmモータ及びspmモータの製造方法
JP6556983B2 (ja) 永久磁石の製造方法及び回転電機の製造方法
JP2015207687A (ja) 永久磁石及び永久磁石の製造方法
WO2015121914A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP2016032024A (ja) 永久磁石、永久磁石の製造方法、回転電機及び回転電機の製造方法
JP2016042531A (ja) 永久磁石、永久磁石の製造方法、回転電機及び回転電機の製造方法
JP5926989B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP2013191609A (ja) 希土類永久磁石及び希土類永久磁石の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150324