JP2013243005A - Inorganic electroluminescent element, method of manufacturing the same, and light-emitting device - Google Patents

Inorganic electroluminescent element, method of manufacturing the same, and light-emitting device Download PDF

Info

Publication number
JP2013243005A
JP2013243005A JP2012114517A JP2012114517A JP2013243005A JP 2013243005 A JP2013243005 A JP 2013243005A JP 2012114517 A JP2012114517 A JP 2012114517A JP 2012114517 A JP2012114517 A JP 2012114517A JP 2013243005 A JP2013243005 A JP 2013243005A
Authority
JP
Japan
Prior art keywords
phosphor
layer
inorganic
electrode
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012114517A
Other languages
Japanese (ja)
Other versions
JP5974219B2 (en
Inventor
Hiroshi Takashima
浩 高島
Toru Kyomen
徹 京免
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2012114517A priority Critical patent/JP5974219B2/en
Publication of JP2013243005A publication Critical patent/JP2013243005A/en
Application granted granted Critical
Publication of JP5974219B2 publication Critical patent/JP5974219B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inorganic EL element which achieves high-luminance light emission suitable for low-voltage driving at 100 V or lower, and to provide a light-emitting device which can be miniaturized.SOLUTION: The inorganic EL element comprises a first electrode layer, a phosphor laminated structure, and a second electrode layer. In the phosphor laminated structure, a phosphor layer of perovskite type oxide or the like and a transparent conductor layer are alternately laminated so as to sandwich the transparent conductor layer between the phosphor layers. The inorganic EL element of the present invention emits light with high luminance by applying a voltage to a first electrode and a second electrode on the upper and lower sides of the phosphor laminated structure.

Description

本発明は、低電圧で高輝度の発光特性を有する無機エレクトロルミネッセンス素子(以下、無機EL素子という。)及びその製造方法並びに該無機EL素子を使用した発光装置に関する。   The present invention relates to an inorganic electroluminescent element (hereinafter referred to as an inorganic EL element) having a low voltage and high luminance emission characteristic, a method for producing the same, and a light emitting device using the inorganic EL element.

近年、ディスプレイ等の表示装置や照明装置に使用する発光装置として、無機EL素子や有機EL素子に関する研究開発が進められている。   In recent years, research and development on inorganic EL elements and organic EL elements have been promoted as light-emitting devices used for display devices such as displays and lighting devices.

現在実用化されている無機EL素子には、ZnS等の硫化物蛍光体が使用されている。硫化物は空気中の水分や空気と反応して劣化する。このため、材料や素子の作製時、及び素子の完成後も、外気と触れない工夫が要求される欠点がある。   A sulfide phosphor such as ZnS is used in inorganic EL devices that are currently in practical use. Sulfides degrade by reacting with moisture and air in the air. For this reason, there is a drawback that a device that does not come into contact with the outside air is required at the time of manufacturing the material and the element and after the element is completed.

酸化物蛍光体は化学的に安定であり、酸化物ペロブスカイト構造の研究開発が行われている。本発明者らは、酸化物ペロブスカイト型蛍光体((Ca1-xSrx1-yPry)TiO3:0≦x≦1、0.001≦y≦0.2、典型的には、(Ca0.6Sr0.40.998Pr0.002TiO3)を用いて赤色に発光する無機EL素子を作製した(特許文献1参照)。この酸化物蛍光体は水分や空気中の酸素では劣化しない。このため、溶液塗布法や噴霧法などの安価で簡便な成膜プロセスにより大気中で作製することができる。また、素子の封止等も必要ない。 Oxide phosphors are chemically stable, and research and development of oxide perovskite structures are underway. The present inventors have disclosed an oxide perovskite phosphor ((Ca 1−x Sr x ) 1−y Pr y ) TiO 3 : 0 ≦ x ≦ 1, 0.001 ≦ y ≦ 0.2, typically , (Ca 0.6 Sr 0.4 ) 0.998 Pr 0.002 TiO 3 ) to produce an inorganic EL element that emits red light (see Patent Document 1). This oxide phosphor is not deteriorated by moisture or oxygen in the air. For this reason, it can be produced in the air by an inexpensive and simple film forming process such as a solution coating method or a spray method. Further, sealing of the element is not necessary.

現在、無機ELでは、駆動電圧が200V以上であるので、駆動用の電源回路が大型化するという問題がある。   At present, since the drive voltage of inorganic EL is 200 V or more, there is a problem that the drive power supply circuit is enlarged.

従来知られている無機EL素子には、例えば次のような無機薄膜EL素子がある(特許文献2、3参照)。特許文献2には、セラミックス基板上に第1の電極層、第1の絶縁層、発光層、第2の絶縁層及び第2の電極層の順で積層された無機薄膜EL素子が示され、第1の電極層と第2の電極層との間に交流電圧を印加したときに均一な発光が放射されることが、示されている。また、特許文献3には、ガラス基板上に透明導電層からなる電極層を設け、第1の絶縁層、無機発光層、第2の絶縁層及び背面電極層の順で積層された無機薄膜EL素子が示されている。   Examples of conventionally known inorganic EL elements include the following inorganic thin film EL elements (see Patent Documents 2 and 3). Patent Document 2 shows an inorganic thin film EL element in which a first electrode layer, a first insulating layer, a light emitting layer, a second insulating layer, and a second electrode layer are stacked in this order on a ceramic substrate. It has been shown that uniform light emission is emitted when an alternating voltage is applied between the first electrode layer and the second electrode layer. Patent Document 3 discloses an inorganic thin film EL in which an electrode layer made of a transparent conductive layer is provided on a glass substrate, and a first insulating layer, an inorganic light emitting layer, a second insulating layer, and a back electrode layer are stacked in this order. Elements are shown.

国際公開2009/104595号公報International Publication No. 2009/104595 特開2007−157501号公報JP 2007-157501 A 特開2006−134691号公報JP 2006-134691 A

従来の無機EL素子では、駆動電圧が高く、特に発光開始電圧が300V以上であり、高電圧を必要とした。例えば、300V以上の電圧で発光開始し350Vで輝度100cdm-2程度であった。そのため、駆動電源が大型化して、システム全体の小型化が不可能であるという問題があった。また、高輝度を得るためには、駆動電圧が高いこと(典型的駆動電圧は300V以上)が必要とされるので、低電圧駆動で高輝度で発光させることが困難であった。 A conventional inorganic EL element has a high driving voltage, particularly a light emission starting voltage of 300 V or more, and requires a high voltage. For example, light emission was started at a voltage of 300 V or higher, and the luminance was about 100 cdm −2 at 350 V. For this reason, there is a problem that the drive power source is increased in size and the entire system cannot be reduced in size. In order to obtain high luminance, it is necessary to have a high driving voltage (typical driving voltage is 300 V or more), so it is difficult to emit light with high luminance by low voltage driving.

本発明は、これらの問題を解決しようとするものであり、簡単な構造により、高輝度の無機薄膜EL素子を提供することを目的とする。また、無機薄膜により、低電圧駆動で高輝度なEL素子を提供することを目的とする。また、本発明の無機EL素子を用いた発光装置を提供することを目的とする。また、本発明の無機EL素子に適する製造方法を提供することを目的とする。   The present invention is intended to solve these problems, and an object of the present invention is to provide a high-intensity inorganic thin film EL element with a simple structure. It is another object of the present invention to provide an EL element that is driven at a low voltage and has high luminance by using an inorganic thin film. It is another object of the present invention to provide a light emitting device using the inorganic EL element of the present invention. Moreover, it aims at providing the manufacturing method suitable for the inorganic EL element of this invention.

本発明は、従来の無機薄膜EL素子の構造における発光層の無機蛍光体膜を、透明導電体層を無機蛍光体膜の間に挟む構造とすることにより、輝度を飛躍的に向上させたものである。本発明は、前記目的を達成するために、以下の特徴を有する。   In the present invention, the luminance of the inorganic phosphor film of the light emitting layer in the structure of the conventional inorganic thin film EL element is greatly improved by making the transparent conductor layer sandwiched between the inorganic phosphor films. It is. In order to achieve the above object, the present invention has the following features.

本発明は、第1の電極と、蛍光体積層構造と、第2の電極とを備える無機エレクトロルミネッセンス素子であって、前記蛍光体積層構造は、複数の無機蛍光体層が、少なくとも1層の透明導電体からなる中間層を介して積層されていることを特徴とする。また、前記無機蛍光体層がペロブスカイト型酸化物であることが好ましい。また、前記透明導電体が透明導電性酸化物であることが好ましい。本発明の無機エレクトロルミネッセンス素子は、前記蛍光体積層構造と前記第1の電極との間に、導電層を備えることもできる。また、本発明の発光装置は、本発明の無機エレクトロルミネッセンス素子を複数有することを特徴とする。   The present invention is an inorganic electroluminescent device comprising a first electrode, a phosphor laminate structure, and a second electrode, wherein the phosphor laminate structure comprises at least one inorganic phosphor layer. It is characterized by being laminated via an intermediate layer made of a transparent conductor. The inorganic phosphor layer is preferably a perovskite oxide. Moreover, it is preferable that the said transparent conductor is a transparent conductive oxide. The inorganic electroluminescent element of the present invention can also include a conductive layer between the phosphor laminate structure and the first electrode. The light-emitting device of the present invention is characterized by having a plurality of the inorganic electroluminescent elements of the present invention.

本発明は、本発明の無機エレクトロルミネッセンス素子の製造方法であって、前記蛍光体積層構造は、溶液塗布法により各層を成膜することを特徴とする。   This invention is a manufacturing method of the inorganic electroluminescent element of this invention, Comprising: The said fluorescent substance laminated structure forms each layer into a film by the solution coating method, It is characterized by the above-mentioned.

本発明によれば、複数の無機蛍光体層が、少なくとも1層の透明導電体からなる中間層を介して積層されている蛍光体積層構造としたことにより、輝度が飛躍的に向上した。従来は最大2cdm-2程度であったのに対して、本発明によれば、2cdm-2より高輝度で最高20cdm-2程度の高輝度が得られる。駆動電圧が20〜30V付近から発光し、駆動電圧30〜100Vで、約1〜16cdm-2の輝度が得られる。得られた最大輝度は、交流5kHz、45Vで16cdm-2であった。 According to the present invention, the luminance is dramatically improved by adopting a phosphor laminated structure in which a plurality of inorganic phosphor layers are laminated via an intermediate layer made of at least one transparent conductor. Whereas it was about the maximum 2Cdm -2 conventionally, according to the present invention, a high luminance of about up 20Cdm -2 can be obtained with high luminance than 2cdm -2. Light is emitted from a driving voltage of about 20 to 30 V, and a luminance of about 1 to 16 cdm −2 is obtained at a driving voltage of 30 to 100 V. The maximum luminance obtained was 16 cdm −2 at 5 kHz AC and 45V.

本発明のように、第1の電極と蛍光体積層構造との間に導電層を設けることにより、さらに輝度が向上した。駆動電圧が20〜30V付近から発光し、駆動電圧30〜100Vで、約5〜51cdm-2の輝度が得られる。第1電極との蛍光体積層構造との間に導電層を設けると、設けない場合に比べて、輝度を3〜4倍にできる。得られた最大輝度は、交流5kHz、43Vで51cdm-2であった。 As in the present invention, the luminance is further improved by providing a conductive layer between the first electrode and the phosphor laminate structure. The drive voltage is emitted from around 20-30V, and the brightness of about 5-51 cdm -2 is obtained at the drive voltage of 30-100V. If a conductive layer is provided between the first electrode and the phosphor laminate structure, the luminance can be increased by 3 to 4 times compared to the case where the conductive layer is not provided. The maximum luminance obtained was 51 cdm -2 at 5 kHz AC and 43 V.

本発明によれば、蛍光体積層構造の蛍光体としてペロブスカイト型酸化物を用いる場合は、化学的安定性に優れた蛍光体が得られる。また、蛍光体積層構造の透明導電体として酸化物を用いる場合は、化学的安定性に優れた蛍光体積層構造が得られる。   According to the present invention, when a perovskite oxide is used as a phosphor having a phosphor layered structure, a phosphor having excellent chemical stability can be obtained. Further, when an oxide is used as the transparent conductor having a phosphor laminate structure, a phosphor laminate structure having excellent chemical stability can be obtained.

本発明の発光装置は、100V以下の低電圧駆動により高輝度で発光するので、発光装置を小型化することができる。本発明の発光装置によれば、照明装置・光源・ディスプレイ等表示装置等のシステム全体の小型化に寄与することができる。   Since the light-emitting device of the present invention emits light with high luminance when driven at a low voltage of 100 V or less, the light-emitting device can be miniaturized. According to the light emitting device of the present invention, it is possible to contribute to downsizing of the entire system such as a lighting device, a light source, a display device such as a display.

本発明の無機EL素子は、その成膜方法が限定されないという利点がある。例えば溶液塗布法により大気中で作製することができるので、簡便な装置で成膜が可能であり、大面積化が実現できるので工業的に有用である。また、溶液塗布法を用いることにより積層する各層の組成制御が容易にできる。   The inorganic EL element of the present invention has an advantage that the film forming method is not limited. For example, since it can be produced in the atmosphere by a solution coating method, it is possible to form a film with a simple apparatus, and it is industrially useful because a large area can be realized. Moreover, composition control of each layer to be laminated can be easily performed by using a solution coating method.

本発明の基本構造を示す図。The figure which shows the basic structure of this invention. 実施例1の各層の透過スペクトルを示す図。A(太い実線)は石英ガラス板、B(点線)は石英ガラス板上に(Ca0.6Sr0.40.998Pr0.002TiO3を成膜した試料、C(破線)は石英ガラス板上にSn0.95Sb0.052を成膜した試料、D(細線)は石英ガラス板上にPtを成膜した試料を示す。FIG. 3 is a diagram showing a transmission spectrum of each layer of Example 1. A (thick solid line) is a quartz glass plate, B (dotted line) is a sample obtained by depositing (Ca 0.6 Sr 0.4 ) 0.998 Pr 0.002 TiO 3 on the quartz glass plate, and C (dashed line) is Sn 0.95 Sb on the quartz glass plate. A sample in which 0.05 O 2 is formed and D (thin line) indicates a sample in which Pt is formed on a quartz glass plate. 比較例の構造を示す図。The figure which shows the structure of a comparative example. 実施例1及び比較例のX線回折パターンを示す図。The figure which shows the X-ray-diffraction pattern of Example 1 and a comparative example. 実施例1のX線回折パターンの拡大図。2 is an enlarged view of an X-ray diffraction pattern of Example 1. FIG. 実施例1のEL素子の断面のTEM像。4 is a TEM image of a cross section of the EL element of Example 1. FIG. 実施例1のEL素子の励起・発光スペクトル。FIG. 3 is an excitation / emission spectrum of the EL device of Example 1. FIG. 実施例1のELスペクトル。The EL spectrum of Example 1. 実施例1のEL素子に交流電圧を印加したときの電流と輝度の電圧依存性を示す図。The figure which shows the voltage dependence of an electric current and a brightness | luminance when an alternating voltage is applied to the EL element of Example 1. FIG. 比較例の素子に交流電圧を印加したときの電流と輝度の電圧依存性を示す図。The figure which shows the voltage dependence of an electric current and a brightness | luminance when an alternating voltage is applied to the element of a comparative example. 実施例1のEL素子に交流電圧を印加したときの電流と輝度の周波数依存性を示す図。FIG. 4 is a diagram showing frequency dependence of current and luminance when an alternating voltage is applied to the EL element of Example 1. 実施例1のEL素子に直流電圧を印加したときの電流と輝度の電圧依存性を示す図。FIG. 6 is a diagram showing voltage dependency of current and luminance when a DC voltage is applied to the EL element of Example 1. 実施例2のEL素子の構造を示す図。FIG. 6 shows a structure of an EL element of Example 2. 実施例2のEL素子に交流電圧を印加したときの電流と輝度の電圧依存性を示す図。The figure which shows the voltage dependence of an electric current and a brightness | luminance when an alternating voltage is applied to the EL element of Example 2. FIG.

本発明の実施の形態について、以下説明する。本発明の基本構造について図1を参照して説明する。本発明の無機EL素子は、発光層となる蛍光体積層構造を、透明導電体層を無機蛍光体層の間に挟む構造としたものである。図1に示すように、透明導電体層(21、22)を無機蛍光体層(11、12、13)の間に中間層として設け、積層した構造である。図1に示す例は、蛍光体層11、透明導電体層21、蛍光体層12、透明導電体層22、蛍光体層13、のように積層した、2層の透明導電体層を介して3層の蛍光体層が積層された例である。このように、本発明の蛍光体積層構造は、透明導電体層を無機蛍光体層の間に挟み込んで交互に積層した構造である。1層の透明導電体層を介して2層の蛍光体層が積層された構造でもよい。透明導電体層が複数の蛍光体層の間に中間層として積層されていればよく、透明導電体層を3層以上多数、中間層として設けることができる。最多で100層程度までが好ましいと考えられる。積層数は蛍光体層と透明導電体層の透明度により、透明度が低下すると発光が透過できないことが原因となる。   Embodiments of the present invention will be described below. The basic structure of the present invention will be described with reference to FIG. In the inorganic EL element of the present invention, the phosphor laminated structure serving as the light emitting layer has a structure in which a transparent conductor layer is sandwiched between inorganic phosphor layers. As shown in FIG. 1, a transparent conductor layer (21, 22) is provided as an intermediate layer between the inorganic phosphor layers (11, 12, 13), and is laminated. In the example shown in FIG. 1, the phosphor layer 11, the transparent conductor layer 21, the phosphor layer 12, the transparent conductor layer 22, and the phosphor layer 13 are laminated through two transparent conductor layers. This is an example in which three phosphor layers are laminated. Thus, the phosphor laminated structure of the present invention is a structure in which the transparent conductor layers are sandwiched between the inorganic phosphor layers and alternately laminated. A structure in which two phosphor layers are laminated via one transparent conductor layer may be used. The transparent conductor layer only needs to be laminated as an intermediate layer between the plurality of phosphor layers, and a large number of three or more transparent conductor layers can be provided as the intermediate layer. A maximum of about 100 layers is considered preferable. The number of layers is caused by the fact that the light emission cannot be transmitted when the transparency is lowered due to the transparency of the phosphor layer and the transparent conductor layer.

本発明の無機EL素子は、蛍光体積層構造の上下に第1の電極と第2の電極を設けて、これらの電極により電圧を印加することにより、高輝度で発光する。図1の基板5が第1の電極の例であり、上部の電極3が第2の電極の例である。本発明の蛍光体積層構造を有する無機EL素子には、従来知られているEL素子の電極構造などを採用することができる。   The inorganic EL element of the present invention emits light with high luminance by providing a first electrode and a second electrode above and below the phosphor layered structure and applying a voltage through these electrodes. The substrate 5 in FIG. 1 is an example of the first electrode, and the upper electrode 3 is an example of the second electrode. For the inorganic EL element having the phosphor layered structure of the present invention, a conventionally known electrode structure of an EL element can be employed.

本発明の蛍光体層には、酸化物蛍光体層を用いることができる。例えば、ペロブスカイト型酸化物蛍光体を用いることができ、Snペロブスカイト酸化物、Ca、Sr、Baで置換したASnO系ペロブスカイト酸化物、Srn+1Tin3n+1系ペロブスカイト酸化物、Pr置換(CaSrBa)TiO3、Pr置換CaTiO3が知られている。例えば、酸化物ペロブスカイト型蛍光体((Ca1-xSrx1-yPry)TiO3:0≦x≦1、0.001≦y≦0.2を用いるとよい。例えば、(Ca0.6Sr0.40.998Pr0.002TiO3である。 An oxide phosphor layer can be used for the phosphor layer of the present invention. For example, a perovskite oxide phosphor can be used, including Sn perovskite oxide, ASnO 3 perovskite oxide substituted with Ca, Sr, Ba, Sr n + 1 Ti n O 3n + 1 perovskite oxide, Pr Substituted (CaSrBa) TiO 3 and Pr-substituted CaTiO 3 are known. For example, an oxide perovskite phosphor ((Ca 1−x Sr x ) 1−y Pr y ) TiO 3 : 0 ≦ x ≦ 1, 0.001 ≦ y ≦ 0.2 may be used. For example, (Ca 0.6 Sr 0.4 ) 0.998 Pr 0.002 TiO 3 .

本発明の透明導電体層には、公知の透明電極に用いられている材料を用いることができ、酸化スズ系、酸化亜鉛系、酸化インジウム系の透明導電性酸化物を用いる。例えば、ITO(インジウムスズ酸化物)、ATO(Sn−Sb系酸化物)などが好ましい。ズズアンチモン系酸化物は、例えば、Sn1-zSbz2:0.01≦z≦0.2を用いた。 For the transparent conductor layer of the present invention, materials used for known transparent electrodes can be used, and tin oxide-based, zinc oxide-based, and indium oxide-based transparent conductive oxides are used. For example, ITO (indium tin oxide), ATO (Sn—Sb oxide), and the like are preferable. For example, Sn 1-z Sb z O 2 : 0.01 ≦ z ≦ 0.2 was used as the antimony oxide.

蛍光体層の厚みは、200nm〜300nmが好ましい。スピンコートによる場合は、蛍光体層を複数回コーティングして、その上に透明導電体層を設ける。透明導電体層の厚みは30nm〜50nmが好ましい。蛍光体積層構造の全体の厚みは、500nm〜1500nmが好ましい。蛍光体層の厚みと透明導電体層の厚みは、3:1〜5:1程度が好ましい。   The thickness of the phosphor layer is preferably 200 nm to 300 nm. In the case of spin coating, the phosphor layer is coated a plurality of times, and a transparent conductor layer is provided thereon. The thickness of the transparent conductor layer is preferably 30 nm to 50 nm. The total thickness of the phosphor laminate structure is preferably 500 nm to 1500 nm. The thickness of the phosphor layer and the thickness of the transparent conductor layer are preferably about 3: 1 to 5: 1.

第1の電極は、導電性基板を用いることができる。また、第1の電極は、非導電性基板の上に導電層を設けた構造としてもよい。導電性基板として、例えば、電気伝導性を持つNb0.1〜1%置換SrTiO3(001)単結晶研磨基板を用いることができる。また、金属基板やITO基板でもよい。 A conductive substrate can be used for the first electrode. The first electrode may have a structure in which a conductive layer is provided over a nonconductive substrate. As the conductive substrate, for example, an Nb 0.1-1% substituted SrTiO 3 (001) single crystal polished substrate having electrical conductivity can be used. Further, a metal substrate or an ITO substrate may be used.

第2の電極は、透明な導電層であることが好ましい。第2の電極としては、Pt、Au、Ti、Ni、Al等の金属を用いる。金属層であっても、20nm〜60nm厚で、薄いので、十分透明性を有している。また、ITO等の透明電極等を用いることもできる。   The second electrode is preferably a transparent conductive layer. As the second electrode, a metal such as Pt, Au, Ti, Ni, or Al is used. Even a metal layer is 20 nm to 60 nm thick and thin, and therefore has sufficient transparency. A transparent electrode such as ITO can also be used.

蛍光体積層構造及び電極を構成するいずれの材料も透明性を有するものを用いることが好ましい。   It is preferable to use a material having transparency as the material constituting the phosphor laminate structure and the electrode.

蛍光体積層構造と電極の間には、導電体層をさらに設けてもよい。この導電体層は、透明な金属層が好ましく、薄い金属層で設けることができる。Ptが好ましい。   A conductor layer may be further provided between the phosphor laminate structure and the electrode. The conductor layer is preferably a transparent metal layer, and can be provided as a thin metal layer. Pt is preferred.

本発明の無機EL素子は、従来から知られている無機蛍光体膜の製造方法と、従来から透明電極等の作製で行われている透明導電体膜の製造方法を、採用して製造することができる。無機蛍光体膜は、スピンコート法、エアロゾルデポジション法、PLD法(パルスレーザー堆積法)、蒸着、スパッタ法、CVD法等により成膜する。また、透明導電体膜は、スピンコート法、エアロゾルデポジション法、PLD法(パルスレーザー堆積法)、蒸着、スパッタ法、CVD法等により成膜する。スピンコート法などの溶液塗布法は、簡便な装置で成膜が可能であること、大面積化が容易であることなどの利点を持ち、組成制御が容易であるので、本発明の作製方法として好ましい。   The inorganic EL element of the present invention is manufactured by adopting a conventionally known method for manufacturing an inorganic phosphor film and a method for manufacturing a transparent conductor film that has been conventionally performed for manufacturing a transparent electrode or the like. Can do. The inorganic phosphor film is formed by spin coating, aerosol deposition, PLD (pulse laser deposition), vapor deposition, sputtering, CVD, or the like. The transparent conductor film is formed by spin coating, aerosol deposition, PLD (pulse laser deposition), vapor deposition, sputtering, CVD, or the like. A solution coating method such as a spin coating method has advantages such as that a film can be formed with a simple apparatus and that the area can be easily increased, and the composition control is easy. preferable.

(実施例1)
本実施例について、図1を参照して説明する。本実施例の無機EL素子は、図1に示すように、基板5、蛍光体層11、透明導電体層21、蛍光体層12、透明導電体層22、蛍光体層13、電極3からなる。
Example 1
This embodiment will be described with reference to FIG. As shown in FIG. 1, the inorganic EL element of this example includes a substrate 5, a phosphor layer 11, a transparent conductor layer 21, a phosphor layer 12, a transparent conductor layer 22, a phosphor layer 13, and an electrode 3. .

(1.蛍光体前駆体溶液の作製)
金属イオンのモル比が、(Ca0.6Sr0.40.998Pr0.002TiO3となるよう、Tiの重量モル濃度が0.20mmol/g、アセチルアセトンがTiと等モル、溶媒が酢酸−水混合溶液(溶液全量に対して水10〜15wt.%)、全量が約20〜30gの溶液を以下の手順で作製した。
(1. Preparation of phosphor precursor solution)
The molar ratio of metal ions is (Ca 0.6 Sr 0.4 ) 0.998 Pr 0.002 TiO 3 , the weight molar concentration of Ti is 0.20 mmol / g, acetylacetone is equimolar with Ti, and the solvent is an acetic acid-water mixed solution (solution A solution of 10 to 15 wt.% Of water with respect to the total amount and a total amount of about 20 to 30 g was prepared by the following procedure.

まず、100mlのビーカーに酢酸約15g、イオン交換水4.5g、アセチルアセトン6mmolを加え、よく撹拌した後、チタニウムテトライソプロポキシドTi(OC37)4約6mmolを添加した。この溶液を約105℃で20分撹拌した。Ti濃度から計算される必要量のCaCO3、SrCO3、Pr(CHCOO)3・xH2Oを、この溶液に入れ、約90℃で30分撹拌して溶解した。最後に、Tiの重量モル濃度が0.20mmol/gになるように酢酸を加えた。得られた溶液は黄色で少し懸濁したコロイド状の溶液だった。 First, about 15 g of acetic acid, 4.5 g of ion-exchanged water, and 6 mmol of acetylacetone were added to a 100 ml beaker, and after stirring well, about 6 mmol of titanium tetraisopropoxide Ti (OC 3 H 7 ) 4 was added. The solution was stirred at about 105 ° C. for 20 minutes. Necessary amounts of CaCO 3 , SrCO 3 , and Pr (CH 3 COO) 3 .xH 2 O calculated from the Ti concentration were placed in this solution and dissolved by stirring at about 90 ° C. for 30 minutes. Finally, acetic acid was added so that the weight molar concentration of Ti was 0.20 mmol / g. The resulting solution was a yellow, slightly suspended colloidal solution.

(2.透明導電体前駆体溶液の作製)
SnとSbのモル比が95:5、Snの重量モル濃度が0.15mmol/g、溶媒が酢酸の溶液を以下の手順で作製した。
(2. Preparation of transparent conductor precursor solution)
A solution in which the molar ratio of Sn and Sb was 95: 5, the molar concentration of Sn was 0.15 mmol / g, and the solvent was acetic acid was prepared by the following procedure.

SnCl2・2H2Oをイオン交換水に溶解し、この水溶液にNH4HCO3の水溶液を加えて沈殿を得た。この沈殿物を吸引ろ過で取り出し、室温で乾燥した。次に、この沈殿物を約105℃の酢酸中で撹拌して溶解し、Sn酢酸溶液を得た。次にSb23を酢酸に溶解し、Sb酢酸溶液を作製した。最後に、SnとSbのモル比が95:5になるように、Sn酢酸溶液とSb酢酸溶液を混合し、Sn0.95Sb0.052透明導電体前駆体溶液を作製した。 SnCl 2 .2H 2 O was dissolved in ion-exchanged water, and an aqueous solution of NH 4 HCO 3 was added to the aqueous solution to obtain a precipitate. The precipitate was removed by suction filtration and dried at room temperature. Next, this precipitate was dissolved by stirring in acetic acid at about 105 ° C. to obtain a Sn acetic acid solution. Next, Sb 2 O 3 was dissolved in acetic acid to prepare an Sb acetic acid solution. Finally, an Sn acetic acid solution and an Sb acetic acid solution were mixed so that the molar ratio of Sn and Sb was 95: 5 to prepare an Sn 0.95 Sb 0.05 O 2 transparent conductor precursor solution.

(3.成膜)
10mm×10mmの1mol%NbドープSrTiO3単結晶基板5(フルウチ化学、表面(100)面、抵抗率0.02Ωcm)上に、蛍光体層11、透明導電体層21、蛍光体層12、透明導電体層22、蛍光体層13の順で次のように成膜した。成膜は、スピンコート法(回転数2500rpm、回転時間15s)で行った。蛍光体層は4回コート、その上の透明導電体層は1回コート、さらにその上の蛍光体層は4回コート、その上に透明導電体層は1回コート、さらにその上の蛍光体層は4回コートした。図1では、4回コートした層であることを模式的に点線の層で示す。
(3. Film formation)
On a 10 mol × 10 mm 1 mol% Nb-doped SrTiO 3 single crystal substrate 5 (Furuuchi Chemical, surface (100) plane, resistivity 0.02 Ωcm), phosphor layer 11, transparent conductor layer 21, phosphor layer 12, transparent The conductor layer 22 and the phosphor layer 13 were formed in the following order. Film formation was performed by a spin coating method (rotation speed 2500 rpm, rotation time 15 s). The phosphor layer is coated four times, the transparent conductor layer thereon is coated once, the phosphor layer is further coated four times, the transparent conductor layer is coated once thereon, and the phosphor thereon The layer was coated 4 times. In FIG. 1, the layer coated four times is schematically shown by a dotted line layer.

成膜の前に、基板(NbドープSrTiO3単結晶)を700℃の電気炉で10分焼成し、表面の有機物を除去した。基板を700℃から室温へ取り出し2分冷却した。蛍光体または透明導電体の前駆体溶液を基板上に滴下し、スピンコート法(回転数2500rpm、回転時間15s)により成膜した。これを700℃の電気炉へ入れ10分焼成した。この冷却・スピンコート・焼成を、上記の成膜で指定の回数(本実施例では14回)繰り返した後、900℃の電気炉に入れ10分アニールし、室温へ取り出した。 Prior to film formation, the substrate (Nb-doped SrTiO 3 single crystal) was baked in an electric furnace at 700 ° C. for 10 minutes to remove organic substances on the surface. The substrate was taken out from 700 ° C. to room temperature and cooled for 2 minutes. A precursor solution of a phosphor or a transparent conductor was dropped on the substrate, and a film was formed by spin coating (rotation speed 2500 rpm, rotation time 15 s). This was put into an electric furnace at 700 ° C. and baked for 10 minutes. This cooling / spin coating / firing was repeated a specified number of times (14 times in the present example) in the above film formation, then placed in an electric furnace at 900 ° C., annealed for 10 minutes, and taken out to room temperature.

(4.電極の作製)
作製された蛍光体積層構造の一番上の表面を酸化セリウムの研磨剤で軽く研磨した。研磨後、研磨剤は水と中性洗剤で洗い流した。NbドープSrTiO3は焼成により表面の導電性が失われたので、素子の角をヤスリで削った。蛍光体積層構造の一番上の表面に、2mm×5mm、厚さ数nm程度のPt電極を、2カ所スパッタリングにより室温で30秒間成膜し、上部電極3とした。Pt上部電極とNbドープSrTiO3下部電極(ヤスリで削った角)に銅線を銀ペーストで接続し、EL素子とした。
(4. Production of electrodes)
The top surface of the prepared phosphor laminate structure was lightly polished with a cerium oxide abrasive. After polishing, the abrasive was washed away with water and a neutral detergent. Since the conductivity of the surface of Nb-doped SrTiO 3 was lost by firing, the corners of the device were scraped with a file. A Pt electrode having a thickness of about 2 mm × 5 mm and a thickness of several nanometers was formed on the uppermost surface of the phosphor multilayer structure by sputtering at two locations at room temperature for 30 seconds to form the upper electrode 3. A copper wire was connected to the Pt upper electrode and the Nb-doped SrTiO 3 lower electrode (the corner cut with a file) with a silver paste to obtain an EL element.

(5.各層の特性)
本実施例のEL素子を構成する各層の透過率及び抵抗率について調べた。透過率を調査するため、(Ca0.6Sr0.40.998Pr0.002TiO3薄膜を石英ガラス板上に成膜(2回コート)した試料を作製した。透過率と電気抵抗率を調査するため、Sn0.95Sb0.052薄膜を石英ガラス板上へ成膜(2回コート)した試料を作製した。Pt薄膜の透過率と電気抵抗率を測定するため、石英ガラス板上にPt薄膜を室温で30秒間スパッタリングにより成膜した試料を作製した。
(5. Characteristics of each layer)
The transmittance and resistivity of each layer constituting the EL element of this example were examined. In order to investigate the transmittance, a sample in which a (Ca 0.6 Sr 0.4 ) 0.998 Pr 0.002 TiO 3 thin film was formed (coated twice) on a quartz glass plate was prepared. In order to investigate the transmittance and electrical resistivity, a sample in which a Sn 0.95 Sb 0.05 O 2 thin film was formed (coated twice) on a quartz glass plate was prepared. In order to measure the transmittance and electrical resistivity of the Pt thin film, a sample was prepared by sputtering a Pt thin film on a quartz glass plate at room temperature for 30 seconds.

石英ガラス板上に(Ca0.6Sr0.40.998Pr0.002TiO3を成膜した試料、Sn0.95Sb0.052を成膜した試料、Ptを成膜した試料は、いずれの試料も、各試料の下に置いた文字が透過して見え、透過性を有していた。 A sample in which (Ca 0.6 Sr 0.4 ) 0.998 Pr 0.002 TiO 3 is formed on a quartz glass plate, a sample in which Sn 0.95 Sb 0.05 O 2 is formed, and a sample in which Pt is formed are all samples. The character placed underneath was seen through and was transparent.

図2に、これらの試料と基板に使用した石英ガラス板の透過スペクトル(縦軸は透過率%、横軸は波長200〜800nm)を示す。A(太い実線)は石英ガラス板、B(点線)は石英ガラス板上に(Ca0.6Sr0.40.998Pr0.002TiO3を成膜した試料、C(破線)は石英ガラス板上にSn0.95Sb0.052を成膜した試料、D(細線)は石英ガラス板上にPtを成膜した試料である。石英ガラス板上に成膜した薄膜の透過スペクトルは、分光光度計により測定した。(Ca0.6Sr0.40.998Pr0.002TiO3膜及びSn0.95Sb0.052膜はともに可視光領域で80〜90%の透過率を示した。Pt薄膜は測定した全波長領域で70%程度の透過率を示した。 FIG. 2 shows the transmission spectra of the quartz glass plates used for these samples and the substrate (the vertical axis represents transmittance% and the horizontal axis represents wavelengths of 200 to 800 nm). A (thick solid line) is a quartz glass plate, B (dotted line) is a sample obtained by depositing (Ca 0.6 Sr 0.4 ) 0.998 Pr 0.002 TiO 3 on the quartz glass plate, and C (dashed line) is Sn 0.95 Sb on the quartz glass plate. A sample in which 0.05 O 2 is formed, D (thin line) is a sample in which Pt is formed on a quartz glass plate. The transmission spectrum of the thin film formed on the quartz glass plate was measured with a spectrophotometer. Both (Ca 0.6 Sr 0.4 ) 0.998 Pr 0.002 TiO 3 film and Sn 0.95 Sb 0.05 O 2 film showed a transmittance of 80 to 90% in the visible light region. The Pt thin film showed a transmittance of about 70% in the entire wavelength region measured.

電気抵抗率については、石英ガラス板上に成膜したSn0.95Sb0.052薄膜のシート抵抗は706Ω/□であった。薄膜のシート抵抗は4端子法により測定した。膜厚(約40nm)から、電気抵抗率は6×10-3Ωcm程度になる。石英ガラス板上に成膜したPt薄膜のシート抵抗は243Ω/□であった。 Regarding the electrical resistivity, the sheet resistance of the Sn 0.95 Sb 0.05 O 2 thin film formed on the quartz glass plate was 706 Ω / □. The sheet resistance of the thin film was measured by the 4-terminal method. From the film thickness (about 40 nm), the electrical resistivity is about 6 × 10 −3 Ωcm. The sheet resistance of the Pt thin film formed on the quartz glass plate was 243Ω / □.

(比較例)
実施例1の構造の透明導電体層を除いて、その他は実施例1と同様の組成の及び製造方法により、比較例を作製した。図3に、比較例のEL素子の構造を示す。10mm×10mmの1mol%NbドープSrTiO単結晶基板5(フルウチ化学、表面(100)面、抵抗率0.02Ωcm)上に、蛍光体層10を成膜した。成膜は、実施例1と同様のスピンコート法で行った。蛍光体層は12回コートで作製した。図では、12回コートした層であることを模式的に点線の層で示す。実施例1と同様、Pt電極を上部電極3として作製した。
(Comparative example)
Except for the transparent conductor layer having the structure of Example 1, other than that, a comparative example was produced by the same composition and production method as in Example 1. FIG. 3 shows the structure of the EL element of the comparative example. The phosphor layer 10 was formed on a 10 mol × 10 mm 1 mol% Nb-doped SrTiO 3 single crystal substrate 5 (Furuuchi Chemical, surface (100) plane, resistivity 0.02 Ωcm). The film formation was performed by the same spin coat method as in Example 1. The phosphor layer was prepared by coating 12 times. In the figure, the layer coated 12 times is schematically shown by a dotted line layer. Similar to Example 1, a Pt electrode was prepared as the upper electrode 3.

(6.実施例1及び比較例のEL素子のX線回折)
図4に、実施例1及び比較例の積層構造のX線回折パターンを示す。実線は実施例1の素子を示し、点線は比較例の素子を示す。いずれの場合においても、46〜47°付近にNbドープSrTiO3の200回折ピークが観測され、その高角側に(Ca0.6Sr0.40.998Pr0.002TiO3の200(擬立方晶で指数付け)回折ピークが観測された。また、32.8°付近に(Ca0.6Sr0.40.998Pr0.002TiO3の110回折ピークが観測された。粉末試料では110回折ピークの強度は200回折ピークの強度よりも大きいが、実施例1及び比較例の場合では200回折ピークのほうが圧倒的に大きい。このことから、実施例1及び比較例の場合は、ともにNbドープSrTiO3単結晶と同じ方向に配向して成長している(Ca0.6Sr0.40.998Pr0.002TiO3結晶粒子の割合が大きいことがわかる。110回折ピークと200回折ピークの強度比は、実施例1と比較例とであまり差がない。なお、結晶構造は粉末X線回折装置(CuKα線)で調査した。フォトルミネッセンス(PL)特性は分光蛍光光度計により調べた。
(6. X-ray diffraction of EL elements of Example 1 and Comparative Example)
In FIG. 4, the X-ray-diffraction pattern of the laminated structure of Example 1 and a comparative example is shown. A solid line shows the element of Example 1, and a dotted line shows the element of a comparative example. In any case, a 200 diffraction peak of Nb-doped SrTiO 3 is observed in the vicinity of 46 to 47 °, and (Ca 0.6 Sr 0.4 ) 0.998 Pr 0.002 TiO 3 of 200 (pseudocubic indexed) diffraction is observed on the high angle side. A peak was observed. In addition, a 110 diffraction peak of (Ca 0.6 Sr 0.4 ) 0.998 Pr 0.002 TiO 3 was observed around 32.8 °. In the powder sample, the intensity of the 110 diffraction peak is larger than the intensity of the 200 diffraction peak, but in the case of Example 1 and the comparative example, the 200 diffraction peak is overwhelmingly larger. From this, in the case of Example 1 and the comparative example, the ratio of both (Ca 0.6 Sr 0.4 ) 0.998 Pr 0.002 TiO 3 crystal grains growing in the same direction as the Nb-doped SrTiO 3 single crystal is large. I understand. The intensity ratio of the 110 diffraction peak and the 200 diffraction peak is not much different between Example 1 and the comparative example. The crystal structure was examined with a powder X-ray diffractometer (CuKα ray). Photoluminescence (PL) characteristics were examined with a spectrofluorometer.

図5に、実施例1のX線回折パターンの拡大図を示す。(Ca0.6Sr0.40.998Pr0.002TiO3の110回折ピークに加えて、34°付近にブロードな肩が観測された。これは、Sn0.95Sb0.052結晶の101回折ピークの位置に一致する。この2つの回折ピークを仮定し、最小二乗フィッティングを行った結果が、図の実線、点線(Ca0.6Sr0.40.998Pr0.002TiO3の110回折ピーク)、破線(Sn0.95Sb0.052結晶の101回折ピーク)である。なお、○印は実測値である。フィッティングにより実験結果がよく再現された。フィッティングで得られた線幅とシェラーの式から、(Ca0.6Sr0.40.998Pr0.002TiO3の結晶の粒径は48nm、Sn0.95Sb0.052結晶の粒径は6nmと見積もられた。 In FIG. 5, the enlarged view of the X-ray-diffraction pattern of Example 1 is shown. In addition to the 110 diffraction peak of (Ca 0.6 Sr 0.4 ) 0.998 Pr 0.002 TiO 3 , a broad shoulder was observed near 34 °. This coincides with the position of the 101 diffraction peak of the Sn 0.95 Sb 0.05 O 2 crystal. Assuming these two diffraction peaks, the results of the least square fitting were as follows: solid line, dotted line (Ca 0.6 Sr 0.4 ) 0.998 Pr 0.002 TiO 3 110 diffraction peak), broken line (Sn 0.95 Sb 0.05 O 2 crystal) 101 diffraction peak). The circles are actually measured values. The experimental results were well reproduced by fitting. From the line width obtained by the fitting and the Scherrer equation, the grain size of the (Ca 0.6 Sr 0.4 ) 0.998 Pr 0.002 TiO 3 crystal was estimated to be 48 nm, and the grain size of the Sn 0.95 Sb 0.05 O 2 crystal was estimated to be 6 nm.

(7.実施例1のTEM像)
図6に、実施例1の素子の断面のTEM像を示す。この試料の表面はCeO2で研磨せず、Pt電極も成膜しなかった状態で調べた。(Ca0.6Sr0.40.998Pr0.002TiO3層とSn0.95Sb0.052層の界面が明瞭に観察された。3つある(Ca0.6Sr0.40.998Pr0.002TiO3層はそれぞれ4回コートで作製されているが、最上面の(Ca0.6Sr0.40.998Pr0.002TiO3層ではコート間の界面は明瞭には観察されなかった。一方、基板に近い2つの(Ca0.6Sr0.40.998Pr0.002TiO3層内にはそれぞれ3つの界面が観察され、その界面の所々に空洞(白い箇所)が観察された。(Ca0.6Sr0.40.998Pr0.002TiO3層は直径50nm程度の粒子から形成され、Sn0.95Sb0.052層は直径数nm程度の粒子から形成されている。この結果はX線回折の結果によく対応している。
(7. TEM image of Example 1)
FIG. 6 shows a TEM image of a cross section of the element of Example 1. The surface of this sample was examined in a state where it was not polished with CeO 2 and a Pt electrode was not formed. The interface between (Ca 0.6 Sr 0.4 ) 0.998 Pr 0.002 TiO 3 layer and Sn 0.95 Sb 0.05 O 2 layer was clearly observed. The three (Ca 0.6 Sr 0.4 ) 0.998 Pr 0.002 TiO 3 layers are each formed by coating four times, but the uppermost (Ca 0.6 Sr 0.4 ) 0.998 Pr 0.002 TiO 3 layer has a clear interface between the coats. Was not observed. On the other hand, three interfaces were observed in each of the two (Ca 0.6 Sr 0.4 ) 0.998 Pr 0.002 TiO 3 layers close to the substrate, and cavities (white spots) were observed at various portions of the interface. The (Ca 0.6 Sr 0.4 ) 0.998 Pr 0.002 TiO 3 layer is formed from particles having a diameter of about 50 nm, and the Sn 0.95 Sb 0.05 O 2 layer is formed from particles having a diameter of about several nm. This result corresponds well to the result of X-ray diffraction.

実施例1で作製したSn0.95Sb0.052層の厚さは約40nmであり、(Ca0.6Sr0.40.998Pr0.002TiO3層の厚さは230〜250nm(1回コートあたり約60nm)であった。 The thickness of the Sn 0.95 Sb 0.05 O 2 layer prepared in Example 1 is about 40 nm, and the thickness of the (Ca 0.6 Sr 0.4 ) 0.998 Pr 0.002 TiO 3 layer is 230 to 250 nm (about 60 nm per coating). there were.

(8.実施例1のフォトルミネッセンス特性)
暗所で実施例1のEL素子に波長340nmの紫外線を照射すると、全面で赤色発光が確認できた。また、周辺より弱いものの、2カ所のPt電極上でも赤色発光が確認された。このことは紫外線、赤色光ともにPt電極を透過していることを示し、透過率の測定結果と矛盾しないことがわかる。
(8. Photoluminescence characteristics of Example 1)
When the EL device of Example 1 was irradiated with UV light having a wavelength of 340 nm in a dark place, red light emission was confirmed on the entire surface. Moreover, although it was weaker than the surroundings, red light emission was also confirmed on two Pt electrodes. This indicates that both ultraviolet light and red light are transmitted through the Pt electrode, and it can be seen that there is no contradiction with the transmittance measurement results.

図7に、実施例1のEL素子の励起・発光スペクトルを示す。発光スペクトルは340nmで励起し、励起スペクトルは613nmでモニターした。図中、実線は励起スペクトル(λem=613nm)、点線は発光スペクトル(λex=340nm)を示す。発光スペクトルは613nm付近と700nm付近に発光ピークを示した。いずれのピークも粉末試料で観測されており、Pr3+のf−f遷移による発光である。励起スペクトルは340nm付近と300nm付近にピークを示した。340nmのピークは粉末試料でも観測されており、母体結晶((Ca0.6Sr0.4)TiO3)のバンド間遷移に基づくものである。 FIG. 7 shows the excitation / emission spectrum of the EL device of Example 1. The emission spectrum was excited at 340 nm and the excitation spectrum was monitored at 613 nm. In the figure, the solid line shows the excitation spectrum (λem = 613 nm), and the dotted line shows the emission spectrum (λex = 340 nm). The emission spectrum showed emission peaks around 613 nm and 700 nm. All of the peaks are observed in the powder sample, and light emission is caused by the ff transition of Pr3 +. The excitation spectrum showed peaks around 340 nm and 300 nm. A peak at 340 nm is also observed in the powder sample, and is based on the interband transition of the host crystal ((Ca 0.6 Sr 0.4 ) TiO 3 ).

(9.実施例1及び比較例のエレクトロルミネッセンス特性)
実施例1の片方のPt電極に、5kHz、40Vの交流電圧を印加しているときの発光の様子を調べた。電圧を印加したPt電極全体が赤色発光していることが確認された。図8に、この発光スペクトルを示す。図8のELスペクトルは、波長612nm付近にピークを示し、図7のフォトルミネッセンスのスペクトルとほぼ同じ形状の発光スペクトルが観測された。
(9. Electroluminescence characteristics of Example 1 and Comparative Example)
The state of light emission when an alternating voltage of 5 kHz and 40 V was applied to one Pt electrode of Example 1 was examined. It was confirmed that the entire Pt electrode to which voltage was applied emitted red light. FIG. 8 shows this emission spectrum. The EL spectrum of FIG. 8 showed a peak near the wavelength of 612 nm, and an emission spectrum having substantially the same shape as the photoluminescence spectrum of FIG. 7 was observed.

図9に、実施例1に1kHzと5kHzの交流電圧を印加したときの電流および輝度の電圧依存性を示す。横軸は電圧(V)、左縦軸は電流(mA)、右縦軸は輝度(0〜20cdm-2)を示す。丸印は1kHzの場合を、四角印は5kHzの場合を示し、黒色は電流を、白色は輝度を示す。1kHzと5kHzの両方の場合で、20〜30V付近から目視で発光が確認されはじめた。40Vでの輝度は、1kHzのとき4.0cdm-2、5kHzのとき9.7cdm-2であった。最大輝度は、5kHz、50Vで、16.5cdm-2であった。IV曲線は下に凸の形状であり、発光が開始する電圧付近以上では電圧の上昇とともに傾きが増大している。駆動電圧30〜100Vで、約1〜17cdm-2の輝度が得られる。なお、EL特性は、作製したEL素子と1kΩの抵抗を直列に接続した回路に、ファンクションジェネレーターの正弦波交流電圧をバイポーラ増幅器で増幅して印加し、EL素子端子間の交流電圧(実効値)と素子に流れる交流電流(実効値)をデジタルマルチメーターで、輝度を輝度計で同時に測定した。 FIG. 9 shows voltage dependency of current and luminance when an alternating voltage of 1 kHz and 5 kHz is applied to Example 1. The horizontal axis represents voltage (V), the left vertical axis represents current (mA), and the right vertical axis represents luminance (0 to 20 cdm −2 ). A circle mark indicates a case of 1 kHz, a square mark indicates a case of 5 kHz, black indicates a current, and white indicates a luminance. In both cases of 1 kHz and 5 kHz, light emission began to be confirmed visually from around 20-30 V. Brightness at 40V, when the 1kHz 4.0cdm -2, was 9.7Cdm -2 at 5 kHz. The maximum luminance was 16.5 cdm −2 at 5 kHz and 50V. The IV curve has a downwardly convex shape, and the slope increases as the voltage increases near the voltage at which light emission starts. With a driving voltage of 30 to 100 V, a luminance of about 1 to 17 cdm −2 can be obtained. Note that the EL characteristics are obtained by amplifying the function generator sine wave AC voltage with a bipolar amplifier to a circuit in which the manufactured EL element and a 1 kΩ resistor are connected in series, and the AC voltage between the EL element terminals (effective value). The alternating current (effective value) flowing through the element was measured simultaneously with a digital multimeter and the luminance was measured with a luminance meter.

図10に、比較例の素子に1kHzと5kHzの交流電圧を印加したときの電流および輝度の電圧依存性を示す。縦横の軸は図9と同様である。丸印は1kHzの場合を、四角印は5kHzの場合を示し、黒色は電流を、白色は輝度を示す。1kHzと5kHzの両方の場合とも、55〜60Vでも目視で発光は観測されず、輝度は感度(0.01cdm-2)以下であった。IV曲線は上に凸の形状をしており、電圧の上昇とともに傾きが減少している。 FIG. 10 shows voltage dependency of current and luminance when an alternating voltage of 1 kHz and 5 kHz is applied to the element of the comparative example. The vertical and horizontal axes are the same as those in FIG. A circle mark indicates a case of 1 kHz, a square mark indicates a case of 5 kHz, black indicates a current, and white indicates a luminance. In both cases of 1 kHz and 5 kHz, no luminescence was observed visually even at 55 to 60 V, and the luminance was less than sensitivity (0.01 cdm −2 ). The IV curve has an upwardly convex shape, and the slope decreases as the voltage increases.

図11に、実施例1に40Vの交流電圧を印加したときの輝度および電流の周波数依存性を示す。横軸は周波数(kHz)、左縦軸は電流(mA)、右縦軸は輝度(cdm-2)を示す。黒色は電流を、白色は輝度を示す。周波数が増大すると、電流・輝度ともに増大している。周波数が1〜8kHzで輝度約1〜9.5cdm-2であった。最大輝度は、8kHzで9.5cdm-2であった。 FIG. 11 shows the frequency dependence of luminance and current when an AC voltage of 40 V is applied to Example 1. The horizontal axis represents frequency (kHz), the left vertical axis represents current (mA), and the right vertical axis represents luminance (cdm -2 ). Black indicates current and white indicates luminance. As the frequency increases, both current and brightness increase. The frequency was 1 to 8 kHz and the luminance was about 1 to 9.5 cdm −2 . The maximum luminance was 9.5 cdm −2 at 8 kHz.

図12に、実施例1に直流電圧を印加したときの電流と輝度の電圧依存性を示す。ここではPt電極をグランドとした。横軸は電圧(V)、左縦軸は電流(mA)、右縦軸は輝度(cdm-2)を示す。黒色は電流を、白色は輝度を示す。電圧をマイナス側に上げていくと、−20V付近から急激に電流が流れ始め、同時に発光が観測され始めた。しかし、その輝度は0.09から0.14cdm-2程度で交流電圧印加時よりも1〜2桁小さかった。一方、電圧をプラス側に上げていくと、30V付近から徐々に電流が増大し始めたが、値はマイナス側に比べ桁違いに小さく、発光は観測されなかった。 FIG. 12 shows the voltage dependence of current and luminance when a DC voltage is applied to Example 1. Here, the Pt electrode is the ground. The horizontal axis represents voltage (V), the left vertical axis represents current (mA), and the right vertical axis represents luminance (cdm −2 ). Black indicates current and white indicates luminance. As the voltage was increased to the negative side, current began to flow rapidly from around -20 V, and light emission began to be observed at the same time. However, the luminance was about 0.09 to 0.14 cdm −2, which was 1-2 orders of magnitude smaller than when the AC voltage was applied. On the other hand, when the voltage was increased to the plus side, the current started to increase gradually from around 30 V, but the value was much smaller than the minus side, and no light emission was observed.

以上の実施例1と比較例との比較から、本発明のように、蛍光体層を透明導電体層の中間層を介して交互に複数層を積層することにより、透明導電体層からなる中間層を有さない場合に比べて、30〜100V程度の低電圧(交流電圧)で、1〜17cdm-2程度の高輝度な発光を得られることがわかる。導電体層を蛍光体層の間に挿入することにより輝度の飛躍的な向上が得られたのは、透明導電体層により二重ショットキー接合が形成され、EL発光するのに十分な大きさの電界を接合界面に形成できるとともに、電子を蓄積するコンデンサとして働くためと考えられる。 From the comparison between the above Example 1 and the comparative example, as shown in the present invention, the phosphor layer is formed by alternately laminating a plurality of layers through the intermediate layer of the transparent conductor layer, so that the intermediate layer composed of the transparent conductor layer is formed. It can be seen that light emission with a high luminance of about 1 to 17 cdm −2 can be obtained at a low voltage (AC voltage) of about 30 to 100 V, compared with the case where no layer is provided. The dramatic improvement in luminance was achieved by inserting the conductor layer between the phosphor layers because the transparent conductor layer formed a double Schottky junction and was large enough to emit EL light. This is thought to be because the electric field can be formed at the junction interface, and it acts as a capacitor for storing electrons.

なお、図においては50V程度までの結果が示されているのみであるが、50V以上〜100Vにおいて、同様に高輝度の発光をすることが考えられる。   Although only the results up to about 50V are shown in the figure, it is conceivable that light emission with high luminance is similarly performed at 50V to 100V.

(実施例2)
本実施例について、図13を参照して説明する。本実施例の無機EL素子は、実施例1の構造に、さらに基板と蛍光体層の間に導電膜を設けた例である。図13に示すように、基板5、金属導電膜4、蛍光体層11、透明導電体層21、蛍光体層12、透明導電体層22、蛍光体層13、電極3からなる。本実施例は、金属導電膜4以外は、実施例1と同様の組成の及び製造方法により作製した。10mm×10mmの1mol%NbドープSrTiO3単結晶基板5上に600℃で10分間白金(金属導電膜4)をスパッタし(膜厚100〜200nm)、その上に、実施例1と同様に、蛍光体層11、透明導電体層21、蛍光体層12、透明導電体層22、蛍光体層13の順で成膜して無機EL素子を作製した。成膜は実施例1と同様にスピンコート法で行った。各層の成膜において、冷却・スピンコート・焼成を実施例1と同様に行った。積層された構造の表面に実施例1と同様に電極を形成して無機EL素子を作製した。
(Example 2)
This embodiment will be described with reference to FIG. The inorganic EL element of this example is an example in which a conductive film is further provided between the substrate and the phosphor layer in the structure of Example 1. As shown in FIG. 13, it includes a substrate 5, a metal conductive film 4, a phosphor layer 11, a transparent conductor layer 21, a phosphor layer 12, a transparent conductor layer 22, a phosphor layer 13, and an electrode 3. This example was produced by the same composition and manufacturing method as in Example 1 except for the metal conductive film 4. Platinum (metal conductive film 4) was sputtered on a 10 mm × 10 mm 1 mol% Nb-doped SrTiO 3 single crystal substrate 5 at 600 ° C. for 10 minutes (film thickness 100 to 200 nm). The phosphor layer 11, the transparent conductor layer 21, the phosphor layer 12, the transparent conductor layer 22, and the phosphor layer 13 were formed in this order to produce an inorganic EL element. Film formation was performed by spin coating as in Example 1. In the formation of each layer, cooling, spin coating, and firing were performed in the same manner as in Example 1. An electrode was formed on the surface of the laminated structure in the same manner as in Example 1 to produce an inorganic EL element.

図14に、実施例2のEL素子に1kHzと5kHzの交流電圧を印加したときの電流および輝度の電圧依存性を示す。横軸は電圧(V)、左縦軸は電流(mA)、右縦軸は輝度(0〜100cdm-2)を示す。丸印は1kHzの場合を、四角印は5kHzの場合を示し、黒色は電流を、白色は輝度を示す。実施例1と同様に、1kHzと5kHzの両方の場合で、20〜30V付近から目視で発光が確認されはじめた。40Vでの輝度は、1kHzのとき12cdm-2、5kHzのとき35cdm-2であり、実施例1の素子の3〜4倍であった。最大輝度は5kHz、43Vで51cdm-2であった。また、実施例1の素子に比べてわずかに電流が減少した。 FIG. 14 shows voltage dependency of current and luminance when an alternating voltage of 1 kHz and 5 kHz is applied to the EL element of Example 2. The horizontal axis represents voltage (V), the left vertical axis represents current (mA), and the right vertical axis represents luminance (0 to 100 cdm −2 ). A circle mark indicates a case of 1 kHz, a square mark indicates a case of 5 kHz, black indicates a current, and white indicates a luminance. As in Example 1, light emission began to be confirmed visually from around 20 to 30 V in both cases of 1 kHz and 5 kHz. Brightness at 40V, when the 1kHz 12cdm -2, a 35Cdm -2 at 5 kHz, was 3 to 4 times of the device of Example 1. The maximum luminance was 51 cdm -2 at 5 kHz and 43V. Further, the current slightly decreased as compared with the device of Example 1.

本実施例のように、下部電極となる導電性基板と、蛍光積層体構造の最下部の蛍光体層との間に、金属導電膜等の導電層を設けることにより、輝度をさらに向上させることができ、電流を減少させることができる。実施例2における導電層はPt金属に限らず他の導電性金属でもよい。これは、Pt金属等により基板側に向かう光が反射されることによること、または導電層と蛍光体層との間にショットキー接合が形成されることによると考えられる。   As in this example, the luminance is further improved by providing a conductive layer such as a metal conductive film between the conductive substrate serving as the lower electrode and the lowermost fluorescent layer of the fluorescent laminate structure. And the current can be reduced. The conductive layer in Example 2 is not limited to Pt metal but may be other conductive metal. This is considered to be due to the reflection of light toward the substrate by Pt metal or the like, or the formation of a Schottky junction between the conductive layer and the phosphor layer.

(実施例3)
実施例1の構造において、透明導電体層21、22として、ITO(インジウムスズ酸化物)を用い、他の材料及び製法は、実施例1と同様に作製した。ITOはスピンコート法で成膜した。実施例1と同様の特性が得られた。
(Example 3)
In the structure of Example 1, ITO (indium tin oxide) was used as the transparent conductor layers 21 and 22, and other materials and manufacturing methods were produced in the same manner as in Example 1. ITO was formed by spin coating. The same characteristics as in Example 1 were obtained.

(実施例4)
実施例2の構造において、透明導電体層21、22として、ITO(インジウムスズ酸化物)を用い、他の材料及び製法は、実施例2と同様に作製した。ITOはスピンコート法で成膜した。実施例2と同様の特性が得られた。
Example 4
In the structure of Example 2, ITO (indium tin oxide) was used as the transparent conductor layers 21 and 22, and other materials and manufacturing methods were produced in the same manner as in Example 2. ITO was formed by spin coating. The same characteristics as in Example 2 were obtained.

以上の各実施例では、蛍光体層として(Ca,Sr,Pr)TiO3という組成の例で説明したが、他の蛍光体層を用いても同様の効果がある。特に酸化物蛍光体層であれば化学的に安定であり、ペロブスカイト型酸化物蛍光体であればより好ましい。また、実施例は赤色であったが、その他の色でも同様の効果がある。 In each of the embodiments described above, the example of the composition of (Ca, Sr, Pr) TiO 3 was used as the phosphor layer, but the same effect can be obtained by using other phosphor layers. In particular, an oxide phosphor layer is chemically stable, and a perovskite oxide phosphor is more preferable. Further, although the example was red, other colors have the same effect.

本発明の蛍光体積層構造の中間層として用いる透明導電体層は、Sn1-zSbz2を実施例で使用したが、透明であり、導電体の層を成膜できるものであれば、同様の効果がある。 As the transparent conductor layer used as the intermediate layer of the phosphor laminate structure of the present invention, Sn 1-z Sb z O 2 was used in the examples. However, as long as it is transparent and can form a conductor layer. Have the same effect.

本発明の蛍光体積層構造の積層数は、実施例においては、蛍光体層が3層の例であるが、3層に限らず複数層であればよい。積層数が増加すると、高い印加電圧が必要となり駆動電源が大型となる。さらに積層数の増加によって、上部層の結晶性の低下によって発光が弱くなることが考えられる。100層程度まで積層可能である。蛍光体層が、2層〜5層が好ましい。   In the embodiment, the number of layers of the phosphor laminated structure of the present invention is an example of three phosphor layers. However, the number of phosphor layers is not limited to three but may be plural. As the number of layers increases, a high applied voltage is required and the drive power supply becomes large. Furthermore, it is conceivable that light emission becomes weak due to a decrease in crystallinity of the upper layer due to an increase in the number of layers. It can be stacked up to about 100 layers. The phosphor layer is preferably 2 to 5 layers.

上記実施例で示した例は、発明を理解しやすくするために記載したものであり、この形態に限定されるものではない。   The examples shown in the above embodiment are described for easy understanding of the invention, and are not limited to this embodiment.

本発明の無機EL素子は、100V以下の低電圧駆動で高輝度のEL特性を有し、化学的安定性にも優れ、小型化が可能であるので、照明装置・各種光源・ディスプレイ等に利用できる。   The inorganic EL element of the present invention has high luminance EL characteristics driven at a low voltage of 100 V or less, is excellent in chemical stability, and can be miniaturized, so it is used for lighting devices, various light sources, displays, etc. it can.

3 電極
4 金属導電膜
5 基板(下部電極)
10、11、12、13 蛍光体層
21、22 透明導電体層
3 Electrode 4 Metal conductive film 5 Substrate (lower electrode)
10, 11, 12, 13 Phosphor layer 21, 22 Transparent conductor layer

Claims (6)

第1の電極と、蛍光体積層構造と、第2の電極とを備える無機エレクトロルミネッセンス素子であって、
前記蛍光体積層構造は、複数の無機蛍光体層が、少なくとも1層の透明導電体からなる中間層を介して積層されていることを特徴とする無機エレクトロルミネッセンス素子。
An inorganic electroluminescence device comprising a first electrode, a phosphor laminate structure, and a second electrode,
The phosphor laminate structure is an inorganic electroluminescent element in which a plurality of inorganic phosphor layers are laminated via an intermediate layer made of at least one transparent conductor.
前記無機蛍光体層がペロブスカイト型酸化物であることを特徴とする請求項1記載の無機エレクトロルミネッセンス素子。   2. The inorganic electroluminescent device according to claim 1, wherein the inorganic phosphor layer is a perovskite oxide. 前記透明導電体が透明導電性酸化物であることを特徴とする請求項1記載の無機エレクトロルミネッセンス素子。   2. The inorganic electroluminescent device according to claim 1, wherein the transparent conductor is a transparent conductive oxide. 前記蛍光体積層構造と前記第1の電極との間に、導電層を備えることを特徴とする請求項1記載の無機エレクトロルミネッセンス素子。   The inorganic electroluminescent element according to claim 1, further comprising a conductive layer between the phosphor laminated structure and the first electrode. 請求項1乃至4のいずれか1項記載の無機エレクトロルミネッセンス素子を複数有することを特徴とする発光装置。   A light emitting device comprising a plurality of the inorganic electroluminescence elements according to claim 1. 前記蛍光体積層構造は、溶液塗布法により各層を成膜することを特徴とする請求項1記載の無機エレクトロルミネッセンス素子の製造方法。   2. The method of manufacturing an inorganic electroluminescent element according to claim 1, wherein each layer of the phosphor laminated structure is formed by a solution coating method.
JP2012114517A 2012-05-18 2012-05-18 INORGANIC ELECTROLUMINESCENCE ELEMENT, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE Expired - Fee Related JP5974219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012114517A JP5974219B2 (en) 2012-05-18 2012-05-18 INORGANIC ELECTROLUMINESCENCE ELEMENT, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012114517A JP5974219B2 (en) 2012-05-18 2012-05-18 INORGANIC ELECTROLUMINESCENCE ELEMENT, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE

Publications (2)

Publication Number Publication Date
JP2013243005A true JP2013243005A (en) 2013-12-05
JP5974219B2 JP5974219B2 (en) 2016-08-23

Family

ID=49843706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012114517A Expired - Fee Related JP5974219B2 (en) 2012-05-18 2012-05-18 INORGANIC ELECTROLUMINESCENCE ELEMENT, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE

Country Status (1)

Country Link
JP (1) JP5974219B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183176A (en) * 2018-01-02 2018-06-19 电子科技大学 A kind of lamination perovskite light emitting diode and preparation method thereof
CN112670423A (en) * 2020-12-21 2021-04-16 南京大学 Perovskite light emitting diode capable of emitting white light, preparation method thereof and light emitting device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329489A (en) * 1986-07-21 1988-02-08 オリンパス光学工業株式会社 Thin film el device
JPH06223971A (en) * 1993-01-28 1994-08-12 Komatsu Ltd Manufacture of thin film el element
JPH1069979A (en) * 1996-05-22 1998-03-10 Jiyu Hiyon Ri Manufacture of alternating current powder electroluminescent element and element structure
JP2004234942A (en) * 2003-01-29 2004-08-19 Yodogawa Steel Works Ltd Manufacturing method of inorganic el element
US20040183434A1 (en) * 2003-03-21 2004-09-23 Yeh Yao Tsung Electroluminescent element with double-sided luminous surface and process for fabricating the same
JP2005302508A (en) * 2004-04-12 2005-10-27 Fuji Photo Film Co Ltd Transparent conductive sheet and electroluminescent element using it
JP2009016297A (en) * 2007-07-09 2009-01-22 Dic Corp Inorganic electroluminescent panel
JP2011258416A (en) * 2010-06-09 2011-12-22 National Institute Of Advanced Industrial & Technology Perovskite type oxide thin film el element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329489A (en) * 1986-07-21 1988-02-08 オリンパス光学工業株式会社 Thin film el device
JPH06223971A (en) * 1993-01-28 1994-08-12 Komatsu Ltd Manufacture of thin film el element
JPH1069979A (en) * 1996-05-22 1998-03-10 Jiyu Hiyon Ri Manufacture of alternating current powder electroluminescent element and element structure
JP2004234942A (en) * 2003-01-29 2004-08-19 Yodogawa Steel Works Ltd Manufacturing method of inorganic el element
US20040183434A1 (en) * 2003-03-21 2004-09-23 Yeh Yao Tsung Electroluminescent element with double-sided luminous surface and process for fabricating the same
JP2005302508A (en) * 2004-04-12 2005-10-27 Fuji Photo Film Co Ltd Transparent conductive sheet and electroluminescent element using it
JP2009016297A (en) * 2007-07-09 2009-01-22 Dic Corp Inorganic electroluminescent panel
JP2011258416A (en) * 2010-06-09 2011-12-22 National Institute Of Advanced Industrial & Technology Perovskite type oxide thin film el element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183176A (en) * 2018-01-02 2018-06-19 电子科技大学 A kind of lamination perovskite light emitting diode and preparation method thereof
CN112670423A (en) * 2020-12-21 2021-04-16 南京大学 Perovskite light emitting diode capable of emitting white light, preparation method thereof and light emitting device

Also Published As

Publication number Publication date
JP5974219B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
JP5093694B2 (en) Oxide perovskite thin film EL device
JP4867055B2 (en) Dispersive electroluminescence device
JPH1097895A (en) Organic electroluminescent element having charge transport layer
US8466615B2 (en) EL functional film and EL element
JPWO2007139033A1 (en) Surface-emitting electroluminescent device
CN1178558C (en) Thin-film electroluminescent element and method for mfg. same
JP5974219B2 (en) INORGANIC ELECTROLUMINESCENCE ELEMENT, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE
JP4943440B2 (en) Light emitting element and display device
JP2007299606A (en) Distributed type electroluminescence element
JP4910192B2 (en) Oxide electroluminescent device
JP2003249373A (en) Electroluminescence element and its manufacturing method
KR101588314B1 (en) Phosphor white light emitting device including phosphor and method for preparing phosphor
JPWO2008013171A1 (en) LIGHT EMITTING ELEMENT AND DISPLAY DEVICE
JP2011258416A (en) Perovskite type oxide thin film el element
JP4631316B2 (en) Electroluminescence element
JP4563539B2 (en) Composite substrate and EL device using the same
JP2004265866A (en) Electroluminescent element
JP2010215787A (en) Inorganic phosphor particle and distributed electroluminescence element using the same
JP5672940B2 (en) Phosphor powder for inorganic electroluminescence, method for producing the same, and dispersed inorganic electroluminescence element
JP3574829B2 (en) Inorganic electroluminescent material, inorganic electroluminescent device using the same, and image display device
JP4831939B2 (en) Luminescent thin film and light emitting element
JP3914067B2 (en) EL display
JP4722530B2 (en) Light emitting element
JPH01200593A (en) Manufacture of electroluminescence display element
JP2003249374A (en) Thin film el element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160428

R150 Certificate of patent or registration of utility model

Ref document number: 5974219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees