JP2013242334A - 反応過程データの異常判定支援方法及び自動分析装置 - Google Patents

反応過程データの異常判定支援方法及び自動分析装置 Download PDF

Info

Publication number
JP2013242334A
JP2013242334A JP2013168427A JP2013168427A JP2013242334A JP 2013242334 A JP2013242334 A JP 2013242334A JP 2013168427 A JP2013168427 A JP 2013168427A JP 2013168427 A JP2013168427 A JP 2013168427A JP 2013242334 A JP2013242334 A JP 2013242334A
Authority
JP
Japan
Prior art keywords
value
index
calculated
automatic analyzer
score
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013168427A
Other languages
English (en)
Other versions
JP5787948B2 (ja
Inventor
Satoshi Mitsuyama
訓 光山
Suketaka Fukuyama
祐貴 福山
Hidekatsu Takada
英克 高田
Hideyuki Ban
伴  秀行
Tomonori Mimura
智憲 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2013168427A priority Critical patent/JP5787948B2/ja
Publication of JP2013242334A publication Critical patent/JP2013242334A/ja
Application granted granted Critical
Publication of JP5787948B2 publication Critical patent/JP5787948B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

【課題】反応過程データ上に現れる特定の吸光度変化について分析し,異常検出支援を行う方法を提供する。
【解決手段】測光値の時系列データに予め設定した評価式を適用して,特定の波形の特徴量を示す指標を算出する指標算出手段(スコア算出部106)と,過去に算出された指標に対する対象データの指標の関係を示す値を算出する相対指標算出手段(パーセンタイル算出部110)と,指標算出手段により算出された値と相対指標算出手段により算出された値とを同時に表示する指標表示手段(判定結果出力部112)と,を有することを特徴とする。
【選択図】図1

Description

本発明は,試料中の目的成分の濃度や活性値を測定する技術及び自動分析装置,及び測定時のデータを利用するソフトウェア及びシステムに関する。
自動分析装置とは,試料と試薬をセル内に分注して化学反応を発生させ,この混合液の吸光度を測定し,化学反応による吸光度の時系列データ(以降,反応過程データと呼ぶ)をもとに,吸光度変化量や吸光度変化率を計算し,試料中の目的成分の濃度や活性値を算出する装置である。
このような自動分析装置は,主に医療機関において生化学検査や免疫検査等に用いられ,その検査結果は,医師が患者の病状把握や治療効果の判定,予後の経過観察など各種の診断を行う上で極めて重要な役割を担っている。このため,自動分析装置による分析では,測定が正しく行われたことを保証するための技術が重要となる。
この測定結果を保証するための一つの方法として,反応過程データを用いた異常検出がある。これは,反応過程データに現れる異常な吸光度変化の有無を判定することで,測定結果を保証する方法である。したがって,異常な吸光度変化が有ると判定された場合,測定時に装置,試料,試薬に何らかの異常が発生していたことになり,検査結果を保証することができないため,ユーザは分析を停止し,異常原因を究明して対策を行う必要がある。
この反応過程データ上の異常を検出する従来技術として,特開昭63−101734号公報に記載の「自動化学分析装置」には,試料及び試薬の化学反応状態に応じて吸光度が変化しない非測定用波長の反応過程データに対して,予め設定した閾値を超える変化のある測光点を検出し,測定波長について検出された測光点の吸光度変化を補正する技術が記載されている。
特開昭63−101734号公報
しかし,上記特開昭63−101734号公報に記載された技術では,反応過程データの全体的な異常の有無を判定しており,装置や試料や試薬などが原因で発生する様々な異常の種類を特定することが必ずしも容易でなかった。この場合,装置や試料や試薬の異常が疑われる場合に,検査技師が異常な反応過程データを一つずつ確認し,異常原因を推定しなければならず,手間と時間がかかる場合があった。
本発明の目的は,以上の課題に対処してなされたもので,反応過程データ上に現れる特定の吸光度変化について分析し,異常検出支援を行う方法を提供することにある。
上記課題は,測光値の時系列データに予め設定した評価式を適用して,特定の波形の特徴量を示す指標を算出する指標算出手段と,過去に算出された前記指標に対する対象データの前記指標の関係を示す値を算出する相対指標算出手段と,前記指標算出手段により算出された値と前記相対指標算出手段により算出された値とを同時に表示する指標表示手段と,を有することを特徴とする異常判定支援方法により,解決できる。
また,上記課題は,化学反応による測光値変化成分を推定する反応変化成分推定手段と,前記時系列データと前記反応変化成分推定手段で得られた推定値との差分を算出して,外乱による変化成分の時系列データを抽出する外乱変化成分抽出手段とを備え,前記指標算出手段は,前記外乱変化成分抽出手段で得られた時系列データを用いて処理することを特徴とする異常判定支援方法により,化学反応による吸光度変化の影響を著しく低減することができるため,判定結果の信頼性をより高めつつ,解決できる。
また,上記課題は,前記指標算出手段と,任意の期間における前記指標の度数分布を生成する度数分布生成手段と,着目した時点と,前記着目時点より過去の時点の2つの期間の度数分布を用いて,特定の異常発生頻度に関する期間の差異を提示する度数分布差提示手段と,を有することを特徴とする異常判定支援方法により,解決できる。
特定の吸光度変化の特徴量を算出する異常判定支援方法により,特定の異常の発見を容易にすることができる。装置の異常の発生箇所が限定でき,早期に装置異常を発見することができる。また,異常の発生頻度を提示する異常判定支援方法により,反応過程データを用いた装置の状態推定が可能となり,新たな部品を追加することなく装置保全の効率化,装置の信頼性向上を実現することが可能となる。
本発明の実施例である異常判定支援システムの構成図。 自動分析装置の構成図。 本発明の実施例における異常判定支援処理のフローチャート。 ステップ302実行時のスコア算出例。 スコアDBのデータテーブル例。 各測光点のスコアと算出したパーセンタイルの例。 ステップ310実行後の入出力端末の画面例。 ステップ314実行後の入出力端末の画面例。 外乱成分抽出処理を含む異常判定支援処理のフローチャート。 ステップ902実行後の反応過程データとその近似値の例。 ステップ903実行後の反応過程データの外乱成分の例。 本発明の第3の実施例の処理フローを示す図。
[実施例1]
図1に,本発明の第1の実施例である異常判定支援システム100の構成図を示す。
本システム100は,制御部101と,一次記憶装置102と,装置内反応過程データ抽出部103と,反応過程データ近似部104と,外乱成分抽出部105と,スコア算出部106と,スコアDB読み出し部107と,スコアDB108と,スコアDB書き出し部109と,パーセンタイル算出部110と,ヒストグラム作成部111と,判定結果出力部112と,で構成される。
本システム100はハードウェア構成として記載しているが,本システム100の機能はソフトウェアで構成されていてもよい。
本システム100は,ネットワーク120を介して,自動分析装置130と通信できる。また,本システム100は,ネットワーク120を介して,入出力端末140と通信できる。
ネットワーク120は,検査施設内のネットワークを前提としているが,検査部門を有する医療施設内のネットワークでもよい。
自動分析装置130は,反応過程データを反応過程データ記憶装置131に格納する。また,反応過程データ記憶装置131に保存された反応過程データは,ネットワーク120を介して,装置内反応過程データ抽出部103によって抽出できる。また,反応過程データ記憶装置131に保存された反応過程データは,ネットワーク120を介して,入出力端末140で閲覧できる。
自動分析装置130は,本システム100とは別のハードウェアとして記載しているが,本システム100の構成が自動分析装置130内に構成されていてもよい。
反応過程データ記憶装置131は,自動分析装置130内に構成されることを前提としているが,自動分析装置130と反応過程データ記憶装置131が別のハードウェアで構成されていてもよい。また,反応過程データ記憶装置131が,本システム100内に構成されていてもよい。また,反応過程データ記憶装置131が,入出力端末140内に構成されていてもよい。
入出力端末140は,キーボードやマウス等を入力機能,CRTディスプレイを出力機能とするパソコン等の情報機器を想定しているが,他の入出力機能を有していてもよい。また,入出力端末140は,Webブラウザ機能を搭載した端末でもよい。また,入出力端末140は,本システム100とは別のハードウェアとして記載しているが,入出力端末140の入出力機能が本システム100に搭載されていてもよい。また,入出力端末140は,自動分析装置130とは別のハードウェアとして記載しているが,入出力端末140の入出力機能が自動分析装置130に搭載されていてもよい。また,入出力端末140は,パーソナルコンピュータを前提としているが,臨床検査システムでもよい。
また,入出力端末140のユーザは,検査技師等,自動分析装置130の操作者を前提としているが,自動分析装置130のメンテナンス担当者等,他のユーザでもよい。
また,本システム100と,自動分析装置130と,入出力端末140は,1つのハードウェアとして構成されていてもよい。
図2に,自動分析装置130の構成図を示す。自動分析装置130は,光源ランプ201と,恒温槽202と,セル203と,試料分注ノズル204と,第1試薬分注ノズル205aと,第2試薬分注ノズル205bと,攪拌機構206と,分光器207と,検知器208と,増幅器209と,A/D変換器210と,で構成される。分析時には,光源ランプ201から発せられた白色光(全波長)が,恒温槽202に浸けられたセル203を透過して分光器207に入り,分析項目によって異なる特定の単波長成分が検知器208で受光され,増幅器209による増幅後,A/D変換器210でA/D変換され,吸光度として出力される。
セルは反応容器になっており,試料分注ノズル204から試料が,第1試薬分注ノズル205aから第1試薬が,第2試薬分注ノズル205bから第2試薬が,それぞれ分注され,攪拌機構206によって撹拌されることで,セル内部で化学反応が起こる。このときの化学反応について,経時的に吸光度を測定(測光)することで,試料中の分析物の濃度や活性値に換算することが可能となる。
以下に反応過程データ上に現れる特徴的な吸光度変化について説明する。
恒温槽202やセル203内の気泡や水あかや異物が光軸を遮ることにより反応過程データに異常が現れる場合がある。このとき発生する異常は,複数波長の反応過程データ上に一時的な吸光度の上昇(以降ジャンプと呼ぶ)として現れる。つまり,反応過程データ上にこのようなジャンプが頻繁に現れる場合は,恒温槽202やセル203内に水あかや異物が混入していることが疑われる。このため,反応過程データに現れる異常な吸光度変化のうち,ジャンプによる異常を検出することで,異常の発生原因を限定し,早期的な装置異常の発見,すなわち装置保全の効率化,装置の信頼性向上につなげることができる。
本発明の目的は,反応過程データよりジャンプの大きさを自動的に分析し,ジャンプの大きな点の検出やジャンプの発生頻度を提示することにある。
図3に,精度管理試料を測定して得られた反応過程データをもとにジャンプによる異常判定を支援する時のフローチャート300を示す。
まず,制御部101が装置内反応過程データ抽出部103を起動し,反応過程データ記憶装置131に記憶された反応過程データから,処理の対象となる波長λの反応過程データを抽出し,一次記憶装置102に格納するステップ301を実行する。
次に,制御部101がスコア算出部106を起動し,反応過程データよりジャンプの大きさを表すスコアを測光点ごとに算出するステップ302を実行する。スコアは式(1)によって算出される。式(1)は,時刻tの測光点におけるジャンプのスコアが,前後のt−1,t+1との吸光度差の小さい方で定義されることを示している。これにより,ジャンプの特徴である瞬間的な吸光度の上昇,即ち1点のみの吸光度の上昇を定量化することができる。
E(t)=min((A(t)−A(t−1)),(A(t)−A(t+1))) …(1)
図4に,反応過程データ上のジャンプに対して式(1)を適用する例400を示す。例400において,Atは時刻tにおける吸光度を表しており,時刻tで吸光度のジャンプが発生している。Atに対して式(1)を適用すると,AtとAt-1,At+1の差のうちの小さい方がスコアとして算出される。ジャンプが発生している場合,At-1,At+1から吸光度が大きく離れているため,スコアは周囲のスコアよりも大きくなる。
次に,制御部101がスコアDB書き出し部109を起動し,現在処理している試料で算出したスコアをDBに登録するステップ303を実行する。
図5にスコアDBの例500を示す。スコアDB108は,試料の種類を識別する試料IDを格納するフィールド501と,第1試薬と第2試薬の種類を識別する試薬IDを格納するフィールド502と,分析に使用した波長の種類を格納するフィールド503と,算出したスコアを測光点ごとに格納するフィールド504と,で構成されている。例500では,試薬「RA1」と「RA2」を使用して,波長「λ1」で分析した試料ID「A」で識別される試料について,測光点22のスコアが「−3.58」,測光点23のスコアが「1.33」,測光点24のスコアが「−5.45」であることを示している。
次に,制御部101が,処理すべき全ての波長に対して処理を行ったかを判断するステップ304を実行する。
ステップ304で処理すべき全ての波長に対して処理が終了していないと判断された場合,制御部101が,装置内反応過程データ抽出部103を起動し,処理が終了していない波長についてステップ302からステップ303までを実行する。これにより,気泡や水あか,異物によるジャンプが複数の波長において発生するという特徴を活用したデータ分析が可能となる。
以上のステップ301からステップ304により,対象となる測光点の吸光度が周囲の測光点の吸光度よりどの程度上昇しているかを定量化することが可能となる。
次に,スコアを利用して,ジャンプの相対的な大きさを算出することで,ジャンプ判定の支援を行う処理を説明する。
まず,制御部101が,ジャンプの相対的な大きさを算出する処理を実行するかを判断するステップ305を実行する。ジャンプの相対的な大きさを算出する処理を行わない場合は,ステップ306を実行する。ステップ306については後述する。
ジャンプの相対的な大きさを算出する処理を行う場合,制御部101がスコアDB読み出し部107を起動し,対象と同一の試料,試薬,波長のスコアをスコアDB108より読み出すステップ307を実行する。
次に,制御部101がパーセンタイル算出部110を起動し,読み出された波長の同一測光点のスコアに対する対象試料,測光点のスコアのパーセンタイルを算出するステップ308を実行する。これにより,対象となる試料の各測光点のジャンプの相対的な大きさが示される。
図6に,各測光点のスコアと算出したパーセンタイルの例600を示す。例600では,DBから読み出されたスコアが,測光点とスコアの大きさによってプロットされており,時刻tにおける対象となる試料のパーセンタイルが95%であることを示している。また,例600では,測光点によってスコアの分布の平均値や分散が異なっていることも確認できる。スコアの相対的な大きさを示すことにより,各測光点の分布の差異の影響を加味したジャンプ判定を支援することができる。
次に,制御部101が処理すべき全ての波長に対して処理を行ったかを判断するステップ309を実行する。これにより,ジャンプは全ての波長において発生するというジャンプの特徴を活用した反応過程データの分析が可能となる。処理すべき全ての波長に対して処理が終了していないと判断された場合,制御部101が対象となる波長に対してステップ307と308を実行する。
次に,制御部101が判定結果出力部112を起動し,各波長のスコアの絶対値とパーセンタイルを出力するステップ310を実行する。
図7に,スコアの順位の結果が出力されたときの入出力端末140の画面例を700に示す。画面例700では,スコアの絶対的な大きさを示すグラフ701にスコアの相対的な大きさを示すパーセンタイルが表示されている。これにより,検査技師はスコアの大きな点が他の試料の同一測光点の結果と比較して特異的に大きいかを知ることができる。一方で,スコアが他の測光点よりも比較的小さくても,他の試料の同一測光点の結果と比較して特異的に大きいかを確認することができる。よって,対象となる試料にジャンプが発生しているかを判断することを容易にすることができる。
以上の手順により,ジャンプの相対的な大きさを算出することで,ジャンプ判定の支援を行うことが可能となる。
次に,ステップ305でジャンプの大きさを相対的に示す処理を実行しないと判断した場合か,ステップ310を実行した後,ジャンプの発生頻度の経時変化を提示する処理を実行するかを判断するステップ306を実行する。ジャンプの発生頻度の経時変化を提示する処理を行わない場合は,本処理を終了する。
ジャンプの発生頻度の経時変化を提示する処理を実行する場合,制御部101がスコアDB読み出し部107を起動し,比較対象となる期間P1と現在の期間P2における同一の試料,試薬,波長のスコアを読み出すステップ311を実行する。例えば,期間P1,P2は○月○日〜△月△日の全試料,○時○分〜△時△分の全試料,試料ID○○〜△△の全試料などである。
次に,制御部101がヒストグラム作成部111を起動し,波長毎,測光点毎にスコアの大きさのヒストグラムを期間P1,P2それぞれで作成するステップ312を実行する。これにより,スコアの分布をそれぞれの期間で得ることができる。
次に,制御部101が処理すべき全ての波長に対して処理を行ったかを判断するステップ313を実行する。これにより,ジャンプは全ての波長において発生するというジャンプの特徴を活用した反応過程データの分析が可能となる。処理すべき全ての波長に対して処理が終了していないと判断された場合,制御部101が対象となる波長に対してステップ311と312を実行する。
次に,制御部が結果出力部112を起動し,期間P1,P2のヒストグラムを同時に出力するステップ314を実施する。
図8に,2つのヒストグラムが表示されたときの入出力端末140の画面例800を示す。画面例800では,期間P1のヒストグラム801と期間P2のヒストグラム802が,ピークの高さが揃うように表示されている。また,スコアの大きな測光点の頻度をわかりやすく表示するため,ヒストグラム801の一部を拡大したヒストグラム803,ヒストグラム802の一部を拡大したヒストグラム804が表示されており,頻度の差を一目で確認できるように,値域が適切に設定されている。これにより,スコア分布を期間P1,P2で比較することができ,ジャンプ発生頻度の多寡を確認することができる。発生頻度に差異が見られ,現在のジャンプが多い場合,恒温槽202やセル203内に水あかや異物が混入していることなどの装置の異常が考えられる。検査技師は大きなジャンプの発生頻度に大きな違いがないか,この画面により容易に判断できるので,適切なタイミングで装置のメンテナンスができる。
以上のステップ301から314により,反応過程データを分析することにより,ジャンプによる異常判定を支援することが可能となる。
本実施例では,ステップ312において,波長,測光点ごとにヒストグラムを作成するとしたが,波長や測光点で区別せずにヒストグラムを作成してもよい。これにより,一つのヒストグラムで対象となる期間の度数分布が確認することができ,検査技師のより簡潔にデータの確認をすることができる。
また,ステップ312において,スコアの大きさのヒストグラムを作成するとしたが,スコアの大きさではなく,スコアとスコアの平均値との差からヒストグラムを作成してもよい。これにより,波長や測光点毎の偏りの影響が除去され,波長や測光点で区別せずにヒストグラムを作成する場合により公平な比較を行うことができる。
また,ステップ314において,二つのヒストグラム801,802のピークの高さを揃えるとしたが,ある基準となるデータ区間の高さを揃えるとしてもよい。これにより,ピークが存在するデータ区間が異なる場合において,その差異を明確に可視化することができる。
[実施例2]
次に,本発明の第2の実施例について説明する。本実施例は反応過程データから,反応による吸光度変化成分を除去することにより外乱による吸光度変化成分を抽出する処理を加えたものである。その他の構成や処理については,第1の実施例と基本的に同じである。
図9に,精度管理試料を測定して得られた反応過程データをもとにジャンプの大きさを定量化する時のフローチャートを示す。
まず,前記ステップ301と同様のステップ901を実行する。
次に,制御部101が反応過程データ近似部104を起動し,反応過程データの近似関数を算出するステップ902を実行する。例えば,近似関数のモデルを式(2)とした場合,近似パラメータであるk,A0,A1が算出され,近似値が求められる。
A(t)=A0+A1(1−e-kt) …(2)
このとき,kは反応速度定数,A0は反応開始時の初期吸光度,A1は目的成分の濃度,を示す近似パラメータであり,tは時刻,A(t)は時刻tにおける測光点の吸光度,eは自然対数の底である。
図10にステップ902実行後の反応過程データの例1000を示す。例1000では,反応過程データについて曲線近似によるフィッティングが行われた様子を示している。
次に,制御部101が外乱成分抽出部105を起動し,反応過程データと近似値の差分を算出することにより,反応の外乱成分を抽出するステップ903を実行する。これにより,反応過程データの反応による吸光度変化成分が除去され,外乱による吸光度の変化が明確となり,高精度な異常判定を行うことが可能となる。また,反応過程データには波長ごとや測光点ごとの吸光度の分布に反応による大きな差異がみられる場合があるが,外乱成分を抽出することでその差異を低減することができる。これにより,波長間や測光点間のスコアの比較が可能となる。
図11にステップ903実行後の外乱成分データの例1100を示す。例1100では,反応による吸光度変化成分が除去され,外乱による吸光度の変化が除去されていることが示されている。
次に,制御部101がスコア算出部106を起動し,外乱成分データよりジャンプの大きさを表すスコアを測光点ごとに算出するステップ904を実行する。スコアは式(3)によって算出される。式(3)は,式(1)と同様の式であるが,吸光度の差分をスコアに用いるのではなく,ステップ903で算出した外乱成分を利用する。式(3)中,Dは外乱成分である。
E(t)=min((D(t)−D(t−1)),(D(t)−D(t+1))) …(3)
以上のステップ901からステップ904により,対象となる測光点の吸光度が周囲の測光点の吸光度よりどの程度上昇しているかを吸光度変化の外乱成分より定量化することが可能となる。
ステップ905からステップ916については前記ステップ303からステップ314と同様であるため,割愛する。
以上のステップ901から916により,反応過程データより抽出した外乱による吸光度変化成分を分析することにより,ジャンプによる異常判定の支援をより正確に実施することが可能となる。
本実施例では,ステップ902において,式(2)をモデルとした近似を行うとしたが,近似手法は多項式近似やテイラー展開など,どのようなモデルを使用してもよい。これにより,反応過程データによって適したモデル式を選択することができ,より高精度なスコア算出が可能となる。ただし,この場合導出するパラメータは異なる。
また,ステップ910において,波長毎,測光点毎にパーセンタイルを算出しているが,波長や測光点で区別を行わずにパーセンタイルを算出してもよい。また,算出されたパーセンタイルの波長ごとの平均値や中央値をその測光点における代表値としてもよい。これにより,一つの試料のパーセンタイルを示すグラフの数が減り,検査技師のデータ確認業務が容易となる。
また,ステップ914において,波長,測光点ごとにヒストグラムを作成するとしたが,波長や測光点で区別せずにヒストグラムを作成してもよい。これにより,一つのヒストグラムで対象となる期間の度数分布が確認することができ,検査技師のより簡潔にデータの確認をすることができる。
また,ステップ914において,スコアの大きさのヒストグラムを作成するとしたが,スコアの大きさではなく,スコアとスコアの平均値との差からヒストグラムを作成してもよい。これにより,波長や測光点毎の偏りの影響が除去され,波長や測光点で区別せずにヒストグラムを作成する場合により公平な比較を行うことができる。
また,ステップ916において,二つのヒストグラム801,802のピークの高さを揃えるとしたが,ある基準となるデータ区間の高さを揃えるとしてもよい。これにより,ピークが存在するデータ区間が異なる場合において,その差異が明確に可視化することができる。
[実施例3]
次に本発明の第3の実施例を説明する。装置の構成は実施例1,2と同じである。図12は,本実施例において,反応過程データの異常の有無を判定するための処理フローを示している。なお,実施例2の説明に用いた処理フローを説明する図9と同一の処理を行う処理ステップには,同じ記号を付している。
処理ステップ901〜912間での処理は実施例3における図9の同符合の処理ステップと同一であるため,説明は省略する。また,以下で述べる処理ステップ1210〜1230の処理は制御部で行う。処理ステップ907におけるパーセンタイル値を算出するかどうかの判断は,予めユーザが設定しておく。全項目に対してパーセンタイル算出を実行しても良いし,一部の項目についてのみ実行しても良い。また,全項目に対してパーセンタイルを実行させないという設定でも良い。
処理ステップ1210では異常を判定するための,判定用閾値を読み出す。判定用の閾値は予め設定された値が記憶されている。値はスコアDB108に記憶しても良いし,制御部101内に保持していても良い。また,値はユーザが変更可能な構成としても良い。閾値は検査項目や試薬ごとに異なる値を設定しても良い。また,各測光ポイントで同一の値を用いても良いし,測光ポイントごとに異なる値を用いても良い。
ステップ907においてパーセンタイルを実行すると判断された項目に対しては,判定用閾値として,過去のスコア値の分布に対してどの程度はずれたら異常と判定するかを相対値により容易に設定することが可能である。例えば,過去のデータの分布から上下1%のスコア値を異常と判定する場合には,パーセンタイル値に対し1%,99%という2種類の閾値を設定しておく。
処理ステップ1220では,処理ステップ904で算出したスコア値,または処理ステップ910で算出したパーセンタイル値と,処理ステップ1210で読み出した判定用閾値を比較することにより,異常の有無を判定する。例えば上記のように1%,99%の2種類の判定用閾値を設定した場合,処理ステップ910で算出したパーセンタイル値が1%以下,または99%以上であった場合に異常と判定し,それ以外の場合には正常と判定する。
処理ステップ1230では処理ステップ1220での判定結果を判定結果出力部112に出力する。
図12に示した処理フローでは,処理ステップ902,903において外乱成分の抽出処理を行っているが,第1の実施例と同様,外乱成分の抽出を行わない構成も可能である。この場合,時間を要する近似式の算出処理を行わないため,処理を高速化することが可能である。
以上述べた第3の実施例によれば,近傍の測光ポイントとの差分値に基くスコア値を用いることにより,反応過程データの一点のみが異常な変動を示すような異常データを高精度に検出可能である。また,スコア値から換算したパーセンタイル値を用いることにより,過去のデータからどの程度外れたデータを異常と判定するかを相対値により容易に設定することが可能である。また,近似式を用いて外乱成分を抽出することにより,より高精度に異常な変動成分を検出可能となる。
100 異常判定支援システム
101 制御部
102 一次記憶装置
103 装置内反応過程データ抽出部
104 反応過程データ近似部
105 外乱抽出部
106 スコア算出部
107 スコアDB読み出し部
108 スコアDB
109 スコアDB書き出し部
110 パーセンタイル算出部
111 ヒストグラム作成
113 判定結果出力部
120 検査施設内のネットワーク
130 自動分析装置
131 反応過程データ記憶装置
140 入出力端末
201 光源ランプ
202 恒温槽
203 セル
204 試料分注ノズル
205a 第1試薬分注ノズル
205b 第2試薬分注ノズル
206 攪拌機構
207 分光器
208 検知器
209 増幅器
210 A/D変換器

Claims (6)

  1. 試料と1種類以上の試薬を混合した混合液を複数の波長で光学的に測定した測光値の時系列データから,前記試料中の目的成分の濃度や活性値の測定を行う自動分析装置において,
    前記時系列データの各時点において1時点前のデータとの第1の差分値と,1時点後ろのデータとの第2の差分値を計算し,前記第1の差分値の絶対値と前記第2の差分値の絶対値を比較し,小さい方の値を指標とする指標算出手段を有し,
    該指標の値により異常の有無を判定することを特徴とする自動分析装置。
  2. 請求項1記載の自動分析装置において,過去に測定された試料に対し算出された複数の前記指標の分布の中心と,新たに測定された試料に対し算出された前記指標との相対的距離を計算する相対指標算出手段とを有することを特徴とする自動分析装置。
  3. 請求項1記載の自動分析装置において,前記時系列データを関数により近似し,該関数より近似される値を化学反応による測光値変化成分とする反応変化成分推定手段と,前記時系列データと前記反応変化成分推定手段で得られた推定値との差分を算出して,外乱による変化成分の時系列データを抽出する外乱変化成分抽出手段とを備えることを特徴とする自動分析装置。
  4. 請求項1記載の自動分析装置において,前記指標算出手段により算出された値と前記相対指標算出手段により算出された値とを同時に表示する指標表示手段とを有することを特徴とする自動分析装置。
  5. 請求項1記載の自動分析装置において,前記指標算出手段により算出された値に基き,異常の有無を判定する手段を有すること特徴とする自動分析装置。
  6. 請求項1記載の自動分析装置において,過去に測定された試料に対し算出された複数の前記指標の分布の中心と,新たに測定された試料に対し算出された前記指標との相対的距離を計算する相対指標算出手段と,該相対指標に基き異常の有無を判定する手段とを有することを特徴とする自動分析装置。
JP2013168427A 2008-05-30 2013-08-14 反応過程データの異常判定支援方法及び自動分析装置 Active JP5787948B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013168427A JP5787948B2 (ja) 2008-05-30 2013-08-14 反応過程データの異常判定支援方法及び自動分析装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008141861 2008-05-30
JP2008141861 2008-05-30
JP2013168427A JP5787948B2 (ja) 2008-05-30 2013-08-14 反応過程データの異常判定支援方法及び自動分析装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009094057A Division JP2010008402A (ja) 2008-05-30 2009-04-08 反応過程データの異常判定支援方法及び自動分析装置

Publications (2)

Publication Number Publication Date
JP2013242334A true JP2013242334A (ja) 2013-12-05
JP5787948B2 JP5787948B2 (ja) 2015-09-30

Family

ID=49843314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013168427A Active JP5787948B2 (ja) 2008-05-30 2013-08-14 反応過程データの異常判定支援方法及び自動分析装置

Country Status (1)

Country Link
JP (1) JP5787948B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112005097A (zh) * 2018-04-16 2020-11-27 株式会社岛津制作所 吸光度检测器及液相色谱仪

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155835A (en) * 1980-05-02 1981-12-02 Olympus Optical Co Ltd Component analyzing method
JPS59142424A (ja) * 1983-02-03 1984-08-15 Mitsubishi Electric Corp 異常検出装置
JPS63101734A (ja) * 1986-10-18 1988-05-06 Toshiba Corp 自動化学分析装置
JPH08106992A (ja) * 1994-03-24 1996-04-23 Hitachi Ltd プラズマ処理方法およびその装置
JPH1062271A (ja) * 1996-08-23 1998-03-06 Toshiba Corp 鉄道車両の機器温度監視装置
JP2000039400A (ja) * 1998-07-21 2000-02-08 Hitachi Ltd 自動分析装置
JP2000221195A (ja) * 1999-02-03 2000-08-11 Toshiba Iyo System Engineering Kk プロゾーン判定方法、それを格納した記憶媒体およびそれを用いた自動分析装置
JP2003247937A (ja) * 2002-02-22 2003-09-05 Horiba Ltd 溶液濃度計および濃度測定方法
JP2004347385A (ja) * 2003-05-21 2004-12-09 Hitachi Ltd 異常検出システム及び異常検出方法
JP2005127757A (ja) * 2003-10-22 2005-05-19 Hitachi High-Technologies Corp 自動分析装置
JP2005249783A (ja) * 2004-02-23 2005-09-15 Ortho-Clinical Diagnostics Inc キュベットを介する多数の測定による分析物の決定
JP2006023214A (ja) * 2004-07-09 2006-01-26 Hitachi High-Technologies Corp 測定反応過程の異常の有無判定方法,該方法を実行可能な自動分析装置及び該方法のプログラムを記憶した記憶媒体
JP2007198739A (ja) * 2006-01-23 2007-08-09 Hitachi High-Technologies Corp 自動分析装置
JP2007248089A (ja) * 2006-03-14 2007-09-27 Hitachi High-Technologies Corp 自己診断型自動分析装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155835A (en) * 1980-05-02 1981-12-02 Olympus Optical Co Ltd Component analyzing method
JPS59142424A (ja) * 1983-02-03 1984-08-15 Mitsubishi Electric Corp 異常検出装置
JPS63101734A (ja) * 1986-10-18 1988-05-06 Toshiba Corp 自動化学分析装置
JPH08106992A (ja) * 1994-03-24 1996-04-23 Hitachi Ltd プラズマ処理方法およびその装置
JPH1062271A (ja) * 1996-08-23 1998-03-06 Toshiba Corp 鉄道車両の機器温度監視装置
JP2000039400A (ja) * 1998-07-21 2000-02-08 Hitachi Ltd 自動分析装置
JP2000221195A (ja) * 1999-02-03 2000-08-11 Toshiba Iyo System Engineering Kk プロゾーン判定方法、それを格納した記憶媒体およびそれを用いた自動分析装置
JP2003247937A (ja) * 2002-02-22 2003-09-05 Horiba Ltd 溶液濃度計および濃度測定方法
JP2004347385A (ja) * 2003-05-21 2004-12-09 Hitachi Ltd 異常検出システム及び異常検出方法
JP2005127757A (ja) * 2003-10-22 2005-05-19 Hitachi High-Technologies Corp 自動分析装置
JP2005249783A (ja) * 2004-02-23 2005-09-15 Ortho-Clinical Diagnostics Inc キュベットを介する多数の測定による分析物の決定
JP2006023214A (ja) * 2004-07-09 2006-01-26 Hitachi High-Technologies Corp 測定反応過程の異常の有無判定方法,該方法を実行可能な自動分析装置及び該方法のプログラムを記憶した記憶媒体
JP2007198739A (ja) * 2006-01-23 2007-08-09 Hitachi High-Technologies Corp 自動分析装置
JP2007248089A (ja) * 2006-03-14 2007-09-27 Hitachi High-Technologies Corp 自己診断型自動分析装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112005097A (zh) * 2018-04-16 2020-11-27 株式会社岛津制作所 吸光度检测器及液相色谱仪
CN112005097B (zh) * 2018-04-16 2024-05-28 株式会社岛津制作所 吸光度检测器及液相色谱仪

Also Published As

Publication number Publication date
JP5787948B2 (ja) 2015-09-30

Similar Documents

Publication Publication Date Title
WO2009145251A1 (ja) 反応過程データの異常判定支援方法及び自動分析装置
EP2096442B1 (en) Automatic analyzer
JP4276894B2 (ja) 異常検出システム及び異常検出方法
JP5425487B2 (ja) 自動分析装置
JP5557750B2 (ja) 自動分析装置
JP5520519B2 (ja) 自動分析装置及び分析方法
EP2428802B1 (en) Automatic analysis device and analysis method
JP2019086518A (ja) 血液凝固機能の評価方法
JP2007248090A (ja) 臨床検査の精度管理システム
WO2022092248A1 (ja) 血液凝固反応の検出方法
JP5787948B2 (ja) 反応過程データの異常判定支援方法及び自動分析装置
CN111727366B (zh) 信号处理装置和信号处理方法
JP2005127757A (ja) 自動分析装置
CN109030801A (zh) 一种临床样本自动生化分析仪
JP4287753B2 (ja) 分析装置
JP5953089B2 (ja) 測定データの異常を検出する方法、及び、測定データの異常検出装置
JP2008058065A (ja) 自動分析装置および自動分析方法
US11714095B2 (en) Abnormality determining method, and automatic analyzer
WO2024150816A1 (ja) 血液凝固反応の分析方法
CN117881968A (zh) 凝血反应异常的检测方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150728

R150 Certificate of patent or registration of utility model

Ref document number: 5787948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350