JP2013241961A - Gear manufacturing method and gear - Google Patents

Gear manufacturing method and gear Download PDF

Info

Publication number
JP2013241961A
JP2013241961A JP2012114333A JP2012114333A JP2013241961A JP 2013241961 A JP2013241961 A JP 2013241961A JP 2012114333 A JP2012114333 A JP 2012114333A JP 2012114333 A JP2012114333 A JP 2012114333A JP 2013241961 A JP2013241961 A JP 2013241961A
Authority
JP
Japan
Prior art keywords
tooth surface
gear
tooth
strength
roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012114333A
Other languages
Japanese (ja)
Inventor
Masatoshi Yoshizaki
正敏 吉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2012114333A priority Critical patent/JP2013241961A/en
Publication of JP2013241961A publication Critical patent/JP2013241961A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gears, Cams (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gear manufacturing method capable of obtaining strength improvement effect of a tooth flank, and a gear.SOLUTION: A gear manufacturing method includes a gear forming process for forming a gear and a surface modification treatment process for applying surface modification treatment to a tooth flank of the gear. In the surface modification treatment process, surface modification treatment is applied so that magnitude of compression residual stress on an outermost surface of the tooth flank is 800 MPa or more, maximum height roughness Rz of the tooth flank is 4 μm or below, and a protruded peak part height Rpk of the tooth flank is 0.40 μm or more. According to the gear manufacturing method, a gear with teeth flanks having excellent conformability without causing micro cracks on the surface in a process of adaptive wear can be manufactured while properly wearing in an operation initial stage, and thus enhancing effect of the tooth flank strength can be obtained which is sufficiently higher compared with conventional ones.

Description

本発明は、歯車製造方法及び歯車に関する。   The present invention relates to a gear manufacturing method and a gear.

一般に、歯車の強度については、材料、熱処理、及び表面改質の寄与が大きい。そのため、大きな動力を伝える歯車では、合金鋼などを用いて浸炭焼入れや高周波焼入れなどの表面硬化処理を施し、これに加えて種々の表面改質が採用されることが多い。歯面の表面改質としては、ショットピーニングが広く普及している(例えば特許文献1参照)。   In general, the contribution of materials, heat treatment, and surface modification is great for the strength of gears. For this reason, gears that transmit large power are often subjected to surface hardening treatment such as carburizing and induction hardening using alloy steel, and various surface modifications are often employed. As a surface modification of the tooth surface, shot peening is widely used (see, for example, Patent Document 1).

ショットピーニングは、歯車強度を経済的に向上させる表面改質法として実用化されており、近年では、硬度の高いショット粒をエアノズル式ショットピーニングマシンなどを用いて投射させるハードショットピーニングや、微細な粒子(例えば直径20〜300μmの粒子)を投射する微粒子ピーニングなどが用いられるようになってきた。   Shot peening has been put into practical use as a surface modification method that economically improves gear strength. In recent years, shot peening with high hardness is projected using an air nozzle type shot peening machine, etc. Fine particle peening for projecting particles (for example, particles having a diameter of 20 to 300 μm) has been used.

特開2002−121644号公報JP 2002-121644 A

ところで、ショットピーニングその他の表面改質を施す際は、目標とする効果が得られるように処理条件を選定しなければならない。例えば、ショットピーニングの効果は、ショット粒の大きさ及び硬度、投射速度、投射時間などの条件で変化するため,目的に応じた処理条件の選定が重要である。   By the way, when performing shot peening or other surface modification, the processing conditions must be selected so as to obtain a target effect. For example, since the effect of shot peening changes depending on conditions such as the size and hardness of shot grains, the projection speed, and the projection time, it is important to select processing conditions according to the purpose.

具体的な選定方法としては、処理後の歯面性状、すなわち硬度、残留応力及び粗さなどの測定結果から歯面強度向上が得られるかを推定する方法が一般的である。最終的には、その条件で処理した歯車を用いて耐久試験を行うことで効果を確認する。歯面性状から歯面強度向上の効果を推定する際は、高い圧縮残留応力が付与され、歯面粗さが低いことが一般に用いられている判断基準である。しかしながら、歯面に高い圧縮残留応力が付与され、歯面粗さが低いにも関わらず、その条件で実際に歯車に処理を施しても、期待した歯面強度向上の効果を得られないことがあった。   As a specific selection method, a method of estimating whether tooth surface strength improvement can be obtained from measurement results of tooth surface properties after processing, that is, hardness, residual stress and roughness, is common. Finally, the effect is confirmed by performing an endurance test using the gear processed under the conditions. When estimating the effect of improving the tooth surface strength from the tooth surface properties, it is generally used that a high compressive residual stress is applied and the tooth surface roughness is low. However, despite the fact that high compressive residual stress is applied to the tooth surface and the tooth surface roughness is low, the expected effect of improving the tooth surface strength cannot be obtained even if the gear is actually processed under the conditions. was there.

そこで、本発明は、歯面強度向上の効果を得ることができる歯車製造方法及び歯車を提供することを目的とする。   Then, an object of this invention is to provide the gear manufacturing method and gear which can acquire the effect of a tooth surface strength improvement.

本発明者による研究の結果、歯面強度には歯面のなじみ性が大きな影響を及ぼすことが見出された。なじみとは、機械加工後の未使用の歯面が運転開始初期にすべり転がり接触をすることで、お互いの表面粗さ突起が摩耗あるいは押し潰されて平滑になる現象をいう。歯面のなじみ性、すなわち歯面のなじみ易さが歯車の歯面強度に及ぼす寄与は大きく、歯面強度を向上させる上で重要な因子であることが発見された。   As a result of the study by the present inventor, it was found that the conformity of the tooth surface greatly affects the tooth surface strength. Familiarity refers to a phenomenon in which the unused tooth surfaces after machining are brought into sliding contact at the beginning of operation and the surface roughness protrusions are worn or crushed and become smooth. It has been discovered that the conformability of the tooth surface, that is, the ease of conforming the tooth surface, greatly contributes to the tooth surface strength of the gear, and is an important factor in improving the tooth surface strength.

本発明に係る歯車製造方法は、歯車の成形を行う歯車成形工程と、歯車の歯面に対して表面改質処理を施す表面改質処理工程と、を含み、表面改質処理工程において、歯面の最表面の圧縮残留応力の大きさが800MPa以上、歯面の最大高さ粗さRzが4μm以下、及び歯面の突出山部高さRpkが0.40μm以上となるように表面改質処理を施すことを特徴とする。
なお、本発明における歯面粗さの測定では、歯車の歯形方向を測定方向として得られた表面形状の曲線からカットオフ波長0.25mmのガウシアンフィルタを用いて粗さ曲線を抽出し、傾斜補正として最小二乗曲線補正を適用することで、歯面の最大高さ粗さRz及び歯面の突出山部高さRpkの値を求めている。
The gear manufacturing method according to the present invention includes a gear forming step for forming a gear and a surface modification treatment step for subjecting the tooth surface of the gear to a surface modification treatment. Surface modification so that the compressive residual stress of the outermost surface of the surface is 800 MPa or more, the maximum height roughness Rz of the tooth surface is 4 μm or less, and the protruding peak height Rpk of the tooth surface is 0.40 μm or more. It is characterized by processing.
In the measurement of the tooth surface roughness in the present invention, the roughness curve is extracted from the surface shape curve obtained with the tooth profile direction of the gear as the measurement direction using a Gaussian filter with a cutoff wavelength of 0.25 mm, and the inclination correction is performed. As described above, the minimum square curve correction is applied to obtain the maximum height roughness Rz of the tooth surface and the protruding peak height Rpk of the tooth surface.

本発明に係る歯車製造方法は、トランスミッション歯車に代表される動力伝達用歯車の歯面の粗さと残留応力を最適化することで,歯面のなじみ性を向上させ,ピッチングやスポーリングと呼ばれる歯面がはく離する損傷に対する強度(以下、この損傷に対する強度を歯面強度と称す)を向上させるものである。   The gear manufacturing method according to the present invention improves the conformability of the tooth surface by optimizing the roughness and residual stress of the tooth surface of the power transmission gear represented by the transmission gear, and the tooth called pitching or spalling. The strength against damage that peels off the surface (hereinafter, the strength against damage is referred to as tooth surface strength) is improved.

この歯車製造方法では、運転初期に適度に摩耗する歯面であり、かつ、なじみ摩耗の過程で表面に微少き裂を発生させない(若しくは微小き裂が発生しても進展させない)歯面がなじみ性の良い歯面であることに着目して、歯面の最大高さ粗さRzを4μm以下、突出山部高さRpkを0.40μm以上とすることにより、運転初期に適度に歯面が摩耗する歯車を製造することができる。また、歯面の最表面の圧縮残留応力の大きさが800MPa以上とすることで、なじみ摩耗の過程で歯面に微少き裂を発生させない若しくは微小き裂が発生しても進展させない歯面を得ることができる。従って、この歯車製造方法によれば、なじみ性の良い歯面の歯車を製造することができるので、従来と比べて高く、より確実な歯面強度向上の効果を得ることができる。   In this gear manufacturing method, the tooth surface is moderately worn in the initial stage of operation, and the tooth surface that does not generate a microcrack (or does not propagate even if a microcrack is generated) on the surface during the familiar wear process. Focusing on the good tooth surface, the maximum tooth surface roughness Rz is 4 μm or less and the protruding ridge height Rpk is 0.40 μm or more, so that the tooth surface can be reasonably moderate at the beginning of operation. Wearing gears can be produced. In addition, by setting the compressive residual stress of the outermost surface of the tooth surface to 800 MPa or more, a tooth surface that does not generate a minute crack on the tooth surface in the process of conforming wear or does not propagate even if a micro crack occurs. Can be obtained. Therefore, according to this gear manufacturing method, it is possible to manufacture a gear having a tooth surface with good conformability, so that the effect of improving the tooth surface strength can be obtained more reliably and higher than the conventional one.

本発明に係る歯車製造方法では、表面改質処理工程において、ショットピーニングによる表面改質処理を施してもよい。この場合、上述した条件を満たす歯面へ改質するようにショットピーニングの処理条件を選定することで、歯面強度向上の効果を有する歯車を効率良く製造することができる。   In the gear manufacturing method according to the present invention, a surface modification treatment by shot peening may be performed in the surface modification treatment step. In this case, the gear having the effect of improving the tooth surface strength can be efficiently manufactured by selecting the shot peening processing conditions so as to improve the tooth surface satisfying the above-described conditions.

本発明に係る歯車は、歯面の最表面の圧縮残留応力の大きさが800MPa以上、歯面の最大高さ粗さRzが4μm以下、及び歯面の突出山部高さRpkが0.40μm以上であることを特徴とする。
この歯車は、運転初期に適度に摩耗しつつ、なじみ摩耗の過程で表面に微少き裂が発生しない(若しくは微小き裂が発生しても進展させない)なじみ性の良い歯面を有するので、従来と比べて高く、より確実な歯面強度向上の効果が得られる。
The gear according to the present invention has a compressive residual stress of 800 MPa or more on the outermost surface of the tooth surface, a maximum height roughness Rz of the tooth surface of 4 μm or less, and a protruding peak height Rpk of the tooth surface of 0.40 μm. It is the above.
This gear has a well-familiar tooth surface that is moderately worn in the initial stage of operation and does not generate a microcrack on the surface during the process of running-in (or does not progress even if a microcrack is produced). As compared with the above, it is possible to obtain a more reliable effect of improving the tooth surface strength.

本発明によれば、歯面強度向上の効果を得ることができる歯車製造方法及び歯車を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the gear manufacturing method and gear which can acquire the effect of tooth surface strength improvement can be provided.

歯面の表面改質の種類と歯面強度比の関係を示すグラフである。It is a graph which shows the relationship between the kind of surface modification of a tooth surface, and a tooth surface strength ratio. 歯面強度比と粗さパラメータとの関係を示すグラフである。It is a graph which shows the relationship between a tooth surface strength ratio and a roughness parameter. 歯面強度比となじみ運転前後の歯面粗さ変化率との関係を示すグラフである。It is a graph which shows the relationship between a tooth surface strength ratio and the tooth surface roughness change rate before and after a conforming operation. 粗さパラメータとなじみ運転前後の歯面粗さ変化率との関係を示すグラフである。It is a graph which shows the relationship between the roughness parameter and the tooth surface roughness change rate before and after the conforming operation. 歯面強度比と歯面の最大粗さ高さとの関係を示すグラフである。It is a graph which shows the relationship between a tooth surface strength ratio and the maximum roughness height of a tooth surface. 歯面強度比と歯面の最表面の圧縮残留応力の値とを示すグラフである。It is a graph which shows a tooth surface strength ratio and the value of the compressive residual stress of the outermost surface of a tooth surface.

以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

本実施形態に係る歯車としては、車両のトランスミッションを構成する合金鋼製(例えばSCM420H)のはすば歯車が例として挙げられる。但し、本発明に係る歯車の種類は特に限定されるものではなく、平歯車、内歯車、ラック、すぐばかさ歯車、曲がり歯かさ歯車、ねじ歯車、ウォームギヤ、ハイポイドギヤ等の何れであっても良い。また、歯車の使用目的も車両用のものに限られない。   An example of the gear according to the present embodiment is a helical gear made of alloy steel (for example, SCM420H) that constitutes a transmission of a vehicle. However, the type of gear according to the present invention is not particularly limited, and may be any of a spur gear, an internal gear, a rack, a straight bevel gear, a curved bevel gear, a screw gear, a worm gear, a hypoid gear, and the like. . Further, the purpose of use of the gear is not limited to that for vehicles.

このような歯車の製造方法では、まず、歯切り加工により合金鋼材から歯車を成形する歯車成形工程が行われる。なお、歯車の成形は、歯切り加工によるものに限られず、転造や鋳造その他の方法で成形してもよい。その後、歯車にガス浸炭焼入れを施して歯面を研磨し、歯面の強度向上のための表面改質処理工程を行う。   In such a gear manufacturing method, first, a gear forming step of forming a gear from an alloy steel by gear cutting is performed. The formation of the gear is not limited to gear cutting, and may be formed by rolling, casting, or other methods. Thereafter, gas carburizing and quenching is applied to the gear to polish the tooth surface, and a surface modification process for improving the strength of the tooth surface is performed.

表面改質処理の種類としては、歯面に粒子(主に、小径の鋼球)を高速度で衝突させるショットピーニング、歯面にMoS2(二酸化モリブデン)などを塗布するコーティング、バレル研磨などの研磨処理などが挙げられる。   Types of surface modification treatment include shot peening in which particles (mainly small-diameter steel balls) collide with the tooth surface at high speed, coating with MoS2 (molybdenum dioxide) applied to the tooth surface, and polishing such as barrel polishing. Processing.

また、ショットピーニングの種類としては、通常のショットピーニングに比べて微細な粒子を投射する微粒子ピーニングや通常のショットピーニングに比べて硬度の高い粒子を投射するハードショットピーニング、ハードショットピーニングの後に微粒子ピーニングを行う二段ピーニングなどがある。   The types of shot peening are fine particle peening that projects fine particles compared to normal shot peening, hard shot peening that projects particles harder than normal shot peening, and fine particle peening after hard shot peening. There are two-stage peening and so on.

以下、図1〜図6を参照して歯面強度向上の効果が得られる表面改質処理の条件について説明する。   Hereinafter, with reference to FIGS. 1 to 6, conditions for the surface modification treatment that provides the effect of improving the tooth surface strength will be described.

図1は、歯面の表面改質の種類と歯面強度比の関係を示すグラフである。図1に示す表面改質の種類と記号の関係を表1に示す。また、表1に示すショットピーニング及び微粒子ピーニングの処理条件の詳細を表2に示す。なお、表1及び表2に示すFPBdでは、二段微粒子ピーニングの表面改質を行った。表2に示すFPBdの上下二段の欄において、上段の欄は一度目の微粒子ピーニングの条件を示し、下段の欄は二度目の微粒子ピーニングの条件を示している。

Figure 2013241961

Figure 2013241961
FIG. 1 is a graph showing the relationship between the types of surface modification of tooth surfaces and the tooth surface strength ratio. Table 1 shows the relationship between the types of surface modification shown in FIG. Table 2 shows details of processing conditions for shot peening and fine particle peening shown in Table 1. In FPBd shown in Tables 1 and 2, the surface modification of the two-stage fine particle peening was performed. In the upper and lower two columns of FPBd shown in Table 2, the upper column indicates the conditions for the first fine particle peening, and the lower column indicates the conditions for the second fine particle peening.
Figure 2013241961

Figure 2013241961

図1では、表面改質処理を行っていないStdを基準として、各表面改質の種類の歯車強度比の相対評価を行った。ショットピーニングを施されたSHPa〜SHPcでは、SHPaのみがStdを上回り、SHPb,SHPcはStdを下回る結果となった。また、微粒子ピーニングを施されたFPBa〜FPBd(FPBdは二段微粒子ピーリング)は、全てStdを上回った。また、MoS2コーティングを施されたMoS2もStdを上回った。一方、バレル研磨を施したBarrelは、Stdを下回った。このように、表面改質の種類や条件は、歯面強度に大きな影響を与える。   In FIG. 1, the relative evaluation of the gear strength ratio of each type of surface modification was performed on the basis of Std that was not subjected to surface modification treatment. In SHPa to SHPc subjected to shot peening, only SHPa exceeded Std, and SHPb and SHPc fell below Std. Further, FPBa to FPBd (FPBd is two-stage fine particle peeling) subjected to fine particle peening all exceeded Std. MoS2 coated with MoS2 also exceeded Std. On the other hand, Barrel subjected to barrel polishing was lower than Std. Thus, the kind and conditions of surface modification have a great influence on the tooth surface strength.

歯面強度の測定は、例えば供試歯車に一定のトルクを負荷して歯面にはく離損傷(ピッチング,スポーリング)が起きるまで耐久運転を行い、強度限界に至るまでの総歯車回転数を求めることで行うことができる。なお、強度限界は、耐久運転中,一定時間毎に歯面の観察を行うことで判定可能である。すなわち、歯面に発生したはく離部の面積を求め、これが一定の値を超えた場合に強度限界と判定することができる。   For the measurement of tooth surface strength, for example, a constant torque is applied to the test gear and endurance operation is performed until separation damage (pitching, spalling) occurs on the tooth surface, and the total number of gear rotations until the strength limit is obtained. Can be done. The strength limit can be determined by observing the tooth surface at regular intervals during the durability operation. That is, the area of the peeled portion generated on the tooth surface is obtained, and when this exceeds a certain value, it can be determined as the strength limit.

この試験を数種類(例えば4〜6通り)の負荷トルクに対して行い、得られた結果をS−N線図(応力−繰返し数線図)にプロットして、対象としている条件の表面改質処理を施した供試歯車の歯面強度を求めることができる。処理条件が異なる供試歯車の歯面強度も同様の手順で求め、S−N線図上での差異を強度差として評価した。   This test is performed for several kinds of load torques (for example, 4 to 6 types), and the obtained results are plotted on an SN diagram (stress-repetitive number diagram) to improve the surface under the target conditions. The tooth surface strength of the treated test gear can be obtained. The tooth surface strength of the test gears with different processing conditions was determined in the same procedure, and the difference on the SN diagram was evaluated as the strength difference.

図2は、歯面強度比となじみ運転前後の歯面粗さ変化率ξとの関係を示すグラフである。なじみ運転前後の歯面粗さ変化率ξとは、JIS B0601,2001に規定された歯面の最大粗さ高さRzについて、なじみ運転後のRzをなじみ運転前のRzで除したものである。歯面粗さ変化率ξは、歯面のなじみ性、すなわち歯面のなじみ易さを定量的に表わす指標の一つであり、ξの値が小さいほどなじみ性が良い。   FIG. 2 is a graph showing the relationship between the tooth surface strength ratio and the tooth surface roughness change rate ξ before and after the conforming operation. The tooth surface roughness change rate ξ before and after the conforming operation is obtained by dividing Rz after the conforming operation by Rz before the conforming operation with respect to the maximum roughness height Rz of the tooth surface defined in JIS B0601,2001. . The tooth surface roughness change rate ξ is one of the indexes that quantitatively represents the conformability of the tooth surface, that is, the ease of conformation of the tooth surface. The smaller the value of ξ, the better the conformability.

図2に示されるように、歯面粗さ変化率ξと歯面強度比との間には、良い相関関係があり、歯面粗さ変化率ξが小さく歯面のなじみ性が良いほど歯面強度が高いことが分かる。なじみ性が良いと歯面強度が向上するのは、噛み合う歯面で摺り合わせが行われ、その結果、真実接触面積が大きくなり、局所的な接触圧力が低減することと、歯面における潤滑油膜の形成が良好になることの効果によるものと考えられる。   As shown in FIG. 2, there is a good correlation between the tooth surface roughness change rate ξ and the tooth surface strength ratio, and the smaller the tooth surface roughness change rate ξ, the better the tooth surface adaptability. It can be seen that the surface strength is high. When the conformability is good, the tooth surface strength is improved by the fact that the tooth surfaces that mesh with each other are rubbed together, resulting in an increase in the true contact area, a reduction in local contact pressure, and a lubricating oil film on the tooth surface. This is considered to be due to the effect of forming better.

ここで、留意すべき点は、同じ種類の表面改質でも、処理条件によって歯面のなじみ性が良くなる場合と悪くなる場合とが有り、後者では歯面強度は向上しないことである。従来は、歯面強度を向上させるには、歯面に付与された圧縮残留応力の値(絶対値)が高く、歯面粗さは低いことが望ましいとの認識であったが、本発明者の研究によれば、従来の判断基準に従って表面改質処理を行っても歯面のなじみ性が良くならない場合があるため、必ずしも歯面強度が向上しないことを見出した。   Here, it should be noted that even with the same type of surface modification, the conformity of the tooth surface may be improved or worsened depending on the processing conditions, and in the latter case, the tooth surface strength is not improved. Conventionally, in order to improve the tooth surface strength, it has been recognized that it is desirable that the value (absolute value) of the compressive residual stress applied to the tooth surface is high and the tooth surface roughness is low. According to this research, it has been found that even if the surface modification treatment is performed according to the conventional criteria, the conformity of the tooth surface may not be improved, and thus the tooth surface strength is not necessarily improved.

ここで、なじみ性の良い歯面とは、歯面が運転初期に適度に摩耗するという第1の条件、及び、なじみ摩耗の過程で歯面に微小き裂を発生させない(若しくは微小き裂が発生してもき裂を進展させない)という第2の条件を満足する歯面である。歯面のなじみ性を向上させて歯面強度を高めるためには、両方の条件を満たすことが望ましい。第1の条件のみでは、歯面強度を向上できない場合がある。これは、なじみ摩耗の過程で歯面に微小き裂が発生し、き裂が進展すると、歯面の剥離損傷に至るからである。第1の条件に影響する要素は歯面性状や歯面の粗さであり、第2の条件に影響する要素は歯面の最表面の圧縮残留応力であると考えられる。   Here, the tooth surface having good conformability is a first condition that the tooth surface is appropriately worn in the initial stage of operation, and a micro crack is not generated on the tooth surface in the process of conforming wear (or a micro crack is not generated). The tooth surface satisfies the second condition that the crack does not propagate even if it occurs. In order to improve the conformability of the tooth surface and increase the tooth surface strength, it is desirable to satisfy both conditions. The tooth surface strength may not be improved only by the first condition. This is because a microcrack is generated on the tooth surface in the process of familiar wear, and when the crack progresses, it results in peeling damage to the tooth surface. It is considered that the factors affecting the first condition are tooth surface properties and tooth surface roughness, and the factors affecting the second condition are compressive residual stresses on the outermost surface of the tooth surface.

図3は、なじみ運転前後の歯面粗さ変化率ξ、すなわち歯面のなじみ性と、運転前の歯面の粗さパラメータRpkとの関係を示すグラフである。粗さパラメータRpkは、線形負荷曲線による高さ特性、すなわち粗さの形状の特徴を示すものの一つである。粗さパラメータRpkは、突出山部高さ(JIS B0671-2 2002)と呼ばれ、JIS B0671-2 2002に規定された粗さ曲線のコア部の上にある突出山部の平均高さを示す値である。   FIG. 3 is a graph showing the relationship between the tooth surface roughness change rate ξ before and after the conforming operation, that is, the conformability of the tooth surface and the tooth surface roughness parameter Rpk before the operation. The roughness parameter Rpk is one of the characteristics of the height characteristic based on the linear load curve, that is, the roughness shape. The roughness parameter Rpk is called the protruding peak height (JIS B0671-2 2002) and indicates the average height of the protruding peak on the core of the roughness curve defined in JIS B0671-2 2002. Value.

図3に示されるように、歯面粗さ変化率ξと粗さパラメータRpkとは良い相関関係を有している。図3のグラフに示す範囲では、粗さパラメータRpkが高いほど、歯面粗さ変化率ξすなわち歯面のなじみ性が良くなっている。なお、歯面粗さの測定では、歯車の歯形方向を測定方向として、表面粗さ形状測定機(サーコム1400A 東京精密株式会社製)を用いて得られた表面形状の曲線からカットオフ波長0.25mmのガウシアンフィルタを用いて粗さ曲線を抽出し、傾斜補正として最小二乗曲線補正を適用した。   As shown in FIG. 3, the tooth surface roughness change rate ξ and the roughness parameter Rpk have a good correlation. In the range shown in the graph of FIG. 3, the higher the roughness parameter Rpk, the better the tooth surface roughness change rate ξ, that is, the conformability of the tooth surface. In the measurement of the tooth surface roughness, the cut-off wavelength is set to 0.degree. From the curve of the surface shape obtained using a surface roughness shape measuring machine (Surcom 1400A manufactured by Tokyo Seimitsu Co., Ltd.) with the tooth profile direction of the gear as the measurement direction. A roughness curve was extracted using a 25 mm Gaussian filter, and least square curve correction was applied as inclination correction.

図4は、粗さパラメータRpkと歯面強度比との関係を示すグラフである。図4に示されるように、歯面強度向上の効果は、粗さパラメータRpkが0.40μm以上の場合に得られることが分かる。なお、粗さパラメータRpkが0.50μm以上であることがより好ましく、0.60μm以上であることが更に好ましい。   FIG. 4 is a graph showing the relationship between the roughness parameter Rpk and the tooth surface strength ratio. As shown in FIG. 4, it can be seen that the effect of improving the tooth surface strength is obtained when the roughness parameter Rpk is 0.40 μm or more. The roughness parameter Rpk is more preferably 0.50 μm or more, and further preferably 0.60 μm or more.

前述したように、歯面強度向上の効果を得るためには歯面粗さが低ければ良いという従来の判断基準には問題があるが、歯面粗さが過度に大きいと歯面強度が低くなることは従来から知られている。図5は、歯面強度比と歯面の最大高さ粗さRz(JIS B601 2001)との関係を示すグラフである。なお、歯面の最大高さ粗さRzは、粗さパラメータRpkと同じ方法で測定した。   As described above, in order to obtain the effect of improving the tooth surface strength, there is a problem with the conventional judgment standard that the tooth surface roughness is low, but if the tooth surface roughness is excessively large, the tooth surface strength is low. It has been known for a long time. FIG. 5 is a graph showing the relationship between the tooth surface strength ratio and the maximum height roughness Rz (JIS B601 2001) of the tooth surface. In addition, the maximum height roughness Rz of the tooth surface was measured by the same method as the roughness parameter Rpk.

図5に示されるように、歯面強度比は、最大高さ粗さRzが4.00μmを超えると低下する傾向が認められる。このため、最大高さ粗さRzは4.00μm以下であることが好ましく、3.50μm以下であることがより好ましい。   As shown in FIG. 5, the tooth surface strength ratio tends to decrease when the maximum height roughness Rz exceeds 4.00 μm. For this reason, the maximum height roughness Rz is preferably 4.00 μm or less, and more preferably 3.50 μm or less.

図6は、歯面の最表面の圧縮残留応力σの大きさ(絶対値)と歯面強度比との関係を示したグラフである。圧縮残留応力σは、例えばX線回折法により測定可能であり、電解研磨などを施すことなく歯面の最表面にX線を当てることで測定される。図6に示されるように、歯面の最表面に付与された圧縮残留応力σが高いほど、歯面強度が高い傾向が認められる。この結果から、歯面強度向上の効果は、歯面の最表面の圧縮残留応力σの大きさが800MPa以上である場合に得られることが分かる。なお、圧縮残留応力σ の大きさが1000MPa以上であることがより好ましく、1200MPa以上であることが更に好ましい。 FIG. 6 is a graph showing the relationship between the magnitude (absolute value) of the compressive residual stress σ R on the outermost surface of the tooth surface and the tooth surface strength ratio. The compressive residual stress σ R can be measured by, for example, an X-ray diffraction method, and is measured by applying X-rays to the outermost surface of the tooth surface without performing electrolytic polishing or the like. As shown in FIG. 6, the higher the compressive residual stress σ R applied to the outermost surface of the tooth surface, the higher the tooth surface strength. From this result, it can be seen that the effect of improving the tooth surface strength is obtained when the compressive residual stress σ R on the outermost surface of the tooth surface is 800 MPa or more. Incidentally, more preferably magnitude of the compressive residual stress sigma R R is equal to or greater than 1000 MPa, and still more preferably at least 1200 MPa.

以上説明した結果を踏まえ、本実施形態に係る歯車製造方法では、表面改質処理工程において、歯面の最表面の圧縮残留応力の大きさが800MPa以上、歯面の最大高さ粗さRzが4.00μm以下、及び歯面の粗さパラメータ(突出山部高さ)Rpkが0.40μm以上となるように表面改質処理を施す。   Based on the results described above, in the gear manufacturing method according to the present embodiment, in the surface modification treatment step, the magnitude of the compressive residual stress on the outermost surface of the tooth surface is 800 MPa or more, and the maximum height roughness Rz of the tooth surface is The surface modification treatment is performed so that the tooth surface roughness parameter (projection peak height) Rpk is not less than 4.00 μm and not less than 0.40 μm.

本実施形態に係る歯車製造方法では、運転初期に適度に摩耗する歯面であり、かつ、なじみ摩耗の過程で表面に微少き裂を発生させない(若しくは微小き裂が発生しても進展させない)歯面がなじみ性の良い歯面であることに着目して、歯面の最大高さ粗さRzを4μm以下、突出山部高さRpkを0.40μm以上とすることにより、運転初期に適度に歯面が摩耗する歯車を製造することができる。また、歯面の最表面の圧縮残留応力の大きさが800MPa以上とすることで、なじみ摩耗の過程で歯面に微少き裂を発生させない若しくは微小き裂が発生しても進展させない歯面を得ることができる。従って、この歯車製造方法によれば、なじみ性の良い歯面の歯車を製造することができるので、従来と比べて高く、より確実な歯面強度向上の効果を得ることができる。   In the gear manufacturing method according to the present embodiment, the tooth surface is moderately worn in the initial stage of operation, and a minute crack is not generated on the surface in the process of familiar wear (or even if a minute crack is generated). Focusing on the fact that the tooth surface is a well-familiar tooth surface, the maximum height roughness Rz of the tooth surface is 4 μm or less, and the protruding ridge height Rpk is 0.40 μm or more. It is possible to produce a gear whose tooth surface is worn. In addition, by setting the compressive residual stress of the outermost surface of the tooth surface to 800 MPa or more, a tooth surface that does not generate a minute crack on the tooth surface in the process of conforming wear or does not propagate even if a micro crack occurs. Can be obtained. Therefore, according to this gear manufacturing method, it is possible to manufacture a gear having a tooth surface with good conformability, so that the effect of improving the tooth surface strength can be obtained more reliably and higher than the conventional one.

また、図1〜図6に示されるように、今回の処理条件においては微粒子ピーニングによる表面改質処理を施したFPBa〜FPBdにおいて、上述した歯面強度向上の効果が得られた。このように、表面改質処理としてショットピーニングを採用し、上述した条件を満たす歯面へ改質するようにショットピーニングの処理条件を選定することで、歯面強度が向上された歯車を効率良く製造することができる。   Further, as shown in FIGS. 1 to 6, the effect of improving the tooth surface strength described above was obtained in FPBa to FPBd subjected to the surface modification treatment by fine particle peening under the current treatment conditions. In this way, by adopting shot peening as the surface modification process and selecting the shot peening process conditions so as to modify the tooth surface satisfying the above conditions, a gear with improved tooth surface strength can be efficiently obtained. Can be manufactured.

そして、この歯車製造方法により製造された歯車は、運転初期に適度に摩耗しつつ、なじみ摩耗の過程で表面に微少き裂が発生しないなじみ性の良い歯面を有するので、従来と比べて高く、より確実な歯面強度向上の効果が得ることができる。   And the gear manufactured by this gear manufacturing method has a well-fitting tooth surface that is moderately worn in the initial stage of operation and does not generate minute cracks on the surface during the running-in process. Thus, a more reliable effect of improving the tooth surface strength can be obtained.

また、この歯車製造方法により製造された歯車の歯面には、微小な鱗片状のささくれがランダムな方向に形成されている。これらの鱗片状のささくれは、ショットピーニングにより設けられ、約数μm〜約100μmピッチのうねりがランダムに重層したテクスチャから形成されている。このような鱗片状のささくれを歯面が備えることにより、ささくれで他方の歯車の歯面の突起を削ぐことで歯面を平滑にしてなじみ性を向上させ、結果的に、剥離損傷を抑制するように歯面の強度を向上させることができる。   In addition, minute scaly ridges are formed in random directions on the tooth surfaces of the gear manufactured by this gear manufacturing method. These scaly crests are provided by shot peening and are formed from a texture in which undulations with a pitch of about several μm to about 100 μm are randomly layered. By providing such scaly scissors on the tooth surface, the tooth surface of the other gear is scraped with the scissors to smooth the tooth surface and improve the conformability, thereby suppressing peeling damage. Thus, the strength of the tooth surface can be improved.

本発明は、上述した実施形態に限定されるものではない。表面改質処理は、単なるショットピーニングや微粒子ピーニングに限られず、例えば通常より硬度の高いショット材を投射するハードショットピーニングを用いてもよい。ハードショットピーニングにより歯車の歯元に高い圧縮残留応力を付与することで、歯元の折損強度を向上させることができる。   The present invention is not limited to the embodiment described above. The surface modification treatment is not limited to mere shot peening or fine particle peening, and for example, hard shot peening for projecting a shot material having a hardness higher than usual may be used. By applying a high compressive residual stress to the tooth root of the gear by hard shot peening, the fracture strength of the tooth root can be improved.

但し、ハードショットピーニングでは、歯面の最表面に付与される圧縮残留応力がやや低くなると共に歯面の最大高さ粗さRzが高くなるため、歯面の最表面の圧縮残留応力の大きさが800MPa以上、歯面の最大高さ粗さRzが4μm以下、歯面の突出山部高さRpkが0.40μm以上の条件を満たさないことも考えられる。そこで、ハードショットピーニングの後に微粒子ピーニングを行う2段ピーニングを行うことで、歯元の折損強度を向上させつつ、上記条件を満たして歯面強度を十分に向上させることができる。   However, in hard shot peening, the compressive residual stress applied to the outermost surface of the tooth surface is slightly lower and the maximum height roughness Rz of the tooth surface is higher, so the magnitude of the compressive residual stress on the outermost surface of the tooth surface is large. Is not more than 800 MPa, the maximum height roughness Rz of the tooth surface is 4 μm or less, and the protrusion peak height Rpk of the tooth surface is not more than 0.40 μm. Therefore, by performing two-stage peening that performs fine particle peening after hard shot peening, the tooth surface strength can be sufficiently improved by satisfying the above conditions while improving the fracture strength of the tooth root.

また、表面改質処理は、必ずしもショットピーニングである必要はなく、上記条件を満たように歯面を改質できる処理であればよい。   Further, the surface modification process does not necessarily need to be shot peening and may be any process that can modify the tooth surface so as to satisfy the above conditions.

次に、本発明に係る実施例について説明する。実施例1,2及び比較例1,2に対する微粒子ピーニングの条件を表3に示す。

Figure 2013241961
Next, examples according to the present invention will be described. Table 3 shows the conditions of fine particle peening for Examples 1 and 2 and Comparative Examples 1 and 2.
Figure 2013241961

(実施例1)
合金材(SCM420H)から歯車を成形した後、歯車の歯面に対して微粒子ピーニングによる表面改質処理を施した。微粒子ピーニングの条件は、アークハイトが0.24mmN、カバレージが200%、投射圧力が0.4MPa、ショット材の粒径が80μm、ショット材の硬度は700〜850Hvとした。
Example 1
After forming a gear from the alloy material (SCM420H), the tooth surface of the gear was subjected to surface modification treatment by fine particle peening. The conditions for fine particle peening were as follows: arc height 0.24 mmN, coverage 200%, projection pressure 0.4 MPa, shot material particle size 80 μm, and shot material hardness 700-850 Hv.

(実施例2)
微粒子ピーニングの条件について、アークハイトを0.41mmN、投射圧力を0.6MPa、ショット材の粒径を130μmとした以外は実施例1と同様にした。
(Example 2)
The conditions for fine particle peening were the same as in Example 1 except that the arc height was 0.41 mmN, the projection pressure was 0.6 MPa, and the shot material particle size was 130 μm.

(比較例1)
微粒子ピーニングの条件について、アークハイトを0.19mmN、カバレージを300%、投射圧力を0.3MPa、ショット材の粒径を50μmとした以外は実施例1と同様にした。
(Comparative Example 1)
The conditions for fine particle peening were the same as in Example 1 except that the arc height was 0.19 mmN, the coverage was 300%, the projection pressure was 0.3 MPa, and the shot material particle size was 50 μm.

(比較例2)
微粒子ピーニングの条件について、アークハイトを0.22mmN、投射圧力を0.5MPaとした以外は比較例1と同様にした。
(Comparative Example 2)
The conditions for fine particle peening were the same as in Comparative Example 1 except that the arc height was 0.22 mmN and the projection pressure was 0.5 MPa.

以上説明した実施例1,2及び比較例1,2の歯面性状の測定結果を表4に示す。

Figure 2013241961
Table 4 shows the measurement results of the tooth surface properties of Examples 1 and 2 and Comparative Examples 1 and 2 described above.
Figure 2013241961

表4に示されるように、実施例1,2は、歯面の最表面の圧縮残留応力の大きさが800MPa以上、歯面の最大高さ粗さRzが4μm以下、歯面の突出山部高さRpkが0.40μm以上の条件を満たし、歯面強度向上の効果を得ることができた。一方、比較例1,2は、上記条件を満たさず、十分な歯面強度向上の効果を得ることができなかった。   As shown in Table 4, in Examples 1 and 2, the magnitude of the compressive residual stress on the outermost surface of the tooth surface is 800 MPa or more, the maximum height roughness Rz of the tooth surface is 4 μm or less, and the protruding peak portion of the tooth surface. The condition that the height Rpk was 0.40 μm or more was satisfied, and the effect of improving the tooth surface strength could be obtained. On the other hand, Comparative Examples 1 and 2 did not satisfy the above conditions and could not obtain a sufficient effect of improving the tooth surface strength.

STd…表面改質処理を施していない歯車 SHPa〜SHPc…ショットピーニングを施した歯車 FPBa-FPBd…微粒子ピーニングを施した歯車 Rpk 粗さパラメータ(突出山部高さ) ξ…歯面粗さ変化率 σ…圧縮残留応力
STd: Gears not subjected to surface modification treatment SHPa to SHPc: Gears subjected to shot peening FPBa-FPBd: Gears subjected to fine particle peening Rpk Roughness parameter (projection crest height) ξ: Rate of change in tooth surface roughness σ R … Compressive residual stress

Claims (3)

歯車の成形を行う歯車成形工程と、
前記歯車の歯面に対して表面改質処理を施す表面改質処理工程と、
を含み、
前記表面改質処理工程において、前記歯面の最表面の圧縮残留応力の大きさが800MPa以上、前記歯面の最大高さ粗さRzが4μm以下、及び前記歯面の突出山部高さRpkが0.40μm以上となるように表面改質処理を施す、歯車製造方法。
A gear forming process for forming gears;
A surface modification treatment step of performing a surface modification treatment on the tooth surface of the gear;
Including
In the surface modification treatment step, the compressive residual stress of the outermost surface of the tooth surface is 800 MPa or more, the maximum height roughness Rz of the tooth surface is 4 μm or less, and the protruding peak height Rpk of the tooth surface. A gear manufacturing method in which a surface modification treatment is performed so that the current becomes 0.40 μm or more.
前記表面改質処理工程において、ショットピーニングによる表面改質処理を施す、請求項1に記載の歯車製造方法。   The gear manufacturing method according to claim 1, wherein a surface modification treatment by shot peening is performed in the surface modification treatment step. 歯面の最表面の圧縮残留応力の大きさが800MPa以上、前記歯面の最大高さ粗さRzが4μm以下、及び前記歯面の突出山部高さRpkが0.40μm以上である、歯車。
A gear having a compressive residual stress of 800 MPa or more on the outermost surface of the tooth surface, a maximum height roughness Rz of the tooth surface of 4 μm or less, and a protruding peak height Rpk of the tooth surface of 0.40 μm or more. .
JP2012114333A 2012-05-18 2012-05-18 Gear manufacturing method and gear Pending JP2013241961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012114333A JP2013241961A (en) 2012-05-18 2012-05-18 Gear manufacturing method and gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012114333A JP2013241961A (en) 2012-05-18 2012-05-18 Gear manufacturing method and gear

Publications (1)

Publication Number Publication Date
JP2013241961A true JP2013241961A (en) 2013-12-05

Family

ID=49843046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012114333A Pending JP2013241961A (en) 2012-05-18 2012-05-18 Gear manufacturing method and gear

Country Status (1)

Country Link
JP (1) JP2013241961A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016031347A1 (en) * 2014-08-28 2017-05-25 日産自動車株式会社 Gear pair
WO2018077318A1 (en) * 2016-10-28 2018-05-03 Mvo Gmbh Metallverarbeitung Ostalb Method for machining a rack and rack machined according to said method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100881A (en) * 2008-10-22 2010-05-06 Sumitomo Metal Ind Ltd Sliding component
JPWO2010137607A1 (en) * 2009-05-27 2012-11-15 住友金属工業株式会社 Carburized parts and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100881A (en) * 2008-10-22 2010-05-06 Sumitomo Metal Ind Ltd Sliding component
JPWO2010137607A1 (en) * 2009-05-27 2012-11-15 住友金属工業株式会社 Carburized parts and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016031347A1 (en) * 2014-08-28 2017-05-25 日産自動車株式会社 Gear pair
WO2018077318A1 (en) * 2016-10-28 2018-05-03 Mvo Gmbh Metallverarbeitung Ostalb Method for machining a rack and rack machined according to said method
DE102016012941B4 (en) * 2016-10-28 2019-06-06 Mvo Gmbh Metallverarbeitung Ostalb Process for machining a toothed rack and subsequently machined rack
KR20190077447A (en) * 2016-10-28 2019-07-03 엠브이오 게엠베하 메탈베르아바이퉁 오스탈브 A rack machining method and a rack
CN110023519A (en) * 2016-10-28 2019-07-16 Mvo奥斯塔尔博金属加工有限公司 Method for manufacturing gear strip and the rack gear according to the method processing
JP2020504026A (en) * 2016-10-28 2020-02-06 エムファウオー ゲーエムベーハー メタルフェルアルバイトゥング オスタルブMvo Gmbh Metallverarbeitung Ostalb Rack processing method and rack processed according to the method
US11090742B2 (en) 2016-10-28 2021-08-17 Mvo Gmbh Metallverarbeitung Ostalb Method for machining a rack and rack machined according to said method
CN110023519B (en) * 2016-10-28 2021-09-24 Mvo奥斯塔尔博金属加工有限公司 Method for producing a toothed rack and toothed rack produced according to said method
KR102333584B1 (en) 2016-10-28 2021-11-30 엠브이오 게엠베하 메탈베르아바이퉁 오스탈브 The rack processing method and the rack processed according to the method

Similar Documents

Publication Publication Date Title
JP5918326B2 (en) Covered sliding member
WO2012073631A1 (en) Method for improving fatigue strength of cast iron material
JP2011036949A (en) Method for manufacturing die steel tool, and form rolling die
JP7167838B2 (en) Titanium plate with excellent lubricity and manufacturing method thereof
JP5894173B2 (en) Optimized crowning in bevel gears of bevel gear transmission
JP2013241961A (en) Gear manufacturing method and gear
JP6286054B2 (en) Gear pair
JP5283183B2 (en) Surface finishing method for metal products
EP1995335B1 (en) Process for manufacturing metal member, and structural member
JP5569588B2 (en) gear
CN108472700A (en) Titanium plate
JP5357521B2 (en) Gear strength improvement method
WO2020045239A1 (en) Crankshaft and method for producing same
JP2015187298A (en) Manufacturing method of gear
JPH01264727A (en) Manufacture of high strength gear
JP2005014124A (en) Method of manufacturing high grade gear
JP2013213260A (en) Surface treatment method of gear
JP2000280120A (en) Manufacture of gear
JP2013220509A (en) Shot peening method and gear material using the same
JP2014104556A (en) Manufacturing method of gear
NL2031502B1 (en) Method for composite surface strengthening treatment of gears
JP4131384B2 (en) Shot peening method
JP2014137082A (en) Gear train
JP2006022894A (en) Highly strong gear and method of manufacturing the same
JP2015187479A (en) Gear wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160906