JP2006022894A - Highly strong gear and method of manufacturing the same - Google Patents

Highly strong gear and method of manufacturing the same Download PDF

Info

Publication number
JP2006022894A
JP2006022894A JP2004201644A JP2004201644A JP2006022894A JP 2006022894 A JP2006022894 A JP 2006022894A JP 2004201644 A JP2004201644 A JP 2004201644A JP 2004201644 A JP2004201644 A JP 2004201644A JP 2006022894 A JP2006022894 A JP 2006022894A
Authority
JP
Japan
Prior art keywords
gear
diamond
tooth
film
carbon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004201644A
Other languages
Japanese (ja)
Inventor
Takuo Yamaguchi
拓郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004201644A priority Critical patent/JP2006022894A/en
Publication of JP2006022894A publication Critical patent/JP2006022894A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gears, Cams (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly strong gear having a highly tenacious diamond-like carbon film not peeled off even on the tooth faces of a gear used at a high speed reduction ratio and capable of realizing a reduction in friction on the tooth faces. <P>SOLUTION: In the tooth faces of a metal gear base material 1, an infinite number of recessed parts 2 with an averaged diameter of 0.1 to 10 μm and an averaged depth of 0.1 to 10 μm are formed in the area A of at least 0.3 to 0.7L from the addendum thereof where an entire engagement length is L. The diamond-like carbon film 3 with a thickness of 1 to 5 μm is formed on the surfaces of the recessed parts, and a carbon layer 4 with a thickness of 10 to 500 nm and containing hydrogen by an amount of 4×10<SP>22</SP>atms/cm<SP>3</SP>or more in density of atom number is formed on the diamond-like carbon film 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、歯面に硬質被膜を形成した高強度歯車及びその製造方法に関し、とくに、高減速比の減速機で用いるのに好適な高強度歯車及びその製造方法に関するものである。   The present invention relates to a high-strength gear having a hard coating formed on a tooth surface and a manufacturing method thereof, and more particularly to a high-strength gear suitable for use in a reduction gear having a high reduction ratio and a manufacturing method thereof.

近年では、環境問題等への対応のために、モータにより駆動される自動車が増大していくことが見込まれており、このようなモータ駆動の自動車では、減速機において数万rpmに及ぶモータの回転をコンパクトなサイズで減速する必要がある。高減速比をコンパクトなサイズで得られるものとしては、複合型遊星歯車機構があり、同機構の中には3Kタイプ(Kは装置の中心線と同じ回転軸心を持つ要素)と呼ばれるものがある。この3Kタイプの遊星歯車機構は、数万回転の入力に対して減速機システムの径がほとんど変わらないという利点があるが、高減速比になるほど効率が低下するという欠点があった。   In recent years, it is expected that the number of automobiles driven by motors will increase in order to deal with environmental problems and the like. In such motor-driven automobiles, motors of several tens of thousands of rpm are used in reduction gears. It is necessary to decelerate the rotation with a compact size. There is a compound planetary gear mechanism that can obtain a high reduction ratio in a compact size. Among these mechanisms, there is a so-called 3K type (K is an element having the same rotation axis as the center line of the device). is there. This 3K type planetary gear mechanism has an advantage that the diameter of the reduction gear system hardly changes with respect to an input of several tens of thousands of revolutions, but has a disadvantage that the efficiency decreases as the reduction ratio becomes higher.

また、上記のような欠点を解消する方策としては、歯面に、硬質で且つ低フリクション性をもたらす硬質被膜を形成することが考えられ、その硬質被膜としては、とくに鋼との摺動において優れた低フリクション性能を示すダイヤモンドライクカーボン膜(以下、『DLC膜』と略記する)がある。DLC膜は、既に自動車用エンジンの摺動部品への適用事例もあるが、減速機用歯車に適用する場合には、動的に付与される高い面圧や高回転による摺動発熱によって当該DLC膜が失われてしまう恐れがあることから、同DLC膜の靭性を確保することが重要視されている。   In addition, as a measure for eliminating the above-mentioned drawbacks, it is conceivable to form a hard coating that is hard and provides low friction properties on the tooth surface, and the hard coating is particularly excellent in sliding with steel. In addition, there is a diamond-like carbon film (hereinafter abbreviated as “DLC film”) that exhibits low friction performance. The DLC film has already been applied to sliding parts of automobile engines, but when applied to gears for reduction gears, the DLC film is caused by sliding heat generated by high surface pressure and high rotation that are dynamically applied. Since the film may be lost, it is important to ensure the toughness of the DLC film.

そこで、従来においては、基材に対するDLC膜の耐剥離性を向上する方法として、基材表面に、イオン衝撃により10〜100nmの凹凸を形成し、その後にDLC膜を形成することで機械的なアンカー効果によって密着性を向上させる方法や、基材表面にDLC膜を形成した後、その表面に、粒径が1〜50μmで且つエッジの鋭い粒子を用いてマイクロブラスト処理を行うことにより、その表面を滑らかにする方法が提案されていた。また、基材表面にマイクロブラストを投射し、同表面を粗いものにすることでDLC膜の靭性を確保することも、耐剥離性の面では有効であると考えられていた。
特開平10−130817号公報 特開2001−304275公報 特表2003−500231公報
Therefore, conventionally, as a method for improving the peel resistance of the DLC film to the base material, mechanical roughness is formed by forming irregularities of 10 to 100 nm on the surface of the base material by ion bombardment and then forming the DLC film. After forming a DLC film on the surface of the base material by the anchor effect and performing a microblast treatment on the surface using particles having a particle diameter of 1 to 50 μm and sharp edges, A method of smoothing the surface has been proposed. It was also considered effective in terms of peel resistance to ensure the toughness of the DLC film by projecting microblasts onto the surface of the substrate and making the surface rough.
JP-A-10-130817 JP 2001-304275 A Special table 2003-500231 gazette

しかしながら、イオン衝撃により凹凸を形成した後にDLC膜を形成する方法では、基材とDLC膜との界面の密着性を高めるには有効であるものの、DLC膜自体の靭性を向上することができないという問題点があった。   However, although the method of forming a DLC film after forming irregularities by ion bombardment is effective in improving the adhesion at the interface between the substrate and the DLC film, it cannot improve the toughness of the DLC film itself. There was a problem.

また、成膜後にマイクロブラスト処理を行う方法では、ブラスト粒子のサイズや形状を維持管理しなければならない点に難があり、何よりも油膜が薄い歯先あるいは歯元では、マイクロブラストによる数μmレベルの面粗度の低下が、局部的な油膜切れによる金属接触を生じさせてフリクションを大幅に悪化させ、ひいては減速機の効率を低下させてしまうという問題点があり、さらに、上記した値以上に小さいブラスト粒子を用いて緻密な表面を得ることは困難であるという問題点があった。   In addition, the method of performing microblasting after film formation has difficulty in maintaining and managing the size and shape of the blast particles. Above all, at the tooth tip or tooth base where the oil film is thin, the level is several μm by microblasting. The reduction in surface roughness causes a metal contact due to local oil film breakage, which significantly degrades friction and, in turn, reduces the reduction gear efficiency, and further exceeds the above values. There is a problem that it is difficult to obtain a dense surface using small blast particles.

本発明は、上記従来の状況に鑑みて成されたもので、高減速比で用いる歯車表面においても剥離することのないダイヤモンドライクカーボン膜を備えたものとすることができ、且つ歯面の低フリクション化をも実現することができる高強度歯車及びその製造方法を提供することを目的としている。   The present invention has been made in view of the above-described conventional situation, and can be provided with a diamond-like carbon film that does not peel even on the surface of a gear used at a high reduction ratio, and has a low tooth surface. An object of the present invention is to provide a high-strength gear capable of realizing friction and a manufacturing method thereof.

本発明の高強度歯車は、金属製歯車基材の歯面において、全噛み合い長さLに対して少なくとも歯先から0.3L〜0.7Lの範囲に、平均径が0.1〜10μmで且つ平均深さが0.1〜10μmの多数の凹部が形成してある。そして、凹部を形成した歯面には、厚さ1〜5μmのダイヤモンドライクカーボン膜が形成してあり、さらに、ダイヤモンドライクカーボン膜上に、厚さが10〜500nmで且つ水素を原子数密度4×1022atms/cm以上含有するカーボン層を備えたものとしている。また、より好ましい実施形態として、歯面の凹部が、レーザーパルスの照射により形成してあることを特徴としている。 The high-strength gear of the present invention has an average diameter of 0.1 to 10 μm in the tooth surface of the metal gear base material in the range of at least 0.3 L to 0.7 L from the tooth tip with respect to the total meshing length L. And many recessed parts with an average depth of 0.1-10 micrometers are formed. Then, a diamond-like carbon film having a thickness of 1 to 5 μm is formed on the tooth surface on which the concave portion is formed. Further, on the diamond-like carbon film, the thickness is 10 to 500 nm and hydrogen has an atomic density of 4 The carbon layer containing × 10 22 atms / cm 3 or more is provided. Further, as a more preferred embodiment, the concave portion of the tooth surface is formed by irradiation with a laser pulse.

本発明の高強度歯車の製造方法は、金属製歯車基材の歯面に対して、全噛み合い長さLに対して少なくとも歯先から0.3L〜0.7Lの範囲にレーザーパルスを照射して、平均径が0.1〜10μmで且つ平均深さが0.1〜10μmの多数の凹部を形成する。その後、PVD処理室においてPVD法により歯面にダイヤモンドライクカーボン膜を形成し、続いて、PVD処理室中に炭化水素ガスを導入してダイヤモンドライクカーボン膜上に水素を含有するカーボン層を形成することで、歯面に、凹部、ダイヤモンドライクカーボン膜及びカーボン層を備えた高強度歯車を得るものとしている。   In the method for producing a high-strength gear according to the present invention, a laser pulse is applied to a tooth surface of a metal gear base material in a range of at least 0.3 L to 0.7 L from the tooth tip with respect to the total meshing length L. Thus, a large number of recesses having an average diameter of 0.1 to 10 μm and an average depth of 0.1 to 10 μm are formed. Thereafter, a diamond-like carbon film is formed on the tooth surface by the PVD method in the PVD processing chamber, and subsequently, a hydrocarbon gas is introduced into the PVD processing chamber to form a carbon layer containing hydrogen on the diamond-like carbon film. Thus, a high-strength gear having a recess, a diamond-like carbon film, and a carbon layer on the tooth surface is obtained.

本発明の高強度歯車によれば、高減速比で用いる歯車表面においても剥離することのないダイヤモンドライクカーボン膜を備えたものとすることができ、且つ歯面の低フリクション化をも実現することができる。   According to the high-strength gear of the present invention, it is possible to provide a diamond-like carbon film that does not peel even on the surface of the gear used at a high reduction ratio, and to achieve low friction of the tooth surface. Can do.

本発明の高強度歯車の製造方法によれば、高減速比で用いる歯車表面においても剥離することのないダイヤモンドライクカーボン膜を形成することができ、且つ歯面の低フリクション化をも実現した高強度歯車を提供することができる。   According to the method for producing a high-strength gear of the present invention, a diamond-like carbon film that does not peel even on the surface of a gear used at a high reduction ratio can be formed, and the friction of the tooth surface can be reduced. A strength gear can be provided.

本発明の高強度歯車は、図1に示すように、鉄、銅、アルミニウム及びその合金等から成る金属製歯車素材1の歯面において、全噛み合い長さ(歯先から歯元に至る長さ)Lに対して少なくとも歯先から0.3L〜0.7Lの範囲Aに、平均径が0.1〜10μmで且つ平均深さが0.1〜10μmの多数の凹部2が形成してある。   As shown in FIG. 1, the high-strength gear according to the present invention has a total meshing length (a length from the tooth tip to the tooth root) on the tooth surface of the metal gear material 1 made of iron, copper, aluminum, an alloy thereof, or the like. ) A large number of recesses 2 having an average diameter of 0.1 to 10 μm and an average depth of 0.1 to 10 μm are formed in a range A from 0.3 L to 0.7 L at least from the tooth tip with respect to L. .

また、上記の範囲に凹部2を形成した歯面の全面には、厚さ1〜5μmのダイヤモンドライクカーボン膜3が形成してあり、さらに、DLC膜3上の全面に、厚さが10〜500nmで且つ水素を原子数密度4×1022atms/cm以上含有するカーボン層4が形成してある。 In addition, a diamond-like carbon film 3 having a thickness of 1 to 5 μm is formed on the entire surface of the tooth surface where the concave portion 2 is formed in the above range. Further, a thickness of 10 to 10 μm is formed on the entire surface of the DLC film 3. A carbon layer 4 having 500 nm and containing hydrogen with an atomic number density of 4 × 10 22 atms / cm 3 or more is formed.

上記の高強度歯車を製造するには、歯車基材1の歯面に対して、全噛み合い長さLに対して少なくとも歯先から0.3L〜0.7Lの範囲Aにレーザーパルスを照射して、上記した大きさの多数の凹部2を形成する。このように、凹部2の形成にレーザパルスを用いることにより、ブラスト処理のように粒子を投射する方法では困難であった緻密な凹部形状の形成や形成範囲を容易に制御することができ、且つ安定した品質を得ることができる。   In order to manufacture the high-strength gear, a laser pulse is applied to the tooth surface of the gear base 1 in a range A of 0.3 L to 0.7 L at least from the tooth tip with respect to the total meshing length L. Thus, a large number of recesses 2 of the size described above are formed. Thus, by using the laser pulse for forming the concave portion 2, it is possible to easily control the formation and formation range of the fine concave portion, which has been difficult by the method of projecting particles as in the blasting process, and Stable quality can be obtained.

その後、PVD(物理気相合成)処理室において、PVD法により歯面にDLC膜3を形成する。このPVC処理としては、基材に対する被膜の密着力の観点などから、アークイオンプレーティング法やスパッタリング法などが好ましい。   Thereafter, in the PVD (physical vapor phase synthesis) processing chamber, the DLC film 3 is formed on the tooth surface by the PVD method. As this PVC treatment, an arc ion plating method, a sputtering method, or the like is preferable from the viewpoint of the adhesion strength of the film to the substrate.

そして、上記のDLC膜3の形成に続いて、本来DLC膜3中に水素が入らないPVD処理において、PVD処理室中に、例えばメタンガス等の炭化水素ガスを導入してDLC膜3上に水素を含有するカーボン層4を形成する。これにより、歯面に、所定範囲の凹部2、DLC膜3及びカーボン層4を備えた高強度歯車が得られる。   Then, following the formation of the DLC film 3, in a PVD process in which hydrogen does not naturally enter the DLC film 3, a hydrocarbon gas such as methane gas is introduced into the PVD process chamber to introduce hydrogen into the DLC film 3. The carbon layer 4 containing is formed. As a result, a high-strength gear having a predetermined range of recesses 2, DLC film 3, and carbon layer 4 on the tooth surface is obtained.

上記の高強度歯車において、歯車素材1は、金属製であるから熱伝導が高く、動力伝達時において摺動面で生じた熱を伝えて放出し易いものである。また、歯面において、全噛み合い長さLに対して少なくとも歯先から0.3L〜0.7Lの範囲Aは、とくに面圧が高くなり、高靭性が要求される部分であり、歯先及び歯元は、とくに摺動が厳しくなる部分である。   In the high-strength gear described above, the gear material 1 is made of metal, and therefore has high heat conduction, and easily transmits and releases heat generated on the sliding surface during power transmission. In addition, in the tooth surface, a range A of at least 0.3 L to 0.7 L from the tooth tip with respect to the total meshing length L is a portion where the surface pressure is particularly high and high toughness is required. The tooth root is a part where sliding becomes particularly severe.

そこで、当該高強度歯車では、とくに面圧が高くなる上記範囲Aにレーザパルスにより多数の凹部2を形成してから、歯面全面にDLC膜3を形成することで、上記範囲Aすなわち面圧が高く靭性を要する歯面のピッチ点まわりの部分では、ブラスト処理のように表面粗さを悪化させずに凹部2を形成したうえで、DLC膜3が形成されることになり、凹部2を形成した範囲Aでは、DLC膜3がきめ細かいブロック状となって、局部の欠陥や傷が全体に伝播することのない高靭性の被膜となる。   Therefore, in the high-strength gear, by forming a large number of recesses 2 by laser pulses in the above-described range A where the surface pressure becomes high, the DLC film 3 is formed on the entire tooth surface, so that the above-described range A, that is, the surface pressure. In the portion around the pitch point of the tooth surface that requires high toughness, the DLC film 3 is formed after forming the concave portion 2 without deteriorating the surface roughness as in the blasting process. In the formed area A, the DLC film 3 is in a fine block shape, and becomes a high toughness film in which local defects and scratches are not propagated throughout.

また、当該高強度歯車は、とくに摺動が厳しくなる歯先及び歯元には凹部2を形成しないので、これらの部分では上記範囲Aに比べて表面が緻密なものになると共に、金属接触が生じ難くなり、フリクションを低下させることができるうえに製造コストを低減できるという利点がある。   Further, since the high-strength gear does not form the concave portion 2 at the tooth tip and the tooth base where sliding becomes particularly severe, the surface of these portions is denser than the above-mentioned range A, and the metal contact is not made. This is advantageous in that it is less likely to occur, friction can be reduced, and manufacturing costs can be reduced.

ここで、凹部2の平均径を0.1〜10μmとし且つ平均深さを0.1〜10μmとしたのは、平均径を0.1μm未満とし且つ平均深さを0.1μm未満にすると、実質的に凹部2が無い状態に等しくなってブロック状のDLC膜3を得ることが困難になるからであり、一方、平均径が10μmを超え且つ平均深さが10μmを超えると、DLC膜3のブロック状のきめ細かさが失われて高靭性を維持することが困難になるからである。   Here, the average diameter of the recesses 2 is set to 0.1 to 10 μm and the average depth is set to 0.1 to 10 μm. When the average diameter is set to less than 0.1 μm and the average depth is set to less than 0.1 μm, This is because it becomes difficult to obtain the block-shaped DLC film 3 because it is substantially equal to the state in which there is no recess 2. On the other hand, if the average diameter exceeds 10 μm and the average depth exceeds 10 μm, the DLC film 3 This is because it becomes difficult to maintain the high toughness due to the loss of the block-like fineness.

また、DLC膜3の厚さを1〜5μmとしたのは、厚さが1μm未満であると、薄過ぎて充分な耐摩耗性を得ることが困難になるからであり、一方、厚さが5μmを超えると、DLC膜3が厚過ぎて剥離し易くなるからである。   The thickness of the DLC film 3 is set to 1 to 5 μm because if the thickness is less than 1 μm, it is difficult to obtain sufficient wear resistance because it is too thin. This is because if the thickness exceeds 5 μm, the DLC film 3 is too thick and easily peels off.

さらに、カーボン層4は、ある程度の摺動により研磨されて相手材となじむ性質があり、このようななじみ層を歯先から歯元に至るまでむら無く形成し且つなじみ後には本来のDLC層を露出させる働きをする。このため、カーボン層4の厚さを10〜500nmとしており、これは、厚さが10nm未満であると、薄過ぎて充分ななじみ性を得ることが困難になるからであり、一方、厚さが500nmを超えると、厚過ぎてなじみ後にDLC層を露出させるのが困難になるからである。   Further, the carbon layer 4 has a property of being polished by a certain amount of sliding and becoming familiar with the counterpart material. Such a familiar layer is formed evenly from the tooth tip to the tooth base, and after the familiarity, the original DLC layer is formed. Works to expose. For this reason, the thickness of the carbon layer 4 is set to 10 to 500 nm, and if the thickness is less than 10 nm, it is difficult to obtain sufficient conformability because it is too thin. If the thickness exceeds 500 nm, it is too thick and it becomes difficult to expose the DLC layer after accustoming.

そしてさらに、カーボン層4の水素含有量を原子数密度4×1022atms/cm以上としたのは、原子数密度4×1022atms/cm未満であると、炭素膜の硬度が高くてアブレッシブ摩耗(異物による摩耗)的な相手攻撃性が生じ、上記したようななじみ層として不充分になるからである。 Further, the reason why the hydrogen content of the carbon layer 4 is set to an atomic number density of 4 × 10 22 atms / cm 3 or more is that the carbon film has a high hardness when the atomic density is less than 4 × 10 22 atms / cm 3 This is because the aggressive opponent (abrasion due to foreign matter) causes aggression against the other party and becomes inadequate as the conforming layer as described above.

したがって、本発明の高強度歯車及びその製造方法では、金属製歯車基材1の歯面において、全噛み合い長さLに対して少なくとも歯先から0.3L〜0.7Lの範囲Aに、レーザパルスによって平均径が0.1〜10μmで且つ平均深さが0.1〜10μmの多数の凹部2を高精度に形成し、その後、歯面の全面に厚さ1〜5μmのDLC膜3を形成することで、DLC膜3が厚くなることによる歯先での強度低下や摩耗の無い高靭性のDLC膜3が歯面の噛み合い範囲全域で得られることとなる。   Therefore, in the high-strength gear of the present invention and the manufacturing method thereof, the laser is applied to the tooth surface of the metal gear base 1 at least in a range A of 0.3 L to 0.7 L from the tooth tip with respect to the total mesh length L. A number of recesses 2 having an average diameter of 0.1 to 10 μm and an average depth of 0.1 to 10 μm are formed with high precision by pulses, and then a DLC film 3 having a thickness of 1 to 5 μm is formed on the entire tooth surface. By forming the DLC film 3, a high-toughness DLC film 3 free from strength reduction and wear at the tooth tip due to the thickening of the DLC film 3 is obtained in the entire meshing range of the tooth surface.

また、上記のDLC膜3上に、厚さが10〜500nmで且つ水素を原子数密度4×1022atms/cm以上含有するカーボン層4を備えることにより、このカーボン層4は、炭素膜の硬度が急激に失われてアブレッシブ摩耗的な相手攻撃性が低下したものとなり、軟質でダイヤモンド構造の特徴はないものの、相手表面の研磨作用に優れ且つ摺動後すぐに失われるなじみ層として最適であり、これにより一層の低フリクション性能が得られ、その結果、摺動発熱が低下してDLC膜3の摩耗もし難くなる。 Further, by providing the carbon layer 4 having a thickness of 10 to 500 nm and containing hydrogen at an atom number density of 4 × 10 22 atms / cm 3 or more on the DLC film 3, the carbon layer 4 is formed of a carbon film. The hardness of the material is abruptly lost, which reduces the aggressiveness of the opponent against abrasive wear. It is soft and has no diamond structure characteristics, but it is excellent as a mating layer that has excellent polishing action on the mating surface and is lost immediately after sliding. As a result, a further low friction performance is obtained. As a result, the sliding heat generation is reduced and the DLC film 3 is not easily worn.

このようにして、当該高強度歯車及びその製造方法によれば、高減速比で用いる歯車表面においても剥離することのないDLC膜3を備えたものとすることができ、且つ歯面の充分な低フリクション化を実現することができる。   Thus, according to the high-strength gear and the manufacturing method thereof, it is possible to provide the DLC film 3 that does not peel off even on the gear surface used at a high reduction ratio, and the tooth surface has a sufficient surface. Low friction can be realized.

本発明に係わる高強度歯車の効果を調べるために、実施例A,B及び比較例A〜Gといて、以下に示す諸元の複合型遊星歯車を試作した。本発明に係る歯車であるピニオンギア(大ピニオンギア,小ピニオンギア)及び相手歯車(サンギア,インターナルギア)の材料は、JIS−SCM420Hとし、ホブ切りにより歯を形成した後、浸炭焼き入れ・焼き戻しを行って表面硬度をHv730とし、有効硬化層深さを0.6mmとした。また、いずれの歯車も歯面研削にて形状を整えた。
<歯車形状試験片>
サンギア
モジュール :0.87
試験歯車の歯数 :24
圧力角 :17.5°
ねじれ角 :25°
大ピニオンギア
試験歯車の歯数 :60
小ピニオンギア
モジュール :1.19
試験歯車の歯数 :20
圧力角 :21°
ねじれ角 :11°
インターナルギア
試験歯車の歯数 :87
In order to investigate the effect of the high-strength gear according to the present invention, a compound planetary gear having the following specifications was experimentally produced as Examples A and B and Comparative Examples A to G. The material of the pinion gear (large pinion gear, small pinion gear) and the counter gear (sun gear, internal gear), which are the gears according to the present invention, is JIS-SCM420H. After teeth are formed by hobbing, carburizing and quenching The surface hardness was set to Hv730 and the effective hardened layer depth was set to 0.6 mm. In addition, each gear was trimmed by tooth surface grinding.
<Gear shape test piece>
Sungear module: 0.87
Number of teeth of test gear: 24
Pressure angle: 17.5 °
Twist angle: 25 °
Large pinion gear Number of test gear teeth: 60
Small pinion gear module: 1.19
Number of teeth of test gear: 20
Pressure angle: 21 °
Twist angle: 11 °
Internal gear Number of test gear teeth: 87

その後、比較例Fを除く各試験歯車の歯面に対して、以下の条件でレーザーパルスを照射し、歯面の所定範囲に多数の凹部を形成した。この凹部形成方法の原理は、水中の歯車の歯面にレーザーパルスを照射して局所的にプラズマを発生させ、極表面を溶解するものである。このとき、歯面の各凹部は、1パルスが照射した面積内に極めて微小な凹凸を多数形成することにより得られるものであって、照射したレーザーパルス1個の大きさに対応するものではない。なお、比較例Eでは歯面全面に凹部を形成した。
<レーザーパルス照射条件>
ビーム径 :φ0.2mm
パルス密度 :80000パルス/m
Thereafter, a laser pulse was applied to the tooth surfaces of each test gear except Comparative Example F under the following conditions to form a large number of recesses in a predetermined range of the tooth surfaces. The principle of this recess forming method is to irradiate the tooth surface of the gear in water with a laser pulse to locally generate plasma and dissolve the pole surface. At this time, each concave portion of the tooth surface is obtained by forming a large number of extremely minute irregularities within the area irradiated with one pulse, and does not correspond to the size of one irradiated laser pulse. . In Comparative Example E, a recess was formed on the entire tooth surface.
<Laser pulse irradiation conditions>
Beam diameter: φ0.2mm
Pulse density: 80000 pulses / m 2

また、レーザーパルスによる凹部形成を行う際に、防錆剤入りの水を媒体として用いたが、この媒体はレーザーを透過するものであればよく、錆を嫌う場合は白灯油などを用いても良い。さらに、凹部のサイズの効果を確認するため、各実施例及び比較例Fを除く各比較例について、照射するパルスエネルギーを変えて試作を行った。   In addition, when forming recesses by laser pulses, water containing a rust preventive agent was used as a medium, but this medium only needs to be able to transmit the laser. good. Furthermore, in order to confirm the effect of the size of the recesses, each comparative example except each example and comparative example F was manufactured by changing the irradiation pulse energy.

その後、比較例Fを除く各試験歯車の歯面に対して、非平衡マグネトロンスパッタリングにてダイヤモンドライクカーボン膜の形成を行った。これは、歯車の歯面をアルゴン(Ar)イオンにてスパッタリングした後、中間層としてCr層をピッチ点で0.5μmとなるように生成し、続いて、WC(タングステンカーバイド)/C層を形成した。この際、DLC膜の厚さの影響を確認するため、成膜時間を変えて膜厚を変えた。   Thereafter, a diamond-like carbon film was formed on the tooth surfaces of each test gear except Comparative Example F by non-equilibrium magnetron sputtering. This is because, after the tooth surface of the gear is sputtered with argon (Ar) ions, a Cr layer is formed as an intermediate layer so that the pitch point is 0.5 μm, and then a WC (tungsten carbide) / C layer is formed. Formed. At this time, in order to confirm the influence of the thickness of the DLC film, the film formation time was changed to change the film thickness.

そして、成膜の最後に、炭化水素ガスとして、Arガスの全流量に対して30%のメタンガス(CH)を導入してカーボン層を形成した。このカーボン層の水素含有量は二次イオン質量分析装置にて測定し、同カーボン層の原子数密度を1×1023atms/cmとして求めた。なお、比較例Bにはカーボン層の形成を行わなかった。
<DLC成膜条件>
Arガス導入前真空度 :1x10−4Torr
スパッタ圧 :Ar 0.3Pa
窒素ガス導入後圧力 :30mTorr
製膜前温度 :130℃
At the end of film formation, 30% methane gas (CH 4 ) was introduced as a hydrocarbon gas with respect to the total flow rate of Ar gas to form a carbon layer. The hydrogen content of this carbon layer was measured with a secondary ion mass spectrometer, and the atomic number density of the carbon layer was determined as 1 × 10 23 atms / cm 3 . In Comparative Example B, no carbon layer was formed.
<DLC deposition conditions>
Degree of vacuum before introducing Ar gas: 1 × 10 −4 Torr
Sputtering pressure: Ar 0.3 Pa
Pressure after introducing nitrogen gas: 30 mTorr
Pre-filming temperature: 130 ° C

その後、各実施例及び各比較例について、以下の条件で歯車単体試験を行い、10回転後の相手歯車の表面粗さの変化及び剥離の有無を調べた。また、トルクから効率を算出して比較した。試験後には、膜厚及び表面形状をSEM(走査電子顕微鏡)にて観察し、また、相手表面の粗さを測定した。
<歯車試験条件>
潤滑油 :日産純正ATF マチックD
試験油温 :90℃
入力回転数 :15000rpm
トルク :15Nm
表1に結果をまとめて示す。
Then, for each of Examples and Comparative Examples, performs gear unit test under the following conditions, was examined for change and peeling of the surface roughness of the mating gear after 107 rotation. Also, the efficiency was calculated from the torque and compared. After the test, the film thickness and the surface shape were observed with an SEM (scanning electron microscope), and the roughness of the mating surface was measured.
<Gear test conditions>
Lubricating oil: Nissan genuine ATF Matic D
Test oil temperature: 90 ° C
Input rotation speed: 15000rpm
Torque: 15Nm
Table 1 summarizes the results.

Figure 2006022894
Figure 2006022894

本発明の実施例A,Bでは、いずれも比較例A〜Fに対して相手表面粗さが明らかに向上しており、DLC膜の高い剥離限界と高効率を確認した。   In Examples A and B of the present invention, the mating surface roughness was clearly improved with respect to Comparative Examples A to F, and the high peeling limit and high efficiency of the DLC film were confirmed.

これに対して、比較例Aでは、凹部が深く且つ大き過ぎてDLC膜の剥離が生じた。また、カーボン層を形成しなかった比較例Bや、カーボン層の厚さを薄くした比較例D及びEでは、相手表面粗さ並びに歯車表面間の接触状態が改善されず、比較例Bでは、凹部が深く且つ大き過ぎてDLC膜が失われ、比較例Dでは、DLC膜が薄過ぎて歯元の膜が摩耗で失われた。逆に、比較例Cでは、DLC膜が厚過ぎて歯先側から剥離が生じた。   On the other hand, in Comparative Example A, the recess was deep and too large, and the DLC film was peeled off. Further, in Comparative Example B in which the carbon layer was not formed, and in Comparative Examples D and E in which the thickness of the carbon layer was reduced, the contact surface roughness and the contact state between the gear surfaces were not improved. The concave portion was too deep and too large to lose the DLC film. In Comparative Example D, the DLC film was too thin and the tooth base film was lost due to wear. On the contrary, in Comparative Example C, the DLC film was too thick and peeling occurred from the tooth tip side.

さらに、比較例Eでは、全面に凹部を形成したためにDLC膜が剥離しなかったが、効率が低いものとなり、同じく剥離が生じた比較例A〜Dも効率は向上しなかった。そしてさらに、比較例Gは、最表面のカーボン層の水素含有量が4×1022atms/cm未満であったため、その硬度が大きくてなじみ層として機能しなかった。 Furthermore, in Comparative Example E, the DLC film was not peeled because the concave portions were formed on the entire surface. However, the efficiency was low, and Comparative Examples A to D in which peeling occurred similarly did not improve the efficiency. Further, in Comparative Example G, the hydrogen content of the outermost carbon layer was less than 4 × 10 22 atms / cm 3 , so the hardness was high and it did not function as a conforming layer.

本発明の高強度歯車における歯面を説明する断面図である。It is sectional drawing explaining the tooth surface in the high strength gear of this invention.

符号の説明Explanation of symbols

1 歯車基材
2 凹部
3 ダイヤモンドライクカーボン膜
4 カーボン層
A 凹部の形成範囲(Lに対して0.3L〜0.7Lの範囲)
DESCRIPTION OF SYMBOLS 1 Gear base material 2 Concave part 3 Diamond-like carbon film 4 Carbon layer A Concave formation range (the range of 0.3L-0.7L with respect to L)

Claims (3)

金属製歯車基材の歯面において、全噛み合い長さLに対して少なくとも歯先から0.3L〜0.7Lの範囲に、平均径が0.1〜10μmで且つ平均深さが0.1〜10μmの多数の凹部が形成してあり、その表面に厚さ1〜5μmのダイヤモンドライクカーボン膜が形成してあり、ダイヤモンドライクカーボン膜上に厚さが10〜500nmで且つ水素を原子数密度4×1022atms/cm以上含有するカーボン層を備えていることを特徴とする高強度歯車。 In the tooth surface of the metal gear base, the average diameter is 0.1 to 10 μm and the average depth is 0.1 to at least 0.3 L to 0.7 L from the tooth tip with respect to the total mesh length L. A large number of recesses of 10 to 10 μm are formed, a diamond-like carbon film having a thickness of 1 to 5 μm is formed on the surface thereof, and the thickness of the diamond-like carbon film is 10 to 500 nm and hydrogen has an atomic number density. A high-strength gear comprising a carbon layer containing 4 × 10 22 atms / cm 3 or more. 歯面の凹部が、レーザーパルスの照射により形成してあることを特徴とする請求項1に記載の高強度歯車。   2. The high-strength gear according to claim 1, wherein the concave portion of the tooth surface is formed by laser pulse irradiation. 金属製歯車基材の歯面に対して、全噛み合い長さLに対して少なくとも歯先から0.3L〜0.7Lの範囲にレーザーパルスを照射して、平均径が0.1〜10μmで且つ平均深さが0.1〜10μmの多数の凹部を形成した後、PVD処理室においてPVD法により歯面にダイヤモンドライクカーボン膜を形成し、続いて、PVD処理室中に炭化水素ガスを導入してダイヤモンドライクカーボン膜上に水素を含有するカーボン層を形成することを特徴とする高強度歯車の製造方法。   With respect to the tooth surface of the metal gear base material, a laser pulse is irradiated in a range of at least 0.3 L to 0.7 L from the tooth tip with respect to the total meshing length L, and the average diameter is 0.1 to 10 μm. After forming a large number of recesses with an average depth of 0.1 to 10 μm, a diamond-like carbon film is formed on the tooth surface by the PVD method in the PVD processing chamber, and then hydrocarbon gas is introduced into the PVD processing chamber. And forming a carbon layer containing hydrogen on the diamond-like carbon film.
JP2004201644A 2004-07-08 2004-07-08 Highly strong gear and method of manufacturing the same Pending JP2006022894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004201644A JP2006022894A (en) 2004-07-08 2004-07-08 Highly strong gear and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004201644A JP2006022894A (en) 2004-07-08 2004-07-08 Highly strong gear and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2006022894A true JP2006022894A (en) 2006-01-26

Family

ID=35796317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004201644A Pending JP2006022894A (en) 2004-07-08 2004-07-08 Highly strong gear and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2006022894A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024841A (en) * 2007-07-23 2009-02-05 Kawasaki Heavy Ind Ltd Trochoid gear and reduction gear
DE102008032656A1 (en) * 2008-07-10 2010-01-14 Bayerische Motoren Werke Aktiengesellschaft Coating method for gearwheels comprises masking troughs between adjacent teeth on wheels so that only sides of teeth are coated
JP2010507056A (en) * 2006-10-20 2010-03-04 アッシュ・ウー・エフ Friction piece operating at a contact pressure above 200 MPa in a lubricating medium
JP2010266042A (en) * 2009-05-18 2010-11-25 Honda Motor Co Ltd Gear for power unit, and manufacturing method therefor
CN103727180A (en) * 2012-10-10 2014-04-16 成都掌握移动信息技术有限公司 Planetary gear mechanism with rub-resisting coatings

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507056A (en) * 2006-10-20 2010-03-04 アッシュ・ウー・エフ Friction piece operating at a contact pressure above 200 MPa in a lubricating medium
JP2015148344A (en) * 2006-10-20 2015-08-20 アッシュ・ウー・エフ FRICTION PIECE IN LUBRICATED MEDIUM, WORKING AT CONTACT PRESSURES HIGHER THAN 200 MPa
JP2009024841A (en) * 2007-07-23 2009-02-05 Kawasaki Heavy Ind Ltd Trochoid gear and reduction gear
DE102008032656A1 (en) * 2008-07-10 2010-01-14 Bayerische Motoren Werke Aktiengesellschaft Coating method for gearwheels comprises masking troughs between adjacent teeth on wheels so that only sides of teeth are coated
JP2010266042A (en) * 2009-05-18 2010-11-25 Honda Motor Co Ltd Gear for power unit, and manufacturing method therefor
CN103727180A (en) * 2012-10-10 2014-04-16 成都掌握移动信息技术有限公司 Planetary gear mechanism with rub-resisting coatings

Similar Documents

Publication Publication Date Title
JP6273563B2 (en) Coating film, method for producing the same, and PVD apparatus
JP4085699B2 (en) Sliding member and manufacturing method thereof
JP4918656B2 (en) Amorphous hard carbon film
JP5432971B2 (en) Sliding member and manufacturing method thereof
JP6534123B2 (en) Coating film, method for producing the same and PVD apparatus
US9371576B2 (en) Coated tool and methods of making and using the coated tool
JP5179743B2 (en) Diamond-like carbon film
JP2004238736A (en) Hard film, and hard film-coated tool
JP2006214313A (en) Valve lifter
JP6511126B1 (en) Sliding member and piston ring
CN113584438B (en) Periodic multilayer structure coating band saw blade and preparation method and application thereof
JPH07292458A (en) Sliding member and its production
CN113774315A (en) Aviation heavy-load gear and preparation method thereof
JP2004339564A (en) Sliding member and film deposition method
JP2000002315A (en) High surface pressure gear, and manufacture thereof
JP2006022894A (en) Highly strong gear and method of manufacturing the same
JP4918972B2 (en) High speed sliding member
JP2008013852A (en) Hard film, and hard film-coated tool
CN109628891A (en) A kind of TiN/MoS2The preparation method of/Ag high temperature lubricating laminated film
JP2006022895A (en) Highly strong gear and method of manufacturing the same
JP3654918B2 (en) Sliding material
JP2007268656A (en) Cutting tool and manufacturing method thereof
JP3232778B2 (en) Coated cemented carbide member and method of manufacturing the same
JP2005221040A (en) Gear and its manufacturing method
JP2013241961A (en) Gear manufacturing method and gear