JP2014104556A - Manufacturing method of gear - Google Patents

Manufacturing method of gear Download PDF

Info

Publication number
JP2014104556A
JP2014104556A JP2012260537A JP2012260537A JP2014104556A JP 2014104556 A JP2014104556 A JP 2014104556A JP 2012260537 A JP2012260537 A JP 2012260537A JP 2012260537 A JP2012260537 A JP 2012260537A JP 2014104556 A JP2014104556 A JP 2014104556A
Authority
JP
Japan
Prior art keywords
residual stress
compressive residual
tooth surface
gear
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012260537A
Other languages
Japanese (ja)
Inventor
Masayuki Ishibashi
昌幸 石橋
Naoki Moriguchi
直樹 森口
Morihiro Matsumoto
守弘 松本
Daisuke Okamoto
大典 岡本
Daisuke Tokozakura
大輔 床桜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012260537A priority Critical patent/JP2014104556A/en
Publication of JP2014104556A publication Critical patent/JP2014104556A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gear Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a gear capable of reducing surface roughness of tooth surfaces and improving the strength of the tooth surfaces.SOLUTION: The manufacturing method of a gear includes the steps of: applying compressive residual stress on tooth surfaces of teeth, engaging with each other; and reducing the height of protrusions of the tooth surfaces on which the compressive residual stress is applied and performing a finish so as to have predetermined surface roughness. The reduction amount of the height of the protrusions of the tooth surfaces is obtained so that the height of the protrusions of the tooth surfaces, reduced by the finish so as to have the predetermined surface roughness is equal to or under oil film thickness lying between the teeth engaging with each other, and at the step of applying the compressive residual stress, the compressive residual stress is applied so that the depth where the compressive residual stress is largest is the depth obtained by adding quantity of a polish of the tooth surfaces, to a target depth where the compressive residual stress of the gear finished so as to have the predetermined surface roughness is largest.

Description

この発明は、互いに歯を噛み合わせて回転することによりトルクを伝達する歯車の製造方法に関し、特に歯面に圧縮残留応力を付与する歯車の製造方法に関するものである。   The present invention relates to a manufacturing method of a gear that transmits torque by meshing teeth with each other, and more particularly to a manufacturing method of a gear that applies compressive residual stress to a tooth surface.

歯車は、まず、素材から旋削や歯切りなどの加工を経て粗形材を造る。そして、ピッチングが生じてしまうことを抑制もしくは防止するために、歯面に圧縮残留応力を付与する。その圧縮残留応力を付与する方法として、粒子を歯面に噴射するショットピーニング加工や液体ホーニング加工などが知られている。これら各加工方法によって圧縮残留応力を付与した後に、研磨や転造などによって歯面の表面粗さを低減して歯車が仕上げられる。   Gears are first made into a rough shape from the raw material through turning and gear cutting. In order to suppress or prevent the occurrence of pitching, compressive residual stress is applied to the tooth surface. As a method for applying the compressive residual stress, shot peening processing, liquid honing processing, or the like in which particles are jetted onto a tooth surface is known. After applying the compressive residual stress by each of these processing methods, the gear surface is finished by reducing the surface roughness of the tooth surface by polishing or rolling.

上述したように歯面に圧縮残留応力を付与した後に歯面を研磨すると、歯面の凸部が除去されるものの、歯面に形成された凹部(ディンプル)の深さも低減してしまい、その結果、歯面に保持される潤滑油が低減してしまう可能性がある。そのため、特許文献1に記載された歯車の製造方法は、歯面を研磨した後に、液体ホーニング加工やショットピーニング加工を行って圧縮残留応力を付与するとともに、歯面にディンプルを形成している。   When the tooth surface is polished after applying compressive residual stress to the tooth surface as described above, the convex portion of the tooth surface is removed, but the depth of the concave portion (dimple) formed on the tooth surface is also reduced. As a result, the lubricating oil held on the tooth surface may be reduced. Therefore, in the gear manufacturing method described in Patent Document 1, after the tooth surface is polished, liquid honing or shot peening is performed to impart compressive residual stress, and dimples are formed on the tooth surface.

一方、歯面にショットピーニング加工や液体ホーニング加工を行った後に研磨すると、圧縮残留応力が付与されている層までも研磨によって除去されたり、歯面から圧縮残留応力を付与した層までの距離が短くなってしまったりする可能性がある。したがって、特許文献2に記載された歯車は、ショットピーニング加工によって圧縮残留応力を付与した後に、歯元以外の歯面を研磨することにより表面粗さを低減させて仕上げられている。   On the other hand, when polishing is performed after shot peening or liquid honing is performed on the tooth surface, even the layer to which compressive residual stress is applied is removed by polishing, or the distance from the tooth surface to the layer to which compressive residual stress is applied is increased. There is a possibility of shortening. Therefore, the gear described in Patent Document 2 is finished by reducing the surface roughness by polishing the tooth surface other than the tooth root after applying compressive residual stress by shot peening.

なお、歯面の表面が平滑でかつ複数のディンプルが形成された歯車は、油膜厚さが増大して、面圧や摩擦係数を低減することができると、特許文献3に記載されている。また、特許文献4には、表面に複数の凸部を形成した加工用歯車と被加工歯車とを噛み合わせて回転させることにより、被加工歯車の歯面に圧縮残留応力を付与することができるとともに、表面粗さを低減することができる加工方法が記載されている。   Patent Document 3 discloses that a gear having a smooth tooth surface and a plurality of dimples can reduce the surface pressure and the friction coefficient by increasing the oil film thickness. Further, in Patent Document 4, compressive residual stress can be imparted to the tooth surface of the gear to be processed by meshing and rotating the gear to be processed and the gear to be processed having a plurality of convex portions formed on the surface. A processing method that can reduce the surface roughness is also described.

特開2009−127842号公報JP 2009-127842 A 特開平11−207522号公報Japanese Patent Laid-Open No. 11-207522 特開平07−293668号公報Japanese Unexamined Patent Publication No. 07-293668 特開2012−179678号公報JP 2012-179678 A

上述した特許文献1に記載されているように、研磨後に液体ホーニング加工やショットピーニング加工を行うと、歯面に潤滑油を保持するディンプルを形成することができる反面、研磨された歯面の表面粗さが少なくとも粗くなる。そのため、歯面に突出部が形成されてしまって、動力伝達時における動力損失が増大してしまったり、歯面同士の間に潤滑油が介在しない箇所ができてしまったりする可能性がある。一方、特許文献2に記載されているように、ショットピーニング加工を行った後に歯面を研磨してしまうと、ショットピーニングによって圧縮残留応力が負荷された層が除去されてしまったり、歯面と圧縮残留応力が負荷された層との距離が短くなったりしてしまう可能性がある。そのため、圧縮残留応力を負荷したとしてもその効果が低減してしまい、耐ピッチング性が低下してしまう可能性がある。   As described in Patent Document 1 described above, when liquid honing or shot peening is performed after polishing, dimples that retain lubricating oil can be formed on the tooth surface, but the surface of the polished tooth surface The roughness becomes at least rough. For this reason, protrusions may be formed on the tooth surfaces, which may increase power loss during power transmission, or create a location where the lubricating oil does not intervene between the tooth surfaces. On the other hand, as described in Patent Document 2, if the tooth surface is polished after performing shot peening, the layer loaded with compressive residual stress is removed by shot peening, or the tooth surface and There is a possibility that the distance from the layer loaded with compressive residual stress may be shortened. Therefore, even if compressive residual stress is applied, the effect is reduced, and the pitting resistance may be lowered.

この発明は上記の技術的課題に着目してなされたものであり、歯面の表面粗さを低減することができるとともに、歯面の強度を向上させることができる歯車の製造方法を提供することを目的とするものである。   The present invention has been made paying attention to the above technical problem, and provides a gear manufacturing method that can reduce the surface roughness of the tooth surface and improve the strength of the tooth surface. It is intended.

上記の目的を達成するために、請求項1の発明は、互いに噛み合う歯の歯面に圧縮残留応力を付与する工程と、前記圧縮残留応力を付与された歯面の凸部高さを低減させて所定の表面粗さに仕上げる工程とを備えた歯車の製造方法において、前記所定の表面粗さに仕上げられることにより低減された歯面の凸部高さが、前記互いに噛み合う歯同士の間に介在する油膜厚さ以下となるように、前記歯面の凸部高さを低減させる量を求め、前記圧縮残留応力を付与する工程で、該圧縮残留応力が最大となる深さを、前記所定の表面粗さに仕上げられた歯車における圧縮残留応力が最大となる目標深さに、前記歯面を研磨する量を加算した深さとして前記圧縮残留応力を付与することを特徴とする製造方法である。   In order to achieve the above object, the invention of claim 1 is characterized in that a compressive residual stress is applied to tooth surfaces of teeth that mesh with each other, and a height of a convex portion of the tooth surface to which the compressive residual stress is applied is reduced. And a step of finishing to a predetermined surface roughness, the height of the convex portion of the tooth surface reduced by finishing to the predetermined surface roughness is between the meshing teeth. In the step of obtaining the amount by which the height of the convex portion of the tooth surface is reduced so as to be equal to or less than the intervening oil film thickness, and applying the compressive residual stress, the depth at which the compressive residual stress is maximized In the manufacturing method, the compressive residual stress is applied as a depth obtained by adding an amount of polishing the tooth surface to a target depth at which the compressive residual stress in the gear finished to a surface roughness of the maximum is obtained. is there.

請求項2の発明は、請求項1の発明において、前記油膜厚さは、前記互いに噛み合う歯の平均歯面速度に基づいて求められることを特徴とする歯車の製造方法である。   A second aspect of the present invention is the gear manufacturing method according to the first aspect, wherein the oil film thickness is obtained based on an average tooth surface speed of the teeth meshing with each other.

この発明によれば、圧縮残留応力を付与する以前に、互いに噛み合う歯同士の間に介在する油膜厚さから歯面の凸部高さを低減させる量を求め、その歯面の凸部を低減させる量を加算して、圧縮残留応力が最大となる深さを定めて圧縮残留応力が付与される。そのため、歯面の凸部高さを低減させて所定の表面粗さに仕上げることにより、歯車が動力を伝達する際の動力損失を低減することができる。また、歯面の凸部高さを低減して仕上げられたとしても、圧縮残留応力が最大となる深さを目標深さとすることができるため、歯面の強度を向上させることができる。   According to the present invention, before applying the compressive residual stress, the amount of reduction in the height of the convex portion of the tooth surface is obtained from the oil film thickness interposed between the teeth meshing with each other, and the convex portion of the tooth surface is reduced. The amount to be added is added to determine the depth at which the compressive residual stress is maximized, and the compressive residual stress is applied. Therefore, the power loss when the gear transmits power can be reduced by reducing the height of the convex portion of the tooth surface and finishing to a predetermined surface roughness. Moreover, even if the height of the convex portion of the tooth surface is reduced, the depth at which the compressive residual stress is maximized can be set as the target depth, so that the strength of the tooth surface can be improved.

また、歯面の凸部高さが、互いに噛み合う歯面の平均歯面速度に基づいて求められる油膜厚さ以下となるので、歯車が動力を伝達する際に、歯面が直接接触してしまうことを抑制もしくは防止することができる。言い換えると、歯面同士の間に油膜を介在させて動力を伝達するように歯車を形成することができるので、歯車が動力を伝達する際の動力損失をより一層低減することができる。   Further, since the height of the convex portion of the tooth surface is less than the oil film thickness obtained based on the average tooth surface speed of the tooth surfaces meshing with each other, the tooth surface is in direct contact when the gear transmits power. This can be suppressed or prevented. In other words, since a gear can be formed so as to transmit power by interposing an oil film between tooth surfaces, power loss when the gear transmits power can be further reduced.

圧縮残留応力が最大となる深さが歯面を研磨する前後で変化することを説明するための図である。It is a figure for demonstrating that the depth where compression residual stress becomes the maximum changes before and after grind | polishing a tooth surface. 粗形材の表面粗さを示す図である。It is a figure which shows the surface roughness of a rough shaped material. 目標表面粗さを示す図である。It is a figure which shows target surface roughness.

この発明に係る歯車の製造方法は、素材から旋削や歯切りなどの加工を経て粗形材を造り、その粗形材の歯面に圧縮残留応力を付与し、その後に、歯面の表面粗さを低減する加工を施すものであり、平歯車やはす歯歯車など種々の歯車を対象とすることができる。このように形成される歯車は、互いに噛み合う歯車の歯面同士が直接、接触してしまうことを抑制もしくは防止するために、歯面同士が潤滑油を介在させて動力を伝達することが好ましい。したがって、歯面の凸部の高さが、油膜の厚さ以下となるように所定の表面粗さに仕上げられる。なお、歯面の凸部の高さを低減する方法としては、歯面を研磨したり歯面を押圧する転造をしたりする方法など種々の方法で行うことができる。   In the gear manufacturing method according to the present invention, a rough shaped material is produced from a raw material through processing such as turning and gear cutting, and a compressive residual stress is applied to the tooth surface of the rough shaped material. It is intended to process various gears such as spur gears and helical gears. In the gear formed in this way, it is preferable that the tooth surfaces transmit power by interposing lubricating oil in order to suppress or prevent the tooth surfaces of the gears meshing with each other from directly contacting each other. Therefore, it is finished to a predetermined surface roughness so that the height of the convex portion of the tooth surface is equal to or less than the thickness of the oil film. In addition, as a method of reducing the height of the convex part of a tooth surface, it can carry out by various methods, such as the method of grind | polishing a tooth surface or performing the rolling which presses a tooth surface.

一方、歯面同士の間に介在する油膜厚さは、歯車同士が噛み合っている部分の平均歯面速度に応じて変化する。具体的には、以下の式によって歯面同士に介在する油膜厚さを求めることができる。

Figure 2014104556
この式で、hc は油膜厚さ、Eは歯車を形成する材料の弾性定数、uは平均歯面速度(=(u+u)/2)、Rxは接触している楕円体の互いに直交する一方の主曲率面の半径をそれぞれRx1、Rx2とした場合に(Rx1 −1+Rx2 −1−1で表される値、Ryは他方の主曲率面の半径をそれぞれRy1、Ry2とした場合に(Ry1 −1+Ry2 −1−1で表される値、ηは大気圧でのオイル粘度、αはオイルの粘度−圧力係数であって一般的な鉱油では「20Gpa−1」程度である。また、uは一方の歯車における噛み合い部の歯面速度、uは他方の歯車における噛み合い部の歯面速度である。したがって、潤滑油の粘度や歯車の諸元は固定値であるため、平均歯面速度uが増大すると、油膜厚さhc が増大し、平均歯面速度uが低下すると、油膜厚さhc が低下する。そのため、車両に搭載された歯車の場合には、エンジン回転数がアイドル回転数程度となるように運転している時には、歯車の回転速度が比較的低速であり平均歯面速度uが小さいため、エンジン回転数がアイドル回転数程度となるように運転している時における平均歯面速度uに基づいて油膜厚さを求め、歯面の凸部の高さが、その油膜厚さ以下となる表面粗さを定めることが好ましい。なお、ここで定める表面粗さの指標としては、最大高さ粗さRz や粗さ曲線の最大山高さRq などの表面粗さを定める種々の指標とすることができる。以下の説明では、最大高さ粗さRz を例に挙げて説明し、上記の式に基づいて定められる最大高さ粗さRz 、すなわち研磨後の歯面の目標最大高さ粗さを、目標表面粗さRztと記す。また、以下の説明では、最大高さ粗さを、単に表面粗さと記す。 On the other hand, the oil film thickness interposed between the tooth surfaces changes in accordance with the average tooth surface speed of the portion where the gears mesh with each other. Specifically, the oil film thickness interposed between the tooth surfaces can be obtained by the following equation.
Figure 2014104556
In this equation, hc is the oil film thickness, E is the elastic constant of the material forming the gear, u is the average tooth surface speed (= (u 1 + u 2 ) / 2), and Rx is orthogonal to the contacted ellipsoid. When the radii of one main curvature surface are R x1 and R x2 , respectively, the value represented by (R x1 −1 + R x2 −1 ) −1 , Ry is the radius of the other main curvature surface, R y1 , R y2 , the value represented by (R y1 −1 + R y2 −1 ) −1 , η 0 is the oil viscosity at atmospheric pressure, α is the oil viscosity-pressure coefficient, and is a general mineral oil Then, it is about “20 Gpa −1 ”. U 1 is the tooth surface speed of the meshing portion of one gear, and u 2 is the tooth surface speed of the meshing portion of the other gear. Therefore, since the viscosity of the lubricating oil and the specifications of the gear are fixed values, when the average tooth surface speed u increases, the oil film thickness hc increases, and when the average tooth surface speed u decreases, the oil film thickness hc decreases. To do. Therefore, in the case of a gear mounted on a vehicle, when the engine is operated so that the engine speed is about the idle speed, the rotational speed of the gear is relatively low and the average tooth surface speed u is small. Surface where the oil film thickness is obtained based on the average tooth surface speed u when the engine speed is about the idle speed and the height of the convex part of the tooth surface is equal to or less than the oil film thickness It is preferable to determine the roughness. In addition, as an index of the surface roughness determined here, various indices for determining the surface roughness such as the maximum height roughness Rz and the maximum peak height Rq of the roughness curve can be used. In the following description, the maximum height roughness Rz will be described as an example, and the maximum height roughness Rz determined based on the above formula, that is, the target maximum height roughness of the tooth surface after polishing, It is written as surface roughness Rzt. In the following description, the maximum height roughness is simply referred to as surface roughness.

具体的には、以下の式を満たすように歯面の目標表面粗さRztを定める。

Figure 2014104556
この式で、Rpqは、JIS B0671−3で規定されているとおり、プラトー領域に当てはめられた回帰直線の傾斜(JIS B0671−3)であり、Rpqは互いに噛み合う歯車の一方側、Rpqは互いに噛み合う歯車の他方側の値である。そして、上式を満たす歯面の最大高さ粗さRztや粗さ曲線の最大山高さRq を定める。 Specifically, the target surface roughness Rzt of the tooth surface is determined so as to satisfy the following formula.
Figure 2014104556
In this equation, Rpq is the slope of the regression line applied to the plateau region (JIS B0671-3) as defined in JIS B0671-3, Rpq 1 is one side of the meshing gears, Rpq 2 is It is the value on the other side of the gears meshing with each other. Then, the maximum height roughness Rzt of the tooth surface satisfying the above formula and the maximum peak height Rq of the roughness curve are determined.

したがって、歯面の表面粗さを低減するために研磨する量は、粗形材の表面粗さRzaと目標表面粗さRztとの差となる。言い換えると、歯面の表面粗さを目標表面粗さRztとするために、粗形材の表面粗さRzaと目標表面粗さRztとの差分、歯面が研磨されることとなる。なお、図2には粗形材の表面粗さを測定したときのグラフ(実測値)を示しており、図3には粗形材を研磨した後の表面粗さを模式的に示したグラフ(目標値)を示している。   Therefore, the amount polished for reducing the surface roughness of the tooth surface is the difference between the surface roughness Rza of the rough profile and the target surface roughness Rzt. In other words, in order to set the surface roughness of the tooth surface to the target surface roughness Rzt, the difference between the surface roughness Rza of the rough profile and the target surface roughness Rzt, and the tooth surface are polished. FIG. 2 shows a graph (actual measurement value) when the surface roughness of the rough profile is measured, and FIG. 3 is a graph schematically showing the surface roughness after polishing the rough profile. (Target value).

一方、歯面に圧縮残留応力を付与する加工方法としては、粒子を歯面に向けて噴射するショットピーニング加工や液体ホーニング加工などによって行うことができる。このように粒子を歯面に向けて噴射する加工方法は、粒子の質量やその粒子の噴射速度などによって圧縮残留応力の大きさや、その圧縮残留応力が最大となる深さなどを変更するものであり、圧縮残留応力が最大となる深さに応じて歯面の強度、より具体的には、耐ピッチング性が変化する。そのため、要求される耐ピッチング性に応じて圧縮残留応力が最大となる深さを定めて、粒子の質量やその粒子の噴射速度などが決定される。   On the other hand, as a processing method for imparting compressive residual stress to the tooth surface, it can be performed by shot peening processing or liquid honing processing in which particles are jetted toward the tooth surface. The processing method for injecting particles toward the tooth surface in this way is to change the size of the compressive residual stress, the depth at which the compressive residual stress is maximum, etc., depending on the mass of the particle and the injection speed of the particle. In addition, the strength of the tooth surface, more specifically, the pitting resistance varies depending on the depth at which the compressive residual stress is maximized. For this reason, the depth at which the compressive residual stress is maximized is determined according to the required pitting resistance, and the mass of particles and the injection speed of the particles are determined.

また、ショットピーニング加工や液体ホーニング加工などは、上述したように粒子を歯面に吹き付けることによって圧縮残留応力を付与するものであり、その粒子のエネルギー量に応じて圧縮残留応力の大きさや、その圧縮残留応力が最大となる深さが変化する。そのため、圧縮残留応力が大きい場合やその圧縮残留応力が最大となる深さが深い場合には、歯面の表面粗さが少なからず粗くなる。したがって、歯面を研磨するよりも前に圧縮残留応力を付与する加工を行う。   In addition, shot peening processing and liquid honing processing impart compressive residual stress by spraying particles on the tooth surface as described above. Depending on the amount of energy of the particles, The depth at which the compressive residual stress is maximized changes. Therefore, when the compressive residual stress is large or when the depth at which the compressive residual stress is maximum is deep, the surface roughness of the tooth surface is not small. Therefore, the process which provides a compressive residual stress is performed before grind | polishing a tooth surface.

そして、この発明に係る歯車の製造方法では、圧縮残留応力を付与する工程において、歯車が研磨されて仕上げられた際に圧縮残留応力が最大となる深さが、要求される目標深さとなるように、圧縮残留応力を付与する。図1には、歯面に付与された圧縮残留応力の分布を示しており、実線が歯面を研磨する前の圧縮残留応力の分布、破線が歯面を研磨した後の圧縮残留応力の分布を示している。なお、図1における横軸は歯面からの深さを示しており、縦軸は圧縮残留応力の大きさを示している。図1に示すように歯面を研磨することによって圧縮残留応力の最大値が歯面表層側に変化してしまうため、圧縮残留応力を付与する工程では、研磨することに伴って圧縮残留応力が最大となる深さが変化する分、圧縮残留応力が最大となる深さを深くするように付与することが好ましい。具体的には、上述した目標表面粗さRztと粗形材の表面粗さRzaとの差から求まる研磨する厚さと、耐ピッチング性を向上させるために要求される圧縮残留応力が最大となる目標深さとを合算した箇所の圧縮残留応力が最大となるようにショットピーニング加工や液体ホーニング加工などを行う。そして、圧縮残留応力を付与した後に、目標表面粗さRztとなるように歯面を研磨する。具体的には、粗形材の表面粗さRzaと目標表面粗さRztとの差分、歯面の表面を研磨する。   In the gear manufacturing method according to the present invention, in the step of applying compressive residual stress, the depth at which the compressive residual stress becomes maximum when the gear is polished and finished is the required target depth. And compressive residual stress. FIG. 1 shows the distribution of compressive residual stress applied to the tooth surface. The solid line indicates the distribution of compressive residual stress before the tooth surface is polished, and the broken line indicates the distribution of compressive residual stress after the tooth surface is polished. Is shown. Note that the horizontal axis in FIG. 1 indicates the depth from the tooth surface, and the vertical axis indicates the magnitude of the compressive residual stress. As shown in FIG. 1, since the maximum value of the compressive residual stress changes to the tooth surface layer side by polishing the tooth surface, in the step of applying the compressive residual stress, the compressive residual stress is increased along with the polishing. It is preferable that the depth at which the compressive residual stress is maximized is increased so that the maximum depth is changed. Specifically, the polishing thickness obtained from the difference between the target surface roughness Rzt and the surface roughness Rza of the rough profile and the target that maximizes the compressive residual stress required to improve the pitting resistance. A shot peening process or a liquid honing process is performed so that the compressive residual stress at the location where the depth is added is maximized. Then, after applying the compressive residual stress, the tooth surface is polished so that the target surface roughness Rzt is obtained. Specifically, the difference between the surface roughness Rza and the target surface roughness Rzt of the rough profile, and the tooth surface are polished.

上述した歯車の製造方法は、歯面の表面粗さを低減するために研磨する量を考慮して圧縮残留応力を付与するので、研磨されて仕上げられた歯面の表面粗さを低減することができるとともに、その表面粗さを低減するために研磨したとしても、圧縮残留応力が最大となる深さが要求された目標深さとなるため、耐ピッチング性を向上させることができ、すなわち歯面の強度を向上させることができる。また、目標表面粗さRztは、歯車の運転状態に応じた油膜厚さに基づいて求められるので、仕上げられた歯面が油膜を介在させて動力を伝達することができる。そのため、動力伝達の際の動力損失をより一層低減することができる。さらに、歯面が研磨される量を油膜厚さから求めることができ、その研磨する量に応じて圧縮残留応力が最大となる深さを求めることができるので、圧縮残留応力が最大となる深さを異ならせた歯車を複数試作して、圧縮残留応力が最大となる適切な深さを探るなどの時間を短くすることができる。   The gear manufacturing method described above applies compressive residual stress in consideration of the amount of polishing to reduce the surface roughness of the tooth surface, so that the surface roughness of the polished and finished tooth surface can be reduced. Even if it is polished to reduce its surface roughness, the depth at which the compressive residual stress is maximized is the required target depth, so that the pitting resistance can be improved, that is, the tooth surface. The strength of can be improved. Further, since the target surface roughness Rzt is obtained based on the oil film thickness according to the operating state of the gear, the finished tooth surface can transmit power through the oil film. As a result, power loss during power transmission can be further reduced. Further, the amount of polishing of the tooth surface can be determined from the oil film thickness, and the depth at which the compressive residual stress is maximized can be determined according to the amount of polishing. It is possible to shorten the time required to make a plurality of prototypes of gears with different thicknesses and to find an appropriate depth at which the compressive residual stress is maximized.

Claims (2)

互いに噛み合う歯の歯面に圧縮残留応力を付与する工程と、前記圧縮残留応力を付与された歯面の凸部高さを低減させて所定の表面粗さに仕上げる工程とを備えた歯車の製造方法において、
前記所定の表面粗さに仕上げられることにより低減された歯面の凸部高さが、前記互いに噛み合う歯同士の間に介在する油膜厚さ以下となるように、前記歯面の凸部高さを低減させる量を求め、
前記圧縮残留応力を付与する工程で、該圧縮残留応力が最大となる深さを、前記所定の表面粗さに仕上げられた歯車における圧縮残留応力が最大となる目標深さに、前記歯面を研磨する量を加算した深さとして前記圧縮残留応力を付与する
ことを特徴とする歯車の製造方法。
Manufacturing a gear including a step of applying compressive residual stress to tooth surfaces of teeth engaged with each other and a step of reducing the height of the convex portion of the tooth surface to which the compressive residual stress is applied to finish the surface to a predetermined surface roughness. In the method
The height of the convex portion of the tooth surface such that the height of the convex portion of the tooth surface reduced by finishing to the predetermined surface roughness is equal to or less than the oil film thickness interposed between the teeth meshing with each other. Find the amount to reduce
In the step of applying the compressive residual stress, the tooth surface is adjusted to a depth at which the compressive residual stress is maximized to a target depth at which the compressive residual stress in the gear finished to the predetermined surface roughness is maximized. A method for manufacturing a gear, wherein the compressive residual stress is applied as a depth obtained by adding a polishing amount.
前記油膜厚さは、前記互いに噛み合う歯の平均歯面速度に基づいて求められることを特徴とする請求項1に記載の歯車の製造方法。   The gear manufacturing method according to claim 1, wherein the oil film thickness is obtained based on an average tooth surface speed of the teeth meshing with each other.
JP2012260537A 2012-11-29 2012-11-29 Manufacturing method of gear Pending JP2014104556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012260537A JP2014104556A (en) 2012-11-29 2012-11-29 Manufacturing method of gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012260537A JP2014104556A (en) 2012-11-29 2012-11-29 Manufacturing method of gear

Publications (1)

Publication Number Publication Date
JP2014104556A true JP2014104556A (en) 2014-06-09

Family

ID=51026479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012260537A Pending JP2014104556A (en) 2012-11-29 2012-11-29 Manufacturing method of gear

Country Status (1)

Country Link
JP (1) JP2014104556A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111551460A (en) * 2020-05-09 2020-08-18 中国航发北京航空材料研究院 Test piece for testing accessibility of turbine disc mortise and evaluation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111551460A (en) * 2020-05-09 2020-08-18 中国航发北京航空材料研究院 Test piece for testing accessibility of turbine disc mortise and evaluation method

Similar Documents

Publication Publication Date Title
EP1167825A2 (en) Polished gear surfaces
US9746067B2 (en) Gear having improved surface finish
CN101514744A (en) Sintered gear
JP2014095392A (en) Gear and manufacturing method thereof
CN105718606A (en) Reliability prediction method considering failure mode correlation for vehicle heavy-duty gear
JP5894173B2 (en) Optimized crowning in bevel gears of bevel gear transmission
US20050279430A1 (en) Sub-surface enhanced gear
JP2014104556A (en) Manufacturing method of gear
Kratzer et al. Investigation of the effects of surface roughness and shot peening on the tooth root bending strength of case-carburized gears
JP5283183B2 (en) Surface finishing method for metal products
CN113646126A (en) Method for manufacturing hypoid gear
CN106662234B (en) Gear pair
JP2013241961A (en) Gear manufacturing method and gear
JP2002126993A (en) Manufacturing method for gear and its machining device
JP5876759B2 (en) Gears with excellent tooth surface fatigue life
JP2000280120A (en) Manufacture of gear
JP2017082977A (en) Slide surface member and process of manufacture of slide surface member
JP2015132280A (en) Gear
JP2020110876A (en) Surface processing method of gear tooth surface
JP2013213260A (en) Surface treatment method of gear
JP6166087B2 (en) Valve lifter and manufacturing method thereof, and combination of valve lifter and counterpart material
JP2015187298A (en) Manufacturing method of gear
JP2008087124A (en) Gear and grinding method therefor
Muthuveerappan et al. Prediction of theoretical wear in high contact ratio spur gear drive
CN106068331B (en) Steel part and its manufacturing method