JP2013239735A - Field effect transistor - Google Patents

Field effect transistor Download PDF

Info

Publication number
JP2013239735A
JP2013239735A JP2013156379A JP2013156379A JP2013239735A JP 2013239735 A JP2013239735 A JP 2013239735A JP 2013156379 A JP2013156379 A JP 2013156379A JP 2013156379 A JP2013156379 A JP 2013156379A JP 2013239735 A JP2013239735 A JP 2013239735A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
semiconductor layer
field effect
effect transistor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013156379A
Other languages
Japanese (ja)
Inventor
Masahiro Hikita
正洋 引田
Tetsuzo Ueda
哲三 上田
Manabu Yanagihara
学 柳原
Yasuhiro Uemoto
康裕 上本
Takeshi Tanaka
毅 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2013156379A priority Critical patent/JP2013239735A/en
Publication of JP2013239735A publication Critical patent/JP2013239735A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a field effect transistor formed of a normally-off type nitride semiconductor which can obtain a sufficiently large current density, and to provide a method for manufacturing the same.SOLUTION: An AlN buffer layer 102, an undoped GaN layer 103, an undoped AlGaN layer 104, a p-type GaN layer 105 and a high concentration p-type GaN layer 106 are sequentially formed on a substrate 101. A gate electrode 111 is ohmic-contacted to the high concentration p-type GaN layer 106. A source electrode 109 and a drain electrode 110 are provided on the undoped AlGaN layer 104. A pn-junction generated by two-dimensional electron gas generated on the interface between the undoped AlGaN layer 104 and the undoped GaN layer and by the p-type GaN layer 105 is formed on a gate region, and accordingly the gate voltage can be increased.

Description

本発明は、例えばテレビ等の民生機器の電源回路に用いられるパワートランジスタに適用できる窒化物半導体を用いた電界効果トランジスタ及びその製造方法に関するものである。   The present invention relates to a field effect transistor using a nitride semiconductor that can be applied to a power transistor used in a power circuit of a consumer device such as a television, and a method for manufacturing the same.

窒化物半導体は、その一例であるGaN(ガリウムナイトライド)及びAlN(アルミニウムナイトライド)のバンドギャップがそれぞれ室温で3.4eV、6.2eVと大きいワイドギャップ半導体であるなど、絶縁破壊電界が大きく、電子の飽和ドリフト速度がGaAs(ガリウムヒ素)などの化合物半導体あるいはSi半導体などに比べて大きいという特長を有している。また、(0001)面を主面とする基板上に形成したAlGaN/GaNのへテロ構造においては、自発分極及びピエゾ分極によりヘテロ界面に電荷が生じ、アンドープ時においても1×1013cm−2以上のシートキャリア濃度が得られる。そこで、ヘテロ界面での2次元電子ガス(2DEG:2 Dimensional Electron Gas)を利用すれば、電流密度の大きなヘテロ接合電界効果トランジスタ(HFET:Hetero-junction Field Effect Transistor)を実現することができる。このため、高出力化・高耐圧化に有利な窒化物半導体を用いたパワートランジスタの研究開発が現在活発に行われている。 Nitride semiconductors, such as GaN (gallium nitride) and AlN (aluminum nitride), which are examples of wide gap semiconductors with large band gaps of 3.4 eV and 6.2 eV at room temperature, have a large dielectric breakdown electric field. The electron saturation drift velocity is higher than that of a compound semiconductor such as GaAs (gallium arsenide) or Si semiconductor. Further, in an AlGaN / GaN heterostructure formed on a substrate having a (0001) plane as a main surface, charges are generated at the heterointerface due to spontaneous polarization and piezoelectric polarization, and 1 × 10 13 cm −2 even when undoped. The above sheet carrier concentration is obtained. Therefore, if a two-dimensional electron gas (2DEG) at the heterointerface is used, a heterojunction field effect transistor (HFET) with a large current density can be realized. For this reason, research and development of power transistors using nitride semiconductors, which are advantageous for high output and high breakdown voltage, are now being actively conducted.

図15は、従来例に係るAlGaN/GaNへテロ構造を用いた電界効果トランジスタを示す断面図である。同図に示す従来の電界効果トランジスタにおいて、サファイア基板5501上に低温GaNバッファ層5502、アンドープGaN層5503、n型AlGaN層5504がこの順に形成されており、Ti層及びAl層からなるソース電極5505及びTi層及びAl層からなるドレイン電極5506がn型AlGaN層5504上に形成されている。Ni層、Pt層及びAu層からなるゲート電極5507はソース電極5505及びドレイン電極5506間に形成されている。素子分離のため、素子形成領域以外のn型AlGaN層5504は例えばドライエッチングにより除去されている。この電界効果トランジスタは、上述したn型AlGaN層5503とアンドープGaN層5504とのヘテロ界面に生じる高濃度の2次元電子ガスのためにゲート電圧が0Vの場合にドレイン電流が流れる、所謂ノーマリオン型である。   FIG. 15 is a cross-sectional view showing a field effect transistor using an AlGaN / GaN heterostructure according to a conventional example. In the conventional field effect transistor shown in the figure, a low-temperature GaN buffer layer 5502, an undoped GaN layer 5503, and an n-type AlGaN layer 5504 are formed in this order on a sapphire substrate 5501, and a source electrode 5505 comprising a Ti layer and an Al layer. A drain electrode 5506 made of a Ti layer and an Al layer is formed on the n-type AlGaN layer 5504. A gate electrode 5507 made of a Ni layer, a Pt layer, and an Au layer is formed between the source electrode 5505 and the drain electrode 5506. For element isolation, the n-type AlGaN layer 5504 other than the element formation region is removed by, for example, dry etching. This field effect transistor is a so-called normally-on type in which a drain current flows when the gate voltage is 0 V because of the high concentration two-dimensional electron gas generated at the heterointerface between the n-type AlGaN layer 5503 and the undoped GaN layer 5504 described above. It is.

しかしながら、GaN系HFETをパワートランジスタとして応用する場合、ノーマリオン型デバイスでは、例えば停電時に回路が破壊されてしまうなど、安全面で問題が生じることがある。したがって、パワートランジスタとして実用化するためには、ゲート電圧が0Vにて電流が流れない、所謂ノーマリオフ型である必要がある。上記要求を満たし得るデバイス構造として、GaAs系の従来の化合物半導体においてはゲートにpn接合を用いた接合型電界効果トランジスタ(JFET:Junction Field Effect Transistor)が提案され実用化されている(非特許文献1を参照)。JFET構造では、ショットキー接合よりもビルトインポテンシャルの大きなpn接合をゲートに用いることによって、ゲート立ち上がり電圧(ゲート電流が流れ始める電圧)を大きくすることができ、ゲートリーク電流を小さくすることができる。また最近では、窒化物半導体においてもJFET構造の採用を検討した例が報告されている(非特許文献2、特許文献1を参照)。   However, when a GaN-based HFET is applied as a power transistor, a normally-on device may cause a safety problem, for example, the circuit may be destroyed during a power failure. Therefore, in order to put it into practical use as a power transistor, it is necessary to be a so-called normally-off type in which no current flows when the gate voltage is 0V. As a device structure that can satisfy the above requirements, a junction field effect transistor (JFET) using a pn junction as a gate has been proposed and put into practical use in a conventional GaAs-based compound semiconductor (non-patent document). 1). In the JFET structure, by using a pn junction having a larger built-in potential than the Schottky junction for the gate, the gate rising voltage (voltage at which the gate current starts to flow) can be increased, and the gate leakage current can be reduced. Recently, an example in which the adoption of a JFET structure has been studied also in a nitride semiconductor has been reported (see Non-Patent Document 2 and Patent Document 1).

特開2004−273486JP 2004-273486 A

J. K. Abrokwah et al., IEEE Transactions on Electron Devices,vol.37, no.6, pp.1529-1531, 1990.J. K. Abrokwah et al., IEEE Transactions on Electron Devices, vol. 37, no. 6, pp. 1529-1531, 1990. L. Zhang et al., IEEE Transactions on Electron Devices,vol.47, no.3, pp.507-511, 2000.L. Zhang et al., IEEE Transactions on Electron Devices, vol. 47, no. 3, pp. 507-511, 2000.

しかしながら、従来のGaN系HFETをノーマリオフ型とするためには、n型AlGaN層中のAl組成比を減らすか、n型AlGaN層を薄くして分極電荷量を低減する必要があり、大電流密度を得ることとノーマリオフ型を実現することとを両立させることが困難であった。   However, in order to make a conventional GaN-based HFET normally-off type, it is necessary to reduce the Al composition ratio in the n-type AlGaN layer or to reduce the polarization charge amount by thinning the n-type AlGaN layer. It is difficult to achieve both of obtaining a normally-off type.

本発明は上記の課題に鑑み、パワートランジスタに適用でき、十分に大きな電流密度を得ることができるノーマリオフ型の窒化物半導体からなる電界効果トランジスタ及びその製造方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a field effect transistor made of a normally-off type nitride semiconductor that can be applied to a power transistor and can obtain a sufficiently large current density, and a method for manufacturing the same.

上記課題を解決するために、本発明の電界効果トランジスタは、基板と、前記基板の上方に設けられた第1の窒化物半導体層と、前記第1の窒化物半導体層の上に設けられ、前記第1の窒化物半導体よりもバンドギャップエネルギーが大きく、動作時には前記第1の窒化物半導体層との界面に2次元電子ガスを生じさせる第2の窒化物半導体層と、前記第2の窒化物半導体層の上に設けられ、p型の第3の窒化物半導体層と、前記第3の窒化物半導体層の上または上方に設けられたゲート電極と、前記第2の窒化物半導体の上または上方であって、平面的に見て前記ゲート電極の両側方に設けられたソース電極及びドレイン電極とを備えている。   In order to solve the above problems, a field effect transistor of the present invention is provided on a substrate, a first nitride semiconductor layer provided above the substrate, and the first nitride semiconductor layer, A second nitride semiconductor layer having a larger band gap energy than the first nitride semiconductor and generating a two-dimensional electron gas at the interface with the first nitride semiconductor layer during operation; A p-type third nitride semiconductor layer; a gate electrode provided on or above the third nitride semiconductor layer; and the second nitride semiconductor. Alternatively, a source electrode and a drain electrode provided on both sides of the gate electrode as viewed in a plan view are provided.

この構成によれば、第3の窒化物半導体層がp型で、第1の窒化物半導体層と第2の窒化物半導体層との界面には動作時に2次元電子ガスが形成されるので、ゲート領域にpn接合が形成される。このため、従来の電界効果トランジスタに比べて高いゲート電圧を印加してもゲートリーク電流が流れにくくなっており、大きなドレイン電流を得ることができる。この場合、ゲート電極はオーミック電極であることが好ましい。   According to this configuration, the third nitride semiconductor layer is p-type, and a two-dimensional electron gas is formed during operation at the interface between the first nitride semiconductor layer and the second nitride semiconductor layer. A pn junction is formed in the gate region. For this reason, even if a high gate voltage is applied as compared with the conventional field effect transistor, it is difficult for the gate leakage current to flow, and a large drain current can be obtained. In this case, the gate electrode is preferably an ohmic electrode.

また、本発明の電界効果トランジスタは、ノーマリオフ型とすることも可能である。特に、第2の窒化物半導体層をアンドープ層とする場合には容易にノーマリオフ型のHFETを実現することができる。   The field effect transistor of the present invention can also be a normally-off type. In particular, when the second nitride semiconductor layer is an undoped layer, a normally-off type HFET can be easily realized.

また、第2の窒化物半導体層のうち、ゲート電極の直下に位置する部分の膜厚がソース電極及びドレイン電極の下に位置する部分の膜厚より大きいことにより、動作時に電界が集中する部分をバンドギャップが大きい第2の窒化物半導体層内にすることができるので、耐圧性を大幅に向上させることができる。   Further, in the second nitride semiconductor layer, the portion where the electric field concentrates during operation because the thickness of the portion located immediately below the gate electrode is larger than the thickness of the portion located below the source electrode and the drain electrode. In the second nitride semiconductor layer having a large band gap, the pressure resistance can be greatly improved.

本発明の電界効果トランジスタの製造方法は、基板上方に第1の窒化物半導体層、第2の窒化物半導体層、及びp型の第3の窒化物半導体層を順にエピタキシャル成長させる工程(a)と、前記第1の窒化物半導体層と前記第2の窒化物半導体層の上部の一部とを選択的に除去し、前記第1の窒化物半導体層と前記第2の窒化物半導体層との界面のうち除去された部分の直下方に位置する領域に2次元電子ガスを生じさせる工程(b)と、前記第2の窒化物半導体層のうち前記工程(b)で上部が除去された領域上にソース電極及びドレイン電極を形成する工程(c)と、前記第3の窒化物半導体層の上または上方にゲート電極を形成する工程(d)とを備えている。   The field effect transistor manufacturing method of the present invention includes a step (a) of sequentially epitaxially growing a first nitride semiconductor layer, a second nitride semiconductor layer, and a p-type third nitride semiconductor layer above a substrate. , Selectively removing the first nitride semiconductor layer and a part of the upper portion of the second nitride semiconductor layer, the first nitride semiconductor layer and the second nitride semiconductor layer A step (b) of generating a two-dimensional electron gas in a region located immediately below the removed portion of the interface, and a region of the second nitride semiconductor layer in which the upper portion is removed in the step (b) A step (c) of forming a source electrode and a drain electrode thereon, and a step (d) of forming a gate electrode on or above the third nitride semiconductor layer.

この方法により、第1の窒化物半導体層と第2の窒化物半導体層との界面のうちソース電極及びドレイン電極の下方に位置する部分には2次元電子ガスが形成され、ゲート電極の下方に位置する部分には2次元電子ガスが形成されない電界効果トランジスタを製造することができる。すなわち、本発明の方法によれば、動作時に大電流が得られ、且つノーマリオフ型の電界効果トランジスタを製造することが可能となる。また、本発明の方法で製造される電界効果トランジスタはゲート領域にpn接合が形成されるので、ゲート電極に印加する電圧を大きくしてもゲートリーク電流が発生しにくくなっている。そのため、従来よりも大きなオン電流を得ることが可能となっている。   By this method, a two-dimensional electron gas is formed in a portion of the interface between the first nitride semiconductor layer and the second nitride semiconductor layer located below the source electrode and the drain electrode, and below the gate electrode. It is possible to manufacture a field effect transistor in which a two-dimensional electron gas is not formed in the portion that is positioned. That is, according to the method of the present invention, a large current can be obtained during operation, and a normally-off type field effect transistor can be manufactured. Further, since a pn junction is formed in the gate region of the field effect transistor manufactured by the method of the present invention, it is difficult for gate leakage current to occur even when the voltage applied to the gate electrode is increased. Therefore, it is possible to obtain a larger on-current than before.

以上説明したように、本発明の電界効果トランジスタによれば、ゲート立ち上がり電圧を半導体のバンドギャップに対応した大きな値にすることができるので、大きなドレイン電流が得ることができる。また、ゲートリーク電流の小さな電界効果トランジスタを実現することが可能となる。さらに、ソース電極及びドレイン電極直下の窒化物半導体層に選択的にn型不純物を導入することにより、ソース抵抗及びドレイン抵抗を低減することができ、より直列抵抗の小さな電界効果トランジスタを実現することが可能となる。さらにゲート電極とドレイン電極の間に、濃度の異なる2つ以上のn型領域を形成することにより、ドレイン電極に高電圧が印加された場合、不純物濃度が低い方のn型領域に空乏層が延びることによって耐圧性が向上する。   As described above, according to the field effect transistor of the present invention, the gate rising voltage can be set to a large value corresponding to the band gap of the semiconductor, so that a large drain current can be obtained. In addition, a field effect transistor with a small gate leakage current can be realized. Furthermore, by selectively introducing an n-type impurity into the nitride semiconductor layer immediately below the source electrode and the drain electrode, the source resistance and the drain resistance can be reduced, and a field effect transistor with a smaller series resistance can be realized. Is possible. Further, by forming two or more n-type regions having different concentrations between the gate electrode and the drain electrode, when a high voltage is applied to the drain electrode, a depletion layer is formed in the n-type region having a lower impurity concentration. The pressure resistance is improved by extending.

本発明の第1の実施形態に係る電界効果トランジスタを示す断面図である。It is sectional drawing which shows the field effect transistor which concerns on the 1st Embodiment of this invention. (a)は、第1の実施形態に係る電界効果トランジスタのゲート領域の縦断面におけるエネルギーバンド図であり、(b)は、ゲート領域とソース領域との間での縦断面におけるエネルギーバンド図である。(A) is an energy band diagram in the longitudinal section of the gate region of the field effect transistor according to the first embodiment, (b) is an energy band diagram in the longitudinal section between the gate region and the source region. is there. (a)、(b)は、それぞれ第1の実施形態に係る電界効果トランジスタにおいて、ゲート電圧とドレイン電流の関係を示す図、及びドレイン電流とドレイン電圧との関係を示す図である。(A), (b) is the figure which shows the relationship between a gate voltage and a drain current in the field effect transistor which concerns on 1st Embodiment, respectively, and the figure which shows the relationship between a drain current and a drain voltage. 本発明の第2の実施形態に係る電界効果トランジスタを示す断面図である。It is sectional drawing which shows the field effect transistor which concerns on the 2nd Embodiment of this invention. 第2の実施形態に係る電界効果トランジスタのゲート領域の縦断面におけるエネルギーバンド図である。It is an energy band figure in the longitudinal section of the gate field of the field effect transistor concerning a 2nd embodiment. (a)、(b)は、それぞれ第2の実施形態に係る電界効果トランジスタにおいて、ゲート電圧とドレイン電流の関係を示す図、及びドレイン電流とドレイン電圧との関係を示す図である。(A), (b) is the figure which shows the relationship between a gate voltage and a drain current in the field effect transistor which concerns on 2nd Embodiment, respectively, and the figure which shows the relationship between a drain current and a drain voltage. 本発明の第1及び第2の実施形態に係る電界効果トランジスタのゲート・ソース間順方向電流・電圧特性を示す図である。It is a figure which shows the forward current-voltage characteristic between gate-sources of the field effect transistor which concerns on the 1st and 2nd embodiment of this invention. (a)〜(f)は、第2の実施形態に係る電界効果トランジスタの製造方法を示す断面図である。(A)-(f) is sectional drawing which shows the manufacturing method of the field effect transistor which concerns on 2nd Embodiment. 本発明の第3の実施形態に係る電界効果トランジスタを示す断面図である。It is sectional drawing which shows the field effect transistor which concerns on the 3rd Embodiment of this invention. 第3の実施形態に係る電界効果トランジスタのゲート領域の縦断面におけるエネルギーバンド図である。It is an energy band figure in the longitudinal section of the gate region of the field effect transistor concerning a 3rd embodiment. (a)〜(g)は、第3の実施形態に係る電界効果トランジスタの製造方法を示す断面図である。(A)-(g) is sectional drawing which shows the manufacturing method of the field effect transistor which concerns on 3rd Embodiment. 本発明の第4の実施形態に係る電界効果トランジスタを示すの断面図である。It is sectional drawing which shows the field effect transistor which concerns on the 4th Embodiment of this invention. 第4の実施形態に係る電界効果トランジスタのゲート領域の縦断面におけるエネルギーバンド図である。It is an energy band figure in the longitudinal section of the gate region of the field effect transistor concerning a 4th embodiment. 本発明の第5の実施形態に係る電界効果トランジスタを示す断面図である。It is sectional drawing which shows the field effect transistor which concerns on the 5th Embodiment of this invention. AlGaN/GaNへテロ構造を用いた従来の電界効果トランジスタを示す断面図である。It is sectional drawing which shows the conventional field effect transistor using an AlGaN / GaN heterostructure.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る電界効果トランジスタを示す断面図である。
(First embodiment)
FIG. 1 is a sectional view showing a field effect transistor according to the first embodiment of the present invention.

同図に示すように、本実施形態の電界効果トランジスタは、サファイア基板101と、サファイア基板101上に設けられた厚さ100nmのAlNバッファ層102と、AlNバッファ層102の上に設けられた厚さ2μmのアンドープGaN層103と、アンドープGaN層103の上に設けられた厚さ25nmのアンドープAlGaN層104と、アンドープAlGaN層104の一部の上に設けられた厚さ100nmのp型GaN層105と、p型GaN層105の上に設けられ、p型GaN層105よりも高濃度のp型不純物を含む厚さ5nmの高濃度p型GaN層106とを備えている。ここで、「アンドープ」とは、不純物が意図的に導入されていないことを意味するものとする。また、本実施形態の電界効果トランジスタでは、アンドープAlGaN層104は例えばアンドープのAl0.25Ga0.75Nで構成されている。 As shown in the figure, the field effect transistor of this embodiment includes a sapphire substrate 101, a 100 nm thick AlN buffer layer 102 provided on the sapphire substrate 101, and a thickness provided on the AlN buffer layer 102. An undoped GaN layer 103 having a thickness of 2 μm, an undoped AlGaN layer 104 having a thickness of 25 nm provided on the undoped GaN layer 103, and a p-type GaN layer having a thickness of 100 nm provided on a part of the undoped AlGaN layer 104 105 and a high-concentration p-type GaN layer 106 having a thickness of 5 nm, which is provided on the p-type GaN layer 105 and contains a higher concentration of p-type impurities than the p-type GaN layer 105. Here, “undoped” means that impurities are not intentionally introduced. In the field effect transistor of this embodiment, the undoped AlGaN layer 104 is made of, for example, undoped Al 0.25 Ga 0.75 N.

高濃度p型GaN層106上には、高濃度p型GaN層106とオーミック接合するPd(パラジウム)からなるゲート電極111が設けられている。また、アンドープAlGaN層104の上とp型GaN層105の側面、及び高濃度p型GaN層106の側面及び上面上には一部が開口したSiN膜108が設けられている。そして、SiN膜108の開口部であってアンドープAlGaN層104上には、p型GaN層105を挟むように配置されたTi層とAl層からなるソース電極109及びドレイン電極110が設けられている。また、基板のうち電界効果トランジスタが形成されている領域を「素子形成領域」と呼ぶこととすると、素子分離領域107は素子形成領域を囲むように設けられている。   On the high-concentration p-type GaN layer 106, a gate electrode 111 made of Pd (palladium) that is in ohmic contact with the high-concentration p-type GaN layer 106 is provided. In addition, a SiN film 108 that is partially opened is provided on the undoped AlGaN layer 104, the side surface of the p-type GaN layer 105, and the side surface and upper surface of the high-concentration p-type GaN layer 106. A source electrode 109 and a drain electrode 110 made of a Ti layer and an Al layer are provided on the undoped AlGaN layer 104 so as to sandwich the p-type GaN layer 105, which is an opening of the SiN film 108. . Further, if a region where a field effect transistor is formed in the substrate is referred to as an “element formation region”, the element isolation region 107 is provided so as to surround the element formation region.

ゲート領域以外の高濃度p型GaN層106及びp型GaN層105は選択的エッチングによって除去されている。アンドープAlGaN層104の一部も選択的エッチングにより除去されており、アンドープAlGaN層104においてゲート領域の膜厚は、他の領域の膜厚よりも大きくなっている。そして、上述のソース電極109及びドレイン電極110は、一部がエッチングされたアンドープAlGaN層104上に形成されている。このように、ソース電極及びドレイン電極とアンドープAlGaN層104との接触面が、ゲート領域におけるp型GaN層105とアンドープAlGaN層104とのヘテロ界面よりも下に位置することによって、高いドレイン電圧が印加されたときに電界強度が最大となるゲート段差下端の角周辺がバンドギャップの大きいAlGaN層に位置することになる。そのため、アンドープAlGaN層104の上面全体が平坦である場合に比べてゲート・ドレイン電極間の耐圧を向上させることができる。ただし、アンドープAlGaN層104の上面が平坦でアンドープAlGaN層104とソース電極109及びドレイン電極110との間に薄いp型GaN層105が挟まれていても、トランジスタとして問題なく動作させることはできる。また、アンドープAlGaN層104のうち、ソース電極109及びドレイン電極110に接する部分の膜厚がゲート領域に位置する部分の膜厚よりも薄いことにより、ソース電極109及びドレイン電極110と2次元電子ガスとの距離が接近するため、アンドープAlGaN層104とソース電極109及びドレイン電極110との界面におけるオーミックコンタクト抵抗を低減することができる。但し、ソース、ドレイン電極が接するアンドープAlGaN層104の膜厚が薄くなり過ぎると、ゲート・ソース電極間あるいはゲート・ドレイン電極間のチャネル抵抗が増大するため、アンドープAlGaN層104は10nm程度以上の膜厚であることが望ましい。   The high-concentration p-type GaN layer 106 and the p-type GaN layer 105 other than the gate region are removed by selective etching. A part of the undoped AlGaN layer 104 is also removed by selective etching, and the thickness of the gate region in the undoped AlGaN layer 104 is larger than the thickness of other regions. The source electrode 109 and the drain electrode 110 described above are formed on the undoped AlGaN layer 104 that is partially etched. As described above, the contact surface between the source and drain electrodes and the undoped AlGaN layer 104 is positioned below the heterointerface between the p-type GaN layer 105 and the undoped AlGaN layer 104 in the gate region, so that a high drain voltage is obtained. When the voltage is applied, the corner around the lower end of the gate step where the electric field strength becomes maximum is located in the AlGaN layer having a large band gap. Therefore, the breakdown voltage between the gate and drain electrodes can be improved as compared with the case where the entire upper surface of the undoped AlGaN layer 104 is flat. However, even if the upper surface of the undoped AlGaN layer 104 is flat and the thin p-type GaN layer 105 is sandwiched between the undoped AlGaN layer 104 and the source electrode 109 and the drain electrode 110, the transistor can be operated without any problem. Further, in the undoped AlGaN layer 104, the thickness of the portion in contact with the source electrode 109 and the drain electrode 110 is smaller than the thickness of the portion located in the gate region, so that the source electrode 109 and the drain electrode 110 and the two-dimensional electron gas are Therefore, the ohmic contact resistance at the interface between the undoped AlGaN layer 104 and the source electrode 109 and the drain electrode 110 can be reduced. However, if the thickness of the undoped AlGaN layer 104 in contact with the source and drain electrodes becomes too thin, the channel resistance between the gate and source electrodes or between the gate and drain electrodes increases, so the undoped AlGaN layer 104 is a film of about 10 nm or more. Thickness is desirable.

素子分離領域107は、例えばB(ホウ素)などのイオン注入でアンドープAlGaN層104及びアンドープGaN層103の一部を高抵抗化することによって形成されている。そのため、素子形成領域と素子分離領域107との間に段差は形成されない。図15に示す従来の電界効果トランジスタでは、ドライエッチングを用いた段差形成により素子分離を行った場合、エッチングによって結晶欠陥が発生するため、この結晶欠陥を介したリーク電流が段差部に発生する。これに対し、本実施形態の電界効果トランジスタでは、ソース・ドレイン間リーク電流及び素子間リーク電流が大幅に低減されている。   The element isolation region 107 is formed by increasing the resistance of part of the undoped AlGaN layer 104 and the undoped GaN layer 103 by ion implantation of, for example, B (boron). Therefore, no step is formed between the element formation region and the element isolation region 107. In the conventional field effect transistor shown in FIG. 15, when element isolation is performed by forming a step using dry etching, a crystal defect is generated by etching, and thus a leakage current through the crystal defect is generated in the step portion. In contrast, in the field effect transistor of this embodiment, the source-drain leakage current and the element-to-element leakage current are greatly reduced.

また、GaN系HFETでは、ドレイン電圧を大きくするとドレイン電流が減少する所謂電流コラプスがしばしば問題となるが、本実施形態の電界効果トランジスタでは、ソース、ドレイン及びゲート電極以外の上面部分は全てSiN膜108で覆われているため表面準位が低減され、電流コラプスの発生が抑制されている。   In the GaN-based HFET, so-called current collapse, in which the drain current decreases when the drain voltage is increased, often causes a problem. In the field effect transistor of this embodiment, the upper surface portion other than the source, drain, and gate electrodes is all formed on the SiN film. Since it is covered with 108, the surface level is reduced and the occurrence of current collapse is suppressed.

また、p型GaN層105への空乏層の広がりを抑えるためにp型GaN層105中のキャリア濃度は1×1018cm−3以上であることが望ましい。なお、本実施形態の電界効果トランジスタでは、p型GaN層105中のキャリア濃度を1×1018cm−3に設定している。本実施形態の電界効果トランジスタにおいて、アンドープAlGaN層104とp型GaN層105との界面に生じる2次元電子ガスの濃度は1×1013cm−2程度であり、厚さ100nmのp型GaN層105中のキャリア濃度を1×1018cm−3とすることによって、アンドープAlGaN層104とp型GaN層105との界面に生じる2次元電子ガスを相殺し、電界効果トランジスタをノーマリオフ型にすることができる。ここで、p型GaN層105中のシートあたりのキャリア数を2次元電子ガスの電子数以上にすれば2次元電子ガスを相殺できる。なお、電界効果トランジスタをノーマリオフ型に調整するためには、不純物濃度の調節する他に、アンドープAlGaN層104の厚さを調節してもよい。 In order to suppress the spread of the depletion layer to the p-type GaN layer 105, the carrier concentration in the p-type GaN layer 105 is desirably 1 × 10 18 cm −3 or more. In the field effect transistor of this embodiment, the carrier concentration in the p-type GaN layer 105 is set to 1 × 10 18 cm −3 . In the field effect transistor of this embodiment, the concentration of the two-dimensional electron gas generated at the interface between the undoped AlGaN layer 104 and the p-type GaN layer 105 is about 1 × 10 13 cm −2 , and the p-type GaN layer has a thickness of 100 nm. By setting the carrier concentration in 105 to 1 × 10 18 cm −3 , the two-dimensional electron gas generated at the interface between the undoped AlGaN layer 104 and the p-type GaN layer 105 is offset, and the field effect transistor is made to be a normally-off type. Can do. Here, if the number of carriers per sheet in the p-type GaN layer 105 is greater than or equal to the number of electrons of the two-dimensional electron gas, the two-dimensional electron gas can be offset. In order to adjust the field effect transistor to a normally-off type, in addition to adjusting the impurity concentration, the thickness of the undoped AlGaN layer 104 may be adjusted.

本実施形態の電界効果トランジスタの特徴は、ゲート電極111が高濃度p型GaN層106とオーミック接合しているため、アンドープAlGaN層104とアンドープGaN層との界面で形成される2次元電子ガスとp型GaN層105とによって生じるpn接合がゲート領域に形成されることにある。ショットキー接合による障壁よりもpn接合による障壁の方が大きいため、本実施形態の電界効果トランジスタでは、従来よりゲート電圧を高くしてもゲートリークを生じにくくなっている。   The field effect transistor according to the present embodiment is characterized in that since the gate electrode 111 is in ohmic contact with the high-concentration p-type GaN layer 106, the two-dimensional electron gas formed at the interface between the undoped AlGaN layer 104 and the undoped GaN layer A pn junction formed by the p-type GaN layer 105 is formed in the gate region. Since the barrier due to the pn junction is larger than the barrier due to the Schottky junction, in the field effect transistor of this embodiment, gate leakage is less likely to occur even when the gate voltage is higher than in the prior art.

また、本実施形態の電界効果トランジスタでは、ゲート電極111の下に薄い高濃度p型GaN層106が設けられていることにより、ゲート電極111との間にオーミック接合を形成しやすくなっている。一般的にp型GaN系半導体はp型GaAs系半導体に比べてオーミック接合を形成しにくいので、高濃度p型GaN層106が設けられていることは必須ではないが、高濃度p型GaN層106が設けられている方が好ましい。また、ゲート電極の材料は仕事関数の大きいものが好ましく、Pdの他、Niなども用いることができる。   In the field effect transistor of this embodiment, since the thin high-concentration p-type GaN layer 106 is provided under the gate electrode 111, it is easy to form an ohmic junction with the gate electrode 111. In general, a p-type GaN-based semiconductor is less likely to form an ohmic junction than a p-type GaAs-based semiconductor, and thus it is not essential that the high-concentration p-type GaN layer 106 is provided. 106 is preferably provided. The material of the gate electrode is preferably a material having a high work function, and Ni or the like can be used in addition to Pd.

図2(a)は、本実施形態に係る電界効果トランジスタのゲート領域の縦断面におけるエネルギーバンド図であり、(b)は、ゲート領域とソース領域との間での縦断面におけるエネルギーバンド図である。   FIG. 2A is an energy band diagram in the longitudinal section of the gate region of the field effect transistor according to this embodiment, and FIG. 2B is an energy band diagram in the longitudinal section between the gate region and the source region. is there.

図2(a)、(b)に示すように、アンドープAlGaN層とアンドープGaN層のヘテロ界面では、アンドープ層同士の接合であるが、自発分極及びピエゾ分極により生じた電荷のために伝導帯に溝が形成されている。一方、図2(b)に示すように、ゲート領域以外の素子領域では、p型GaN層105がアンドープAlGaN層104上に接続されていないため、この伝導帯の溝はフェルミレベルよりも低い位置にあり、ゲート電圧を印加しない状態でも2次元電子ガスが形成されている。しかし、ゲート領域では図2(a)に示すように、p型GaN層105がアンドープAlGaN層104と接続されていることによって、アンドープAlGaN層104及びアンドープGaN層103のエネルギーレベルが引き上げられ、アンドープAlGaN層104とアンドープGaN層103のヘテロ界面における伝導帯の溝がフェルミレベルとほぼ同じ位置になっている。その結果、ゲート電極にバイアスを印加しない状態ではゲート領域に2次元電子ガスが形成されず、ノーマリオフ状態となる。このように、ゲート領域以外の素子形成領域で2次元電子ガスが生じていることにより、ゲート電極111に正バイアスを印加した場合にはソース−ドレイン間に大電流が流れる。   As shown in FIGS. 2 (a) and 2 (b), at the heterointerface between the undoped AlGaN layer and the undoped GaN layer, the junction between the undoped layers is a junction band due to charges generated by spontaneous polarization and piezoelectric polarization. Grooves are formed. On the other hand, as shown in FIG. 2B, since the p-type GaN layer 105 is not connected to the undoped AlGaN layer 104 in the element region other than the gate region, the groove of this conduction band is located at a position lower than the Fermi level. The two-dimensional electron gas is formed even when no gate voltage is applied. However, in the gate region, as shown in FIG. 2A, the p-type GaN layer 105 is connected to the undoped AlGaN layer 104, whereby the energy levels of the undoped AlGaN layer 104 and the undoped GaN layer 103 are raised, and the undoped The groove of the conduction band at the heterointerface between the AlGaN layer 104 and the undoped GaN layer 103 is at the same position as the Fermi level. As a result, in the state where no bias is applied to the gate electrode, the two-dimensional electron gas is not formed in the gate region, and the normally-off state is obtained. As described above, since a two-dimensional electron gas is generated in the element formation region other than the gate region, a large current flows between the source and the drain when a positive bias is applied to the gate electrode 111.

また、ゲート電極に正バイアスを印加した場合、ゲート電流が流れ始めるゲート電圧(ゲート立ち上がり電圧)は、用いられる半導体のバンドギャップが大きいほど大きな値となる。ゲート立ち上がり電圧が大きいほど、ゲート電極に大きな正バイアスを印加することができ、ドレイン電流を増大することができるため、この値が大きいことが望ましい。GaAsなどの半導体を用いた場合、ゲート立ち上がり電圧は1V程度となるが、GaN系半導体を用いた本発明では、ゲート立ち上がり電圧は半導体のバンドギャップに対応した大きな値となる。   In addition, when a positive bias is applied to the gate electrode, the gate voltage (gate rising voltage) at which the gate current starts to flow increases as the band gap of the semiconductor used increases. As the gate rising voltage is larger, a larger positive bias can be applied to the gate electrode and the drain current can be increased. Therefore, this value is desirably large. When a semiconductor such as GaAs is used, the gate rising voltage is about 1 V. However, in the present invention using a GaN-based semiconductor, the gate rising voltage is a large value corresponding to the band gap of the semiconductor.

図3(a)、(b)は、それぞれ本実施形態の電界効果トランジスタにおいて、ゲート電圧とドレイン電流の関係を示す図、及びドレイン電流とドレイン電圧との関係を示す図である。図3(a)から分かるように、本実施形態の電界効果トランジスタは、閾値電圧が約0Vであり、ノーマリオフを実現している。また、ゲート立ち上がり電圧が大きいため、ゲート電極111に2Vの正バイアスを印加してもゲートリーク電流はほとんど流れず、図3(b)に示すように、300mmA/mm以上の最大ドレイン電流が得られる。   FIGS. 3A and 3B are a diagram showing a relationship between the gate voltage and the drain current and a diagram showing a relationship between the drain current and the drain voltage in the field effect transistor of this embodiment, respectively. As can be seen from FIG. 3A, the field effect transistor of the present embodiment has a threshold voltage of about 0 V and realizes normally-off. Further, since the gate rising voltage is large, even when a positive bias of 2 V is applied to the gate electrode 111, the gate leakage current hardly flows, and a maximum drain current of 300 mmA / mm or more is obtained as shown in FIG. It is done.

また、以上の説明では、サファイア基板101の(0001)面を主面として電界効果トランジスタを形成する例を示したが、例えばサファイア基板101の(10−12)面(R面)上に電界効果トランジスタを作製してもよい。この場合、窒化物半導体の成長方向に分極電界が発生しないため、2次元電子ガスのシートキャリア濃度を制御することが容易になり、ノーマリオフ型電界効果トランジスタの作製が容易になる。すなわち、閾値電圧をより大きな正の値とするためには、サファイア基板101の(0001)面(すなわちc面)上に電界効果トランジスタを作製するのではなく、窒化物半導体の無極性面が得られる基板を用いることが望ましい。またこのとき、アンドープAlGaN層104に代えてn型AlGaN層を設けてもよい。   In the above description, the field effect transistor is formed using the (0001) plane of the sapphire substrate 101 as the main surface. However, for example, the field effect is formed on the (10-12) plane (R plane) of the sapphire substrate 101. A transistor may be manufactured. In this case, since a polarization electric field is not generated in the growth direction of the nitride semiconductor, it becomes easy to control the sheet carrier concentration of the two-dimensional electron gas, and it becomes easy to manufacture a normally-off type field effect transistor. That is, in order to set the threshold voltage to a larger positive value, a field effect transistor is not formed on the (0001) plane (that is, c-plane) of the sapphire substrate 101, but a nonpolar plane of nitride semiconductor is obtained. It is desirable to use a substrate that can be used. At this time, an n-type AlGaN layer may be provided in place of the undoped AlGaN layer 104.

なお、本実施形態の電界効果トランジスタについて、アンドープAlGaN層104がAl0.25Ga0.75Nで構成されている例を説明したが、AlとGaとの組成比はこれに限られない。また、アンドープAlGaN層104に代えてアンドープのAlN層を設けてもよい。これらの場合、アンドープAlGaN層104の組成が変わればバンドダイアグラムも変化するので、閾値が0V以上になるように各層の膜厚や不純物濃度などを適宜調整する。 In addition, although the example in which the undoped AlGaN layer 104 is composed of Al 0.25 Ga 0.75 N has been described for the field effect transistor of the present embodiment, the composition ratio of Al and Ga is not limited thereto. Further, an undoped AlN layer may be provided instead of the undoped AlGaN layer 104. In these cases, if the composition of the undoped AlGaN layer 104 changes, the band diagram also changes. Therefore, the film thickness, impurity concentration, etc. of each layer are adjusted as appropriate so that the threshold becomes 0 V or more.

(第2の実施形態)
図4は、本発明の第2の実施形態に係る電界効果トランジスタを示す断面図である。
(Second Embodiment)
FIG. 4 is a cross-sectional view showing a field effect transistor according to the second embodiment of the present invention.

同図に示すように、本実施形態の電界効果トランジスタは、サファイア基板401と、サファイア基板401上に設けられた厚さ100nmのAlNバッファ層402と、AlNバッファ層402の上に設けられた厚さ2μmのアンドープGaN層403と、アンドープGaN層403の上に設けられた厚さ25nmのアンドープAlGaN層404と、アンドープAlGaN層404の一部の上に設けられた厚さ100nmのp型AlGaN層405と、p型AlGaN層405の上に設けられた厚さ5nmの高濃度p型GaN層406とを備えている。また、本実施形態の電界効果トランジスタは、高濃度p型GaN層406とオーミック接合するPdからなるゲート電極411と、アンドープAlGaN層404とオーミック接合し、Ti層とAl層からなるソース電極409及びドレイン電極410と、SiN膜408とを備えている。また、素子形成領域は、素子分離領域407によって隣接する素子から電気的に絶縁されている。   As shown in the figure, the field effect transistor of this embodiment includes a sapphire substrate 401, a 100 nm thick AlN buffer layer 402 provided on the sapphire substrate 401, and a thickness provided on the AlN buffer layer 402. An undoped GaN layer 403 having a thickness of 2 μm, an undoped AlGaN layer 404 having a thickness of 25 nm provided on the undoped GaN layer 403, and a p-type AlGaN layer having a thickness of 100 nm provided on a part of the undoped AlGaN layer 404 405 and a high-concentration p-type GaN layer 406 having a thickness of 5 nm provided on the p-type AlGaN layer 405. In addition, the field effect transistor of the present embodiment includes a gate electrode 411 made of Pd that is in ohmic contact with the high-concentration p-type GaN layer 406, a source electrode 409 that is in ohmic contact with the undoped AlGaN layer 404, and made of a Ti layer and an Al layer. A drain electrode 410 and a SiN film 408 are provided. In addition, the element formation region is electrically insulated from adjacent elements by the element isolation region 407.

本実施形態の電界効果トランジスタが第1の実施形態の電界効果トランジスタと異なるのはp型GaN層105に代えてp型AlGaN層405が設けられている点である。その他の構成は第1の実施形態と同じである。p型AlGaN層405はアンドープAlGaN層404と同一組成の材料からなり、例えばAl0.25Ga0.75Nで構成されている。 The field effect transistor of this embodiment is different from the field effect transistor of the first embodiment in that a p-type AlGaN layer 405 is provided instead of the p-type GaN layer 105. Other configurations are the same as those of the first embodiment. The p-type AlGaN layer 405 is made of a material having the same composition as that of the undoped AlGaN layer 404 and is made of, for example, Al 0.25 Ga 0.75 N.

図5は、本実施形態に係る電界効果トランジスタのゲート領域の縦断面におけるエネルギーバンド図である。   FIG. 5 is an energy band diagram in a longitudinal section of the gate region of the field effect transistor according to the present embodiment.

同図に示すように、本実施形態の電界効果トランジスタでは、p型AlGaN層405とアンドープAlGaN層404とが同一材料で構成されているため、両層の界面においてバンド不連続が発生しない。これと比較して、図2に示す第1の実施形態の電界効果トランジスタでは、p型GaN層とアンドープAlGaN層のヘテロ界面にバンド不連続が発生する。そのため、本実施形態の電界効果トランジスタでは、p型AlGaN層405とアンドープAlGaN層との界面に正孔が蓄積されず、第1の実施形態に比べてバンド間トンネリングによるゲートリーク電流の発生がより確実に抑えられている。その結果、本実施形態の電界効果トランジスタでは、第1の実施形態の電界効果トランジスタよりもゲート立ち上がり電圧は高くなる。   As shown in the figure, in the field effect transistor of this embodiment, since the p-type AlGaN layer 405 and the undoped AlGaN layer 404 are made of the same material, no band discontinuity occurs at the interface between the two layers. Compared to this, in the field effect transistor of the first embodiment shown in FIG. 2, band discontinuity occurs at the heterointerface between the p-type GaN layer and the undoped AlGaN layer. Therefore, in the field effect transistor of the present embodiment, holes are not accumulated at the interface between the p-type AlGaN layer 405 and the undoped AlGaN layer, and the generation of gate leakage current due to band-to-band tunneling is greater than in the first embodiment. It is surely suppressed. As a result, the gate effect voltage of the field effect transistor of this embodiment is higher than that of the field effect transistor of the first embodiment.

なお、図5では、p型AlGaN層405の組成比をアンドープAlGaN層と同一にした例を示したが、アンドープAlGaN層404よりもバンドギャップの大きいp型窒化物半導体層をp型AlGaN層405の代わりに設けてもよい。この場合、アンドープAlGaN層404とp型AlGaN層405とのヘテロ界面にバンド不連続が形成される。しかしながら、p型AlGaN層405の価電子帯のポテンシャルエネルギーはアンドープAlGaN層404に近づくに従って低くなっているので正孔がアンドープAlGaN層404とp型AlGaN層405との界面付近に蓄積することはない。   5 shows an example in which the composition ratio of the p-type AlGaN layer 405 is the same as that of the undoped AlGaN layer, a p-type nitride semiconductor layer having a band gap larger than that of the undoped AlGaN layer 404 is used. It may be provided instead of. In this case, a band discontinuity is formed at the heterointerface between the undoped AlGaN layer 404 and the p-type AlGaN layer 405. However, since the potential energy of the valence band of the p-type AlGaN layer 405 decreases as it approaches the undoped AlGaN layer 404, holes do not accumulate near the interface between the undoped AlGaN layer 404 and the p-type AlGaN layer 405. .

図6(a)、(b)は、それぞれ本実施形態の電界効果トランジスタにおいて、ゲート電圧とドレイン電流の関係を示す図、及びドレイン電流とドレイン電圧との関係を示す図である。図6(a)から分かるように、閾値電圧は約0Vであり、ノーマリオフを実現している。また、図6(b)に示すように、ゲートリーク電流が発生しにくくなっているので、本実施形態の電界効果トランジスタでは、ゲート−ソース間電圧Vgsを2.5Vにまで上げてもゲートリーク電流が発生することなく動作させることができる。   FIGS. 6A and 6B are a diagram showing a relationship between the gate voltage and the drain current and a diagram showing a relationship between the drain current and the drain voltage in the field effect transistor of this embodiment, respectively. As can be seen from FIG. 6A, the threshold voltage is about 0 V, and normally-off is realized. Further, as shown in FIG. 6B, since the gate leakage current is less likely to occur, in the field effect transistor of this embodiment, the gate leakage is increased even if the gate-source voltage Vgs is increased to 2.5V. It can be operated without generating current.

図7は、本発明の第1及び第2の実施形態に係る電界効果トランジスタのゲート・ソース間順方向電流・電圧特性を示す図である。同図に示す結果から、第2の実施形態の電界効果トランジスタの方が第1の実施形態の電界効果トランジスタよりもゲート立ち上がり電圧が大きいことがわかる。したがって、本実施形態の電界効果トランジスタにおいては、ゲート電極により大きな正バイアスを印加することができるため、第1の実施形態の電界効果トランジスタよりも大きいドレイン電流を得ることができる。   FIG. 7 is a diagram showing the forward current / voltage characteristics between the gate and the source of the field effect transistor according to the first and second embodiments of the present invention. From the results shown in the figure, it can be seen that the field effect transistor of the second embodiment has a higher gate rise voltage than the field effect transistor of the first embodiment. Therefore, in the field effect transistor of the present embodiment, a large positive bias can be applied to the gate electrode, so that a drain current larger than that of the field effect transistor of the first embodiment can be obtained.

次に、図4に示す本実施形態の電界効果トランジスタの製造方法の一例について説明する。図8(a)〜(f)は、本実施形態に係る電界効果トランジスタの製造方法を示す断面図である。   Next, an example of a method for manufacturing the field effect transistor of this embodiment shown in FIG. 4 will be described. 8A to 8F are cross-sectional views illustrating a method for manufacturing a field effect transistor according to this embodiment.

まず、図8(a)に示すように、サファイア基板401の(0001)面上に有機金属気相成長法(Metal Organic ChemicalVapor Deposition:MOCVD)により、厚さが100nmのAlNバッファ層402、厚さ2μmのアンドープGaN層403、厚さ25nmのアンドープAlGaN層404、厚さ100nmのp型AlGaN層405、厚さ5nmの高濃度p型GaN層406をこの順に形成する。   First, as shown in FIG. 8A, an AlN buffer layer 402 having a thickness of 100 nm is formed on the (0001) surface of a sapphire substrate 401 by metal organic chemical vapor deposition (MOCVD). An undoped GaN layer 403 having a thickness of 2 μm, an undoped AlGaN layer 404 having a thickness of 25 nm, a p-type AlGaN layer 405 having a thickness of 100 nm, and a high-concentration p-type GaN layer 406 having a thickness of 5 nm are formed in this order.

次に、図8(b)に示すように、例えばICP(Inductive-Coupled plasma)エッチングなどのドライエッチングにより、高濃度p型GaN層406、p型AlGaN層405、及びアンドープAlGaN層404の上部のうちゲート領域以外の部分を選択的に除去する。   Next, as shown in FIG. 8B, the upper portions of the high-concentration p-type GaN layer 406, the p-type AlGaN layer 405, and the undoped AlGaN layer 404 are formed by dry etching such as ICP (Inductive-Coupled Plasma) etching. A portion other than the gate region is selectively removed.

次いで、図8(c)に示すように、素子形成領域をフォトレジストなどでカバーした状態で、例えばB(ホウ素)などをイオン注入してアンドープAlGaN層404及びアンドープGaN層403の一部を高抵抗化し、素子分離領域407を形成する。   Next, as shown in FIG. 8C, in the state where the element formation region is covered with a photoresist or the like, for example, B (boron) or the like is ion-implanted to partially increase the undoped AlGaN layer 404 and the undoped GaN layer 403. Resistive is formed, and an element isolation region 407 is formed.

続いて、図8(d)に示すように、SiH、NH及びNを用いた気相堆積法(Chemical Vapor Deposition:CVD)により、例えば膜厚が100nmのSiN膜408を形成する。 Subsequently, as shown in FIG. 8D, a SiN film 408 having a thickness of, for example, 100 nm is formed by a vapor deposition method (Chemical Vapor Deposition: CVD) using SiH 4 , NH 3 and N 2 .

次に、図8(e)に示すように、例えばICPドライエッチングなどによりSiN膜を開口し、その開口部にTi層とAl層からなるソース電極409及びドレイン電極410を形成し、N雰囲気中650℃での熱処理を行う。 Next, as shown in FIG. 8E, an SiN film is opened by, for example, ICP dry etching, and a source electrode 409 and a drain electrode 410 made of a Ti layer and an Al layer are formed in the opening, and an N 2 atmosphere is formed. A heat treatment is performed at 650 ° C.

次に、図8(f)に示すように、例えばICPドライエッチングなどによりSiN膜408のうち高濃度p型GaN層406上に設けられた部分を除去する。続いて、SiN膜408の開口部分にPdからなるゲート電極411を形成する。なお、ソース電極409、ドレイン電極410及びゲート電極411は、SiN膜408より先に形成してもよい。また、素子分離領域407は、ソース電極409、ドレイン電極410及びゲート電極411より後で形成してもよい。以上のようにして、本実施形態の電界効果トランジスタを作製することができる。   Next, as shown in FIG. 8F, the portion of the SiN film 408 provided on the high-concentration p-type GaN layer 406 is removed by ICP dry etching, for example. Subsequently, a gate electrode 411 made of Pd is formed in the opening of the SiN film 408. Note that the source electrode 409, the drain electrode 410, and the gate electrode 411 may be formed before the SiN film 408. The element isolation region 407 may be formed after the source electrode 409, the drain electrode 410, and the gate electrode 411. As described above, the field effect transistor of this embodiment can be manufactured.

(第3の実施形態)
図9は、本発明の第3の実施形態に係る電界効果トランジスタを示す断面図である。
(Third embodiment)
FIG. 9 is a sectional view showing a field effect transistor according to the third embodiment of the present invention.

同図に示すように、本実施形態の電界効果トランジスタは、サファイア基板901と、サファイア基板901上に設けられた厚さ100nmのAlNバッファ層902と、AlNバッファ層902の上に設けられた厚さ2μmのアンドープGaN層903と、アンドープGaN層903の上に設けられた厚さ5nmのn型GaN層904と、n型GaN層904の上に設けられた厚さ20nmのアンドープAlGaN層905と、アンドープAlGaN層905の上に設けられた厚さ100nmのp型AlGaN層906と、p型AlGaN層906の上に設けられた厚さ5nmの高濃度p型GaN層907とを備えている。また、本実施形態の電界効果トランジスタは、n型GaN層904の両側方であってアンドープGaN層903の上に設けられ、n型GaN層904よりも高濃度のn型不純物を含む高濃度n型領域909と、n型GaN層904及びアンドープAlGaN層905と高濃度n型領域909の一方(ドレイン領域)との間に設けられ、高濃度n型領域909よりも低濃度のn型不純物を含む低濃度n型領域908と、高濃度n型領域909の上にそれぞれ設けられたTi/Alからなるソース電極912及びドレイン電極913とを備えている。そして、第1及び第2の実施形態の電界効果トランジスタと同様に、本実施形態の電界効果トランジスタでは、素子分離領域910、Pdからなるゲート電極914、SiN膜911が設けられている。   As shown in the figure, the field effect transistor of this embodiment includes a sapphire substrate 901, an AlN buffer layer 902 having a thickness of 100 nm provided on the sapphire substrate 901, and a thickness provided on the AlN buffer layer 902. An undoped GaN layer 903 having a thickness of 2 μm, an n-type GaN layer 904 having a thickness of 5 nm provided on the undoped GaN layer 903, and an undoped AlGaN layer 905 having a thickness of 20 nm provided on the n-type GaN layer 904, A p-type AlGaN layer 906 having a thickness of 100 nm provided on the undoped AlGaN layer 905 and a high-concentration p-type GaN layer 907 having a thickness of 5 nm provided on the p-type AlGaN layer 906. In addition, the field effect transistor according to the present embodiment is provided on both sides of the n-type GaN layer 904 and on the undoped GaN layer 903, and includes a high-concentration n containing a higher concentration of n-type impurities than the n-type GaN layer 904. Is provided between the n-type region 909, the n-type GaN layer 904, the undoped AlGaN layer 905, and one of the high-concentration n-type regions 909 (drain region). A low-concentration n-type region 908 including a source electrode 912 and a drain electrode 913 made of Ti / Al provided on the high-concentration n-type region 909, respectively. Similar to the field effect transistors of the first and second embodiments, the field effect transistor of the present embodiment is provided with the element isolation region 910, the gate electrode 914 made of Pd, and the SiN film 911.

本実施形態の電界効果トランジスタでは、Siのイオン注入によって高濃度n型領域909が形成されているので、ソース電極912及びドレイン電極913と高濃度n型領域909との間に生じるオーミックコンタクト抵抗は大幅に低減されており、ソース抵抗及びドレイン抵抗が小さくなっている。そのため、本実施形態の電界効果トランジスタは、ノーマリオフ型でありながら動作時に大電流を流すことが可能になっている。また、従来の電界効果トランジスタに比べて消費電力も低減されている。なお、オーミックコンタクト抵抗を十分低減するために、高濃度n型領域のキャリア濃度は2×1018cm−3以上であることが望ましい。 In the field effect transistor of this embodiment, since the high concentration n-type region 909 is formed by ion implantation of Si, the ohmic contact resistance generated between the source electrode 912 and the drain electrode 913 and the high concentration n-type region 909 is The source resistance and drain resistance are reduced significantly. Therefore, the field effect transistor according to the present embodiment can flow a large current during operation while being normally-off type. In addition, power consumption is reduced compared to conventional field effect transistors. In order to sufficiently reduce the ohmic contact resistance, the carrier concentration in the high concentration n-type region is preferably 2 × 10 18 cm −3 or more.

また、低濃度n型領域908のキャリア濃度は例えば1×1017cm−3程度である。n型GaN層904及びアンドープAlGaN層905とドレイン電極側の高濃度n型領域909の間にこの低濃度n型領域908が形成されていることによって、ドレイン電極に高電圧が印加された場合、ドレイン側の高濃度n型領域に電界が集中するのが防がれるので、耐圧を高くすることができる。 Further, the carrier concentration of the low concentration n-type region 908 is, for example, about 1 × 10 17 cm −3 . When the low-concentration n-type region 908 is formed between the n-type GaN layer 904 and the undoped AlGaN layer 905 and the high-concentration n-type region 909 on the drain electrode side, when a high voltage is applied to the drain electrode, Since the electric field is prevented from concentrating on the high-concentration n-type region on the drain side, the breakdown voltage can be increased.

図10は、本実施形態に係る電界効果トランジスタのゲート領域の縦断面におけるエネルギーバンド図である。   FIG. 10 is an energy band diagram in a longitudinal section of the gate region of the field effect transistor according to the present embodiment.

同図に示すように、本実施形態の電界効果トランジスタでは、アンドープGaN層903とアンドープAlGaN層905との間にチャネルとして機能するn型GaN層904が挿入されている。そのため、キャリアが走行するアンドープAlGaN層905とn型GaN層904とのヘテロ界面における伝導帯の溝(井戸)の幅は、n型GaN層904を挿入しない場合と比べて広くなる。したがって、ゲート電極914に正バイアスを印加して電界効果トランジスタがオンしたときのチャネル抵抗は小さくなり、大きなドレイン電流を取り出すことが可能になる。   As shown in the figure, in the field effect transistor of this embodiment, an n-type GaN layer 904 functioning as a channel is inserted between an undoped GaN layer 903 and an undoped AlGaN layer 905. For this reason, the width of the groove (well) in the conduction band at the heterointerface between the undoped AlGaN layer 905 and the n-type GaN layer 904 in which carriers travel is wider than when the n-type GaN layer 904 is not inserted. Therefore, the channel resistance when the positive bias is applied to the gate electrode 914 to turn on the field effect transistor is reduced, and a large drain current can be extracted.

次に、図9に示す本実施形態の電界効果トランジスタの製造方法の一例について説明する。図11(a)〜(g)は、本実施形態に係る電界効果トランジスタの製造方法を示す断面図である。   Next, an example of a method for manufacturing the field effect transistor of this embodiment shown in FIG. 9 will be described. 11A to 11G are cross-sectional views illustrating a method for manufacturing a field effect transistor according to this embodiment.

まず、図11(a)に示すように、サファイア基板901の(0001)面上にMOCVD法により、厚さが100nmのAlNバッファ層902、厚さ2μmのアンドープGaN層903、厚さが5nmのn型GaN層904、厚さが20nmのアンドープAlGaN層905、厚さが100nmのp型AlGaN層906、及び厚さが5nmの高濃度p型GaN層907を順に形成する。   First, as shown in FIG. 11A, an AlN buffer layer 902 having a thickness of 100 nm, an undoped GaN layer 903 having a thickness of 2 μm, and a thickness of 5 nm are formed on the (0001) surface of the sapphire substrate 901 by MOCVD. An n-type GaN layer 904, an undoped AlGaN layer 905 having a thickness of 20 nm, a p-type AlGaN layer 906 having a thickness of 100 nm, and a high-concentration p-type GaN layer 907 having a thickness of 5 nm are sequentially formed.

次に、図11(b)に示すように、例えばICPエッチングなどのドライエッチングにより、高濃度p型GaN層907、p型AlGaN層906、及びアンドープAlGaN層905の上部のうちゲート領域以外の部分を選択的に除去する。   Next, as shown in FIG. 11B, portions other than the gate region in the upper portions of the high-concentration p-type GaN layer 907, the p-type AlGaN layer 906, and the undoped AlGaN layer 905 by dry etching such as ICP etching, for example. Is selectively removed.

次いで、図11(c)に示すように、基板のうちゲート領域の両側方に位置する領域にSiイオンを注入した後、N雰囲気中で不純物の活性化熱処理を行うことにより、低濃度n型領域908及び高濃度n型領域909を形成する。 Next, as shown in FIG. 11C, after implanting Si ions into regions of the substrate located on both sides of the gate region, an impurity activation heat treatment is performed in an N 2 atmosphere, thereby reducing the low concentration n. A mold region 908 and a high concentration n-type region 909 are formed.

続いて、図11(d)に示すように、例えばBなどをイオン注入してアンドープAlGaN層905、n型GaN層904及びアンドープGaN層903の一部を高抵抗化し、素子分離領域910を形成する。   Subsequently, as shown in FIG. 11D, for example, B is ion-implanted to increase the resistance of the undoped AlGaN layer 905, the n-type GaN layer 904, and a part of the undoped GaN layer 903, thereby forming an element isolation region 910. To do.

次に、図11(e)に示すように、SiH、NH及びNを用いたCVD法により、基板上に厚さが100nmのSiN膜911を形成する。 Next, as shown in FIG. 11E, a SiN film 911 having a thickness of 100 nm is formed on the substrate by a CVD method using SiH 4 , NH 3 and N 2 .

次いで、図11(f)に示すように、例えばICPドライエッチングなどによりSiN膜911のうち高濃度n型領域909の上に設けられた部分を除去する。続いて、SiN膜911の開口部分にTi層及びAl層からなるソース電極912及びドレイン電極913を形成し、N雰囲気中650℃での熱処理を行う。 Next, as shown in FIG. 11F, the portion of the SiN film 911 provided on the high concentration n-type region 909 is removed by, for example, ICP dry etching. Subsequently, a source electrode 912 and a drain electrode 913 made of a Ti layer and an Al layer are formed in the opening of the SiN film 911, and heat treatment is performed at 650 ° C. in an N 2 atmosphere.

次に、図11(g)に示すように、例えばICPドライエッチングなどによりSiN膜911のうち高濃度p型GaN層907上に設けられた部分を除去する。続いて、SiN膜911の開口部分にPdからなるゲート電極914を形成する。ここでは電極形成前にSiN膜911を形成する方法を示したが、電極形成後にSiN膜911を形成してもよい。また、イオン注入法による素子分離領域の形成は、SiN膜911の形成後に行ってもよい。以上のようにして、本実施形態の電界効果トランジスタを作製することができる。   Next, as shown in FIG. 11G, the portion of the SiN film 911 provided on the high-concentration p-type GaN layer 907 is removed by, for example, ICP dry etching. Subsequently, a gate electrode 914 made of Pd is formed in the opening of the SiN film 911. Here, the method of forming the SiN film 911 before forming the electrode is shown, but the SiN film 911 may be formed after forming the electrode. Further, the element isolation region may be formed by ion implantation after the formation of the SiN film 911. As described above, the field effect transistor of this embodiment can be manufactured.

(第4の実施形態)
図12は、本発明の第4の実施形態に係る電界効果トランジスタを示すの断面図である。同図に示すように、本実施形態の電界効果トランジスタは、サファイア基板1201と、サファイア基板1201上に順に設けられた厚さ100nmのAlNバッファ層1202、厚さ2μmのアンドープGaN層1203、厚さ5nmのn型GaN層1204、厚さ20nmのアンドープAlGaN層1205、厚さ100nmのp型組成傾斜AlGaN層1206、及び厚さ5nmの高濃度p型GaN層1207とを備えている。また、本実施形態の電界効果トランジスタは、高濃度n型領域1209と、高濃度n型領域909よりも低濃度のn型不純物を含む低濃度n型領域1208と、高濃度n型領域1209の上にそれぞれ設けられたTi/Alからなるソース電極1212及びドレイン電極1213とを備えている。そして、第1〜第3の実施形態の電界効果トランジスタと同様に、本実施形態の電界効果トランジスタでは、素子分離領域1210、Pdからなるゲート電極1214、SiN膜1211が設けられている。すなわち、本実施形態の電界効果トランジスタは、第3の実施形態に係る電界効果トランジスタにおいて、p型AlGaN層906に代えてp型組成傾斜AlGaN層1206が設けられたものである。
(Fourth embodiment)
FIG. 12 is a cross-sectional view showing a field effect transistor according to the fourth embodiment of the present invention. As shown in the figure, the field effect transistor of this embodiment includes a sapphire substrate 1201, an AlN buffer layer 1202 having a thickness of 100 nm, an undoped GaN layer 1203 having a thickness of 2 μm, and a thickness provided on the sapphire substrate 1201 in this order. An n-type GaN layer 1204 having a thickness of 5 nm, an undoped AlGaN layer 1205 having a thickness of 20 nm, a p-type composition gradient AlGaN layer 1206 having a thickness of 100 nm, and a high-concentration p-type GaN layer 1207 having a thickness of 5 nm are provided. The field effect transistor of this embodiment includes a high concentration n-type region 1209, a low concentration n-type region 1208 containing an n-type impurity at a concentration lower than that of the high concentration n-type region 909, and a high concentration n-type region 1209. A source electrode 1212 and a drain electrode 1213 made of Ti / Al are provided on each of them. Similar to the field effect transistors of the first to third embodiments, the field effect transistor of this embodiment is provided with the element isolation regions 1210, the gate electrode 1214 made of Pd, and the SiN film 1211. That is, the field effect transistor of this embodiment is the same as the field effect transistor according to the third embodiment, except that the p-type composition gradient AlGaN layer 1206 is provided instead of the p-type AlGaN layer 906.

図13は、本実施形態に係る電界効果トランジスタのゲート領域の縦断面におけるエネルギーバンド図である。本実施形態の電界効果トランジスタにおいて、p型組成傾斜AlGaN層1206のAl組成比は、サファイア基板側が最も高く、ゲート電極側でゼロとなるように変化する。即ち、p型組成傾斜AlGaN層1206では、アンドープAlGaN層1205と接する界面ではアンドープAlGaN層1205と同一組成となり、高濃度p型GaN層1207と接する界面では高濃度p型GaN層1207と同一組成となるようにAl及びGaの組成が傾斜的に変化する。ここで、アンドープAlGaN層1205は例えばAl0.25Ga0.75Nで構成されている。 FIG. 13 is an energy band diagram in the longitudinal section of the gate region of the field effect transistor according to the present embodiment. In the field effect transistor of the present embodiment, the Al composition ratio of the p-type composition gradient AlGaN layer 1206 changes so that it is highest on the sapphire substrate side and zero on the gate electrode side. That is, the p-type composition gradient AlGaN layer 1206 has the same composition as the undoped AlGaN layer 1205 at the interface in contact with the undoped AlGaN layer 1205 and the same composition as the high-concentration p-type GaN layer 1207 at the interface in contact with the high-concentration p-type GaN layer 1207. Thus, the composition of Al and Ga changes in an inclined manner. Here, the undoped AlGaN layer 1205 is made of, for example, Al 0.25 Ga 0.75 N.

上述のような構成のため、p型組成傾斜AlGaN層1206とアンドープAlGaN層1205との界面にはバンド不連続が発生せず、バンド間トンネリングに起因するゲートリーク電流が発生しない。その結果、ゲート立ち上がり電圧は高くなるため、大きなドレイン電流を得ることができる。   Due to the above-described configuration, no band discontinuity occurs at the interface between the p-type composition gradient AlGaN layer 1206 and the undoped AlGaN layer 1205, and no gate leakage current due to band-to-band tunneling occurs. As a result, the gate rising voltage becomes high, so that a large drain current can be obtained.

また、AlGaN層よりもGaN層の方がp型キャリア濃度を高くすることが可能であるため、p型組成傾斜AlGaN層1206のうちゲート電極側部分のキャリア濃度は、基板側よりも高くすることができる。その結果、ゲート電極とのオーミック接合の形成を容易にすることができる。   Also, since the p-type carrier concentration can be higher in the GaN layer than in the AlGaN layer, the carrier concentration on the gate electrode side portion of the p-type composition gradient AlGaN layer 1206 should be higher than that on the substrate side. Can do. As a result, it is possible to easily form an ohmic junction with the gate electrode.

また、p型組成傾斜AlGaN層1206のうちアンドープAlGaN層1205との界面近傍のAl組成比をアンドープAlGaN層1205よりも大きくしてもよい。この場合にも、p型組成傾斜AlGaN層1206とアンドープAlGaNとの界面付近に正孔が蓄積されることはないので、バンド間トンネリングによってアンドープAlGaN層1205にゲートリーク電流が流れるのを抑えることができる。   Further, the Al composition ratio in the vicinity of the interface with the undoped AlGaN layer 1205 in the p-type composition gradient AlGaN layer 1206 may be made larger than that in the undoped AlGaN layer 1205. Also in this case, since holes are not accumulated near the interface between the p-type composition gradient AlGaN layer 1206 and the undoped AlGaN, it is possible to suppress the gate leakage current from flowing through the undoped AlGaN layer 1205 due to the band-to-band tunneling. it can.

なお、本実施形態ではp型AlGaN層のAl組成を傾斜的に変化させる例を示したが、第1の実施形態のようにアンドープAlGaN層の上にp型GaN層が設けられるような場合には、アンドープAlGaN層のAl組成を傾斜的に変化させてp型GaN層とアンドープAlGaN層との界面におけるバンド不連続を解消してもよい。   In the present embodiment, an example in which the Al composition of the p-type AlGaN layer is changed in an inclined manner has been shown. However, when the p-type GaN layer is provided on the undoped AlGaN layer as in the first embodiment. May eliminate the band discontinuity at the interface between the p-type GaN layer and the undoped AlGaN layer by changing the Al composition of the undoped AlGaN layer in a gradient.

(第5の実施形態)
図14は、本発明の第5の実施形態に係る電界効果トランジスタを示す断面図である。
(Fifth embodiment)
FIG. 14 is a sectional view showing a field effect transistor according to the fifth embodiment of the present invention.

同図に示すように、本実施形態の電界効果トランジスタでは、導電性基板として例えば
Si基板を用いている。
As shown in the figure, in the field effect transistor of this embodiment, for example, a Si substrate is used as a conductive substrate.

すなわち、本実施形態の電界効果トランジスタは、Si基板1401と、Si基板1401の上面上に順に設けられた厚さ100nmのAlNバッファ層1402、厚さ1μmのアンドープGaN層1403、厚さ25nmのアンドープAlGaN層1404、及び厚さ5nmの高濃度p型GaN層1406とを備えている。   That is, the field effect transistor of this embodiment includes a Si substrate 1401, an AlN buffer layer 1402 having a thickness of 100 nm, an undoped GaN layer 1403 having a thickness of 1 μm, and an undoped layer having a thickness of 25 nm, which are sequentially provided on the upper surface of the Si substrate 1401. An AlGaN layer 1404 and a high-concentration p-type GaN layer 1406 having a thickness of 5 nm are provided.

また、本実施形態の電界効果トランジスタは、高濃度p型GaN層1406とオーミック接合するPdからなるゲート電極1411と、アンドープAlGaN層1404とオーミック接合し、Ti層とAl層からなるソース電極1409及びドレイン電極1410と、Si基板1401の裏面オーミック接合する裏面電極1415と、SiN膜1408とを備え、素子形成領域を囲む素子分離領域1407が形成されている。さらに、本実施形態の電界効果トランジスタでは、素子形成領域内に形成され、SiN膜1408からSi基板1401にまで達するバイアホール1412と、バイアホール1412の底部に設けられ、Si基板1401にオーミック接合するAlなどからなるバイアホールメタル1413と、ソース電極1409とバイアホールメタル1413とを接続する配線メタル1414とが形成されている。裏面電極1415の材料には、珪化チタン(TiSi)と窒化チタン(TiN)との積層体が用いられる。なお、Si基板に代わる導電性基板として炭化シリコン(SiC)を用いる場合には、裏面電極としてTi/Alの積層体を用いることができる。   In addition, the field effect transistor of this embodiment includes a gate electrode 1411 made of Pd that is in ohmic contact with the high-concentration p-type GaN layer 1406, a source electrode 1409 that is in ohmic contact with the undoped AlGaN layer 1404, and made of a Ti layer and an Al layer. A drain electrode 1410, a back electrode 1415 that is in ohmic contact with the back surface of the Si substrate 1401, and a SiN film 1408 are formed, and an element isolation region 1407 surrounding the element formation region is formed. Furthermore, in the field effect transistor of the present embodiment, a via hole 1412 that is formed in the element formation region and extends from the SiN film 1408 to the Si substrate 1401 is provided at the bottom of the via hole 1412 and is in ohmic contact with the Si substrate 1401. A via hole metal 1413 made of Al or the like, and a wiring metal 1414 connecting the source electrode 1409 and the via hole metal 1413 are formed. As a material for the back electrode 1415, a laminate of titanium silicide (TiSi) and titanium nitride (TiN) is used. In the case where silicon carbide (SiC) is used as the conductive substrate instead of the Si substrate, a Ti / Al laminate can be used as the back electrode.

本実施形態の電界効果トランジスタにおいて、ソース電極1409は、配線メタル1414及びバイアホールメタル1413を介してSi基板1401と電気的に接続されている。そのため、裏面電極1415を接地電位にすることにより、ソース電極1409をバイアホールメタル1413及び裏面電極1415を介して接地させることができる。これにより、素子表面のソース配線を排除することができ、素子面積を低減することが可能となる。また高いドレイン電圧が印加された場合、ドレイン電極からの電気力線はゲート電極だけでなくSi基板方向にも向かうため、ゲート・ドレイン電極間の電界集中を緩和し、耐圧を増大させることができる。したがって、本実施形態の素子構造は、パワートランジスタとして動作させるために有効である。   In the field effect transistor of this embodiment, the source electrode 1409 is electrically connected to the Si substrate 1401 through the wiring metal 1414 and the via hole metal 1413. Therefore, the source electrode 1409 can be grounded via the via hole metal 1413 and the back electrode 1415 by setting the back electrode 1415 to the ground potential. As a result, the source wiring on the element surface can be eliminated, and the element area can be reduced. In addition, when a high drain voltage is applied, the lines of electric force from the drain electrode are directed not only to the gate electrode but also to the Si substrate, so that the electric field concentration between the gate and drain electrodes can be relaxed and the breakdown voltage can be increased. . Therefore, the element structure of this embodiment is effective for operating as a power transistor.

本発明の電界効果トランジスタは、テレビ他の民生機器の電源回路等で用いられるパワートランジスタとして有用である。   The field effect transistor of the present invention is useful as a power transistor used in a power circuit of a consumer device such as a television.

101、401、901、1201 サファイア基板
102、402、902、1202、1402 AlNバッファ層
103、403、903、1203、1403 アンドープGaN層
104、404、905、1205、1404 アンドープAlGaN層
105 p型GaN層
106、406、907、1207、1406 高濃度p型GaN層
107、407、910、1210、1407 素子分離領域
108、408、911、1211、1408 SiN膜
109、409、912、1212、1409 ソース電極
110、410、913、1213、1410 ドレイン電極
111、411、914、1214、1411 ゲート電極
405、906 p型AlGaN層
904、1204 n型GaN層
908、1208 低濃度n型領域
909、1209 高濃度n型領域
1206 p型組成傾斜AlGaN層
1401 Si基板
1412 バイアホール
1413 バイアホールメタル
1414 配線メタル
1415 裏面電極
101, 401, 901, 1201 Sapphire substrate 102, 402, 902, 1202, 1402 AlN buffer layer
103, 403, 903, 1203, 1403 Undoped GaN layer
104, 404, 905, 1205, 1404 Undoped AlGaN layer
105 p-type GaN layer
106, 406, 907, 1207, 1406 High-concentration p-type GaN layer
107, 407, 910, 1210, 1407 Element isolation region
108, 408, 911, 1211, 1408 SiN film
109, 409, 912, 1212, 1409 Source electrode
110, 410, 913, 1213, 1410 Drain electrode
111, 411, 914, 1214, 1411 Gate electrode
405, 906 p-type AlGaN layer
904, 1204 n-type GaN layer
908, 1208 Low concentration n-type region
909, 1209 High concentration n-type region
1206 P-type composition gradient AlGaN layer
1401 Si substrate
1412 Bahia Hall
1413 Via Hole Metal
1414 Wiring metal
1415 Back electrode

Claims (15)

基板と、
前記基板の上に設けられた第1の窒化物半導体層と、
前記第1の窒化物半導体層の上に設けられ、前記第1の窒化物半導体層よりもバンドギャップエネルギーが大きい第2の窒化物半導体層と、
前記第2の窒化物半導体層の上に設けられたp型の第3の窒化物半導体層と、
前記第3の窒化物半導体層の上に設けられたゲート電極と、
前記第2の窒化物半導体層の上であって、平面的に見て前記ゲート電極の両側方に設けられたソース電極及びドレイン電極と、
前記第2の窒化物半導体層及び前記第1の窒化物半導体層の一部にイオンが注入されて形成された素子分離領域とを備える電界効果トランジスタ。
A substrate,
A first nitride semiconductor layer provided on the substrate;
A second nitride semiconductor layer provided on the first nitride semiconductor layer and having a larger band gap energy than the first nitride semiconductor layer;
A p-type third nitride semiconductor layer provided on the second nitride semiconductor layer;
A gate electrode provided on the third nitride semiconductor layer;
A source electrode and a drain electrode provided on both sides of the gate electrode in plan view on the second nitride semiconductor layer;
A field effect transistor comprising: the second nitride semiconductor layer; and an element isolation region formed by ion implantation into a part of the first nitride semiconductor layer.
前記イオンは、ホウ素イオンである、請求項1に記載の電界効果トランジスタ。   The field effect transistor according to claim 1, wherein the ions are boron ions. 前記第2の窒化物半導体層はアンドープ層である、請求項1又は2に記載の電界効果トランジスタ。   The field effect transistor according to claim 1, wherein the second nitride semiconductor layer is an undoped layer. 前記ゲート電極は、オーミック電極である、請求項1〜3のうちいずれか1つに記載の電界効果トランジスタ。   The field effect transistor according to claim 1, wherein the gate electrode is an ohmic electrode. ノーマリオフ型である、請求項1〜4のうちいずれか1つに記載の電界効果トランジスタ。   The field effect transistor according to claim 1, which is a normally-off type. 前記第3の窒化物半導体層と前記ゲート電極との間に設けられ、前記第3の窒化物半導体層よりも高濃度のp型不純物を含む第4の窒化物半導体層をさらに備えており、
前記ゲート電極は前記第4の窒化物半導体層とオーミック接合している、請求項1〜5のうちいずれか1つに記載の電界効果トランジスタ。
A fourth nitride semiconductor layer that is provided between the third nitride semiconductor layer and the gate electrode and includes a p-type impurity at a concentration higher than that of the third nitride semiconductor layer;
The field effect transistor according to claim 1, wherein the gate electrode is in ohmic contact with the fourth nitride semiconductor layer.
前記第2の窒化物半導体層のうち、前記ゲート電極の直下に位置する部分の膜厚は、前記ソース電極及び前記ドレイン電極の直下に位置する部分の膜厚よりも大きく、
前記ソース電極及び前記ドレイン電極は、共に前記第2の窒化物半導体層の上に設けられている、請求項1〜6のうちいずれか1つに記載の電界効果トランジスタ。
Of the second nitride semiconductor layer, the thickness of the portion located immediately below the gate electrode is larger than the thickness of the portion located directly below the source electrode and the drain electrode,
The field effect transistor according to claim 1, wherein both the source electrode and the drain electrode are provided on the second nitride semiconductor layer.
前記第1の窒化物半導体はGaNで構成されており、
前記第2の窒化物半導体層はAlGa1−xN(0<x≦1)で構成されており、
前記第3の窒化物半導体層はAlGa1−yN(0≦y≦1)で構成されている、請求項1〜7のうちいずれか1つに記載の電界効果トランジスタ。
The first nitride semiconductor is composed of GaN;
The second nitride semiconductor layer is made of Al x Ga 1-x N (0 <x ≦ 1),
The field effect transistor according to claim 1, wherein the third nitride semiconductor layer is made of Al y Ga 1-y N (0 ≦ y ≦ 1).
前記第3の窒化物半導体層のAl組成比yは、下方に向かうにつれて傾斜的に大きくなる、請求項8に記載の電界効果トランジスタ。   The field effect transistor according to claim 8, wherein an Al composition ratio y of the third nitride semiconductor layer increases in a slope as it goes downward. 前記第1の窒化物半導体層及び前記第2の窒化物半導体層のうち前記ソース電極及び前記ドレイン電極の直下に位置する領域には、n型不純物が導入された第1のn型領域が形成されており、前記第1のn型領域は前記ソース電極または前記ドレイン領域と接している、請求項1〜9のうちいずれか1つに記載の電界効果トランジスタ。   A first n-type region into which an n-type impurity is introduced is formed in a region located immediately below the source electrode and the drain electrode in the first nitride semiconductor layer and the second nitride semiconductor layer. The field effect transistor according to claim 1, wherein the first n-type region is in contact with the source electrode or the drain region. 前記第1の窒化物半導体層及び前記第2の窒化物半導体層のうち、前記ドレイン電極の下に形成された前記第1のn型領域と前記ゲート電極の直下方に位置する領域との間には、前記第1のn型領域よりも低濃度でn型不純物を含む第2のn型領域が形成されている、請求項10に記載の電界効果トランジスタ。   Of the first nitride semiconductor layer and the second nitride semiconductor layer, between the first n-type region formed below the drain electrode and a region located directly below the gate electrode The field effect transistor according to claim 10, wherein a second n-type region containing an n-type impurity at a lower concentration than the first n-type region is formed. 前記第1の窒化物半導体層のうち前記第2の窒化物半導体層との界面部分にはn型不純物が導入されている、請求項1〜11のうちいずれか1つに記載の電界効果トランジスタ。   The field effect transistor according to any one of claims 1 to 11, wherein an n-type impurity is introduced into an interface portion of the first nitride semiconductor layer with the second nitride semiconductor layer. . 前記第2の窒化物半導体層の結晶方位が、前記基板に対して垂直方向に分極電界を生じないものである、請求項1〜12のうちいずれか1つに記載の電界効果トランジスタ。   The field effect transistor according to any one of claims 1 to 12, wherein a crystal orientation of the second nitride semiconductor layer does not generate a polarization electric field in a direction perpendicular to the substrate. 少なくとも前記第2の窒化物半導体層の上面及び前記第3の窒化物半導体層の側面を覆うシリコン窒化膜をさらに備える、請求項1〜13のうちいずれか1つに記載の電界効果トランジスタ。   The field effect transistor according to claim 1, further comprising a silicon nitride film covering at least an upper surface of the second nitride semiconductor layer and a side surface of the third nitride semiconductor layer. 前記第2の窒化物半導体層から前記基板にまで達して形成されたバイアホールと、
前記バイアホールの底部に設けられたバイアホールメタルと、
前記バイアホールメタルと前記ソース電極とを接続する配線メタルとをさらに備える、請求項1〜14のうちいずれか1つに記載の電界効果トランジスタ。
A via hole formed from the second nitride semiconductor layer to the substrate;
Via hole metal provided at the bottom of the via hole;
The field effect transistor according to claim 1, further comprising a wiring metal that connects the via hole metal and the source electrode.
JP2013156379A 2013-07-29 2013-07-29 Field effect transistor Pending JP2013239735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013156379A JP2013239735A (en) 2013-07-29 2013-07-29 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013156379A JP2013239735A (en) 2013-07-29 2013-07-29 Field effect transistor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011001211A Division JP2011066464A (en) 2011-01-06 2011-01-06 Field effect transistor

Publications (1)

Publication Number Publication Date
JP2013239735A true JP2013239735A (en) 2013-11-28

Family

ID=49764462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013156379A Pending JP2013239735A (en) 2013-07-29 2013-07-29 Field effect transistor

Country Status (1)

Country Link
JP (1) JP2013239735A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5669119B1 (en) * 2014-04-18 2015-02-12 株式会社パウデック Semiconductor element, electric device, bidirectional field effect transistor, and mounting structure
JP2016213388A (en) * 2015-05-12 2016-12-15 株式会社豊田中央研究所 Nitride semiconductor device and manufacturing method of the same
KR102191924B1 (en) * 2019-09-06 2020-12-16 (주)에이프로 GaN-based high electron mobility transistor and method for manufacturing thereof
WO2023127520A1 (en) * 2021-12-27 2023-07-06 ローム株式会社 Nitride semiconductor device and manufacturing method therefor
WO2024202743A1 (en) * 2023-03-27 2024-10-03 パナソニックIpマネジメント株式会社 Nitride semiconductor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224978A (en) * 1986-03-27 1987-10-02 Agency Of Ind Science & Technol Field-effect transistor and integrated circuit employing the same
JPH11214800A (en) * 1998-01-28 1999-08-06 Sony Corp Semiconductor device and manufacture thereof
JP2000150535A (en) * 1998-11-09 2000-05-30 Fujitsu Quantum Device Kk Field effect transistor and manufacture thereof
JP2001217257A (en) * 2000-01-31 2001-08-10 Sony Corp Semiconductor device and its manufacturing method
JP2003059946A (en) * 2001-08-14 2003-02-28 Furukawa Electric Co Ltd:The Garium nitride semiconductor device
JP2004111910A (en) * 2002-07-25 2004-04-08 Matsushita Electric Ind Co Ltd Contact forming method and semiconductor device
JP2004273486A (en) * 2003-03-05 2004-09-30 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2004363563A (en) * 2003-05-15 2004-12-24 Matsushita Electric Ind Co Ltd Semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224978A (en) * 1986-03-27 1987-10-02 Agency Of Ind Science & Technol Field-effect transistor and integrated circuit employing the same
JPH11214800A (en) * 1998-01-28 1999-08-06 Sony Corp Semiconductor device and manufacture thereof
JP2000150535A (en) * 1998-11-09 2000-05-30 Fujitsu Quantum Device Kk Field effect transistor and manufacture thereof
JP2001217257A (en) * 2000-01-31 2001-08-10 Sony Corp Semiconductor device and its manufacturing method
JP2003059946A (en) * 2001-08-14 2003-02-28 Furukawa Electric Co Ltd:The Garium nitride semiconductor device
JP2004111910A (en) * 2002-07-25 2004-04-08 Matsushita Electric Ind Co Ltd Contact forming method and semiconductor device
JP2004273486A (en) * 2003-03-05 2004-09-30 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2004363563A (en) * 2003-05-15 2004-12-24 Matsushita Electric Ind Co Ltd Semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5669119B1 (en) * 2014-04-18 2015-02-12 株式会社パウデック Semiconductor element, electric device, bidirectional field effect transistor, and mounting structure
WO2015159450A1 (en) * 2014-04-18 2015-10-22 株式会社パウデック Semiconductor element, electric apparatus, bidirectional field effect transistor, and mounting structural body
JP2015207610A (en) * 2014-04-18 2015-11-19 株式会社パウデック Semiconductor element, electric equipment, bidirectional field effect transistor, and mounting structure body
US9991335B2 (en) 2014-04-18 2018-06-05 Powdec K.K. Semiconductor device having a polarization super junction field effect transistor, electric equipment, bidirectional field effect transistor, and mounted structure body having the same
TWI636567B (en) * 2014-04-18 2018-09-21 Powdec股份有限公司 Semiconductor device, electrical machine, bi-directional field effect transistor and mounting structure
JP2016213388A (en) * 2015-05-12 2016-12-15 株式会社豊田中央研究所 Nitride semiconductor device and manufacturing method of the same
KR102191924B1 (en) * 2019-09-06 2020-12-16 (주)에이프로 GaN-based high electron mobility transistor and method for manufacturing thereof
WO2023127520A1 (en) * 2021-12-27 2023-07-06 ローム株式会社 Nitride semiconductor device and manufacturing method therefor
WO2024202743A1 (en) * 2023-03-27 2024-10-03 パナソニックIpマネジメント株式会社 Nitride semiconductor device

Similar Documents

Publication Publication Date Title
JP4705412B2 (en) Field effect transistor and manufacturing method thereof
JP4712459B2 (en) Transistor and method of operating the same
JP5147197B2 (en) Transistor
JP5595685B2 (en) Semiconductor device
US8390029B2 (en) Semiconductor device for reducing and/or preventing current collapse
JP4755961B2 (en) Nitride semiconductor device and manufacturing method thereof
US8148752B2 (en) Field effect transistor
KR101773259B1 (en) A STRUCTURE FOR A GALLIUM NITRIDE (GaN) HIGH ELECTRON MOBILITY TRANSISTOR
JP5468768B2 (en) Field effect transistor and manufacturing method thereof
US8164117B2 (en) Nitride semiconductor device
JP5469098B2 (en) Field effect transistor and manufacturing method thereof
US20140110759A1 (en) Semiconductor device
WO2009110254A1 (en) Field effect transistor and method for manufacturing the same
JP2007220895A (en) Nitride semiconductor device and its manufacturing method
JP2012064900A (en) Semiconductor device
US9680001B2 (en) Nitride semiconductor device
JP2007201093A (en) Nitride semiconductor device
JP2013239735A (en) Field effect transistor
JP2011066464A (en) Field effect transistor
JP2011142358A (en) Nitride semiconductor device
JP5721782B2 (en) Semiconductor device
WO2023042617A1 (en) Semiconductor device
US20190035922A1 (en) Semiconductor device, electronic part, electronic apparatus, and method for fabricating semiconductor device
JP2015156510A (en) field effect transistor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141202