JP2013236453A - スイッチング電源装置 - Google Patents

スイッチング電源装置 Download PDF

Info

Publication number
JP2013236453A
JP2013236453A JP2012106868A JP2012106868A JP2013236453A JP 2013236453 A JP2013236453 A JP 2013236453A JP 2012106868 A JP2012106868 A JP 2012106868A JP 2012106868 A JP2012106868 A JP 2012106868A JP 2013236453 A JP2013236453 A JP 2013236453A
Authority
JP
Japan
Prior art keywords
aluminum electrolytic
capacitor
electrolytic capacitor
input
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012106868A
Other languages
English (en)
Inventor
Tetsuo Hirata
哲郎 平田
Satoshi Kamiya
聡史 上谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosel Co Ltd
Original Assignee
Cosel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosel Co Ltd filed Critical Cosel Co Ltd
Priority to JP2012106868A priority Critical patent/JP2013236453A/ja
Publication of JP2013236453A publication Critical patent/JP2013236453A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】平滑用のアルミ電解コンデンサに発生するノーマルモードノイズを容易に低減することができるスイッチング電源装置を提供する。
【解決手段】入力交流電圧を全波整流するブリッジ整流器14と、ブリッジ整流器14の整流電圧を平滑するアルミ電解コンデンサ18を備える。アルミ電解コンデンサ18の両端電圧が一対の入力端20の間に印加され、入力端20からスイッチング電流が流出するDC−DCコンバータ26を備える。一対の入力端20の間に接続された相間コンデンサ28を備える。相間コンデンサ28のインピーダンスは、入力交流電圧の周波数の2倍の周波数facにおいてアルミ電解コンデンサ18よりも大きく、スイッチング周波数fswにおいてアルミ電解コンデンサ18よりも小さい。入力端20とアルミ電解コンデンサ18との接続点に挿入され、スイッチング電流の通過を抑制する抑制インダクタを備える。
【選択図】図1

Description

この発明は、入力交流電圧を整流平滑するブリッジ整流器及びアルミ電解コンデンサを備えたスイッチング電源装置に関する。
従来から、4つのダイオードで入力交流電圧を全波整流するブリッジ整流器と、ブリッジ整流器が出力する整流電圧を平滑する平滑コンデンサと、平滑コンデンサ両端の直流電圧が入力され、主スイッチング素子のスイッチング動作により、所定の直流電圧である出力電圧に変換して出力するDC−DCコンバータとを備えたスイッチング電源装置がある。平滑コンデンサは、所定の出力保持時間(スイッチング電源装置の運転中に入力が遮断されたとき、出力電圧を保持する時間)を確保するため、大容量のアルミ電解コンデンサが使用されることが多い。
この種のスイッチング電源装置として、例えば、特許文献1に開示されているように、ブリッジ整流器と、アルミ電解コンデンサ等の有極性の平滑コンデンサと、フライバック型のDC−DCコンバータと、入力電源とブリッジ整流器との間に設けられ、ノーマルモードノイズを低減可能なノイズフィルタ回路とを備えたスイッチング電源装置があった。このスイッチング電源装置は、DC−DCコンバータ内に主スイッチング素子のスイッチング周波数を連続的に変化させるスイッチング周波数可変回路を設けることによって、DC−DCコンバータから入力電源の側に漏れ出る雑音端子電圧を低減することができるものである。
また、特許文献2に開示されているように、ブリッジ整流器と、2つのアルミ電解コンデンサ等の有極性の平滑コンデンサ及びインダクタ(ラインフィルタ)で構成された平滑回路と、極性反転型のDC−DCコンバータとを備えたスイッチング電源装置があった。このスイッチング電源装置は、DC−DCコンバータ内のチョークコイルと並列に、電流不連続期間に発生する共振振動を抑制する所定のダンパ回路を設けることによって、雑音端子電圧を低減することができるものである。
また、特許文献3の第三実施形態に開示されているように、ブリッジ整流器(全波整流回路)と、アルミ電解コンデンサ等の有極性の平滑コンデンサと、DC−DCコンバータ(スイッチング回路)と、ブリッジ整流器と平滑コンデンサとの間に設けられ、ノーマルモードノイズを低減可能なノイズフィルタ回路とを備えたスイッチング電源装置があった。このスイッチング電源装置は、ブリッジ整流器と平滑コンデンサとの間に、逆回復時間が1μsec以下のダイオードを順電流を流す方向に直列に挿入することによって、逆回復時間の長いブリッジ整流器のリカバリ電流によって発生するノイズを低減させ、入力電源の側に漏れ出るのを抑えることができるものである。
特開2002−345798号公報 特開2007−236128号公報 特開2001−275358号公報
しかし、特許文献1のスイッチング電源装置の場合、平滑用のアルミ電解コンデンサに流れる高周波電流成分を十分に吸収できず、アルミ電解コンデンサに発生するノーマルモードノイズを減衰させるためにノイズフィルタ回路が大型になるという問題がある。
平滑用のアルミ電解コンデンサに流れる電流は、入力電源から流れ込む低周波電流成分と、DC−DCコンバータの入力端から流出する高周波電流成分とがある。低周波電流成分は、入力交流電圧が正方向および負方向に高くなったタイミングで流れる平滑コンデンサを充電する電流であり、例えば、商用周波50Hzの2倍の周波数の電流である。高周波電流成分は、入力電圧を断続する主スイッチング素子に流れるスイッチング電流であり、近年はスイッチング周波数が100k〜1MHzの間に設定されることが多い。
一般に、アルミ電解コンデンサは、外形が小型でも大きい容量が得られるので100Hzのような低周波のインピーダンスは小さくしやすいが、直列抵抗(電解液等の抵抗分)が大きいので100k〜1MHzの高周波のインピーダンスを小さくするのは難しい。従って、アルミ電解コンデンサにスイッチング電流が流れることにより、直流抵抗に大きな高周波電圧(ノーマルモードノイズ)が発生する。従って、ノーマルモードノイズを減衰させるため、上記のノイズフィルタ回路が大型化したりコストアップしたりする問題があった。
特許文献2のスイッチング電源装置は、平滑回路を2つのアルミ電解コンデンサとインダクタとで構成してあるので、特許文献1のスイッチング電源装置の問題を軽減させる効果があるが、何れの電解コンデンサにも上記の直流抵抗があるので、軽減の効果が十分とは言えない。また、2つのアルミ電解コンデンサのインピーダンスの大小関係について考慮されておらず、例えば、2つのアルミ電解コンデンサに流れる電流成分(低周波電流成分、高周波電流成分)のバランスが悪いと、一方のアルミ電解コンデンサが短時間のうちにドライアップし、短寿命になる可能性がある。
また、特許文献3のスイッチング電源装置の場合も、出力保持時間を確保する等の目的で平滑用のアルミ電解コンデンサを使用すると、特許文献1と同様の問題が発生する。
この発明は、上記背景技術に鑑みて成されたものであり、平滑用のアルミ電解コンデンサに発生するノーマルモードノイズを容易に低減することができるスイッチング電源装置を提供することを目的とする。
この発明は、入力交流電圧を全波整流するブリッジ整流器と、前記ブリッジ整流器が出力する整流電圧を平滑するアルミ電解コンデンサと、前記アルミ電解コンデンサの両端電圧が一対の入力端の間に印加され、主スイッチング素子のスイッチング動作より、前記入力端からスイッチング電流が流出するDC−DCコンバータと、前記DC−DCコンバータの前記一対の入力端の間に接続され、前記入力交流電圧の周波数の2倍の周波数における自己のインピーダンスが前記アルミ電解コンデンサよりも大きく、前記主スイッチング素子のスイッチング周波数における自己のインピーダンスが前記アルミ電解コンデンサよりも小さい相間コンデンサと、前記DC−DCコンバータの前記入力端と前記アルミ電解コンデンサとの接続点に挿入され、前記スイッチング電流の通過を抑制する抑制インダクタとを備えるスイッチング電源装置である。
前記相間コンデンサとして、セラミックコンデンサ又はフィルムコンデンサが好適である。また、前記ブリッジ整流器の出力と前記アルミ電解コンデンサとの間に、前記ブリッジ整流器よりも逆回復時間が短い直列ダイオードが、順電流を流す向きに挿入されていてもよい。
この発明のスイッチング電源装置によれば、DC−DCコンバータから流出するスイッチング電流が低インピーダンスの相間コンデンサに多く流れるようになり、ノーマルモードノイズを容易に低減することができる。
また、低周波における相間コンデンサの低周波のインピーダンスが相対的に大きいので、抑制インダクタに流れる低周波の電流が小さくなり、抑制インダクタとして、飽和電流の小さい小型外形のインダクタ素子を使用することができる。同様の理由で、入力投入時に抑制インダクタを通じて相間コンデンサを急速充電する突入電流のエネルギーが小さくなり、抑制インダクタに大きな発熱が生じたり巻線の絶縁皮膜が溶けてレアショートしたりする等の問題を容易に回避することができる。
この発明のスイッチング電源装置の第一実施形態を示す回路図である。 この実施形態のアルミ電解コンデンサ及び相間コンデンサのインピーダンス特性を示す両対数グラフである。 この実施形態の抑制インダクタのインダクタンス特性を示すグラフである。 この発明のスイッチング電源装置の第二実施形態を示す回路図である。 この発明のスイッチング電源装置のその他の実施形態を示す回路図である。 この発明のスイッチング電源装置のさらにその他の実施形態を示す回路図である。
以下、この発明のスイッチング電源装置の第一実施形態について、図1〜図3に基づいて説明する。第一実施形態のスイッチング電源装置10は、図1に示すように、入力電源12が接続されるブリッジ整流器14を備えている。ブリッジ整流器14は、4つのダイオード16で構成され、入力電源12の入力交流電圧を全波整流して出力する。ここでは、入力電源12は商用交流電源であり、50Hz又は60Hzの正弦波状の交流電圧を出力する。ダイオード16は、入力電源12のラインに雷サージ等のサージ電圧が発生することを考慮し、ここではサージ耐量の高い一般シリコンダイオードが選択されている。
ブリッジ整流器14の出力には、整流電圧を平滑して直流電圧を出力する平滑用のアルミ電解コンデンサ18が接続されている。アルミ電解コンデンサ18は、後述するDC−DCコンバータ26の出力保持時間を一定以上に確保するため、例えば、数十μ〜数百μF程度の大きな容量を有している。
アルミ電解コンデンサ18の両端には、その平滑電圧が一対の入力端20の間に印加され、一対の出力端22の間に接続された負荷24に直流の出力電圧を供給するDC−DCコンバータ26が接続されている。DC−DCコンバータ26は、内部の図示しない主スイッチング素子がスイッチングすることによって電力変換を行う。その際、入力端20からブリッジ整流器14に向けて、主スイッチング素子のスイッチング電流が流出する。主スイッチング素子のスイッチング周波数fswは、例えば100k〜500kHzである。
DC−DCコンバータ26の一対の入力端20の間には、相間コンデンサ28が接続されている。相間コンデンサ28は、図2に示すように、入力交流電圧の周波数の2倍の周波数facにおいて、自己のインピーダンスZ28(ac)がアルミ電解コンデンサのインピーダンスZ18(ac)よりも大きい。すなわち、facのような低周波においては、各コンデンサのインピーダンスがほぼ容量によって定まるので、相間コンデンサ28として、アルミ電解コンデンサ18の容量よりも小さいコンデンサ素子を選択する。また、相間コンデンサ28は、主スイッチング素子のスイッチング周波数fswにおいて、自己のインピーダンスZ28(sw)がアルミ電解コンデンサZ18(sw)よりも小さい。すなわち、fswのような高周波の場合、アルミ電解コンデンサ18のインピーダンスZ18(sw)がほぼ直流抵抗で定まるので、相間コンデンサ28は、アルミ電解コンデンサ18よりも直流抵抗が十分に小さく、ある程度の容量を有するコンデンサ素子を選択する。
従って、相間コンデンサ18は、例えば、数百n〜数μF程度のセラミックコンデンサ又はフィルムコンデンサが好適である。
DC−DCコンバータ26の入力端20とアルミ電解コンデンサ18との接続点には、抑制インダクタ30が挿入されている。抑制インダクタ30は、周波数fswにおいて十分なインピーダンスを有し、DC−DCコンバータ26の入力端20から流出する(又は流入する)スイッチング電流が通過するのを抑制する働きをする。
次に、スイッチング電源装置10の動作について、図1に基づいて説明する。ここで、負荷24に流れる出力電流Ioは一定とする。
入力交流電圧が投入されて定常運転を行っているとき、DC−DCコンバータ26の入力端20から流出する電流は、周波数fswのスイッチング電流がアルミ電解コンデンサ18及び相間コンデンサ28に分流した電流I28(sw),I18(sw)と、DC−DCコンバータ26の出力電流Ioに対応する一定の入力電流Iinである。抑制インダクタ30は、スイッチング電流が通過するのを抑制するので、スイッチング電流の多くが相間コンデンサ28の側に流れ、「電流I18(sw)<<電流I28(sw)」となる。相間コンデンサ28は、図2を用いて説明したように、周波数fswにおけるインピーダンスZ28(sw)が小さいので、大きい電流I28(sw)が流れても高周波電圧(ノーマルモードノイズ)の発生が小さく抑えられる。また、アルミ電解コンデンサ18には電流I18(sw)がほとんど流れないので、直流抵抗が大きくても高周波電圧(ノーマルモードノイズ)がほとんど発生しない。従って、スイッチング電流に起因するノーマルモードノイズが大幅に低減される。
一方、ブリッジ整流器14が出力する電流は、アルミ電解コンデンサ18及び相間コンデンサ28を充電する低い周波数facの電流I18(ac),I28(ac)と、DC−DCコンバータ26の出力電流Ioに対応する一定の入力電流Iinである。抑制インダクタ30は、周波数facにおけるインピーダンスが小さく、ほとんど電流I28(ac)を抑制しない。従って、電流I28(ac)は、相間コンデンサ28の容量によって定まり、上記のように相間コンデンサ28の容量がアルミ電解コンデンサ18の容量よりも小さいので、「電流I28(ac)<<電流I18(ac)」となる。
以上説明したように、第一実施形態のスイッチング電源装置10によれば、スイッチング電流が低インピーダンスの相間コンデンサ28に多く流れるようになり、ノーマルモードノイズを容易に低減することができる。また、入力電源12とブリッジ整流器16との間にノーマルモード用のノイズフィルタ回路を設ける場合に、小型で安価な構成でも十分にノーマルモードノイズを減衰させることができる。
また、相間コンデンサ28の容量をアルミ電解コンデンサ18の容量よりも小さく、低い周波数facにおける相間コンデンサ28のインピーダンスZ28(ac)の方が十分に大きくなっているので、抑制インダクタ30に流れる周波数facの電流I28(ac)が非常に小さい。従って、抑制インダクタ30は、ほぼ入力電流Iinが流れたときに飽和しなければよいことになるので、図3から分かるように、飽和電流Isatが小さい小型外形のインダクタ素子を使用することができる。また、同様の理由で、入力投入時に抑制インダクタ30を通じて相間コンデンサ18を急速充電する突入電流Irush2のエネルギーが小さくなるので、抑制インダクタ30に大きな発熱が生じたりしたり巻線の絶縁皮膜が溶けてレアショートしたりする等の問題を容易に回避することができる。また、突入電流Irush2が流れたとき、抑制インダクタ30が一時的に飽和したとしても、回路動作上、特に問題は発生しない。
また、相間コンデンサ28として入手性の良い一般的なセラミックコンデンサやフィルムコンデンサを使用することができるので、相間コンデンサ28を小型で安価に構成することができる。なお、アルミ電解コンデンサ18は平滑用のコンデンサであり、DC−DCコンバータ26の出力保持時間を一定以上に確保できる大きな容量にする点に留意する。
次に、この発明のスイッチング電源装置の第二実施形態について、図4に基づいて説明する。ここで、上記のスイッチング電源装置10と同様の構成は、同一の符号を付して説明を省略する。
第二実施形態のスイッチング電源装置32は、ブリッジ整流器14の出力とアルミ電解コンデンサ18との間に、ブリッジ整流器14よりも逆回復時間が短い直列ダイオード34が設けられ、順電流を流す向きに(アノードをブリッジ整流器14側にして)挿入されている。その他の構成は、スイッチング電源装置10と同じである。
上記のように、ブリッジ整流器14のダイオード16は、一般シリコンダイオードが使用されており、逆回復時間が相対的に長い。それに対して、新たに設けた直列ダイオード34は、逆回復時間が相対的に短いファストリカバリダイオード等である。高速ダイオード34は、ブリッジ整流器14の何れのダイオード16に対しても直列に位置して一緒に導通するので、各ダイオード16の逆回復時間中のリカバリ電流が、高速ダイオード34の高速リカバリ動作によって、小さく制限される。従って、ブリッジ整流器14のリカバリ動作に起因するノーマルモードノイズの発生が抑えられる。
以上説明したように、第二実施形態のスイッチング電源装置32によれば、上記のスイッチング電源装置10と同様の作用効果を得ることができ、さらに、ブリッジ整流器14からのノイズの発生も抑えられるので、例えば、入力電源12とブリッジ整流器16との間にノーマルモード用のノイズフィルタ回路を設ける場合に、小型で安価な構成でも十分にノーマルモードノイズを減衰させることができ、場合によってはノイズフィルタ回路を省略することも可能になる。
なお、この発明は、上記実施形態に限定されるものではない。例えば、図5に示すように、アルミ電解コンデンサ18が複数のコンデンサ18a,18bで構成され、相間コンデンサ28が複数のコンデンサ28a,28bで構成されていてもよい。その場合、コンデンサ18a,18bの合成インピーダンスと、コンデンサ28a,28bの合成インピーダンスとの間に、図2で説明した所定の大小関係が成立していることが条件となる。また、抑制インダクタ30として、図5に示すように、同極性に結合した2つの巻線を有するコモンモードインダクタのリケージインダクタを利用することも可能である。
また、直列ダイオード34は、ブリッジ整流器14の出力とアルミ電解コンデンサ18との間に順電流を流す向きに挿入されていればよく、図6(a)に示すように、アルミ電解コンデンサ18の負極端子の側に設けても同様の作用効果を得ることができる。また、図6(b)に示すように、アルミ電解コンデンサ18の正極端子の側と負極端子の側の双方に直列ダイオード34を設けた場合も同様の作用効果を得ることができ、さらに、雷サージ等のサージ電圧が入力電源12を通じて入力されたとき、1つ当たりの直列ダイオード34に加わるサージ電圧が半減するので、スイッチング電源装置全体のサージ耐量を向上させることができる。
10,32 スイッチング電源装置
14 ブリッジ整流器
18,18a,18b アルミ電解コンデンサ
20 入力端
26 DC−DCコンバータ
28,28a,28b 相間コンデンサ
30 抑制インダクタ
34 直列ダイオード

Claims (3)

  1. 入力交流電圧を全波整流するブリッジ整流器と、
    前記ブリッジ整流器が出力する整流電圧を平滑するアルミ電解コンデンサと、
    前記アルミ電解コンデンサの両端電圧が一対の入力端の間に印加され、主スイッチング素子のスイッチング動作より、前記入力端からスイッチング電流が流出するDC−DCコンバータと、
    前記DC−DCコンバータの前記一対の入力端の間に接続され、前記入力交流電圧の周波数の2倍の周波数における自己のインピーダンスが前記アルミ電解コンデンサよりも大きく、前記主スイッチング素子のスイッチング周波数における自己のインピーダンスが前記アルミ電解コンデンサよりも小さい相間コンデンサと、
    前記DC−DCコンバータの前記入力端と前記アルミ電解コンデンサとの接続点に挿入され、前記スイッチング電流の通過を抑制する抑制インダクタとを備えることを特徴とするスイッチング電源装置。
  2. 前記相間コンデンサは、セラミックコンデンサ又はフィルムコンデンサである請求項1記載のスイッチング電源装置。
  3. 前記ブリッジ整流器の出力と前記アルミ電解コンデンサとの間に、前記ブリッジ整流器よりも逆回復時間が短い直列ダイオードが、順電流を流す向きに挿入された請求項1又は2記載のスイッチング電源装置。
JP2012106868A 2012-05-08 2012-05-08 スイッチング電源装置 Pending JP2013236453A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012106868A JP2013236453A (ja) 2012-05-08 2012-05-08 スイッチング電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012106868A JP2013236453A (ja) 2012-05-08 2012-05-08 スイッチング電源装置

Publications (1)

Publication Number Publication Date
JP2013236453A true JP2013236453A (ja) 2013-11-21

Family

ID=49762127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012106868A Pending JP2013236453A (ja) 2012-05-08 2012-05-08 スイッチング電源装置

Country Status (1)

Country Link
JP (1) JP2013236453A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015180139A (ja) * 2014-03-19 2015-10-08 コーセル株式会社 スイッチング電源装置
JP2016036210A (ja) * 2014-08-01 2016-03-17 キヤノン株式会社 整流平滑回路、電源装置及び画像形成装置
US20160311338A1 (en) * 2014-01-02 2016-10-27 Omicron Electronics Gmbh Device and Method for the Supply of Emergency Power to at Least One Electrical Load
JP2020014348A (ja) * 2018-07-19 2020-01-23 オムロン株式会社 電力変換装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265088U (ja) * 1988-11-02 1990-05-16
JP2001268904A (ja) * 2000-03-15 2001-09-28 Nec Corp スイッチング電源回路及びその制御方法
JP2002534779A (ja) * 1998-12-30 2002-10-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電子ランプ安定器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265088U (ja) * 1988-11-02 1990-05-16
JP2002534779A (ja) * 1998-12-30 2002-10-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電子ランプ安定器
JP2001268904A (ja) * 2000-03-15 2001-09-28 Nec Corp スイッチング電源回路及びその制御方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160311338A1 (en) * 2014-01-02 2016-10-27 Omicron Electronics Gmbh Device and Method for the Supply of Emergency Power to at Least One Electrical Load
JP2015180139A (ja) * 2014-03-19 2015-10-08 コーセル株式会社 スイッチング電源装置
JP2016036210A (ja) * 2014-08-01 2016-03-17 キヤノン株式会社 整流平滑回路、電源装置及び画像形成装置
JP2020014348A (ja) * 2018-07-19 2020-01-23 オムロン株式会社 電力変換装置
WO2020017090A1 (ja) * 2018-07-19 2020-01-23 オムロン株式会社 電力変換装置
CN112368926A (zh) * 2018-07-19 2021-02-12 欧姆龙株式会社 电力转换装置
US11329546B2 (en) 2018-07-19 2022-05-10 Omron Corporation Power converter apparatus provided with low-pass filter circuit for reducing switching frequency components

Similar Documents

Publication Publication Date Title
US9899910B2 (en) Bridgeless PFC power converter with reduced EMI noise
CN111771326B (zh) 包含并联转换器的ac到dc转换器
TWI492502B (zh) 被動式功因校正電路
JP6978127B2 (ja) スイッチング電源回路
JP2012175833A (ja) スイッチング電源装置
WO2020052617A1 (zh) 一种无桥三整流Boost电源电路
WO2019196782A1 (zh) 用于三相输入的开关电源电路
JP2013247857A (ja) 力率改善回路
JP2012005249A (ja) スイッチング電源回路
JP2015532576A (ja) Ac/dc変換を組み込むパッシブ力率補正
JP2013236453A (ja) スイッチング電源装置
JP2010124567A (ja) スイッチング電源装置
Cortes et al. Comparative evaluation of three-phase isolated matrix-type PFC rectifier concepts for high efficiency 380VDC supplies of future telco and data centers
JP2004254355A (ja) 電力変換装置
CN103312142A (zh) 交流电源装置
CN102946186A (zh) 一种有源谐波抑制机构
TW201424227A (zh) 交直流轉換裝置及其功因校正方法
TW201220665A (en) Single-phase PFC AC-DC power converter
JP2003244960A (ja) Pwmサイクロコンバータ
TW201424226A (zh) 被動式功因校正交直流轉換裝置及其功因校正電路之作動方法
WO2014086097A1 (zh) 被动式功因校正交直流转换装置及功因校正电路动作方法
JP2010200470A (ja) エネルギー回生スナバ回路
JP2005192285A (ja) スイッチング電源装置
JP5935469B2 (ja) 電力変換装置
JP2007006547A (ja) 電源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150526