JP2013234093A - SiAlON-BASED PARTICLE, SINTERED BODY AND TOOL - Google Patents

SiAlON-BASED PARTICLE, SINTERED BODY AND TOOL Download PDF

Info

Publication number
JP2013234093A
JP2013234093A JP2012107863A JP2012107863A JP2013234093A JP 2013234093 A JP2013234093 A JP 2013234093A JP 2012107863 A JP2012107863 A JP 2012107863A JP 2012107863 A JP2012107863 A JP 2012107863A JP 2013234093 A JP2013234093 A JP 2013234093A
Authority
JP
Japan
Prior art keywords
sialon
mass
particles
ray diffraction
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012107863A
Other languages
Japanese (ja)
Other versions
JP5880267B2 (en
Inventor
Akira Kukino
暁 久木野
Kenichi Wataya
研一 綿谷
Kentaro Chihara
健太朗 千原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012107863A priority Critical patent/JP5880267B2/en
Publication of JP2013234093A publication Critical patent/JP2013234093A/en
Application granted granted Critical
Publication of JP5880267B2 publication Critical patent/JP5880267B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide SiAlON-based particles having excellent grinding resistance, a sintered body having excellent abrasion resistance and defect resistance, and a tool using the sintered body.SOLUTION: SiAlON-based particles contain at least either of α-phase type SiAlON and β-phase type SiAlON, and γ-phase type SiAlON, have the average particle diameter of ≥0.1 μm and ≤100 μm when being ultrasonically dispersed into an ethanol solvent, and contain, with respect to the total mass of silicon, aluminum, oxygen and nitrogen in the SiAlON-based particles, ≥18.68 to ≤59.33 mass% silicon, ≥0.96 to ≤38.72 mass% aluminum, ≥2.08 to ≤24.44 mass% oxygen, and ≥18.16 to ≤37.63 mass% nitrogen, wherein the peak intensity Iα of an X-ray diffraction line on (201) plane of the α-phase type SiAlON by an X-ray diffraction method, the peak intensity Iβ of the X-ray diffraction line on (101) plane of the β-phase type SiAlON by the X-ray diffraction method, and the peak intensity Iγ of the X-ray diffraction line on (400) plane of the γ-phase type SiAlON by the X-ray diffraction method are expressed by the following formula (I): 0.09≤(Iα+Iβ)/(Iα+Iβ+Iγ)≤0.88.

Description

本発明はSiAlON基粒子、焼結体および工具に関し、より特定的には、α相型SiAlONおよびβ相型SiAlONの少なくともいずれかと、γ相型SiAlONとを含むSiAlON基粒子、該基粒子を含む焼結体および該焼結体を用いた工具に関する。   The present invention relates to SiAlON base particles, a sintered body, and a tool, and more specifically, SiAlON base particles including at least one of α-phase type SiAlON and β-phase type SiAlON and γ-phase type SiAlON, and the base particles. The present invention relates to a sintered body and a tool using the sintered body.

ダイヤモンド粒子や立方晶窒化ホウ素(以下、cBNともいう)粒子は、Al23粒子やSiC粒子よりも高硬度であることから、これらに替わる硬質粒子として、研削加工や切削工具用硬質粒子材料として使用されている。 Since diamond particles and cubic boron nitride (hereinafter also referred to as cBN) particles have higher hardness than Al 2 O 3 particles and SiC particles, hard particles for grinding and cutting tools are used as hard particles instead of these particles. It is used as

硬質粒子への要求特性は、被削材の種類や加工方法によって異なる。たとえば、セラミックや非鉄金属の加工ではダイヤモンド粉末が適する。一方、鋼や鋳鉄などの鉄基金属では、ダイヤモンド中のカーボンが高温下で被削材と反応してしまうため、鉄族元素との親和性がダイヤモンドよりも低いcBN粉末が使用されている。   The required characteristics for hard particles vary depending on the type of work material and the processing method. For example, diamond powder is suitable for processing ceramics and non-ferrous metals. On the other hand, in iron-based metals such as steel and cast iron, carbon in diamond reacts with the work material at a high temperature, and therefore cBN powder having a lower affinity with iron group elements than diamond is used.

しかしながら、cBNもFe、Ni、Coなどの鉄族金属と高温で反応するため、cBNに替わる、Al23粒子やSiC粒子よりも高硬度で、かつ靱性に優れる硬質粒子原料の開発が望まれている。 However, since cBN reacts with iron group metals such as Fe, Ni, and Co at high temperatures, development of hard particle raw materials that have higher hardness and better toughness than Al 2 O 3 particles and SiC particles is desired. It is rare.

なお、cBNに代わる硬質粒子原料は、切削加工や切削工具用の材料としてだけではなく、パンチやダイスなどに代表される塑性加工や摩擦撹拌接合の分野においても、高速度鋼製、超硬合金製、セラミックス製、ダイヤモンド焼結体製、あるいはcBN焼結体製工具を代替する工具用材料として期待されている。   The hard particle material that replaces cBN is not only a material for cutting and cutting tools, but also in the fields of plastic working and friction stir welding represented by punches and dies, made of high-speed steel, cemented carbide It is expected to be used as a tool material in place of tools made of ceramics, ceramics, diamond sintered bodies, or cBN sintered bodies.

SiAlON(以下、サイアロンともいう)は、窒化ケイ素にアルミニウムと酸素が固溶した構造を有しており、六方晶系に属するα相型SiAlON(以下、α−SiAlONともいう)とβ相型SiAlON(以下、β−SiAlONともいう)の2種類の結晶形がある。サイアロンを用いた焼結体は、被加工材との反応性が低いという特性を有するため、切削工具用材料としての研究が進められている。   SiAlON (hereinafter also referred to as sialon) has a structure in which aluminum and oxygen are dissolved in silicon nitride, and α-phase SiAlON (hereinafter also referred to as α-SiAlON) belonging to hexagonal system and β-phase SiAlON. There are two types of crystal forms (hereinafter also referred to as β-SiAlON). Since a sintered body using sialon has a characteristic of low reactivity with a workpiece, research as a cutting tool material has been advanced.

たとえば、特許文献1(特開2002-121013号公報)には、β-SiAlONを衝撃波によって瞬間的に加圧することによって、化学式Si(6-x)Alxx(8-x)(0<x≦4.2)で表される高圧相のスピネル型サイアロン(以下、γ−SiAlONともいう)粉末を合成する方法が開示されている。 For example, Patent Document 1 (Japanese Patent Laid-Open No. 2002-121013) discloses that the chemical formula Si (6-x) Al x O x N (8-x) (0 ) is obtained by instantaneously pressurizing β-SiAlON with a shock wave. A method of synthesizing a high-pressure phase spinel sialon (hereinafter also referred to as γ-SiAlON) powder represented by <x ≦ 4.2) is disclosed.

前記γ−SiAlONは、β-SiAlONの高圧相であることから、β-SiAlON粉末より高密度化、高硬度化していることが類推されるが、靱性が十分ではなく、また耐摩耗性においてもさらなる向上が要求されている。   Since γ-SiAlON is a high-pressure phase of β-SiAlON, it can be inferred that it has a higher density and higher hardness than β-SiAlON powder, but its toughness is not sufficient and wear resistance is also high. Further improvements are required.

そこで本発明者らは、前記γ-SiAlON粉末の摩砕試験や、該粉末からなる焼結体でのNi基耐熱合金の切削評価を、従来のα−SiAlON、β−SiAlON粉末やcBN粉末と比較しながら実施した。γ−SiAlON粒子は意外なことに、低負荷条件(低応力条件)では、α−SiAlONやβ−SiAlONよりも耐摩耗性には優れるものの、高負荷条件(高応力条件)では、α−SiAlONやβ−SiAlONよりも耐摩耗性、及び耐欠損性に劣ることが判明した。損傷状態を観察したところ、高負荷条件下では、α−SiAlONやβ−SiAlONよりも、γ−SiAlONの損傷が大きく、γ−SiAlON粒子の破砕、チッピングの集積が確認されることから、特許文献1に開示されるγ−SiAlONは、その靱性不足により、摩耗、欠損が進展する結果となったものと推定される。   Therefore, the present inventors conducted a grinding test of the γ-SiAlON powder and a cutting evaluation of a Ni-based heat-resistant alloy with a sintered body made of the powder, and compared with conventional α-SiAlON, β-SiAlON powder, and cBN powder. The comparison was carried out. Surprisingly, γ-SiAlON particles have better wear resistance than α-SiAlON and β-SiAlON under low load conditions (low stress conditions), but α-SiAlON under high load conditions (high stress conditions). And β-SiAlON were found to be inferior in wear resistance and fracture resistance. As a result of observing the damage state, it is confirmed that, under high load conditions, the damage of γ-SiAlON is larger than that of α-SiAlON and β-SiAlON, and crushing of γ-SiAlON particles and accumulation of chipping are confirmed. The γ-SiAlON disclosed in No. 1 is presumed to result in wear and fracture due to insufficient toughness.

特許文献2(特開2011-256067号公報)にはβ−SiAlONを衝撃圧縮法で処理してγ−SiAlONに変換した原料に、β−SiAlON、ならびに第1化合物(鉄、コバルト、ニッケル、周期律表の第4a族元素、第5a族元素、および第6a族元素よりなる群から選ばれる少なくとも1種の元素)および第2化合物(第4a族元素、第5a族元素、および第6a族元素よりなる群から選ばれる少なくとも1種の元素と、炭素、窒素および硼素よりなる群から選ばれる少なくとも1種の元素とからなる少なくとも1種の化合物)の少なくとも1種の化合物を添加して焼結した焼結体が開示されている。   In Patent Document 2 (Japanese Patent Laid-Open No. 2011-256067), β-SiAlON is converted into γ-SiAlON by treatment with β-SiAlON and converted into γ-SiAlON, and β-SiAlON and the first compound (iron, cobalt, nickel, period) At least one element selected from the group consisting of Group 4a element, Group 5a element, and Group 6a element) and the second compound (Group 4a element, Group 5a element, and Group 6a element) At least one compound selected from the group consisting of at least one compound selected from the group consisting of carbon, nitrogen, and boron) and sintering. A sintered body is disclosed.

前記焼結体は、γ-SiAlON粒子、β-SiAlON粒子、第1化合物、第2化合物のそれぞれを個別に準備し、これらを混合した粉末を焼結して作製されている。特許文献2では、第1化合物ならびに第2化合物の少なくともいずれかを用いることで、SiAlON粒子同士の結合力の向上することを目的としている。しかし、主成分のγ−SiAlON粒子自体の靱性が十分でないことから、切削用途などでは、高応力の発生によりγ−SiAlON粒子で発生した破砕や亀裂を起点として、焼結体の欠損や耐摩耗性のバラツキを生ずるという課題がある。   The sintered body is prepared by individually preparing γ-SiAlON particles, β-SiAlON particles, a first compound, and a second compound, and sintering a powder obtained by mixing these. Patent Document 2 aims to improve the bonding force between SiAlON particles by using at least one of the first compound and the second compound. However, since the toughness of the main component γ-SiAlON particles itself is not sufficient, in cutting applications, etc., fractures and wear resistance of the sintered body starting from crushing and cracks generated in the γ-SiAlON particles due to the generation of high stress. There is a problem of causing variation in sex.

特開2002-121013号公報Japanese Patent Laid-Open No. 2002-121013 特開2011-256067号公報JP 2011-256067 A

本発明は、優れた耐摩砕性を有するSiAlON基粒子、優れた耐摩耗性および耐欠損性を有する焼結体、および該焼結体を用いた工具を提供することを目的とする。   An object of the present invention is to provide SiAlON-based particles having excellent abrasion resistance, a sintered body having excellent wear resistance and fracture resistance, and a tool using the sintered body.

本発明のSiAlON基粒子は、α相型SiAlONおよびβ相型SiAlONの少なくともいずれかと、γ相型SiAlONとを含み、エタノール溶媒に超音波分散させた際の平均粒径が0.1μm以上100μm以下であり、SiAlON基粒子中のケイ素、アルミニウム、酸素、および窒素の合計質量に対して、ケイ素を18.68質量%以上59.33質量%以下、アルミニウムを0.96質量%以上38.72質量%以下、酸素を2.08質量%以上24.44質量%以下、および窒素を18.16質量%以上37.63質量%以下の範囲で含み、X線回折法によるα相型SiAlONの(201)面でのX線回折線のピーク強度Iα、X線回折法によるβ相型SiAlONの(101)面でのX線回折線のピーク強度Iβ、およびX線回折法によるγ相型SiAlONの(400)面でのX線回折線のピーク強度Iγが、下記式(I)で表わされる。   The SiAlON-based particles of the present invention contain at least one of α-phase type SiAlON and β-phase type SiAlON and γ-phase type SiAlON, and have an average particle size of 0.1 μm or more and 100 μm or less when ultrasonically dispersed in an ethanol solvent. The silicon is 18.68% by mass to 59.33% by mass and the aluminum is 0.96% by mass to 38.72% by mass with respect to the total mass of silicon, aluminum, oxygen and nitrogen in the SiAlON group particles. % Of oxygen phase in the range of 2.08 mass% or more and 24.44 mass% or less and nitrogen in the range of 18.16 mass% or more and 37.63 mass% or less. ) Plane X-ray diffraction line peak intensity Iα, X-ray diffraction method β-phase type SiAlON (101) plane X-ray diffraction line peak intensity Iβ, and X-ray Peak intensity Iγ of X-ray diffraction line at (400) plane of γ-phase type SiAlON by folding method, represented by the following formula (I).

0.09≦(Iα+Iβ)/(Iα+Iβ+Iγ)≦0.88 (I)
本発明のSiAlON基粒子において好ましくは、SiAlON基粒子は、SiAlON基粒子中のケイ素、アルミニウム、酸素、および窒素の合計質量に対して、ケイ素を34.71質量%以上58.29質量%以下、アルミニウムを1.93質量%以上23.83質量%以下、酸素を2.65質量%以上15.62質量%以下、および窒素を25.84質量%以上37.13質量%以下の範囲で含み、Iα、Iβ、Iγが下記式(II)の関係で表わされる。
0.09 ≦ (Iα + Iβ) / (Iα + Iβ + Iγ) ≦ 0.88 (I)
In the SiAlON group particles of the present invention, preferably, the SiAlON group particles are 34.71% by mass or more and 58.29% by mass or less of silicon with respect to the total mass of silicon, aluminum, oxygen, and nitrogen in the SiAlON group particles. 1.93 mass% or more and 23.83 mass% or less of aluminum, 2.65 mass% or more and 15.62 mass% or less of oxygen, and 25.84 mass% or more and 37.13 mass% or less of nitrogen, Iα, Iβ, and Iγ are represented by the relationship of the following formula (II).

0.13≦(Iα+Iβ)/(Iα+Iβ+Iγ)≦0.82 (II)
本発明のSiAlON基粒子において好ましくは、SiAlON基粒子は、SiAlON基粒子中のケイ素、アルミニウム、酸素、および窒素の合計質量に対して、ケイ素を45.02質量%以上57.26質量%以下、アルミニウムを2.89質量%以上14.61質量%以下、酸素を2.84質量%以上10.2質量%以下、および窒素を30.17質量%以上36.63質量%以下の範囲で含み、Iα、Iβ、Iγが下記式(III)で表わされる。
0.13 ≦ (Iα + Iβ) / (Iα + Iβ + Iγ) ≦ 0.82 (II)
In the SiAlON group particles of the present invention, preferably, the SiAlON group particles contain 45.02% by mass or more and 57.26% by mass or less of silicon with respect to the total mass of silicon, aluminum, oxygen, and nitrogen in the SiAlON group particles. Aluminum is contained in the range of 2.89% to 14.61% by mass, oxygen 2.84% to 10.2% by mass, and nitrogen 30.17% to 36.63% by mass, Iα, Iβ, and Iγ are represented by the following formula (III).

0.18≦(Iα+Iβ)/(Iα+Iβ+Iγ)≦0.75 (III)
本発明者らは、上記課題に鑑みて鋭意検討した結果、SiAlON基粒子がα相型SiAlONおよびβ相型SiAlONの少なくともいずれかと、γ相型SiAlONとを含み、さらにSiAlON基粒子中のケイ素、アルミニウム、酸素、および窒素の含有率およびIα、Iβ、Iγの関係が上記の範囲を満たす場合に、優れた耐摩砕性を有することを見出した。これは、本発明のSiAlON基粒子が高い硬度を有し、さらに優れた硬度と靭性のバランスを有しているためと考えられる。SiAlON基粒子が高い硬度を有することの理由として、SiAlON基粒子が、α相型SiAlONやβ相型SiAlONよりも密度および硬度が大きいγ相型SiAlONを含むことが考えられる。SiAlON基粒子の硬性と靭性のバランスが優れていることの理由として、SiAlON基粒子がγ相型SiAlONとともに、γ相型SiAlONよりも優れた靭性を有するα相型SiAlONおよびβ相型SiAlONの少なくともいずれかとを含むことが考えられる。
0.18 ≦ (Iα + Iβ) / (Iα + Iβ + Iγ) ≦ 0.75 (III)
As a result of intensive studies in view of the above problems, the present inventors have found that the SiAlON-based particles include at least one of α-phase SiAlON and β-phase SiAlON and γ-phase SiAlON, and silicon in the SiAlON-based particles, It has been found that when the contents of aluminum, oxygen, and nitrogen and the relationship between Iα, Iβ, and Iγ satisfy the above ranges, they have excellent abrasion resistance. This is presumably because the SiAlON-based particles of the present invention have a high hardness and an excellent balance between hardness and toughness. It is conceivable that the reason why the SiAlON-based particles have high hardness is that the SiAlON-based particles include γ-phase SiAlON having higher density and hardness than α-phase SiAlON and β-phase SiAlON. The reason why the balance between the hardness and the toughness of the SiAlON-based particles is excellent is that the SiAlON-based particles, together with the γ-phase type SiAlON, are at least α-phase type SiAlON and β-phase type SiAlON having toughness superior to the γ-phase type SiAlON. It is conceivable to include either.

本発明のSiAlON基粒子において好ましくは、SiAlON基粒子は強靭化成分をさらに含み、強靭化成分は、ホウ素、炭素、マグネシウム、カルシウム、イットリウム、鉄、ニッケル、コバルト、周期律表の第4a族元素、第5a族元素、第6a族元素、Si34、AlON、AlNおよびAl23の中から選ばれる少なくとも1種を含み、Iα、Iβ、Iγ、およびX線回折法による強靭化成分の最強回折線のピーク強度Is(hkl)が、下記式(IV)で表わされる。 In the SiAlON group particles of the present invention, preferably, the SiAlON group particles further include a toughening component, and the toughening component is boron, carbon, magnesium, calcium, yttrium, iron, nickel, cobalt, Group 4a element of the periodic table , Group 5a element, Group 6a element, Si 3 N 4 , AlON, AlN, and Al 2 O 3 , and a toughening component by Iα, Iβ, Iγ, and X-ray diffraction The peak intensity Is (hkl) of the strongest diffraction line is represented by the following formula (IV).

0.01≦Is(hkl)/(Iα+Iβ+Iγ)≦0.3 (IV)
本発明のSiAlON基粒子において好ましくは、Iα、Iβ、Iγ、およびIs(hkl)が、下記式(V)で表わされる。
0.01 ≦ Is (hkl) / (Iα + Iβ + Iγ) ≦ 0.3 (IV)
In the SiAlON-based particles of the present invention, Iα, Iβ, Iγ, and Is (hkl) are preferably represented by the following formula (V).

0.01≦Is(hkl)/(Iα+Iβ+Iγ)≦0.2 (V)
強靭化成分は本発明のSiAlON基粒子合成時後に熱膨張率差、ヤング率差、或いは固溶化に起因する残留応力の付与と推定される効果により強靭化の効果を発揮する。したがって、強靭化成分を、Is(hkl)/(Iα+Iβ+Iγ)の値が上記式(IV)または式(V)の範囲となる割合で含むSiAlON基粒子は、硬度と靭性のバランスが優れており、優れた耐摩砕性を有する。
0.01 ≦ Is (hkl) / (Iα + Iβ + Iγ) ≦ 0.2 (V)
The toughening component exhibits the effect of toughening due to the presumed effect of applying the residual stress resulting from the difference in thermal expansion coefficient, Young's modulus, or solid solution after the synthesis of the SiAlON-based particles of the present invention. Therefore, the SiAlON-based particles containing the toughening component at a ratio where the value of Is (hkl) / (Iα + Iβ + Iγ) falls within the range of the above formula (IV) or formula (V) has an excellent balance between hardness and toughness. Excellent abrasion resistance.

本発明のSiAlON基粒子において好ましくは、γ相型SiAlONの(400)面でのX線回折線の半値幅が、0.4°以上2.0°以下である。   In the SiAlON-based particles of the present invention, the half width of the X-ray diffraction line on the (400) plane of the γ-phase type SiAlON is preferably 0.4 ° or more and 2.0 ° or less.

γ相型SiAlONの(400)面でのX線回折線の半値全幅が、0.4°以上2.0°以下である本発明のSiAlON基粒子は、微細な1次粒子が強固に結合した焼結砥粒となるため、特に、高靱性高耐摩砕性を発揮する。半値幅が0.4°未満では1次粒子が粗すぎるため1次粒子の保持力が弱くなり、また劈開を生じる場合があるため耐摩砕性が低下する。一方半値幅が2.0°を超える場合には、1次粒子が微粒となり、1次粒子の粒界で発生した亀裂の伝搬抵抗が低く、靱性が低下する場合がある。   The SiAlON base particles of the present invention in which the full width at half maximum of the X-ray diffraction line at the (400) plane of γ-phase type SiAlON is 0.4 ° or more and 2.0 ° or less are firmly bonded with fine primary particles. Since it becomes a sintered abrasive grain, it exhibits particularly high toughness and high abrasion resistance. When the half-value width is less than 0.4 °, the primary particles are too coarse, so that the primary particles have a weak holding force, and cleaving may occur, so that the abrasion resistance decreases. On the other hand, when the half width exceeds 2.0 °, the primary particles become fine particles, and the propagation resistance of cracks generated at the grain boundaries of the primary particles may be low, and the toughness may be reduced.

本発明の焼結体は、本発明のSiAlON基粒子を20体積%以上95体積%以下含む。   The sintered body of the present invention contains 20% by volume or more and 95% by volume or less of the SiAlON base particles of the present invention.

焼結体中のSiAlON基粒子の含有量が20体積%以上95体積%以下であると、焼結体の耐欠損性および耐摩耗性が向上する。これは、SiAlON基粒子による分散強化の効果が得られるためと考えられる。   When the content of the SiAlON group particles in the sintered body is 20% by volume or more and 95% by volume or less, the chipping resistance and wear resistance of the sintered body are improved. This is considered because the effect of dispersion strengthening by SiAlON group particles is obtained.

本発明の焼結体において好ましくは、焼結体は、SiAlON基粒子および残部からなり、残部はアルミニウム、ホウ素、ケイ素、鉄、ニッケル、コバルト、マグネシウム、カルシウム、イットリウム、ならびに周期律表の第4a族元素、第5a族元素および第6a族元素よりなる群から選ばれる少なくとも1種の元素と、炭素、窒素、酸素およびホウ素よりなる群から選ばれる少なくとも1種の元素とからなる少なくとも1種の化合物、ならびに化合物の固溶体よりなる群から選ばれる少なくとも1種を含む。   Preferably, in the sintered body of the present invention, the sintered body is composed of SiAlON-based particles and the balance, and the balance is aluminum, boron, silicon, iron, nickel, cobalt, magnesium, calcium, yttrium, and 4a of the periodic table. At least one element selected from the group consisting of Group elements, Group 5a elements and Group 6a elements, and at least one element selected from the group consisting of carbon, nitrogen, oxygen and boron It includes at least one selected from the group consisting of a compound and a solid solution of the compound.

本発明の焼結体において好ましくは、残部は、AlNおよびBNの少なくとも1種を含む。   In the sintered body of the present invention, preferably, the balance includes at least one of AlN and BN.

焼結体の残部に、上記の化合物、および化合物の固溶体が含まれると、焼結体の耐欠損性および耐摩耗性が向上する。これは、上記の化合物、および化合物の固溶体が焼結体中のSiAlON基粒子間の結合力を高めるためと考えられる。   When the above-mentioned compound and the solid solution of the compound are contained in the remaining part of the sintered body, the fracture resistance and the wear resistance of the sintered body are improved. This is presumably because the above-mentioned compound and the solid solution of the compound increase the bonding force between the SiAlON group particles in the sintered body.

本発明の工具は、本発明の焼結体を用いる。本発明の焼結体を材料として用いた工具は、優れた耐摩耗性および耐欠損性を有する。   The sintered body of the present invention is used for the tool of the present invention. A tool using the sintered body of the present invention as a material has excellent wear resistance and fracture resistance.

本発明によれば、耐摩砕性に優れたSiAlON基粒子、優れた耐摩耗性および耐欠損性を有する焼結体、および該焼結体を用いた工具を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the SiAlON group particle | grains excellent in abrasion resistance, the sintered compact which has the outstanding abrasion resistance and fracture resistance, and the tool using this sintered compact can be provided.

[実施の形態1]
本発明の一実施の形態において、SiAlON基粒子は、α相型SiAlONおよびβ相型SiAlONの少なくともいずれかと、γ相型SiAlONとを含む。
[Embodiment 1]
In one embodiment of the present invention, the SiAlON-based particles include at least one of α-phase SiAlON and β-phase SiAlON, and γ-phase SiAlON.

(SiAlON基粒子)
本明細書中、「SiAlON基粒子」とは、α相型SiAlON、β相型SiAlONおよびγ相型SiAlONの少なくともいずれかを含む粒子を意味する。
(SiAlON base particles)
In this specification, “SiAlON-based particles” means particles containing at least one of α-phase SiAlON, β-phase SiAlON, and γ-phase SiAlON.

SiAlONとは、Si−Al−O−N系の化合物群の総称である。SiAlONは、結晶型により、α相型SiAlON、β相型SiAlON、スピネル型SiAlON(以下、γ相型SiAlONともいう)などに分類される。   SiAlON is a general term for a group of Si-Al-O-N compounds. SiAlON is classified according to crystal type into α phase type SiAlON, β phase type SiAlON, spinel type SiAlON (hereinafter also referred to as γ phase type SiAlON), and the like.

β相型SiAlONとは、六方晶系に属するβ相型Si34のSi位置にAlが、N位置にOが置換型に固溶した固溶体であり、一般式Si(6−Z)AlZZ(8−Z)(0<z≦4.2)で表される。 β-phase type SiAlON is a solid solution in which Al is substituted at the Si position of β-phase type Si 3 N 4 belonging to the hexagonal system and O is substituted at the N position in substitutional form. The general formula Si (6-Z) Al Z O Z N (8−Z) (0 <z ≦ 4.2).

β相型SiAlONは、被削材との反応性が低く、高靱性であるため、β相型SiAlONを焼結体原料として用いると、優れた耐摩耗性および耐欠損性を有する焼結体を得ることができる。   Since β-phase type SiAlON has low reactivity with the work material and high toughness, if β-phase type SiAlON is used as a raw material for the sintered body, a sintered body having excellent wear resistance and fracture resistance can be obtained. Can be obtained.

α相型SiAlONとは、六方晶系に属するα相型Si34のSi位置にAlが、N位置にOが置換型に固溶し、さらに結晶格子間に、特定な金属原子が侵入型固溶した固溶体であり、一般式MxSi12-3xAl3xx16-xで示される。ここでMはLi、Ca、Mgなどの侵入型に固溶する元素を示す。 α-phase SiAlON is a hexagonal α-phase Si 3 N 4 in which Al is substituted in a substitutional form at the Si position and O is substituted at the N position, and a specific metal atom penetrates between crystal lattices. It is a solid solution that is a solid solution of the mold, and is represented by the general formula M x Si 12-3x Al 3x O x N 16-x . Here, M represents an element that dissolves in an interstitial type, such as Li, Ca, and Mg.

α相型SiAlONは、被削材との反応性が低く、高靱性であるため、α相型SiAlONを焼結体原料として用いると、優れた耐摩耗性および耐欠損性を有する焼結体を得ることができる。   Since α-phase SiAlON has low reactivity with the work material and high toughness, when α-phase SiAlON is used as a raw material for the sintered body, a sintered body having excellent wear resistance and fracture resistance can be obtained. Can be obtained.

γ相型SiAlONとは、アルミン酸マグネシウム(MgAl24)からなる立方晶系に属する鉱物であるスピネルと同様の結晶構造を有し、一般式Si(6−Z)AlZZ(8−Z)(0<z≦4.2)で表される。γ相型SiAlONは、たとえば低圧相β−SiAlON粉末を静的圧縮、あるいは衝撃圧縮処理することにより、低圧相β−SiAlONを高圧相のγ相型SiAlONに相転移させて得ることができる。 γ-phase SiAlON has a crystal structure similar to that of spinel, which is a mineral belonging to a cubic system composed of magnesium aluminate (MgAl 2 O 4 ), and has a general formula of Si (6-Z) Al Z O Z N ( 8−Z) (0 <z ≦ 4.2). The γ phase type SiAlON can be obtained, for example, by subjecting the low pressure phase β-SiAlON powder to static compression or impact compression treatment to cause the low pressure phase β-SiAlON to undergo phase transition to the high pressure phase γ phase type SiAlON.

γ相型SiAlONは、β相型SiAlONの高圧相であることから、β相型SiAlONよりも、密度および硬度が大きく、焼結体原料として用いると、優れた耐摩耗性を有する焼結体を得ることができる。   Since γ-phase type SiAlON is a high-pressure phase of β-phase type SiAlON, it has a higher density and hardness than β-phase type SiAlON, and when used as a sintered body raw material, a sintered body having excellent wear resistance is obtained. Can be obtained.

SiAlON基粒子は、エタノール溶媒に超音波分散させた際の平均粒径が0.1μm以上100μm以下である。ここで、「平均粒径が0.1μm以上100μm以下」とは、エタノール20g中にSiAlON基粒子0.5gを投入して、超音波振動装置で1分間、解砕、分散させた後、レーザー式の粒度分布測定装置(マイクロトラック製MT3300EX2)で、エタノールの屈折率を1.36、測定粉末の屈折率を2.2として測定した時の累積%が50%の粒子径(D50)が0.1μm以上100μm未満であることを意味する。本発明のSiAlON基粒子は、超音波分散処理後においても、0.1μm以上100μm以下の平均粒径を維持することができ、優れた強度を有するため、焼結体原料として用いると、優れた耐摩耗性および耐欠損性を有する焼結体を得ることができる。   The SiAlON base particles have an average particle size of 0.1 μm or more and 100 μm or less when ultrasonically dispersed in an ethanol solvent. Here, “the average particle size is 0.1 μm or more and 100 μm or less” means that 0.5 g of SiAlON base particles is put in 20 g of ethanol, and after pulverizing and dispersing for 1 minute with an ultrasonic vibration device, the laser The particle size distribution (D50) is 0% when the refractive index of ethanol is 1.36 and the refractive index of the measured powder is 2.2 with a particle size distribution measuring apparatus of formula (MT3300EX2 manufactured by Microtrac). It means 1 μm or more and less than 100 μm. The SiAlON-based particles of the present invention can maintain an average particle diameter of 0.1 μm or more and 100 μm or less even after ultrasonic dispersion treatment, and have excellent strength. A sintered body having wear resistance and fracture resistance can be obtained.

SiAlON基粒子の平均粒径が0.1μm未満になると、表面積が増加するため、酸化による脆化層が形成されやすくなり、靱性が低下する。一方、該平均粒径が100μmを超えると、SiAlON基粒子を含む焼結体を切削用途に使用した場合に、粗大粒子によるスクラッチや、粒子の強度低下による破砕、焼結体からの脱落が生じる。このため、被加工部品の表面粗さなどの品位が低下する。該平均粒径は、さらに0.2μm以上8μm以下であることが好ましい。   When the average particle diameter of the SiAlON base particles is less than 0.1 μm, the surface area increases, so that an embrittlement layer due to oxidation is easily formed, and the toughness decreases. On the other hand, when the average particle size exceeds 100 μm, when a sintered body containing SiAlON base particles is used for cutting applications, scratches due to coarse particles, crushing due to particle strength reduction, and dropping off from the sintered body occur. . For this reason, the quality of the surface roughness of the workpiece is reduced. The average particle size is preferably 0.2 μm or more and 8 μm or less.

SiAlON基粒子は、SiAlON基粒子中のケイ素、アルミニウム、酸素、および窒素の合計質量に対して、ケイ素を18.68質量%以上59.33質量%以下、アルミニウムを0.96質量%以上38.72質量%以下、酸素を2.08質量%以上24.44質量%以下、および窒素を18.16質量%以上37.63質量%以下の範囲で含み、該SiAlON基粒子中のα相型SiAlONの(201)面でのX線回折線のピーク強度Iα、X線回折法による前記β相型SiAlONの(101)面でのX線回折線のピーク強度Iβ、およびX線回折法による前記γ相型SiAlONの(400)面でのX線回折線のピーク強度Iγが、下記式(I)で表わされる。   SiAlON group particles are 18.68 mass% or more and 59.33 mass% or less of silicon, and 0.96 mass% or more and 38.33 mass% or less of silicon with respect to the total mass of silicon, aluminum, oxygen, and nitrogen in SiAlON group particles. 72 mass% or less, oxygen in the range of 2.08 mass% or more and 24.44 mass% or less, and nitrogen in the range of 18.16 mass% or more and 37.63 mass% or less, and the α phase type SiAlON in the SiAlON base particles The X-ray diffraction line peak intensity Iα at the (201) plane, the β-phase SiAlON peak intensity Iβ at the (101) plane by the X-ray diffraction method, and the γ by the X-ray diffraction method The peak intensity Iγ of the X-ray diffraction line at the (400) plane of the phase type SiAlON is represented by the following formula (I).

0.09≦(Iα+Iβ)/(Iα+Iβ+Iγ)≦0.88 (I)
ここで、SiAlON基粒子中の各元素の含有量は、高周波誘導結合プラズマ発光分析法(ICP分析)、不活性ガス融解赤外線吸収法、不活性ガス融解熱伝導度法を用いて測定した値である。
0.09 ≦ (Iα + Iβ) / (Iα + Iβ + Iγ) ≦ 0.88 (I)
Here, the content of each element in the SiAlON group particles is a value measured using a high frequency inductively coupled plasma emission analysis method (ICP analysis), an inert gas melting infrared absorption method, and an inert gas melting thermal conductivity method. is there.

(Iα+Iβ)/(Iα+Iβ+Iγ)の値が前記式(I)で表わされる範囲であると、SiAlON基粒子中のα相型SiAlON、β相型SiAlON、γ相型SiAlONの含有量のバランスがよく、SiAlON基粒子の耐摩砕性が良好になる。   When the value of (Iα + Iβ) / (Iα + Iβ + Iγ) is in the range represented by the formula (I), the balance of the contents of α-phase type SiAlON, β-phase type SiAlON, and γ-phase type SiAlON in the SiAlON-based particles is good, The abrasion resistance of the SiAlON base particles is improved.

該SiAlON基粒子は、たとえば以下の方法で作製することができる。
α相型SiAlONおよびβ型SiAlONの少なくともいずれかを準備する。α相型SiAlONを用いる場合は、X線回折法によるα相型SiAlONの(201)面でのX線回折線の半値幅が0.35°以上2.0°以下になるまで、ビーズミルやジェットミル処理による粉砕、歪導入などで微細組織化を行い、低結晶性のα相型SiAlONを作製する。β相型SiAlONを用いる場合も同様に、X線回折法によるβ相型SiAlONの(101)面でのX線回折線の半値幅が0.35°以上2.0°以下になるまで、微細組織化処理を行い、低結晶性のβ相型SiAlONを作製する。該低結晶性のα相型SiAlON、β相型SiAlONを、圧力15GPa以上50GPa以下、温度1200℃以上3000℃以下の条件の衝撃圧縮法で処理することにより、前記式(I)の条件を満たすSiAlON基粒子を得ることができる。なお、α相型SiAlON、β相型SiAlONの微細組織化処理において、それぞれ半値幅が2.0°を超えるまで微粉砕した場合には、SiAlON粒子の比表面積の増加による酸化のため、γ相型SiAlONへの変換率が低下する。このため、その後の衝撃圧縮条件(圧力、温度、時間)の調整を行っても、前記式(I)の条件を満たすSiAlON基粒子を得ることが困難である。
The SiAlON-based particles can be produced, for example, by the following method.
At least one of α-phase type SiAlON and β-type SiAlON is prepared. When α-phase type SiAlON is used, a bead mill or a jet is used until the half-value width of the X-ray diffraction line on the (201) plane of α-phase type SiAlON by X-ray diffraction method is 0.35 ° or more and 2.0 ° or less. A fine structure is obtained by pulverization by mill treatment, introduction of strain, and the like to produce a low crystalline α-phase SiAlON. Similarly, when β-phase type SiAlON is used, the X-ray diffraction line on the (101) plane of β-phase type SiAlON by the X-ray diffraction method is fine until the half width of the X-ray diffraction line becomes 0.35 ° or more and 2.0 ° or less. An organization process is performed to produce a low crystalline β-phase SiAlON. The low crystalline α-phase type SiAlON and β-phase type SiAlON are processed by an impact compression method under the conditions of a pressure of 15 GPa or more and 50 GPa or less and a temperature of 1200 ° C. or more and 3000 ° C. or less to satisfy the condition of the above formula (I). SiAlON-based particles can be obtained. In addition, in the microstructuring process of α phase type SiAlON and β phase type SiAlON, when pulverized until the half width exceeds 2.0 °, the γ phase is oxidized due to the increase in the specific surface area of the SiAlON particles. The conversion rate to type SiAlON decreases. For this reason, it is difficult to obtain SiAlON-based particles that satisfy the condition of the above formula (I) even if the subsequent impact compression conditions (pressure, temperature, time) are adjusted.

上記の衝撃圧縮法に替えて、マルチアンビルプレスなどを用いた、圧力0.1GPa以上20GPa未満、温度1000℃以上2000℃以下の条件の静圧合成法で、合成時間を調整することによっても、前記式(I)の条件を満たすSiAlON基粒子を得ることができる。   In place of the above-mentioned impact compression method, using a multi-anvil press or the like, by adjusting the synthesis time by a static pressure synthesis method under conditions of a pressure of 0.1 GPa or more and less than 20 GPa and a temperature of 1000 ° C. or more and 2000 ° C. or less, SiAlON base particles satisfying the condition of the formula (I) can be obtained.

SiAlON基粒子は、SiAlON基粒子中のケイ素、アルミニウム、酸素、および窒素の合計質量に対して、ケイ素を34.71質量%以上58.29質量%以下、アルミニウムを1.93質量%以上23.83質量%以下、酸素を2.65質量%以上15.62質量%以下、および窒素を25.84質量%以上37.13質量%以下の範囲で含み、前記Iα、前記Iβ、前記Iγが下記式(II)の関係で表わされることが好ましい。   SiAlON group particles are 34.71 mass% or more and 58.29 mass% or less of silicon, and aluminum 1.93 mass% or more and 23.23 mass% or less with respect to the total mass of silicon, aluminum, oxygen, and nitrogen in SiAlON group particles. 83% by mass or less, oxygen in a range of 2.65% by mass to 15.62% by mass and nitrogen in a range of 25.84% by mass to 37.13% by mass, wherein Iα, Iβ, and Iγ are as follows: It is preferably represented by the relationship of formula (II).

0.13≦(Iα+Iβ)/(Iα+Iβ+Iγ)≦0.82 (II)
SiAlON基粒子は、SiAlON基粒子中のケイ素、アルミニウム、酸素、および窒素の合計質量に対して、ケイ素を45.02質量%以上57.26質量%以下、アルミニウムを2.89質量%以上14.61質量%以下、酸素を2.84質量%以上10.2質量%以下、および窒素を30.17質量%以上36.63質量%以下の範囲で含み、前記Iα、前記Iβ、前記Iγが下記式(III)で表わされることがさらに好ましい。
0.13 ≦ (Iα + Iβ) / (Iα + Iβ + Iγ) ≦ 0.82 (II)
SiAlON group particles are 45.02 mass% or more and 57.26 mass% or less of silicon, and aluminum is 2.89 mass% or more and 14.14 mass% or less with respect to the total mass of silicon, aluminum, oxygen, and nitrogen in SiAlON group particles. 61 mass% or less, oxygen is contained in the range of 2.84 mass% or more and 10.2 mass% or less, and nitrogen is 30.17 mass% or more and 36.63 mass% or less, and the Iα, Iβ, and Iγ are More preferably, it is represented by the formula (III).

0.18≦(Iα+Iβ)/(Iα+Iβ+Iγ)≦0.75 (III)
前記式(II)また前記式(III)の条件を満たすSiAlON基粒子は、たとえば、α相型SiAlONおよびβ型SiAlONの少なくともいずれかを準備し、それぞれX線回折法によるα相型SiAlONの(201)面でのX線回折線の半値幅が0.35°以上2.0°以下、X線回折法によるβ相型SiAlONの(101)面でのX線回折線の半値幅が0.35°以上2.0°以下になるまで微細組織化処理を行い、低結晶性のα相型SiAlON、β相型SiAlONを作製し、衝撃圧縮法または静圧合成法で処理することにより得ることができる。
0.18 ≦ (Iα + Iβ) / (Iα + Iβ + Iγ) ≦ 0.75 (III)
As the SiAlON-based particles satisfying the conditions of the above formula (II) and the above formula (III), for example, at least one of α-phase type SiAlON and β-type SiAlON is prepared, and each of α-phase type SiAlON ( 201) the half width of the X-ray diffraction line on the (101) plane of the β-phase SiAlON by the X-ray diffraction method is 0.35 ° or more and 2.0 ° or less. Obtained by microstructuring until 35 ° or more and 2.0 ° or less, producing low crystalline α-phase type SiAlON and β-phase type SiAlON, and processing by impact compression method or static pressure synthesis method Can do.

SiAlON基粒子は、X線回折法によるγ相型SiAlONの(400)面でのX線回折線の半値幅(以下、FWHMγともいう)が、0.4°以上2.0°以下であることが好ましい。本明細書中「半値幅」とは「半値全幅(full width at half maximum, FWHM)」を意味する。FWHMγが0.4°以上2.0°以下であると、微細な1次粒子が強固に結合した焼結砥粒となるため、特に、高靱性高耐摩砕性を発揮する。半値幅が0.4°未満では1次粒子が粗すぎるため1次粒子の保持力が弱くなり、また劈開を生じる場合があるため耐摩耗性が低下する。一方半値幅が2.0°を超える場合には、1次粒子が微粒となり過ぎ、1次粒子の粒界で発生した亀裂の伝搬抵抗が低く靱性が低下する。FWHMγの範囲は、さらに0.4°以上1.5°以下が好ましい。   The SiAlON-based particles have an X-ray diffraction line half-width (hereinafter also referred to as FWHMγ) on the (400) plane of γ-phase SiAlON by X-ray diffraction method being 0.4 ° or more and 2.0 ° or less. Is preferred. In the present specification, “half width” means “full width at half maximum (FWHM)”. When the FWHMγ is 0.4 ° or more and 2.0 ° or less, fine primary particles are firmly bonded to sintered abrasive grains, so that particularly high toughness and high abrasion resistance are exhibited. If the half-value width is less than 0.4 °, the primary particles are too coarse, so that the primary particles have a weak holding force, and cleaves may occur. On the other hand, when the full width at half maximum exceeds 2.0 °, the primary particles become too fine, and the propagation resistance of cracks generated at the grain boundaries of the primary particles is low and the toughness is lowered. The range of FWHMγ is further preferably 0.4 ° or more and 1.5 ° or less.

なお、SiAlON基粒子は、γ相型SiAlON、β相型SiAlON、α相型SiAlON以外のSi−Al−O−N系の化合物、窒化ケイ素を含むことができる。   The SiAlON-based particles can include γ-phase SiAlON, β-phase SiAlON, Si—Al—O—N compounds other than α-phase SiAlON, and silicon nitride.

[実施の形態2]
本発明の一実施の形態において、SiAlON基粒子は、α相型SiAlONおよびβ相型SiAlONの少なくともいずれかと、γ相型SiAlONとを含み、さらに強靭化成分を含む。
[Embodiment 2]
In one embodiment of the present invention, the SiAlON-based particles include at least one of α-phase SiAlON and β-phase SiAlON, γ-phase SiAlON, and further include a toughening component.

α相型SiAlON、β相型SiAlONおよびγ相型SiAlONは、実施の形態1と同様のものを用いることができる。   As α-phase type SiAlON, β-phase type SiAlON, and γ-phase type SiAlON, the same ones as in the first embodiment can be used.

強靭化成分は、ホウ素、炭素、マグネシウム、カルシウム、イットリウム、鉄、ニッケル、コバルト、周期律表の第4a族元素、第5a族元素、第6a族元素、Si34、AlON、AlNおよびAl23の中から選ばれる少なくとも1種を含む。ここで、「周期律表の第4a族元素」にはチタン、ジルコニウム、ハフニウムが含まれ、「周期律表の第5a族元素」にはバナジウム、ニオブ、タンタムが含まれ、「周期律表の第6a族元素」にはクロム、モリブデン、タングステンが含まれる。 The toughening component is boron, carbon, magnesium, calcium, yttrium, iron, nickel, cobalt, Group 4a element, Group 5a element, Group 6a element of the periodic table, Si 3 N 4 , AlON, AlN and Al It contains at least one selected from 2 O 3 . Here, “group 4a element of the periodic table” includes titanium, zirconium, and hafnium, and “group 5a element of the periodic table” includes vanadium, niobium, and tantum, “Group 6a elements” include chromium, molybdenum, and tungsten.

上記の元素および化合物は、本発明のSiAlON基粒子合成時後に熱膨張率差、ヤング率差、或いは固溶化に起因する残留応力の付与と推定される効果により強靭化の効果を発揮する。したがって、強靭化成分を含むSiAlON基粒子は、優れた耐摩砕性を有することができる。   The above elements and compounds exhibit a toughening effect due to the presumed effect of applying a residual stress due to thermal expansion difference, Young's modulus difference, or solid solution after synthesis of the SiAlON-based particles of the present invention. Therefore, SiAlON-based particles containing a toughening component can have excellent abrasion resistance.

強靭化成分を含むSiAlON基粒子は、前記Iα、前記Iβ、前記Iγ、およびX線回折法による前記強靭化成分の最強回折線のピーク強度Is(hkl)が、下記式(IV)で表わされることが好ましい。   In the SiAlON-based particles containing the toughening component, the peak intensity Is (hkl) of the strongest diffraction line of the toughening component according to the Iα, Iβ, Iγ, and X-ray diffraction methods is represented by the following formula (IV). It is preferable.

0.01≦Is(hkl)/(Iα+Iβ+Iγ)≦0.3 (IV)
ここで、「強靭化成分の最強回折線のピーク強度Is(hkl)」とは、X線回折法による前記強靭化成分の回折線の中で最も強度比が高い回折線の強度を強度Is(hkl)とし、このIs(hkl)が、上記式(IV)で表わされることが好ましい。
0.01 ≦ Is (hkl) / (Iα + Iβ + Iγ) ≦ 0.3 (IV)
Here, the “peak intensity Is (hkl) of the strongest diffraction line of the toughening component” means the intensity of the diffraction line having the highest intensity ratio among the diffraction lines of the toughening component by the X-ray diffraction method. hkl), and Is (hkl) is preferably represented by the above formula (IV).

Is(hkl)/(Iα+Iβ+Iγ)の値が前記式(IV)で表わされる範囲であると、SiAlON基粒子中のα相型SiAlON、β相型SiAlON、γ相型SiAlONおよび強靭化成分の含有量のバランスがよく、SiAlON基粒子の耐摩砕性が良好になる。   When the value of Is (hkl) / (Iα + Iβ + Iγ) is in the range represented by the formula (IV), the contents of α-phase SiAlON, β-phase SiAlON, γ-phase SiAlON and toughening component in the SiAlON base particles And the SiAlON-based particles have good crush resistance.

強靭化成分を含むSiAlON基粒子は、前記Iα、前記Iβ、前記Iγ、およびX線回折法による前記強靭化成分の最強回折線のピーク強度Is(hkl)が、下記式(V)で表わされることがさらに好ましい。   In the SiAlON-based particles containing the toughening component, the peak intensity Is (hkl) of the strongest diffraction line of the toughening component according to the Iα, Iβ, Iγ, and X-ray diffraction methods is represented by the following formula (V). More preferably.

0.01≦Is(hkl)/(Iα+Iβ+Iγ)≦0.2 (V)
強靭化成分を含むSiAlON基粒子は、たとえば以下の方法で作製することができる。
0.01 ≦ Is (hkl) / (Iα + Iβ + Iγ) ≦ 0.2 (V)
SiAlON base particles containing a toughening component can be produced, for example, by the following method.

α相型SiAlONおよびβ型SiAlONの少なくともいずれかを準備し、それぞれX線回折法によるα相型SiAlONの(201)面でのX線回折線の半値幅が0.35°以上2.0°以下、X線回折法によるβ相型SiAlONの(101)面でのX線回折線の半値幅が0.35°以上2.0°以下になるまで微細組織化処理を行い、低結晶性のα相型SiAlON、低結晶性のβ相型SiAlONを作製する。得られたα相型SiAlONおよびβ相型SiAlONの合計100質量部に対して強靭化成分を3〜10質量部添加して、エタノールなどの有機溶媒中で超音波分散するか、またはボールミル中で混合し、得られたスラリーをドライヤーなどで乾燥して混合粉を得る。得られた混合粉を、圧力15GPa以上50GPa以下、温度1200℃以上3000℃以下の条件の衝撃圧縮法、または圧力0.1GPa以上20GPa未満、温度1000℃以上2000℃以下の条件の静圧合成法で処理することにより、強靭化成分を含むSiAlON基粒子を得ることができる。   At least one of α-phase SiAlON and β-type SiAlON is prepared, and the half-value width of the X-ray diffraction line on the (201) plane of α-phase SiAlON by X-ray diffraction method is 0.35 ° or more and 2.0 °, respectively. Thereafter, a fine structure treatment is performed until the half width of the X-ray diffraction line on the (101) plane of β-phase SiAlON by X-ray diffraction method is 0.35 ° or more and 2.0 ° or less. An α phase type SiAlON and a low crystalline β phase type SiAlON are prepared. 3 to 10 parts by mass of a toughening component is added to a total of 100 parts by mass of the obtained α phase type SiAlON and β phase type SiAlON, and ultrasonically dispersed in an organic solvent such as ethanol, or in a ball mill. The mixed slurry is dried with a drier or the like to obtain a mixed powder. The obtained mixed powder is subjected to an impact compression method under conditions of a pressure of 15 GPa to 50 GPa and a temperature of 1200 ° C. to 3000 ° C., or a static pressure synthesis method of a pressure of 0.1 GPa to less than 20 GPa and a temperature of 1000 ° C. to 2000 ° C. By treatment with SiAlON-based particles containing a toughening component can be obtained.

なお、SiAlON基粒子は、γ相型SiAlON、β相型SiAlON、α相型SiAlON以外のSi−Al−O−N系の化合物、窒化ケイ素を含むことができる。   The SiAlON-based particles can include γ-phase SiAlON, β-phase SiAlON, Si—Al—O—N compounds other than α-phase SiAlON, and silicon nitride.

[実施の形態3]
本発明の一実施の形態において、焼結体はSiAlON基粒子を20体積%以上95体積%以下含む。
[Embodiment 3]
In one embodiment of the present invention, the sintered body contains 20% by volume or more and 95% by volume or less of SiAlON-based particles.

SiAlON基粒子は、実施の形態1および実施の形態2と同様のものを用いることができる。   As the SiAlON-based particles, the same particles as in the first and second embodiments can be used.

焼結体中のSiAlON基粒子の含有量が20体積%以上95体積%以下であると、SiAlON基粒子による分散強化により、焼結体の耐欠損性および耐摩耗性が向上する。なお、SiAlON基粒子の含有量が20体積%未満であると、分散強化の効果を得ることができない。一方、SiAlON基粒子の含有量が95質量%を超えると、SiAlON基粒子の高靱性、化学的安定性という特性により、難焼結性となるため、焼結体の特性が低下する。焼結体中のSiAlON基粒子の含有量は40体積%以上80体積%以下であることがさらに好ましい。   When the content of the SiAlON group particles in the sintered body is 20% by volume or more and 95% by volume or less, the fracture resistance and wear resistance of the sintered body are improved by dispersion strengthening with the SiAlON group particles. If the content of SiAlON group particles is less than 20% by volume, the effect of dispersion strengthening cannot be obtained. On the other hand, if the content of SiAlON group particles exceeds 95% by mass, it becomes difficult to sinter due to the characteristics of SiAlON group particles such as high toughness and chemical stability, so the characteristics of the sintered body deteriorate. The content of SiAlON group particles in the sintered body is more preferably 40% by volume or more and 80% by volume or less.

焼結体は、SiAlON基粒子および残部からなり、前記残部はアルミニウム、ホウ素、ケイ素、鉄、ニッケル、コバルト、マグネシウム、カルシウム、イットリウム、ならびに周期律表の第4a族元素、第5a族元素および第6a族元素よりなる群から選ばれる少なくとも1種の元素と、炭素、窒素、酸素およびホウ素よりなる群から選ばれる少なくとも1種の元素とからなる少なくとも1種の化合物(以下、結合材化合物ともいう)、ならびに結合材化合物の固溶体よりなる群から選ばれる少なくとも1種を含むことが好ましい。結合材化合物および結合材化合物の固溶体は、SiAlON基粒子との親和性が高いため、SiAlON基粒子と混合して焼結すると、耐欠損性および耐摩耗性に優れた焼結体を得ることができる。   The sintered body is composed of SiAlON-based particles and the balance, and the balance is aluminum, boron, silicon, iron, nickel, cobalt, magnesium, calcium, yttrium, and Group 4a element, Group 5a element and Group of the periodic table. At least one compound selected from the group consisting of Group 6a elements and at least one compound selected from the group consisting of carbon, nitrogen, oxygen and boron (hereinafter also referred to as a binder compound) ), And at least one selected from the group consisting of solid solutions of binder compounds. Since the binder compound and the solid solution of the binder compound have a high affinity with the SiAlON group particles, it is possible to obtain a sintered body excellent in fracture resistance and wear resistance when mixed and sintered with the SiAlON group particles. it can.

結合材化合物としては、たとえばTiN、FeSi、Al23、TiO2、TiS、TiB2、TiCN、TiZrCN、Y23、CaO、TiSi、AlN、BNなどを用いることができる。中でも、AlNおよびBNの少なくともいずれかを用いることが好ましい。ここで、AlNとしては、六方晶系に属する窒化アルミニウム(hAlN)および立方晶系に属する窒化アルミニウム(cAlN)のいずれも用いることができる。BNとしては、六方晶系に属する窒化ホウ素(hBN)および立方晶系に属する窒化ホウ素(cBN)のいずれも用いることができる。 As the binder compound, for example, TiN, FeSi, Al 2 O 3 , TiO 2 , TiS, TiB 2 , TiCN, TiZrCN, Y 2 O 3 , CaO, TiSi, AlN, BN and the like can be used. Among these, it is preferable to use at least one of AlN and BN. Here, as AlN, both aluminum nitride (hAlN) belonging to the hexagonal system and aluminum nitride (cAlN) belonging to the cubic system can be used. As BN, any of boron nitride (hBN) belonging to the hexagonal system and boron nitride (cBN) belonging to the cubic system can be used.

焼結体は、たとえば以下の方法で作製することができる。
SiAlON基粒子および結合材化合物を、SiAlON基粒子:結合材化合物との割合が20体積%:80体積%〜95体積%:5体積%の範囲となるように準備する。SiAlON基粒子と結合材化合物とを、エタノール溶媒を用いて分散混合して混合粉を得る。該混合粉をガードル型超高圧プレスを用いて、0.1GPa〜20GPaの圧力および1000℃〜2000℃の温度の条件下で3〜180分間焼結して、焼結体を得ることができる。
The sintered body can be produced, for example, by the following method.
The SiAlON group particles and the binder compound are prepared so that the ratio of SiAlON group particles: binder compound is in the range of 20% by volume: 80% by volume to 95% by volume: 5% by volume. SiAlON group particles and a binder compound are dispersed and mixed using an ethanol solvent to obtain a mixed powder. The mixed powder can be sintered for 3 to 180 minutes using a girdle type ultra-high pressure press under conditions of a pressure of 0.1 GPa to 20 GPa and a temperature of 1000 ° C. to 2000 ° C. to obtain a sintered body.

[実施の形態4]
本発明の一実施形態において、工具は、切削加工または塑性加工に関与する少なくとも一部に本発明の焼結体を用いている。このような工具としては、たとえばドリル、エンドミル、フライス加工用または旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ加工用チップや摩擦撹拌接合用工具などが挙げられる。
[Embodiment 4]
In one embodiment of the present invention, the tool uses the sintered body of the present invention at least in part involved in cutting or plastic working. Examples of such tools include drills, end mills, milling or turning cutting edge exchangeable cutting tips, metal saws, gear cutting tools, reamers, tapping tips, friction stir welding tools, and the like.

本発明の焼結体を工具の刃先などに用いることにより、インコネルなどの難削材を削る場合にも、欠損が生じにくく、かつ摩耗しにくいという優れた性能を有することができる。   By using the sintered body of the present invention for a cutting edge of a tool or the like, even when cutting a difficult-to-cut material such as Inconel, it is possible to have excellent performance that it is difficult to cause a chipping and wear.

本発明の工具は、従来のα−SiAlON基セラミックス、β−SiAlON基セラミックスやcBN焼結体工具に比して、コストパフォーマンスに優れるだけでなく、耐欠損性、及び耐摩耗性にも優れたものとなる。   The tool of the present invention is superior not only in cost performance but also in fracture resistance and wear resistance as compared with conventional α-SiAlON based ceramics, β-SiAlON based ceramics and cBN sintered body tools. It will be a thing.

以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.

<試料1〜35>
(原料粒子の準備)
α−SiAlON(平均粒径5μm)とβ−SiAlON(平均粒径5μm)を、表1の「充填量(g)」に記載のとおり準備し、超硬ボールによるボールミルにて解砕、分散混合して原料粒子を得た。
<Samples 1 to 35>
(Preparation of raw material particles)
Prepare α-SiAlON (average particle size 5 μm) and β-SiAlON (average particle size 5 μm) as described in “filling amount (g)” in Table 1, crush and disperse and mix in a ball mill with carbide balls Thus, raw material particles were obtained.

(原料粒子の測定)
原料粒子中のSi、Al、O、Nのそれぞれの含有率を高周波誘導結合プラズマ発光分析法(ICP分析)、および不活性ガス融解赤外線吸収法、不活性ガス融解熱伝導度法を用いて測定した。
(Measurement of raw material particles)
Measure the content of Si, Al, O, and N in raw material particles using high frequency inductively coupled plasma emission spectrometry (ICP analysis), inert gas melting infrared absorption method, inert gas melting thermal conductivity method did.

α相型SiAlONの(201)面、及びβ相型SiAlONの(101)面での半値幅をX線回折法により算出した。   The half widths at the (201) plane of α-phase SiAlON and the (101) plane of β-phase SiAlON were calculated by X-ray diffraction.

結果を表1に示す。
(合成粒子の作製)
次に、原料粒子300gをヒートシンク、および圧力媒体としての銅粉と混合して、鋼製容器に充填し、爆薬の爆発による衝撃圧縮法により、40GPaの圧力および2000℃の温度条件で処理した。
The results are shown in Table 1.
(Production of synthetic particles)
Next, 300 g of raw material particles were mixed with a heat sink and copper powder as a pressure medium, filled in a steel container, and processed at a pressure of 40 GPa and a temperature of 2000 ° C. by an impact compression method using an explosive explosion.

衝撃圧縮処理により得られた粉末を、ボールミルにより粉砕した。次に、粉砕粉末を硝酸処理して不純物成分を除去した後に、水簸により分級回収して合成粒子を得た。   The powder obtained by the impact compression treatment was pulverized by a ball mill. Next, the pulverized powder was treated with nitric acid to remove impurity components, and then classified and recovered with a water tank to obtain synthetic particles.

(合成粒子の測定)
合成粒子をCu−Kα線を用いたX線回折法で分析すると、γ−SiAlONに対応するX線回折線のピーク(γ-SiAlONと同等の結晶構造を有するJCPDS074−3494のγ−Si34を使用する)、α−SiAlONに対応するX線回折線のピーク(JCPDS041−0360のα−Si34を使用する)、β−SiAlON(JCPDS033−1160のβ−Si34を使用する)に対応するX線回折線のピークが同定された。
(Measurement of synthetic particles)
When the synthesized particles are analyzed by an X-ray diffraction method using Cu-Kα rays, the peak of an X-ray diffraction line corresponding to γ-SiAlON (γ-Si 3 N of JCPDS074-3494 having a crystal structure equivalent to γ-SiAlON). 4 ), X-ray diffraction line peak corresponding to α-SiAlON (using α-Si 3 N 4 of JCPDS041-0360), β-SiAlON (using β-Si 3 N 4 of JCPDS033-1160) X-ray diffraction line peaks corresponding to

次に、合成粒子のγ−SiAlONの(400)面でのX線回折線のピーク強度Iγ、α−SiAlONの(201)面でのX線回折線のピーク強度Iα、β−SiAlONの(101)面でのX線回折線のピーク強度を測定し、{(Iα+Iβ)/(Iα+Iβ+Iγ)}の値を算出した。   Next, the peak intensity Iγ of the X-ray diffraction line at the (400) plane of γ-SiAlON of the synthetic particle, the peak intensity Iα of the X-ray diffraction line at the (201) plane of α-SiAlON, (101 ) The peak intensity of the X-ray diffraction line on the surface was measured, and the value of {(Iα + Iβ) / (Iα + Iβ + Iγ)} was calculated.

合成粒子の平均粒径をレーザー式の粒度分布測定装置(マイクロトラック製MT3300EX2)を用いて測定した。   The average particle size of the synthetic particles was measured using a laser type particle size distribution measuring device (MT3300EX2 manufactured by Microtrac).

合成粒子中のSi、Al、OおよびNの合計質量に対するSi、Al、O、Nのそれぞれの含有率(質量%)を高周波誘導結合プラズマ発光分析法(ICP分析)、および不活性ガス融解赤外線吸収法、不活性ガス融解熱伝導度法を用いて測定した。   Respective contents (mass%) of Si, Al, O, and N with respect to the total mass of Si, Al, O, and N in the synthetic particles are determined by high-frequency inductively coupled plasma atomic emission spectrometry (ICP analysis), and inert gas melting infrared. It was measured using an absorption method and an inert gas melting thermal conductivity method.

結果を表1に示す。
(摩砕試験)
作製した合成粒子150gを、Al23ボールの入ったエタノール溶媒中で、3000rpmで回転させ、合成粒子の平均粒径D50の値が1/2になるまでの時間T(min)を測定した。Tの値が大きいほど、耐摩砕性が優れている。
The results are shown in Table 1.
(Grinding test)
150 g of the prepared synthetic particles were rotated at 3000 rpm in an ethanol solvent containing Al 2 O 3 balls, and the time T (min) until the average particle diameter D50 of the synthetic particles became 1/2 was measured. . The greater the value of T, the better the abrasion resistance.

結果を表1に示す。
<試料36〜38>
試料36および37は、従来例として、以下の市販のSiAlON粒子を用いて前記の摩砕試験を行った。試料38は、結晶性の良いβ−SiAlONを出発原料として衝撃合成して得られたγ−SiAlONを用いて前記の摩砕試験を行った。
The results are shown in Table 1.
<Samples 36 to 38>
Samples 36 and 37 were subjected to the above grinding test using the following commercially available SiAlON particles as a conventional example. Sample 38 was subjected to the above grinding test using γ-SiAlON obtained by impact synthesis using β-SiAlON having good crystallinity as a starting material.

試料36:α−SiAlON(平均粒径5μm)
試料37:β−SiAlON(平均粒径5μm)
試料38:γ−SiAlON(平均粒径5μm)
結果を表1に示す。
Sample 36: α-SiAlON (average particle size 5 μm)
Sample 37: β-SiAlON (average particle size 5 μm)
Sample 38: γ-SiAlON (average particle size 5 μm)
The results are shown in Table 1.

Figure 2013234093
Figure 2013234093

(評価結果)
試料2、4、5、7〜10、12〜14、17〜19、21、23〜28、30〜34の合成粒子は、合成粒子中のSi、Al、O、Nの合計質量に対して、Siを18.68質量%以上59.33質量%以下、Alを0.96質量%以上38.72質量%以下、Oを2.08質量%以上24.44質量%以下、Nを18.16質量%以上37.63質量%以下含み、平均粒径が0.2μm以上100μm以下、{(Iα+Iβ)/(Iα+Iβ+Iγ)}の値が0.09以上0.88以下の範囲であり、本発明に係るSiAlON基粒子の条件を満たしていた。これらの合成粒子は、摩砕試験において、従来例である試料36〜38より、耐摩砕性が優れていた。
(Evaluation results)
The synthesized particles of Samples 2, 4, 5, 7 to 10, 12 to 14, 17 to 19, 21, 23 to 28, and 30 to 34 are based on the total mass of Si, Al, O, and N in the synthesized particles. , Si is 18.68 mass% or more and 59.33 mass% or less, Al is 0.96 mass% or more and 38.72 mass% or less, O is 2.08 mass% or more and 24.44 mass% or less, and N is 18. 16% by mass or more and 37.63% by mass or less, the average particle size is 0.2 μm or more and 100 μm or less, and the value of {(Iα + Iβ) / (Iα + Iβ + Iγ)} is 0.09 or more and 0.88 or less. The conditions for SiAlON-based particles according to the above were satisfied. In the grinding test, these synthetic particles were superior in abrasion resistance to the conventional samples 36 to 38.

試料1の合成粒子は、合成粒子中のSi、Al、O、Nの合計質量に対して、Siを17.68質量%、Alを39.65質量%、Oを24.99質量%、Nを17.68質量%含み、平均粒径が5μm、{(Iα+Iβ)/(Iα+Iβ+Iγ)}の値が0.96であった。該合成粒子は、試料2などの本発明に係るSiAlON基粒子の条件を満たす合成粒子より、耐摩砕性が劣っていた。   The synthetic particles of Sample 1 are 17.68% by mass of Si, 39.65% by mass of Al, 24.99% by mass of O, and N of 24.99% by mass with respect to the total mass of Si, Al, O, and N in the synthetic particles. Was 17.68% by mass, the average particle size was 5 μm, and the value of {(Iα + Iβ) / (Iα + Iβ + Iγ)} was 0.96. The synthetic particles were inferior in abrasion resistance to synthetic particles such as Sample 2 that satisfy the conditions of the SiAlON-based particles according to the present invention.

試料3、6、16、20、22、29、35の合成粒子は、{(Iα+Iβ)/(Iα+Iβ+Iγ)}の値が0.91以上0.96以下の範囲であった。該合成粒子は、試料2などの本発明に係るSiAlON基粒子の条件を満たす合成粒子より、耐摩砕性が劣っていた。   The synthetic particles of Samples 3, 6, 16, 20, 22, 29, and 35 had a value of {(Iα + Iβ) / (Iα + Iβ + Iγ)} in the range of 0.91 to 0.96. The synthetic particles were inferior in abrasion resistance to synthetic particles such as Sample 2 that satisfy the conditions of the SiAlON-based particles according to the present invention.

試料11の合成粒子は、平均粒径が150μmであった。該合成粒子は、試料2などの本発明に係るSiAlON基粒子の条件を満たす合成粒子より、耐摩砕性が劣っていた。   The synthetic particles of Sample 11 had an average particle size of 150 μm. The synthetic particles were inferior in abrasion resistance to synthetic particles such as Sample 2 that satisfy the conditions of the SiAlON-based particles according to the present invention.

試料15の合成粒子は、合成粒子中のSi、Al、O、Nの合計質量に対して、Siを59.85質量%、Alを0.48質量%、Oを1.80質量%、Nを37.87質量%含み、平均粒径が5μm、{(Iα+Iβ)/(Iα+Iβ+Iγ)}の値が0.04であった。該合成粒子は、試料2などの本発明に係るSiAlON基粒子の条件を満たす合成粒子より、耐摩砕性が劣っていた。   The synthetic particles of Sample 15 are composed of 59.85% by mass of Si, 0.48% by mass of Al, 1.80% by mass of O, N based on the total mass of Si, Al, O, and N in the synthetic particles. The average particle diameter was 5 μm, and the value of {(Iα + Iβ) / (Iα + Iβ + Iγ)} was 0.04. The synthetic particles were inferior in abrasion resistance to synthetic particles such as Sample 2 that satisfy the conditions of the SiAlON-based particles according to the present invention.

<試料39〜98>
(原料粒子の準備)
β−SiAlON粒子(平均粒径1μm)を、表2および表3の「充填量(g)」に記載のとおり準備した。前記β−SiAlONに、強靭化成分として、表2および表3の「添加元素」に記載の種類の元素(B、C、Mg、Ca、Y、Fe、Ni、Co、Ti、Zr、Mo、W、Cr、Si34、AlON、AlN、Al23)を、添加して、超硬ボールによるボールミルにて解砕、分散混合して原料粒子を得た。なお、添加元素の添加量は、原料粒子の合計質量(Mt)に対する強靭化成分の質量(Mb)の割合(質量%)が、表2および表3の「Mb/Mt×100(質量%)」に記載の値となるように調整した。
<Samples 39 to 98>
(Preparation of raw material particles)
β-SiAlON particles (average particle size 1 μm) were prepared as described in “filling amount (g)” in Tables 2 and 3. In the β-SiAlON, as a toughening component, elements of the types described in “Additive elements” in Table 2 and Table 3 (B, C, Mg, Ca, Y, Fe, Ni, Co, Ti, Zr, Mo, W, Cr, Si 3 N 4 , AlON, AlN, Al 2 O 3 ) were added, and pulverized and dispersed and mixed in a ball mill with carbide balls to obtain raw material particles. In addition, as for the addition amount of the additive element, the ratio (mass%) of the mass (Mb) of the toughening component to the total mass (Mt) of the raw material particles is “Mb / Mt × 100 (mass%)” in Tables 2 and 3. It adjusted so that it might become the value of description.

(原料粒子の測定)
原料粒子中のSi、Al、OおよびNの合計質量に対する、Si、Al、O、Nのそれぞれの含有率(質量%)を高周波誘導結合プラズマ発光分析法(ICP分析)、および不活性ガス融解赤外線吸収法、不活性ガス融解熱伝導度法を用いて測定した。
(Measurement of raw material particles)
Respective contents (mass%) of Si, Al, O, and N with respect to the total mass of Si, Al, O, and N in the raw material particles are determined by high frequency inductively coupled plasma atomic emission spectrometry (ICP analysis) and inert gas melting. It measured using the infrared absorption method and the inert gas melting thermal conductivity method.

結果を表2および表3に示す。
(合成粒子の作製)
次に、原料粒子300gをヒートシンク、および圧力媒体としての銅粉と混合して、鋼製容器に充填し、爆薬の爆発による衝撃圧縮法により、40GPaの圧力および2000℃の温度で処理した。
The results are shown in Table 2 and Table 3.
(Production of synthetic particles)
Next, 300 g of raw material particles were mixed with a heat sink and copper powder as a pressure medium, filled in a steel container, and processed at a pressure of 40 GPa and a temperature of 2000 ° C. by an impact compression method using an explosive explosion.

衝撃圧縮処理により得られた粉末を、ボールミルにより粉砕した。次に、粉砕粉末を硝酸処理して不純物成分を除去した後に、水簸により分級回収して合成粒子を得た。   The powder obtained by the impact compression treatment was pulverized by a ball mill. Next, the pulverized powder was treated with nitric acid to remove impurity components, and then classified and recovered with a water tank to obtain synthetic particles.

(合成粒子の測定)
合成粒子をCu−Kα線を用いたX線回折法で分析すると、γ−SiAlONに対応するX線回折線のピーク、α−SiAlONに対応するX線回折線のピーク、β−SiAlONに対応するX線回折線のピークが同定された。さらに、強靭化成分に対応するX線回折線のピークも同定された。
(Measurement of synthetic particles)
When the synthetic particles are analyzed by the X-ray diffraction method using Cu-Kα ray, the peak of the X-ray diffraction line corresponding to γ-SiAlON, the peak of the X-ray diffraction line corresponding to α-SiAlON, and β-SiAlON X-ray diffraction line peaks were identified. Furthermore, the peak of the X-ray diffraction line corresponding to the toughening component was also identified.

次に、合成粒子中のγ−SiAlONの(400)面でのX線回折線のピーク強度Iγ、α−SiAlONの(201)面でのX線回折線のピーク強度Iα、β−SiAlONの(101)面でのX線回折線のピーク強度を測定し、{(Iα+Iβ)/(Iα+Iβ+Iγ)}の値を算出した。   Next, the peak intensity Iγ of the X-ray diffraction line at the (400) plane of γ-SiAlON in the synthetic particles, the peak intensity Iα of the X-ray diffraction line at the (201) plane of α-SiAlON, ( The peak intensity of the X-ray diffraction line on the (101) plane was measured, and the value of {(Iα + Iβ) / (Iα + Iβ + Iγ)} was calculated.

さらに、強靭化成分に対応するX線回折線のうち、最強回折線のピーク強度Is(hkl)を測定し、{Is(hkl)/(Iα+Iβ+Iγ)}の値を算出した。   Further, among the X-ray diffraction lines corresponding to the toughening component, the peak intensity Is (hkl) of the strongest diffraction line was measured, and the value of {Is (hkl) / (Iα + Iβ + Iγ)} was calculated.

合成粒子の平均粒径をレーザー式の粒度分布測定装置(マイクロトラック製MT3300EX2)を用いて測定した。   The average particle size of the synthetic particles was measured using a laser type particle size distribution measuring device (MT3300EX2 manufactured by Microtrac).

合成粒子中のSi、Al、OおよびNの合計質量に対するSi、Al、O、Nのそれぞれの含有率(質量%)を高周波誘導結合プラズマ発光分析法(ICP分析)、および不活性ガス融解赤外線吸収法、不活性ガス融解熱伝導度法を用いて測定した。   Respective contents (mass%) of Si, Al, O, and N with respect to the total mass of Si, Al, O, and N in the synthetic particles are determined by high-frequency inductively coupled plasma atomic emission spectrometry (ICP analysis), and inert gas melting infrared. It was measured using an absorption method and an inert gas melting thermal conductivity method.

結果を表2および表3に示す。
(摩砕試験)
作製した合成粒子150gを、Al23ボールの入ったエタノール溶媒中で、3000rpmで回転させ、合成粒子の平均粒径D50の値が1/2になるまでの時間T(min)を測定した。Tの値が大きいほど、耐摩砕性が優れている。
The results are shown in Table 2 and Table 3.
(Grinding test)
150 g of the prepared synthetic particles were rotated at 3000 rpm in an ethanol solvent containing Al 2 O 3 balls, and the time T (min) until the average particle diameter D50 of the synthetic particles became 1/2 was measured. . The greater the value of T, the better the abrasion resistance.

結果を表2および表3に示す。   The results are shown in Table 2 and Table 3.

Figure 2013234093
Figure 2013234093

Figure 2013234093
Figure 2013234093

(評価結果)
試料40〜試料56の合成粒子は、強靭化成分を含み、合成粒子中のSi、Al、O、Nの合計質量に対して、Siを29.68質量%、Alを28.51質量%、Oを18.39質量%、Nを23.42質量%含み、平均粒径が5μm、{(Iα+Iβ)/(Iα+Iβ+Iγ)}の値が0.85、Is(hkl)/(Iα+Iβ+Iγ)の値が0.05であった。これらの合成粒子は、摩砕試験において、強靭化成分を含まない試料39より、耐摩砕性が優れていた。
(Evaluation results)
The synthetic particles of Samples 40 to 56 include a toughening component, and Si is 29.68% by mass, Al is 28.51% by mass with respect to the total mass of Si, Al, O, and N in the synthetic particles. 18.39% by mass of O and 23.42% by mass of N, the average particle size is 5 μm, the value of {(Iα + Iβ) / (Iα + Iβ + Iγ)} is 0.85, and the value of Is (hkl) / (Iα + Iβ + Iγ) is 0.05. These synthetic particles were superior in abrasion resistance in the attrition test than Sample 39 which did not contain a toughening component.

試料57〜試料69の合成粒子は、強靭化成分を含み、合成粒子中のSi、Al、O、Nの合計質量に対して、Siを34.64質量%、Alを23.78質量%、Oを17.08質量%、Nを24.50質量%含み、平均粒径が5μm、{(Iα+Iβ)/(Iα+Iβ+Iγ)}の値が0.75であった。   The synthetic particles of Sample 57 to Sample 69 include a toughening component, and the total mass of Si, Al, O, and N in the synthetic particles is 34.64% by mass of Si, 23.78% by mass of Al, It contained 17.08% by mass of O and 24.50% by mass of N, the average particle size was 5 μm, and the value of {(Iα + Iβ) / (Iα + Iβ + Iγ)} was 0.75.

試料70〜試料98の合成粒子は、強靭化成分を含み、合成粒子中のSi、Al、O、Nの合計質量に対して、Siを50.10質量%、Alを9.63質量%、Oを8.71質量%、Nを31.56質量%含み、平均粒径が5μm、{(Iα+Iβ)/(Iα+Iβ+Iγ)}の値が0.70であった。   The synthetic particles of Sample 70 to Sample 98 include a toughening component, and Si is 50.10% by mass, Al is 9.63% by mass with respect to the total mass of Si, Al, O, and N in the synthetic particles. It contained 8.71% by mass of O and 31.56% by mass of N, the average particle size was 5 μm, and the value of {(Iα + Iβ) / (Iα + Iβ + Iγ)} was 0.70.

試料58〜60、試料62〜64、試料66〜68の合成粒子は、強靭化成分を含み、Is(hkl)/(Iα+Iβ+Iγ)の値が0.01以上0.30以下の範囲であった。これらの合成粒子は、摩砕試験において、強靭化成分を含まない試料57よりも、同等以上の優れた耐摩砕性を示した。   The synthesized particles of Samples 58 to 60, Samples 62 to 64, and Samples 66 to 68 contained a toughening component, and the value of Is (hkl) / (Iα + Iβ + Iγ) was in the range of 0.01 to 0.30. In the grinding test, these synthetic particles showed equivalent or better grinding resistance than the sample 57 containing no toughening component.

一方、試料61、65、69の合成粒子は、強靭化成分を含み、Is(hkl)/(Iα+Iβ+Iγ)の値が0.40であった。これらの合成粒子は、摩砕試験において、強靭化成分を含まない試料57より、耐摩砕性が劣っていた。   On the other hand, the synthetic particles of Samples 61, 65, and 69 contained a toughening component, and the value of Is (hkl) / (Iα + Iβ + Iγ) was 0.40. These synthetic particles were inferior in abrasion resistance in the attrition test as compared with the sample 57 containing no toughening component.

試料71〜73、試料75〜77、試料79〜81、試料83〜85、試料87〜89、試料91〜93、試料95〜97は、強靭化成分を含み、Is(hkl)/(Iα+Iβ+Iγ)の値が0.01以上0.30以下の範囲であった。これらの合成粒子は、摩砕試験において、強靭化成分を含まない試料70よりも、同等以上の優れた耐摩砕性を示した。   Samples 71-73, Samples 75-77, Samples 79-81, Samples 83-85, Samples 87-89, Samples 91-93, Samples 95-97 contain toughening components and are Is (hkl) / (Iα + Iβ + Iγ) Was in the range of 0.01 to 0.30. In the grinding test, these synthetic particles showed equivalent or better abrasion resistance than the sample 70 containing no toughening component.

一方、試料74、78、82、86、90、94、98は、強靭化成分を含み、Is(hkl)/(Iα+Iβ+Iγ)の値が0.30以上であった。これらの合成粒子は、摩砕試験において、強靭化成分を含まない試料70より、耐摩砕性が劣っていた。   On the other hand, Samples 74, 78, 82, 86, 90, 94, 98 contained a toughening component, and the value of Is (hkl) / (Iα + Iβ + Iγ) was 0.30 or more. These synthetic particles were inferior in abrasion resistance in the attrition test as compared to the sample 70 containing no toughening component.

<試料99〜139>
(原料粒子の準備)
α−SiAlON(平均粒径2μm)とβ−SiAlON(平均粒径2μm)を、超硬ボールによるボールミルにて解砕、分散混合して原料粒子を得た。
<Samples 99 to 139>
(Preparation of raw material particles)
α-SiAlON (average particle size 2 μm) and β-SiAlON (average particle size 2 μm) were pulverized and dispersed and mixed by a ball mill using carbide balls to obtain raw material particles.

(原料粒子の測定)
原料粒子中のSi、Al、OおよびNの合計質量に対する、Si、Al、O、Nのそれぞれの含有率(質量%)を高周波誘導結合プラズマ発光分析法(ICP分析)、及び不活性ガス融解赤外線吸収法、不活性ガス融解熱伝導度法を用いて測定した。
(Measurement of raw material particles)
The content (mass%) of each of Si, Al, O, and N with respect to the total mass of Si, Al, O, and N in the raw material particles is determined by high frequency inductively coupled plasma atomic emission spectrometry (ICP analysis) and inert gas melting. It measured using the infrared absorption method and the inert gas melting thermal conductivity method.

α相型SiAlONの(201)面、およびβ相型SiAlONの(101)面での半値幅をX線回折法により算出した。   The full width at half maximum on the (201) plane of α-phase SiAlON and the (101) plane of β-phase SiAlON was calculated by X-ray diffraction.

結果を表4および表5に示す。
(合成粒子の作製)
次に、原料粒子300gをヒートシンク、および圧力媒体としての銅粉と混合して、鋼製容器に充填し、爆薬の爆発による衝撃圧縮法により、表4および表5に記載の圧力(10GPa〜50GPa)および温度(1000℃〜2000℃)で処理した。
The results are shown in Table 4 and Table 5.
(Production of synthetic particles)
Next, 300 g of the raw material particles are mixed with a heat sink and copper powder as a pressure medium, filled in a steel container, and subjected to the pressure (10 GPa to 50 GPa) shown in Tables 4 and 5 by an impact compression method by explosion of explosives. ) And temperature (1000 ° C. to 2000 ° C.).

衝撃圧縮処理により得られた粉末を、ボールミルにより粉砕した。次に、粉砕粉末を硝酸処理して不純物成分を除去した後に、水簸により分級回収して合成粒子を得た。   The powder obtained by the impact compression treatment was pulverized by a ball mill. Next, the pulverized powder was treated with nitric acid to remove impurity components, and then classified and recovered with a water tank to obtain synthetic particles.

(合成粒子の測定)
合成粒子をX線回折Cu−Kα線を用いたX線回折法で分析すると、γ−SiAlONに対応するX線回折線のピーク、α−SiAlONに対応するX線回折線のピーク、β−SiAlONに対応するX線回折線のピークが同定された。
(Measurement of synthetic particles)
When the synthesized particles are analyzed by X-ray diffraction using X-ray diffraction Cu-Kα ray, the peak of X-ray diffraction line corresponding to γ-SiAlON, the peak of X-ray diffraction line corresponding to α-SiAlON, β-SiAlON The peak of the X-ray diffraction line corresponding to is identified.

次に、合成粒子中のγ−SiAlONの(400)面でのX線回折線のピーク強度Iγ、α−SiAlONの(201)面でのX線回折線のピーク強度Iα、β−SiAlONの(101)面でのX線回折線のピーク強度を測定し、{(Iα+Iβ)/(Iα+Iβ+Iγ)}の値を算出した。   Next, the peak intensity Iγ of the X-ray diffraction line at the (400) plane of γ-SiAlON in the synthetic particles, the peak intensity Iα of the X-ray diffraction line at the (201) plane of α-SiAlON, ( The peak intensity of the X-ray diffraction line on the (101) plane was measured, and the value of {(Iα + Iβ) / (Iα + Iβ + Iγ)} was calculated.

さらに、合成粒子中のγ−SiAlONの(400)面でのX線回折線の半値幅を算出した。   Furthermore, the half width of the X-ray diffraction line at the (400) plane of γ-SiAlON in the synthetic particles was calculated.

合成粒子の平均粒径をレーザー式の粒度分布測定装置(マイクロトラック製MT3300EX2)を用いて測定した。   The average particle size of the synthetic particles was measured using a laser type particle size distribution measuring device (MT3300EX2 manufactured by Microtrac).

合成粒子中のSi、Al、OおよびNの合計質量に対するSi、Al、O、Nのそれぞれの含有率(質量%)を高周波誘導結合プラズマ発光分析法(ICP分析)、および不活性ガス融解赤外線吸収法、不活性ガス融解熱伝導度法を用いて測定した。   Respective contents (mass%) of Si, Al, O, and N with respect to the total mass of Si, Al, O, and N in the synthetic particles are determined by high frequency inductively coupled plasma atomic emission spectrometry (ICP analysis), and inert gas melting infrared. It was measured using an absorption method and an inert gas melting thermal conductivity method.

結果を表4および表5に示す。
(摩砕試験)
作製した合成粒子150gを、Al23ボールの入ったエタノール溶媒中で、3000rpmで回転させ、合成粒子の平均粒径D50の値が1/2になるまでの時間T(min)を測定した。Tの値が大きいほど、耐摩砕性が優れている。
The results are shown in Table 4 and Table 5.
(Grinding test)
150 g of the prepared synthetic particles were rotated at 3000 rpm in an ethanol solvent containing Al 2 O 3 balls, and the time T (min) until the average particle diameter D50 of the synthetic particles became 1/2 was measured. . The greater the value of T, the better the abrasion resistance.

結果を表4および表5に示す。   The results are shown in Table 4 and Table 5.

Figure 2013234093
Figure 2013234093

Figure 2013234093
Figure 2013234093

(評価結果)
試料99〜139の合成粒子のうち、合成粒子中のSi、Al、O、Nの合計質量に対する、Si、Al、O、Nのそれぞれの含有率が同じ合成粒子どうしを比較すると、合成粒子中のγ−SiAlONの(400)面でのX線回折線の半値幅の値が0.4°以上2.0°以下の合成粒子は、他の合成粒子に比べて、耐摩砕性が優れていた。
(Evaluation results)
Among the synthetic particles of Samples 99 to 139, when the synthetic particles having the same contents of Si, Al, O, and N with respect to the total mass of Si, Al, O, and N in the synthetic particles are compared, The synthetic particles having a half-value width of the X-ray diffraction line on the (400) plane of γ-SiAlON of 0.4 ° to 2.0 ° are superior to other synthetic particles in terms of abrasion resistance. It was.

<試料140〜185>
(原料粒子の準備)
α−SiAlON(平均粒径2μm)とβ−SiAlON(平均粒径2μm)を、表6および表7の「充填量(g)」に記載のとおり準備した。
<Samples 140 to 185>
(Preparation of raw material particles)
α-SiAlON (average particle size 2 μm) and β-SiAlON (average particle size 2 μm) were prepared as described in “filling amount (g)” in Tables 6 and 7.

(原料粒子の測定)
原料粒子中のSi、Al、OおよびNの合計質量に対する、Si、Al、O、Nのそれぞれの含有率(質量%)を高周波誘導結合プラズマ発光分析法(ICP分析)、および不活性ガス中溶融ガス分析法、不活性ガス中溶融熱伝導度法を用いて測定した。
(Measurement of raw material particles)
Respective contents (mass%) of Si, Al, O, and N with respect to the total mass of Si, Al, O, and N in the raw material particles are determined by high frequency inductively coupled plasma emission analysis (ICP analysis) and in an inert gas. Measurement was performed using a molten gas analysis method and a molten thermal conductivity method in an inert gas.

α相型SiAlONの(201)面、およびβ相型SiAlONの(101)面での半値幅をX線回折法により算出した。   The full width at half maximum on the (201) plane of α-phase SiAlON and the (101) plane of β-phase SiAlON was calculated by X-ray diffraction.

結果を表6および表7に示す。
(合成粒子の作製)
次に、原料粒子300gをヒートシンク、および圧力媒体としての銅粉と混合して、鋼製容器に充填し、爆薬の爆発による衝撃圧縮法により、40GPaの圧力および2000℃の温度で処理した。
The results are shown in Table 6 and Table 7.
(Production of synthetic particles)
Next, 300 g of raw material particles were mixed with a heat sink and copper powder as a pressure medium, filled in a steel container, and processed at a pressure of 40 GPa and a temperature of 2000 ° C. by an impact compression method using an explosive explosion.

衝撃圧縮処理により得られた粉末を、ボールミルにより粉砕した。次に、粉砕粉末を硝酸処理して不純物成分を除去した後に、水簸により分級回収して合成粒子を得た。   The powder obtained by the impact compression treatment was pulverized by a ball mill. Next, the pulverized powder was treated with nitric acid to remove impurity components, and then classified and recovered with a water tank to obtain synthetic particles.

(合成粒子の測定)
合成粒子をCu−Kα線を用いたX線回折法で分析すると、γ−SiAlONに対応するX線回折線のピーク、α−SiAlONに対応するX線回折線のピーク、β−SiAlONに対応するX線回折線のピークが同定された。
(Measurement of synthetic particles)
When the synthetic particles are analyzed by the X-ray diffraction method using Cu-Kα ray, the peak of the X-ray diffraction line corresponding to γ-SiAlON, the peak of the X-ray diffraction line corresponding to α-SiAlON, and β-SiAlON X-ray diffraction line peaks were identified.

次に、合成粒子中のγ−SiAlONの(400)面でのX線回折線のピーク強度Iγ、α−SiAlONの(201)面でのX線回折線のピーク強度Iα、β−SiAlONの(101)面でのX線回折線のピーク強度を測定し、{(Iα+Iβ)/(Iα+Iβ+Iγ)}の値を算出した。   Next, the peak intensity Iγ of the X-ray diffraction line at the (400) plane of γ-SiAlON in the synthetic particles, the peak intensity Iα of the X-ray diffraction line at the (201) plane of α-SiAlON, ( The peak intensity of the X-ray diffraction line on the (101) plane was measured, and the value of {(Iα + Iβ) / (Iα + Iβ + Iγ)} was calculated.

さらに、合成粒子中のγ−SiAlONの(400)面でのX線回折線の半値全幅を算出した。   Furthermore, the full width at half maximum of the X-ray diffraction line at the (400) plane of γ-SiAlON in the synthetic particles was calculated.

合成粒子の平均粒径をレーザー式の粒度分布測定装置(マイクロトラック製MT3300EX2)を用いて測定した。   The average particle size of the synthetic particles was measured using a laser type particle size distribution measuring device (MT3300EX2 manufactured by Microtrac).

合成粒子中のSi、Al、OおよびNの合計質量に対するSi、Al、O、Nのそれぞれの含有率(質量%)を高周波誘導結合プラズマ発光分析法(ICP分析)、および不活性ガス融解赤外線吸収法、不活性ガス融解熱伝導度法を用いて測定した。   Respective contents (mass%) of Si, Al, O, and N with respect to the total mass of Si, Al, O, and N in the synthetic particles are determined by high-frequency inductively coupled plasma atomic emission spectrometry (ICP analysis), and inert gas melting infrared. It was measured using an absorption method and an inert gas melting thermal conductivity method.

結果を表6および表7に示す。
(焼結体の作製)
得られた合成粒子と、結合材(TiN:FeNi:TiAl3:Al23=70質量%:10質量%:15質量%:5質量%の比率で含む混合粉末)とを、表6および表7の「含有率(体積%)」に記載の割合で、エタノール溶媒を用いて分散混合して混合粉を得た。該混合粉をガードル型超高圧プレスを用いて、表6および表7に記載の焼結圧力(0.1〜20GPa)および焼結温度(800〜2200℃)で60分間焼結し、焼結体を作製した。
The results are shown in Table 6 and Table 7.
(Production of sintered body)
The obtained synthetic particles and a binder (TiN: FeNi: TiAl 3 : Al 2 O 3 = mixed powder containing 70% by mass: 10% by mass: 15% by mass: 5% by mass) are shown in Table 6 and Dispersion mixing was performed using an ethanol solvent at a ratio described in “Content (volume%)” in Table 7 to obtain a mixed powder. The mixed powder is sintered using a girdle type ultra-high pressure press at a sintering pressure (0.1 to 20 GPa) and a sintering temperature (800 to 2200 ° C.) described in Tables 6 and 7 for 60 minutes and sintered. The body was made.

次いで焼結体を研磨し、その研磨面を走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いて観察し、それに付属の波長分散型X線分析(EPMA:Electron Probe Micro-Analysis)を用いて、複合焼結体の断面中におけるSiAlONと結合材成分の同定を行ない、SiAlON基粒子を100点以上包含する領域の反射電子像について、画像処理によってSiAlONの面積比率の百分率を算出した。その結果、上記の混合粉における合成粒子および結合材の配合比と、最終的に得られる複合焼結体を構成する合成粒子および結合材の体積比とは同一とみなし得た。なお、表6および表7の「焼結体の結合材の種類」の欄に記載されている化合物は、焼結体中の残部に含まれる化合物の種類を示す。   Next, the sintered body is polished, the polished surface is observed using a scanning electron microscope (SEM), and wavelength dispersive X-ray analysis (EPMA: Electron Probe Micro-Analysis) attached thereto is used. Then, SiAlON and the binder component in the cross section of the composite sintered body were identified, and the percentage of the area ratio of SiAlON was calculated by image processing for the reflected electron image of a region including 100 or more SiAlON-based particles. As a result, the mixing ratio of the synthetic particles and the binder in the above mixed powder and the volume ratio of the synthetic particles and the binder constituting the finally obtained composite sintered body could be regarded as the same. In addition, the compound described in the column of “Type of binder of sintered body” in Table 6 and Table 7 indicates the type of compound contained in the balance in the sintered body.

(切削試験)
得られた焼結体を切削に関与する部分に備える切削チップを作製した。このチップ形状は、ISO型番でCNGA120408に分類され、刃先処理を−25°の角度で、幅0.15mmのチャンファー形状とし、切刃傾き角、横すくい角、前逃げ角、横逃げ角、前切刃角、横切刃角がそれぞれ、−5°、−5°、5°、5°、5°、−5°となるようにホルダーに取り付け、切削工具を作製した。
(Cutting test)
A cutting tip provided with the obtained sintered body at a portion involved in cutting was produced. This chip shape is classified as CNGA120408 by ISO model number, and the cutting edge processing is a chamfer shape with an angle of -25 ° and a width of 0.15 mm, the cutting edge inclination angle, the side rake angle, the front clearance angle, the side clearance angle, The front cutting edge angle and the side cutting edge angle were respectively attached to the holder so as to be −5 °, −5 °, 5 °, 5 °, 5 °, and −5 °, and a cutting tool was produced.

該切削工具を用いて、以下の切削条件で連続切削を行なうことにより、工具寿命を評価した。   The tool life was evaluated by performing continuous cutting under the following cutting conditions using the cutting tool.

被削材:インコネル718の丸棒の外径加工
被削材硬度:HRC40
切削速度:V=200m/min
切り込み:d=0.2mm
送り速度:f=0.1mm/rev
クーラント:エマルジョン20倍希釈
工具寿命は、切削工具の逃げ面の最大摩耗量(VBmax)が0.2mmとなるまでの切削距離(km)によって評価した。最大摩耗量(VBmax)が0.2mm未満において欠損が生じた場合は、その欠損が生じるまでの切削距離によって評価することとした。なお、切削距離が長いほど、切削工具の耐摩耗性および耐欠損性が優れることを示している。
Work Material: Outside Diameter Processing of Inconel 718 Round Bar Work Material Hardness: HRC40
Cutting speed: V = 200 m / min
Cutting depth: d = 0.2mm
Feeding speed: f = 0.1mm / rev
Coolant: Emulsion diluted 20 times The tool life was evaluated by the cutting distance (km) until the maximum wear amount (VBmax) of the flank of the cutting tool reached 0.2 mm. When a defect occurred when the maximum wear amount (VBmax) was less than 0.2 mm, the evaluation was made based on the cutting distance until the defect occurred. In addition, it has shown that the abrasion resistance and fracture resistance of a cutting tool are excellent, so that cutting distance is long.

結果を表6および表7に示す。
<試料186〜188>
試料186〜188は、以下の焼結体を準備して、試料140〜185と同様の条件で切削試験を行った。
The results are shown in Table 6 and Table 7.
<Samples 186 to 188>
For Samples 186 to 188, the following sintered bodies were prepared, and a cutting test was performed under the same conditions as Samples 140 to 185.

試料186:α−SiAlON基セラミックス焼結体。
試料187:β−SiAlON基セラミックス焼結体。
Sample 186: α-SiAlON based ceramic sintered body.
Sample 187: β-SiAlON-based ceramic sintered body.

試料188:cBN(立方晶窒化ホウ素)基焼結体。
結果を表6および表7に示す。
Sample 188: cBN (cubic boron nitride) based sintered body.
The results are shown in Table 6 and Table 7.

Figure 2013234093
Figure 2013234093

Figure 2013234093
Figure 2013234093

(評価結果)
試料140〜185の焼結体のうち、焼結体中の合成粒子の含有率が20体積%以上95体積%以下の焼結体は、従来例である試料186、187の焼結体よりも、切削試験において、切削距離が長く、切削工具の耐摩耗性および耐欠損性が優れていた。
(Evaluation results)
Among the sintered bodies of samples 140 to 185, the sintered body having a synthetic particle content of 20 volume% or more and 95 volume% or less in the sintered body is more than the sintered bodies of samples 186 and 187, which are conventional examples. In the cutting test, the cutting distance was long, and the wear resistance and fracture resistance of the cutting tool were excellent.

一方、試料180の焼結体は、焼結体中の合成粒子の含有率が10体積%であり、従来例である試料186、187の焼結体よりも、切削試験において、切削距離が短く、切削工具の耐摩耗性および耐欠損性が劣っていた。   On the other hand, the sintered body of sample 180 has a content of synthetic particles in the sintered body of 10% by volume, and the cutting distance is shorter in the cutting test than the sintered body of samples 186 and 187, which are conventional examples. The wear resistance and fracture resistance of the cutting tool were inferior.

試料174は、合成粒子のみ(焼結体中の合成粒子の含有率が100体積%)に焼結工程を行ったが、焼結体を得ることができなかった。   For sample 174, the sintering process was performed only on the synthetic particles (the content of the synthetic particles in the sintered body was 100% by volume), but the sintered body could not be obtained.

試料146では、焼結温度が800℃と低温であったため、SiAlON基粒子や結合材間の拡散、焼結が進まず、焼結できなかった。   In the sample 146, since the sintering temperature was as low as 800 ° C., the diffusion and sintering between the SiAlON base particles and the binder did not proceed and the sintering could not be performed.

<試料189〜234>
(原料粒子の準備)
α−SiAlON(平均粒径3μm)とβ−SiAlON(平均粒径3μm)を、表8および表9の「充填量(g)」に記載のとおり準備した。超硬ボールによるボールミルにて解砕、分散混合して原料粒子を得た。
<Samples 189 to 234>
(Preparation of raw material particles)
α-SiAlON (average particle size 3 μm) and β-SiAlON (average particle size 3 μm) were prepared as described in “filling amount (g)” in Tables 8 and 9. Raw material particles were obtained by crushing, dispersing and mixing in a ball mill with carbide balls.

(原料粒子の測定)
原料粒子中のSi、Al、OおよびNの合計質量に対する、Si、Al、O、Nのそれぞれの含有率(質量%)を高周波誘導結合プラズマ発光分析法(ICP分析)、および不活性ガス融解赤外線吸収法、不活性ガス融解熱伝導度法を用いて測定した。
(Measurement of raw material particles)
Respective contents (mass%) of Si, Al, O, and N with respect to the total mass of Si, Al, O, and N in the raw material particles are determined by high frequency inductively coupled plasma atomic emission spectrometry (ICP analysis), and inert gas melting. It measured using the infrared absorption method and the inert gas melting thermal conductivity method.

α相型SiAlONの(201)面、およびβ相型SiAlONの(101)面での半値幅をX線回折法により算出した。   The full width at half maximum on the (201) plane of α-phase SiAlON and the (101) plane of β-phase SiAlON was calculated by X-ray diffraction.

結果を表8および表9に示す。
(合成粒子の作製)
次に、原料粒子300gをヒートシンク、および圧力媒体としての銅粉と混合して、鋼製容器に充填し、爆薬の爆発による衝撃圧縮法により、40GPaの圧力および2000℃の温度で処理した。
The results are shown in Table 8 and Table 9.
(Production of synthetic particles)
Next, 300 g of raw material particles were mixed with a heat sink and copper powder as a pressure medium, filled in a steel container, and processed at a pressure of 40 GPa and a temperature of 2000 ° C. by an impact compression method using an explosive explosion.

衝撃圧縮処理により得られた粉末を、ボールミルにより粉砕した。次に、粉砕粉末を硝酸処理して不純物成分を除去した後に、水簸により分級回収して合成粒子を得た。   The powder obtained by the impact compression treatment was pulverized by a ball mill. Next, the pulverized powder was treated with nitric acid to remove impurity components, and then classified and recovered with a water tank to obtain synthetic particles.

(合成粒子の測定)
合成粒子をCu−Kα線を用いたX線回折法で分析すると、γ−SiAlONに対応するX線回折線のピーク、α−SiAlONに対応するX線回折線のピーク、β−SiAlONに対応するX線回折線のピークが同定された。
(Measurement of synthetic particles)
When the synthetic particles are analyzed by the X-ray diffraction method using Cu-Kα ray, the peak of the X-ray diffraction line corresponding to γ-SiAlON, the peak of the X-ray diffraction line corresponding to α-SiAlON, and β-SiAlON X-ray diffraction line peaks were identified.

次に、合成粒子中のγ−SiAlONの(400)面でのX線回折線のピーク強度Iγ、α−SiAlONの(201)面でのX線回折線のピーク強度Iα、β−SiAlONの(101)面でのX線回折線のピーク強度を測定し、{(Iα+Iβ)/(Iα+Iβ+Iγ)}の値を算出した。   Next, the peak intensity Iγ of the X-ray diffraction line at the (400) plane of γ-SiAlON in the synthetic particles, the peak intensity Iα of the X-ray diffraction line at the (201) plane of α-SiAlON, ( The peak intensity of the X-ray diffraction line on the (101) plane was measured, and the value of {(Iα + Iβ) / (Iα + Iβ + Iγ)} was calculated.

さらに、強靭化成分に対応するX線回折線のうち、最強回折線のピーク強度Is(hkl)を測定し、{Is(hkl)/(Iα+Iβ+Iγ)}の値を算出した。   Further, among the X-ray diffraction lines corresponding to the toughening component, the peak intensity Is (hkl) of the strongest diffraction line was measured, and the value of {Is (hkl) / (Iα + Iβ + Iγ)} was calculated.

さらに、合成粒子中のγ−SiAlONの(400)面でのX線回折線の半値幅を算出した。   Furthermore, the half width of the X-ray diffraction line at the (400) plane of γ-SiAlON in the synthetic particles was calculated.

合成粒子の平均粒径をレーザー式の粒度分布測定装置(マイクロトラック製MT3300EX2)を用いて測定した。   The average particle size of the synthetic particles was measured using a laser type particle size distribution measuring device (MT3300EX2 manufactured by Microtrac).

合成粒子中のSi、Al、OおよびNの合計質量に対するSi、Al、O、Nのそれぞれの含有率(質量%)を高周波誘導結合プラズマ発光分析法(ICP分析)、および不活性ガス融解赤外線吸収法、不活性ガス融解熱伝導度法を用いて測定した。   Respective contents (mass%) of Si, Al, O, and N with respect to the total mass of Si, Al, O, and N in the synthetic particles are determined by high-frequency inductively coupled plasma atomic emission spectrometry (ICP analysis), and inert gas melting infrared. It was measured using an absorption method and an inert gas melting thermal conductivity method.

結果を表8および表9に示す。
(焼結体の作製)
得られた合成粒子と、下記(1)〜(12)の各種結合材、
(1) TiN:TiAl3:Al23:TiB2=77質量%:15質量%:5質量%:3質量%の割合で含む混合粉末。試料189〜209で使用。
(2) TiCN:TiAl3:Al23:TiB2=77質量%:15質量%:5質量%:3質量%の割合で含む混合粉末。試料210〜214で使用。
(3) TiZrCN:TiAl3:Al23:TiB2=77質量%:15質量%:5質量%:3質量%の割合で含む混合粉末。試料215〜219で使用。
(4) TiCN:Al23:Ti2AlN:Y23=77質量%:15質量%:5質量%:3質量%の割合で含む混合粉末。試料220〜222で使用。
(5) TiCN:Al23:Ti2AlN:CaO=77質量%:15質量%:5質量%:3質量%の割合で含む混合粉末。試料223で使用。
(6) TiCN:Al23:Ti2AlN:FeSi=77質量%:15質量%:5質量%:3質量%の割合で含む混合粉末。試料224で使用。
(7) TiCN:Al23:Ti2AlN:TiSi=77質量%:15質量%:5質量%:3質量%の割合で含む混合粉末。試料225で使用。
(8) TiCN:Al23:Ti2AlN:AlN=77質量%:15質量%:5質量%:3質量%の割合で含む混合粉末。試料226で使用。
(9) TiCN:Al23:Ti2AlN:cAlN(立方晶窒化アルミニウム)=77質量%:15質量%:5質量%:3質量%の割合で含む混合粉末。試料227で使用。
(10) TiCN:Al23:Ti2AlN:hBN(六方晶窒化ホウ素)=77質量%:15質量%:5質量%:3質量%の割合で含む混合粉末。試料228で使用。
(11) TiCN:Al23:Ti2AlN:cBN(立方晶窒化ホウ素)=77質量%:15質量%:5質量%:3質量%の割合で含む混合粉末。試料229で使用。
(12) TiCN:Al23:Ti2AlN:AlN:cBN(立方晶窒化ホウ素)=77質量%:12質量%:5質量%:3質量%:3質量%の割合で含む混合粉末。試料230〜234で使用。
とを、表8および表9の「含有率(体積%)」に記載の割合で、エタノール溶媒を用いて分散混合して混合粉を得た。該混合粉をガードル型超高圧プレスを用いて、6GPaの圧力および表8および表9に記載の温度(800〜2000℃)条件下で120分間焼結し、焼結体を作製した。
The results are shown in Table 8 and Table 9.
(Production of sintered body)
The obtained synthetic particles and various binders (1) to (12) below,
(1) A mixed powder containing TiN: TiAl 3 : Al 2 O 3 : TiB 2 = 77% by mass: 15% by mass: 5% by mass: 3% by mass. Used with samples 189-209.
(2) A mixed powder containing TiCN: TiAl 3 : Al 2 O 3 : TiB 2 = 77% by mass: 15% by mass: 5% by mass: 3% by mass. Used with samples 210-214.
(3) Mixed powder containing TiZrCN: TiAl 3 : Al 2 O 3 : TiB 2 = 77% by mass: 15% by mass: 5% by mass: 3% by mass. Used with samples 215-219.
(4) Mixed powder containing TiCN: Al 2 O 3 : Ti 2 AlN: Y 2 O 3 = 77% by mass: 15% by mass: 5% by mass: 3% by mass. Used with samples 220-222.
(5) Mixed powder containing TiCN: Al 2 O 3 : Ti 2 AlN: CaO = 77% by mass: 15% by mass: 5% by mass: 3% by mass. Used with sample 223.
(6) Mixed powder containing TiCN: Al 2 O 3 : Ti 2 AlN: FeSi = 77% by mass: 15% by mass: 5% by mass: 3% by mass. Used with sample 224.
(7) Mixed powder containing TiCN: Al 2 O 3 : Ti 2 AlN: TiSi = 77% by mass: 15% by mass: 5% by mass: 3% by mass. Used with sample 225.
(8) A mixed powder containing TiCN: Al 2 O 3 : Ti 2 AlN: AlN = 77% by mass: 15% by mass: 5% by mass: 3% by mass. Used with sample 226.
(9) Mixed powder containing TiCN: Al 2 O 3 : Ti 2 AlN: cAlN (cubic aluminum nitride) = 77% by mass: 15% by mass: 5% by mass: 3% by mass. Used with sample 227.
(10) Mixed powder containing TiCN: Al 2 O 3 : Ti 2 AlN: hBN (hexagonal boron nitride) = 77% by mass: 15% by mass: 5% by mass: 3% by mass. Used with sample 228.
(11) A mixed powder containing TiCN: Al 2 O 3 : Ti 2 AlN: cBN (cubic boron nitride) = 77% by mass: 15% by mass: 5% by mass: 3% by mass. Used with sample 229.
(12) A mixed powder containing TiCN: Al 2 O 3 : Ti 2 AlN: AlN: cBN (cubic boron nitride) = 77% by mass: 12% by mass: 5% by mass: 3% by mass: 3% by mass. Used with samples 230-234.
Were dispersed and mixed using an ethanol solvent at a ratio described in “Content (volume%)” of Table 8 and Table 9 to obtain a mixed powder. The mixed powder was sintered for 120 minutes using a girdle type ultra-high pressure press under a pressure of 6 GPa and a temperature (800 to 2000 ° C.) described in Table 8 and Table 9 to prepare a sintered body.

次いで焼結体を研磨し、その研磨面を走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いて観察し、それに付属の波長分散型X線分析(EPMA:Electron Probe Micro-Analysis)を用いて、複合焼結体の断面中におけるSiAlONと結合材成分の同定を行ない、SiAlON基粒子を100点以上包含する領域の反射電子像について、画像処理によってSiAlONの面積比率の百分率を算出した。その結果、上記の混合粉における合成粒子および結合材の配合比と、最終的に得られる複合焼結体を構成する合成粒子および結合材の体積比とは同一とみなし得た。なお、表8および表9の「焼結体の結合材の種類」の欄に記載されている化合物は、焼結体中の残部に含まれる化合物の種類を示す。   Next, the sintered body is polished, the polished surface is observed using a scanning electron microscope (SEM), and wavelength dispersive X-ray analysis (EPMA: Electron Probe Micro-Analysis) attached thereto is used. Then, SiAlON and the binder component in the cross section of the composite sintered body were identified, and the percentage of the area ratio of SiAlON was calculated by image processing for the reflected electron image of a region including 100 or more SiAlON-based particles. As a result, the mixing ratio of the synthetic particles and the binder in the above mixed powder and the volume ratio of the synthetic particles and the binder constituting the finally obtained composite sintered body could be regarded as the same. In addition, the compound described in the column of “Type of binder of sintered body” in Table 8 and Table 9 indicates the type of compound contained in the balance in the sintered body.

(切削試験)
得られた焼結体を切削に関与する部分に備える切削チップを作製した。このチップ形状は、ISO型番でCNGA120408に分類され、刃先処理を−25°の角度で、幅0.15mmのチャンファー形状とし、切刃傾き角、横すくい角、前逃げ角、横逃げ角、前切刃角、横切刃角がそれぞれ、−5°、−5°、5°、5°、5°、−5°となるようにホルダーに取り付け、切削工具を作製した。
(Cutting test)
A cutting tip provided with the obtained sintered body at a portion involved in cutting was produced. This chip shape is classified as CNGA120408 by ISO model number, and the cutting edge processing is a chamfer shape with an angle of -25 ° and a width of 0.15 mm, the cutting edge inclination angle, the side rake angle, the front clearance angle, the side clearance angle, The front cutting edge angle and the side cutting edge angle were respectively attached to the holder so as to be −5 °, −5 °, 5 °, 5 °, 5 °, and −5 °, and a cutting tool was produced.

該切削工具を用いて、以下の切削条件で連続切削を行なうことにより、工具寿命を評価した。   The tool life was evaluated by performing continuous cutting under the following cutting conditions using the cutting tool.

被削材:インコネル718の丸棒の外径加工
被削材硬度:HRC40
切削速度:V=200m/min
切り込み:d=0.2mm
送り速度:f=0.1mm/rev
クーラント:エマルジョン20倍希釈
工具寿命は、切削工具の逃げ面の最大摩耗量(VBmax)が0.2mmとなるまでの切削距離(km)によって評価した。最大摩耗量(VBmax)が0.2mm未満において欠損が生じた場合は、その欠損が生じるまでの切削距離によって評価することとした。なお、切削距離が長いほど、切削工具の耐摩耗性および耐欠損性が優れることを示している。
Work Material: Outside Diameter Processing of Inconel 718 Round Bar Work Material Hardness: HRC40
Cutting speed: V = 200 m / min
Cutting depth: d = 0.2mm
Feeding speed: f = 0.1mm / rev
Coolant: Emulsion diluted 20 times The tool life was evaluated by the cutting distance (km) until the maximum wear amount (VBmax) of the flank of the cutting tool reached 0.2 mm. When a defect occurred when the maximum wear amount (VBmax) was less than 0.2 mm, the evaluation was made based on the cutting distance until the defect occurred. In addition, it has shown that the abrasion resistance and fracture resistance of a cutting tool are excellent, so that cutting distance is long.

結果を表8および表9に示す。   The results are shown in Table 8 and Table 9.

Figure 2013234093
Figure 2013234093

Figure 2013234093
Figure 2013234093

<試料235〜237>
試料235〜237は、以下の焼結体を準備して、試料189〜234と同様の条件で切削試験を行った。
<Samples 235 to 237>
For samples 235 to 237, the following sintered bodies were prepared, and a cutting test was performed under the same conditions as samples 189 to 234.

試料235:α−SiAlON基セラミックス焼結体。
試料236:β−SiAlON基セラミックス焼結体。
Sample 235: α-SiAlON based ceramic sintered body.
Sample 236: β-SiAlON-based ceramic sintered body.

試料237:cBN(立方晶窒化ホウ素)基焼結体。
結果を表8および表9に示す。
Sample 237: cBN (cubic boron nitride) -based sintered body.
The results are shown in Table 8 and Table 9.

(評価結果)
試料189〜234の焼結体は、焼結体中の合成粒子の含有率が80体積%であり、結合材としてTiN、Al23、TiB2、TiCN、TiZrCN、TiAl3、Ti2AlN、Y23、CaO、FeSi、TiSi、AlN、cAlN、hBN、cBNの少なくともいずれかを用い、残部にTiN、Al23、TiB2、TiCN、TiZrCN、Y23、CaO、FeSi、TiSi、AlN、cAlN、hBN、cBNの少なくともいずれかを含む。これらの焼結体は、焼結工程を行っても焼結体を得られなかった試料195および試料223を除き、従来例である試料235、236の焼結体よりも、切削試験において、切削距離が長く、切削工具の耐摩耗性および耐欠損性が優れていた。
(Evaluation results)
The sintered bodies of Samples 189 to 234 have a synthetic particle content of 80% by volume in the sintered bodies, and TiN, Al 2 O 3 , TiB 2 , TiCN, TiZrCN, TiAl 3 , and Ti 2 AlN are used as binders. , Y 2 O 3 , CaO, FeSi, TiSi, AlN, cAlN, hBN, cBN, and the balance is TiN, Al 2 O 3 , TiB 2 , TiCN, TiZrCN, Y 2 O 3 , CaO, FeSi , TiSi, AlN, cAlN, hBN, cBN. These sintered bodies were cut in the cutting test in comparison with the sintered bodies of the conventional samples 235 and 236 except for the sample 195 and the sample 223 in which the sintered body was not obtained even after the sintering process. The distance was long, and the wear resistance and fracture resistance of the cutting tool were excellent.

以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。   Although the embodiments and examples of the present invention have been described as described above, it is also planned from the beginning to appropriately combine the configurations of the above-described embodiments and examples.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (10)

α相型SiAlONおよびβ相型SiAlONの少なくともいずれかと、γ相型SiAlONとを含むSiAlON基粒子であって、
前記SiAlON基粒子は、エタノール溶媒に超音波分散させた際の平均粒径が0.1μm以上100μm以下であり、
前記SiAlON基粒子は、前記SiAlON基粒子中のケイ素、アルミニウム、酸素、および窒素の合計質量に対して、ケイ素を18.68質量%以上59.33質量%以下、アルミニウムを0.96質量%以上38.72質量%以下、酸素を2.08質量%以上24.44質量%以下、および窒素を18.16質量%以上37.63質量%以下の範囲で含み、
X線回折法による前記α相型SiAlONの(201)面でのX線回折線のピーク強度Iα、X線回折法による前記β相型SiAlONの(101)面でのX線回折線のピーク強度Iβ、およびX線回折法による前記γ相型SiAlONの(400)面でのX線回折線のピーク強度Iγが、下記式(I)で表わされる、SiAlON基粒子。
0.09≦(Iα+Iβ)/(Iα+Iβ+Iγ)≦0.88 (I)
SiAlON-based particles containing at least one of α-phase SiAlON and β-phase SiAlON and γ-phase SiAlON,
The SiAlON base particles have an average particle size of 0.1 μm or more and 100 μm or less when ultrasonically dispersed in an ethanol solvent,
The SiAlON group particles are 18.68% by mass or more and 59.33% by mass or less of silicon and 0.96% by mass or more of aluminum with respect to the total mass of silicon, aluminum, oxygen, and nitrogen in the SiAlON group particles. 38.72% by mass or less, oxygen in the range of 2.08% by mass to 24.44% by mass, and nitrogen in the range of 18.16% by mass to 37.63% by mass,
X-ray diffraction line peak intensity Iα at the (201) plane of the α-phase type SiAlON by X-ray diffraction method, X-ray diffraction line peak intensity at the (101) plane of the β-phase type SiAlON by X-ray diffraction method SiAlON-based particles in which the peak intensity Iγ of the X-ray diffraction line on the (400) plane of the γ-phase SiAlON by Iβ and the X-ray diffraction method is represented by the following formula (I).
0.09 ≦ (Iα + Iβ) / (Iα + Iβ + Iγ) ≦ 0.88 (I)
前記SiAlON基粒子は、前記SiAlON基粒子中のケイ素、アルミニウム、酸素、および窒素の合計質量に対して、ケイ素を34.71質量%以上58.29質量%以下、アルミニウムを1.93質量%以上23.83質量%以下、酸素を2.65質量%以上15.62質量%以下、および窒素を25.84質量%以上37.13質量%以下の範囲で含み、
前記Iα、前記Iβ、前記Iγが下記式(II)の関係で表わされる、請求項1に記載のSiAlON基粒子。
0.13≦(Iα+Iβ)/(Iα+Iβ+Iγ)≦0.82 (II)
The SiAlON group particles are 34.71% by mass or more and 58.29% by mass or less of silicon and 1.93% by mass or more of aluminum with respect to the total mass of silicon, aluminum, oxygen and nitrogen in the SiAlON group particles. 23.83% by mass or less, oxygen in a range of 2.65% by mass to 15.62% by mass, and nitrogen in a range of 25.84% by mass to 37.13% by mass,
2. The SiAlON-based particle according to claim 1, wherein Iα, Iβ, and Iγ are represented by a relationship of the following formula (II).
0.13 ≦ (Iα + Iβ) / (Iα + Iβ + Iγ) ≦ 0.82 (II)
前記SiAlON基粒子は、前記SiAlON基粒子中のケイ素、アルミニウム、酸素、および窒素の合計質量に対して、ケイ素を45.02質量%以上57.26質量%以下、アルミニウムを2.89質量%以上14.61質量%以下、酸素を2.84質量%以上10.2質量%以下、および窒素を30.17質量%以上36.63質量%以下の範囲で含み、
前記Iα、前記Iβ、前記Iγが下記式(III)で表わされる、請求項1または2に記載のSiAlON基粒子。
0.18≦(Iα+Iβ)/(Iα+Iβ+Iγ)≦0.75 (III)
The SiAlON group particles are 45.02% by mass or more and 57.26% by mass or less of silicon and 2.89% by mass or more of aluminum with respect to the total mass of silicon, aluminum, oxygen and nitrogen in the SiAlON group particles. 14.61% by mass or less, oxygen in a range of 2.84% by mass to 10.2% by mass, and nitrogen in a range of 30.17% by mass to 36.63% by mass,
The SiAlON group particle according to claim 1 or 2, wherein the Iα, the Iβ, and the Iγ are represented by the following formula (III).
0.18 ≦ (Iα + Iβ) / (Iα + Iβ + Iγ) ≦ 0.75 (III)
前記SiAlON基粒子は強靭化成分をさらに含み、
前記強靭化成分は、ホウ素、炭素、マグネシウム、カルシウム、イットリウム、鉄、ニッケル、コバルト、周期律表の第4a族元素、第5a族元素、第6a族元素、Si34、AlON、AlNおよびAl23の中から選ばれる少なくとも1種を含み、
前記Iα、前記Iβ、前記Iγ、およびX線回折法による前記強靭化成分の最強回折線のピーク強度Is(hkl)が、下記式(IV)で表わされる、請求項1〜3のいずれかに記載のSiAlON基粒子。
0.01≦Is(hkl)/(Iα+Iβ+Iγ)≦0.3 (IV)
The SiAlON-based particles further include a toughening component;
The toughening component includes boron, carbon, magnesium, calcium, yttrium, iron, nickel, cobalt, Group 4a element, Group 5a element, Group 6a element of the periodic table, Si 3 N 4 , AlON, AlN and Including at least one selected from Al 2 O 3 ,
The peak intensity Is (hkl) of the strongest diffraction line of the toughening component according to the Iα, the Iβ, the Iγ, and the X-ray diffraction method is represented by the following formula (IV): The SiAlON-based particles as described.
0.01 ≦ Is (hkl) / (Iα + Iβ + Iγ) ≦ 0.3 (IV)
前記Iα、前記Iβ、前記Iγ、および前記Is(hkl)が、下記式(V)で表わされる、請求項4に記載のSiAlON基粒子。
0.01≦Is(hkl)/(Iα+Iβ+Iγ)≦0.2 (V)
The SiAlON-based particle according to claim 4, wherein the Iα, the Iβ, the Iγ, and the Is (hkl) are represented by the following formula (V).
0.01 ≦ Is (hkl) / (Iα + Iβ + Iγ) ≦ 0.2 (V)
X線回折法による前記γ相型SiAlONの(400)面でのX線回折線の半値幅が、0.4°以上2.0°以下である、請求項1〜5のいずれかに記載のSiAlON基粒子。   The half width of the X-ray diffraction line at the (400) plane of the γ-phase SiAlON by X-ray diffraction method is 0.4 ° or more and 2.0 ° or less. SiAlON based particles. 請求項1〜6のいずれかに記載のSiAlON基粒子を20体積%以上95体積%以下含む、焼結体。   The sintered compact containing 20 volume% or more and 95 volume% or less of SiAlON base particles in any one of Claims 1-6. 前記焼結体は、前記SiAlON基粒子および残部からなり、
前記残部はアルミニウム、ホウ素、ケイ素、鉄、ニッケル、コバルト、マグネシウム、カルシウム、イットリウム、ならびに周期律表の第4a族元素、第5a族元素および第6a族元素よりなる群から選ばれる少なくとも1種の元素と、炭素、窒素、酸素およびホウ素よりなる群から選ばれる少なくとも1種の元素とからなる少なくとも1種の化合物、ならびに前記化合物の固溶体よりなる群から選ばれる少なくとも1種を含む、
請求項7に記載の焼結体。
The sintered body consists of the SiAlON base particles and the balance,
The balance is at least one selected from the group consisting of aluminum, boron, silicon, iron, nickel, cobalt, magnesium, calcium, yttrium, and Group 4a, 5a and 6a elements of the Periodic Table Including at least one compound selected from the group consisting of an element and at least one element selected from the group consisting of carbon, nitrogen, oxygen and boron, and a solid solution of the compound,
The sintered body according to claim 7.
前記残部は、AlNおよびBNの少なくとも1種を含む、請求項8に記載の焼結体。   The sintered body according to claim 8, wherein the remaining portion includes at least one of AlN and BN. 請求項7〜9のいずれかに記載の焼結体を用いた工具。   The tool using the sintered compact in any one of Claims 7-9.
JP2012107863A 2012-05-09 2012-05-09 SiAlON base particles, sintered body and tool Expired - Fee Related JP5880267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012107863A JP5880267B2 (en) 2012-05-09 2012-05-09 SiAlON base particles, sintered body and tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012107863A JP5880267B2 (en) 2012-05-09 2012-05-09 SiAlON base particles, sintered body and tool

Publications (2)

Publication Number Publication Date
JP2013234093A true JP2013234093A (en) 2013-11-21
JP5880267B2 JP5880267B2 (en) 2016-03-08

Family

ID=49760515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012107863A Expired - Fee Related JP5880267B2 (en) 2012-05-09 2012-05-09 SiAlON base particles, sintered body and tool

Country Status (1)

Country Link
JP (1) JP5880267B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060685A (en) * 2014-09-22 2016-04-25 住友電気工業株式会社 Cubic crystal type sialon, sintered body, tool with sintered body, manufacturing method of cubic crystal type sialon and manufacturing method of sintered body
WO2022210760A1 (en) * 2021-03-31 2022-10-06 三菱マテリアル株式会社 Drilling tip and drilling tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446061A (en) * 1990-06-11 1992-02-17 Hitachi Metals Ltd Sliding member
JP2002265205A (en) * 2001-03-09 2002-09-18 National Institute For Materials Science Method for separating and purifying spinel type sialon
JP2011121822A (en) * 2009-12-11 2011-06-23 Sumitomo Electric Ind Ltd Sintered compact, cutting tool using sintered compact and method for manufacturing sintered compact
JP2011256067A (en) * 2010-06-08 2011-12-22 Sumitomo Electric Ind Ltd Sintered compact, cutting tool using the same, and method of producing the sintered compact

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446061A (en) * 1990-06-11 1992-02-17 Hitachi Metals Ltd Sliding member
JP2002265205A (en) * 2001-03-09 2002-09-18 National Institute For Materials Science Method for separating and purifying spinel type sialon
JP2011121822A (en) * 2009-12-11 2011-06-23 Sumitomo Electric Ind Ltd Sintered compact, cutting tool using sintered compact and method for manufacturing sintered compact
JP2011256067A (en) * 2010-06-08 2011-12-22 Sumitomo Electric Ind Ltd Sintered compact, cutting tool using the same, and method of producing the sintered compact

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060685A (en) * 2014-09-22 2016-04-25 住友電気工業株式会社 Cubic crystal type sialon, sintered body, tool with sintered body, manufacturing method of cubic crystal type sialon and manufacturing method of sintered body
WO2022210760A1 (en) * 2021-03-31 2022-10-06 三菱マテリアル株式会社 Drilling tip and drilling tool

Also Published As

Publication number Publication date
JP5880267B2 (en) 2016-03-08

Similar Documents

Publication Publication Date Title
KR101226376B1 (en) Cubic boron nitride compact
JP5189504B2 (en) Composite sintered body
JP6256169B2 (en) Cubic boron nitride composite sintered body, method for producing the same, cutting tool, wear-resistant tool, and grinding tool
JP6265103B2 (en) Sintered body
JP5499718B2 (en) Sintered body and cutting tool using the sintered body
JP2017014084A (en) Cubic crystal boron nitride sintered body, method of producing cubic crystal boron nitride sintered body, tool and cutting tool
US10870154B2 (en) Sintered body and cutting tool
KR102587409B1 (en) Sintered body and cutting tool
JP6291986B2 (en) Cubic boron nitride composite sintered body, method for producing the same, cutting tool, wear-resistant tool, and grinding tool
JP5880267B2 (en) SiAlON base particles, sintered body and tool
JP2004026555A (en) Cubic boron nitride-containing sintered compact and method for producing the same
JP5499717B2 (en) Sintered body and cutting tool using the sintered body
JP2011098875A (en) Cubic boron nitride sintered compact
Xue et al. In situ high pressure synthesis of cBN-based composites
JP4106586B2 (en) Boride sintered body and manufacturing method thereof
JP2014141359A (en) Sialon-base sintered compact
JP6409441B2 (en) Cubic sialon, sintered body, tool including sintered body, method for manufacturing cubic sialon, and method for manufacturing sintered body
JP6365228B2 (en) Sintered body
JP2002029845A (en) Super-hard sintered compact
JP3411593B2 (en) Cubic boron nitride sintered body for cutting tools
JP2003192441A (en) Boride sintered compact
JP2013053025A (en) Composite sintered body and composite sintered body tool using the same
JP2014111542A (en) Sintered compact, and cutting tool using the sintered compact
JP2013053024A (en) Composite sintered body and composite sintered body tool using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R150 Certificate of patent or registration of utility model

Ref document number: 5880267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees