JP2003192441A - Boride sintered compact - Google Patents

Boride sintered compact

Info

Publication number
JP2003192441A
JP2003192441A JP2001386739A JP2001386739A JP2003192441A JP 2003192441 A JP2003192441 A JP 2003192441A JP 2001386739 A JP2001386739 A JP 2001386739A JP 2001386739 A JP2001386739 A JP 2001386739A JP 2003192441 A JP2003192441 A JP 2003192441A
Authority
JP
Japan
Prior art keywords
boride
sintered body
particles
borides
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001386739A
Other languages
Japanese (ja)
Other versions
JP4048410B2 (en
Inventor
Shinya Kamisaka
伸哉 上坂
Hitoshi Sumiya
均 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001386739A priority Critical patent/JP4048410B2/en
Publication of JP2003192441A publication Critical patent/JP2003192441A/en
Application granted granted Critical
Publication of JP4048410B2 publication Critical patent/JP4048410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a boride sintered compact which is sintered by using a binder, is provided with wear resistance required, e.g. for cutting heat-treated steel, and can reduce the working cost of steel or the like. <P>SOLUTION: The boride sintered compact contains Al, one element M selected from the groups Ia and IIa in the Periodic Table, and borides consisting of boron. The boride sintered compact has a composition consisting of 50 to 75 vol.% borides expressed by AlX<SB>1</SB>M<SB>y</SB><SB>1</SB>BZ<SB>12</SB>, and the balance bonding phase with inevitable impurities. The bonding phase consists of at least one kind selected from the carbides, nitrides, carbonitrides and borides of the group IVa, Va and VIa metals or a compound of their solid solutions. The borides expressed by AlX<SB>1</SB>M<SB>y</SB><SB>1</SB>BZ<SB>12</SB>are mutually joined via the above bonding phase in the structure of the sintered compact. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は耐摩耗材料や切削工
具に好適な硼化物焼結体に関するものである。特に、鋼
や鋳鉄の加工・耐摩工具や切削工具に最適な高硬度の硼
化物焼結体に関するものである。
TECHNICAL FIELD The present invention relates to a boride sintered body suitable for wear resistant materials and cutting tools. In particular, it relates to a high-hardness boride sintered body that is most suitable for machining and wear-resisting tools and cutting tools for steel and cast iron.

【0002】[0002]

【従来の技術】切削工具に用いられるAl2O3やSi3N4から
なるセラミック工具は硬度がHv1600〜2400と高く、鉄系
材料の切削においては良好な耐摩耗性を示すが、靭性に
乏しい。そのため、被削性の良い鋳鉄の切削には使用さ
れるが、鋼の切削においては耐欠損性の低下により十分
な寿命を得られていない。
2. Description of the Related Art Ceramic tools made of Al 2 O 3 and Si 3 N 4 used for cutting tools have a high hardness of Hv 1600 to 2400 and show good wear resistance when cutting iron-based materials, but have a toughness. poor. Therefore, although it is used for cutting cast iron with good machinability, in cutting steel, a sufficient life cannot be obtained due to a decrease in fracture resistance.

【0003】また、超硬合金工具は、その焼結体硬度が
Hv1500〜2000とセラミックより低く、さらに金属Coを含
むため、熱処理によりHRc40程度まで高硬度化させた鋼
の切削においては耐摩耗性、耐欠損性に劣り、十分な工
具寿命が得られない。
Cemented carbide tools have a sintered body hardness of
Hv1500 to 2000, which is lower than that of ceramics, and further contains metallic Co. Therefore, when cutting steel hardened to a hardness of about HRc40 by heat treatment, wear resistance and fracture resistance are poor and sufficient tool life cannot be obtained.

【0004】一方、高硬度な切削工具としてcBN焼結体
があり、焼き入れによりHRc50以上に高硬度化された焼
入鋼の切削においては高い性能を示すことが知られてい
る。また、cBN焼結体はHRc30〜50の一般的な熱処理鋼の
切削でも、セラミック工具や超硬合金工具と同等以上の
寿命を持つ。しかし、製造コストの高い超高圧高温発生
装置を用いて超高圧下で合成されるcBNを原料としてお
り、さらに超高圧下で焼結されるために工具単価が高
く、加工コストが高くなるために一般的に使用されてい
ない。
On the other hand, there is a cBN sintered body as a high-hardness cutting tool, and it is known to show high performance in cutting hardened steel hardened to a hardness of HRc50 or higher by quenching. In addition, cBN sintered bodies have a life equivalent to or longer than that of ceramic tools and cemented carbide tools, even when cutting general heat-treated steel with HRc 30 to 50. However, because cBN, which is synthesized under ultra-high pressure using an ultra-high-pressure high-temperature generator with high manufacturing cost, is used as the raw material, and because it is sintered under ultra-high pressure, the tool unit price is high and the processing cost is high. Not commonly used.

【0005】これに対し、H.WerheitらのJournal of
Alloys and Compounds,202(1993)269-281には、Al
を含む3元硼化物として、AlLiB14の単結晶の硬度がHv29
50、AlMgB14の単結晶の硬度がHv2790と高い硬度を有す
ることが示されている。この論文は、多量のアルミニウ
ム融液中にマグネシウムと硼素を溶解し、結晶を析出さ
せる方法を開示している。
On the other hand, the Journal of H. Werheit et al.
Alloys and Compounds, 202 (1993) 269-281, Al
As a ternary boride containing, the hardness of a single crystal of AlLiB 14 is Hv29.
It is shown that the hardness of the single crystal of 50 and AlMgB 14 is as high as Hv2790. This paper discloses a method of dissolving magnesium and boron in a large amount of aluminum melt to precipitate crystals.

【0006】また、別の従来技術としてUSP6099605に記
載の技術が知られている。この公報はAl、Mg、B元素の
粉末を化学量論組成で配合後、メカニカルアロイング法
を用いて微細化した後に、30重量%のTiB2を加えてホッ
トプレスで焼結することにより、Hv3800-4600の高硬度
焼結体が得られることを示している。
The technique described in USP6099605 is known as another conventional technique. This publication discloses that Al, Mg, and B element powders are blended in a stoichiometric composition, and after being refined by a mechanical alloying method, 30% by weight of TiB 2 is added and sintered by hot pressing. It shows that a high hardness sintered body of Hv3800-4600 can be obtained.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記の論文と
USPに開示される技術では次のような問題があった。前
記論文の技術では、緻密で不純物の少ない焼結体を得る
ことができないという問題がある。この論文の技術は、
数十μm以上のAlMgB14粒子が生成できる。より具体的に
は、粒径が最小でも50μmであり、最大では2mmに達す
る。しかし、AlMgB14は難焼結性であり、このような粗
粒の粉末からは緻密な焼結体を得ることができない。
[Problems to be Solved by the Invention]
The technology disclosed in USP has the following problems. The technique of the above-mentioned paper has a problem that it is not possible to obtain a dense sintered body containing a small amount of impurities. The technique of this paper is
AlMgB 14 particles of several tens of μm or more can be generated. More specifically, the minimum particle size is 50 μm and the maximum reaches 2 mm. However, AlMgB 14 is difficult to sinter, and a dense sintered body cannot be obtained from such coarse particles.

【0008】また、このような粗粒を微細化し、高圧高
温装置を用いれば緻密な焼結体を得ることができる。し
かし、粗粒を粉砕するには微細化に長時間を要し、粉砕
容器や粉砕媒体(ボールなど)から不純物が3重量%以
上と多量に混入して、組成の制御が困難である。さら
に、このようにして得られた焼結体は靭性が低いため、
HRc40以上の硬度を有する鋼材では連続切削を行なって
も欠損が生じて十分な性能を得られない。
Further, if such coarse particles are made fine and a high pressure and high temperature apparatus is used, a dense sintered body can be obtained. However, it takes a long time to reduce the size of coarse particles, and it is difficult to control the composition because impurities such as 3% by weight or more are mixed in from the grinding container or the grinding medium (balls). Furthermore, since the sintered body thus obtained has low toughness,
A steel material having a hardness of HRc40 or more does not have sufficient performance due to chipping even after continuous cutting.

【0009】一方、USP6099605に記載の技術では、不純
物の混入により十分な硬度と靭性を具える焼結体を得る
ことができないと言う問題がある。鋼製の粉砕ボールと
Al、Mg、Bの原料粉末を入れた高エネルギータイプの粉
砕装置でメカニカルアロイングを行なうため、粉砕ボー
ルや容器材質の不純物混入が避けられない。そのため、
鉄と原料硼素が反応して、FeB49が生成し混入している
ことが確認されている。このような鉄の硼化物は脆性材
料であると共に鋼材との反応性が高いため、この焼結体
を切削工具として用いた場合に刃先の耐摩耗性と耐欠損
性のいずれをも低下させる問題がある。
On the other hand, the technique described in USP6099605 has a problem in that it is impossible to obtain a sintered body having sufficient hardness and toughness due to the inclusion of impurities. With steel crushing balls
Since mechanical alloying is performed with a high energy type pulverizer containing raw material powders of Al, Mg and B, it is unavoidable that impurities are mixed in the pulverization ball and the container material. for that reason,
It has been confirmed that iron reacts with the raw material boron to produce FeB 49, which is mixed therein. Since such a boride of iron is a brittle material and has a high reactivity with steel materials, when using this sintered body as a cutting tool, both the wear resistance and fracture resistance of the cutting edge are reduced. There is.

【0010】また、メカニカルアロイングでは酸化反応
が生じやすく、さらに急激な酸化反応による爆発の恐れ
があるために、LiやNa等のIa、IIa族金属を含む混合原
料を微細化して焼結体を得ることは実質的に不可能であ
る。
In mechanical alloying, an oxidative reaction is likely to occur, and there is a risk of explosion due to a rapid oxidative reaction. Therefore, a mixed raw material containing a group Ia or IIa metal such as Li or Na is miniaturized into a sintered body. Is virtually impossible to obtain.

【0011】従って、本発明の主目的は、熱処理した鋼
の切削等に必要な耐摩耗性を具え、鋼等の加工コストを
低減させることのできる、結合材を用いて焼結した硼化
物焼結体を提供することにある。
Therefore, the main object of the present invention is to obtain a boride sintered by using a binder, which has the wear resistance required for cutting of heat-treated steel and can reduce the processing cost of steel and the like. To provide a union.

【0012】[0012]

【課題を解決するための手段】本発明は、結合材の組成
や原料の粒径を規定することで上記の目的を達成する。
The present invention achieves the above object by defining the composition of the binder and the particle size of the raw material.

【0013】すなわち、本発明の硼化物焼結体は、Al
と、周期律表IaおよびIIa族から選ばれる一つの元素M
と、硼素とからなる硼化物を含む硼化物焼結体である。
前記硼化物焼結体は、組成がAlX≦1My≦1BZ≧12で表さ
れる硼化物が50〜75体積%と残部が結合相と不可避不純
物とからなる。前記結合相はIVa、Va、VIa族金属の炭化
物、窒化物、炭窒化物および硼化物から選ばれる少なく
とも1種またはこれらの固溶体化合物からなる。そし
て、AlX≦1My≦1BZ≧12で表される硼化物が焼結体組織
中で前記結合相を介して相互に接合されていることを特
徴とする。
That is, the boride sintered body of the present invention is made of Al
And an element M selected from the groups Ia and IIa of the periodic table
And a boride sintered body containing a boride composed of boron.
The boride sintered body is composed of 50 to 75% by volume of boride having a composition of Al X ≤ 1 M y ≤ 1 B Z ≥ 12 , and the balance is a binder phase and inevitable impurities. The binder phase is composed of at least one selected from carbides, nitrides, carbonitrides and borides of Group IVa, Va and VIa metals, or a solid solution compound thereof. The boride represented by Al X ≤ 1 M y ≤ 1 B Z ≥ 12 is bonded to each other through the binder phase in the structure of the sintered body.

【0014】従来、組成がAlX≦1My≦1BZ≧12で表され
る硼化物を含む焼結体は、不可避不純物を除いてAlX≦1
My≦1BZ≧12のみからなる焼結体であるか、重量%で30
%の添加物を含む焼結体で高い硬度を得られるが、十分
な強度が得られない。例えば、USP6099605に記載の技術
では、メカニカルアロイングにより各原料粉末の結晶構
造を完全に破壊するような粉砕を行うため、粉砕容器・
媒体から脆化をもたらす不純物が混入するからである。
また、メカニカルアロイング後に30重量%のTiB2を配合
し、高硬度の焼結体となるが、TiB2は体積%で17%と少
なく、難焼結性のAlX≦1My≦1BZ≧12硼化物粒子同士が
接触してしまい十分な結合強度が得られないためであ
る。
Conventionally, a sintered body containing a boride having a composition represented by Al X ≤ 1 M y ≤ 1 B Z ≥ 12 has Al X ≤ 1 excluding inevitable impurities.
Sintered body consisting only of M y ≤ 1 B Z ≥ 12 or 30% by weight
%, It is possible to obtain high hardness with a sintered body containing an additive, but sufficient strength cannot be obtained. For example, in the technique described in USP6099605, since crushing is performed by mechanical alloying so as to completely destroy the crystal structure of each raw material powder, a crushing container
This is because impurities causing embrittlement are mixed from the medium.
Also, after mechanical alloying, 30% by weight of TiB 2 is blended to form a high hardness sintered body, but TiB 2 is as small as 17% in volume%, and Al X ≤ 1 M y ≤ 1 which is hard to sinter. This is because the B Z ≧ 12 boride particles contact each other and a sufficient bond strength cannot be obtained.

【0015】本発明では、三元硼化物の含有量を50〜75
体積%とし、残部の25〜50体積%を結合材とすること
で、結合相を介して三元硼化物間を強い強度で結合させ
る。特に、結晶構造の崩れていない微細な三元硼化物粉
末を原料として用い、その難焼結性を改善する。その結
果、切削工具に適する高い硬度と耐欠損性を具える焼結
体を得ることができる。
In the present invention, the content of ternary boride is 50 to 75.
By making the volume% and the remaining 25 to 50% by volume the binder, the ternary borides are strongly bonded through the binder phase. In particular, a fine ternary boride powder whose crystal structure is not broken is used as a raw material to improve the difficulty of sintering. As a result, a sintered body having high hardness and fracture resistance suitable for a cutting tool can be obtained.

【0016】本発明焼結体は、AlX≦1My≦1BZ≧12で表
される50〜75体積%の三元硼化物と残部を結合相と不可
避不純物とからなる。より具体的な三元硼化物の組成と
してはAlMgB14やAlLiB14などが挙げられる。AlMgB14
場合、より正確な構造はAl0.7 5Mg0.78B14である。
The sintered body of the present invention comprises 50 to 75% by volume of a ternary boride represented by Al X ≤1 M y ≤1 B Z ≥12, the balance being a binder phase and unavoidable impurities. More specific ternary boride compositions include AlMgB 14 and AlLiB 14 . For AlMgB 14 , the more accurate structure is Al 0.7 5 Mg 0.78 B 14 .

【0017】結合相としては、IVa、Va、VIa族金属の炭
化物、窒化物、炭窒化物、硼化物から選ばれる1種もし
くは混合物あるいは固溶体化合物からなる。より具体的
にはTi、Zrの炭化物、窒化物、炭窒化物、硼化物の少な
くとも一種を含むものが好ましい。
The binder phase is composed of one or a mixture of carbides, nitrides, carbonitrides and borides of Group IVa, Va and VIa metals, or a solid solution compound. More specifically, a material containing at least one of Ti, Zr carbides, nitrides, carbonitrides, and borides is preferable.

【0018】不可避不純物としては、一般にAlMgB14
含む系では、AlおよびMgの酸化物、MgA1204ならびに結
合相金属元素の酸化物が見られる。AlLiB14を含む系で
は、AlおよびLiの酸化物、AlLiO2ならびに結合相金属元
素の酸化物が見られる。
[0018] inevitable impurities, in general, a system containing a AlMgB 14, oxides of Al and Mg, an oxide of MgAl 2 0 4 and binding phase metal elements seen. In the system containing AlLiB 14 , oxides of Al and Li, AlLiO 2 and oxides of binder phase metal elements are found.

【0019】焼結体を構成する三元硼化物の最大粒径は
5μm以下が好ましい。このような微細な三元硼化物で焼
結体を構成することにより、鋼の切削における耐摩耗性
と耐欠損性を得るに必要な強度を有する焼結体となる。
より好ましい三元硼化物の最大粒径は2μm以下である。
また、切削工具として好ましい焼結体の硬度はHv25GPa
以上である。
The maximum grain size of the ternary boride constituting the sintered body is
It is preferably 5 μm or less. By constructing a sintered body from such a fine ternary boride, a sintered body having a strength required to obtain wear resistance and chipping resistance in cutting steel can be obtained.
The more preferable maximum particle size of the ternary boride is 2 μm or less.
Also, the hardness of the sintered body that is preferable as a cutting tool is Hv25 GPa.
That is all.

【0020】上記の硼化物焼結体は、最大粒径が5μm以
下の硼化物粒子を圧力:150MPa以上10GPa以下、温度:1
000℃以上1500℃以下で焼結することで得られる。より
好ましい硼化物粒子の最大粒径は3μm以下である。
In the above boride sintered body, boride particles having a maximum particle size of 5 μm or less are pressure: 150 MPa or more and 10 GPa or less, temperature: 1
It is obtained by sintering at 000 ° C or higher and 1500 ° C or lower. The more preferable maximum particle diameter of the boride particles is 3 μm or less.

【0021】微細な硼化物粒子を用いることで、緻密で
高硬度の焼結体を得ることができる。このような硼化物
粒子は、粉砕を行わないか短時間の粉砕とすることで結
晶構造を極力崩さず、かつ不純物の少ない状態とするこ
とができる。焼結圧力のより好ましい範囲は、1GPa以上
5GPa以下、更に好ましくは、1GPa以上3GPa以下である。
焼結温度のより好ましい範囲は1200〜1400℃である。焼
結保持時間は、15〜60分程度が好ましい。
By using fine boride particles, a dense and high-hardness sintered body can be obtained. Such a boride particle can be made into a state in which the crystal structure is not destroyed as much as possible and the amount of impurities is small by not crushing or crushing for a short time. More preferable range of sintering pressure is 1 GPa or more
It is 5 GPa or less, more preferably 1 GPa or more and 3 GPa or less.
A more preferable range of the sintering temperature is 1200 to 1400 ° C. The sintering holding time is preferably about 15 to 60 minutes.

【0022】焼結体の原料粉末となる微細な硼化物粒子
は、粉砕を行うことなく当初から微粒の硼化物粒子を得
る方法と、まず粗粒を得て、その後粉砕することで微粒
とする方法の2通りがある。
The fine boride particles used as the raw material powder for the sintered body are obtained by a method of obtaining fine boride particles from the beginning without crushing, and by first obtaining coarse particles and then pulverizing them to obtain fine particles. There are two ways.

【0023】粉砕を行わない方法は、硼素:最大粒径3
μm以下で75〜91原子%、Al:4〜21原子%、周期律表Ia
およびIIa族から選ばれる一つの元素M:3〜6原子%の組
成を有する原料を、窒素以外の不活性ガス雰囲気中に
て、1300℃以下の温度で加熱処理する工程により得るこ
とができる。
The method without pulverization is as follows: boron: maximum particle size 3
75-91 atomic% below μm, Al: 4-21 atomic%, Periodic Table Ia
And a raw material having a composition of one element M selected from the group IIa: 3 to 6 atom% in a gas atmosphere of an inert gas other than nitrogen at a temperature of 1300 ° C. or lower.

【0024】最大粒径が3μm以下の硼素を原料とするこ
とで、得られる硼化物粒子の最大粒径を5μm以下に抑え
ることができる。より好ましくは、最大粒径が1μm以下
の硼素を原料とし、得られる硼化物粒子の最大粒径を3
μm以下とする。
By using boron having a maximum particle size of 3 μm or less as a raw material, the maximum particle size of the obtained boride particles can be suppressed to 5 μm or less. More preferably, the maximum particle size is 1 μm or less using boron as a raw material, and the maximum particle size of the obtained boride particles is 3
It should be less than μm.

【0025】従来、AlMgB14では、結晶成長させるため
にAlが多く含まれていた。例えばAlの含有量は80〜91原
子%程度である。本発明では、極力Alの含有量を減ら
し、微細な硼化物粒子が得られる組成を選択した。Alが
21原子%を超えると結晶粒成長が起こり、粗粒の硼化物
粒子となる傾向がある。
Conventionally, AlMgB 14 contains a large amount of Al for crystal growth. For example, the content of Al is about 80 to 91 atomic%. In the present invention, the content of Al is reduced as much as possible, and a composition is selected so that fine boride particles can be obtained. Al is
If it exceeds 21 atomic%, crystal grain growth occurs, and coarse boride grains tend to be formed.

【0026】AlMgB14について、Alの含有量を変化させ
て上記の方法にて微粒の硼化物粒子が得られた組成例を
表1に示す。この表1における組成No.1はAlMgB14の化
学量論組成で、微細な硼化物粒子が得られたが、若干の
酸化物も見られた。また、No.2は得られた粒子が微粒で
あり、酸化物も非常に少なく好ましいAlMgB14であっ
た。さらに、No.3でも微粒のAlMgB14が合成できたが、N
o.2に比べて粗粒化しており、好ましい微粒子が得られ
るAl量としては21原子%と思われる。
Table 1 shows a composition example of AlMgB 14 in which fine particles of boride particles were obtained by the above method while changing the Al content. Composition No. 1 in Table 1 is a stoichiometric composition of AlMgB 14 , and fine boride particles were obtained, but some oxides were also observed. In No. 2, the obtained particles were fine particles, and the amount of oxide was very small, which was preferable AlMgB 14 . Furthermore, even with No.3, fine AlMgB 14 could be synthesized.
The grain size is coarser than that of o.2, and the amount of Al that can produce preferable fine particles is considered to be 21 atom%.

【0027】[0027]

【表1】 [Table 1]

【0028】加熱処理の雰囲気は、不活性ガス雰囲気と
する。ただし、窒素は除く。通常、アルゴンを用いるこ
とが好適である。
The atmosphere for the heat treatment is an inert gas atmosphere. However, nitrogen is excluded. Usually, it is preferable to use argon.

【0029】加熱処理温度は、理論上、Alの融点(660.
4℃)以上の温度〜1300℃以下の温度であれば良い。130
0℃を超える温度で合成した場合はAlB12も同時に合成し
てしまうため好ましくない。最適な合成温度は1200〜13
00℃、特に1200℃前後である。保持時間は、30〜90分程
度が好ましい。
The heat treatment temperature is theoretically the melting point of Al (660.
4 ° C) or higher to 1300 ° C or lower. 130
Synthesis at a temperature higher than 0 ° C. is not preferable because AlB 12 is also synthesized at the same time. Optimal synthesis temperature is 1200-13
It is around 00 ℃, especially around 1200 ℃. The holding time is preferably about 30 to 90 minutes.

【0030】この方法であれば、粉砕を行うことなく微
粒の硼化物粒子を得ることができ、粉砕時に不純物が混
入して焼結体とした際に硼化物の含有量が低下すること
を回避できる。
According to this method, fine boride particles can be obtained without crushing, and it is possible to avoid a decrease in the content of boride when impurities are mixed during grinding to form a sintered body. it can.

【0031】次に、粉砕を行う方法は、まず硼素:最大
粒径40μm以下で75〜91原子%、Al:4〜21原子%、周期
律表IaおよびIIa族から選ばれる一つの元素M:3〜6原子
%の組成を有する原料を、窒素以外の不活性ガス雰囲気
中にて、1300℃以下の温度で加熱処理し、最大粒径が50
μm以下で、かつ平均粒径15μm以下の硼化物粒子を得
る。続いて、この最大粒径が50μm以下の硼化物粒子を
粉砕して最大粒径5μm以下の硼化物粒子とする。
Next, the method of pulverization is as follows. First, boron: 75 to 91 atomic% with a maximum particle size of 40 μm or less, Al: 4 to 21 atomic%, one element M selected from groups Ia and IIa of the periodic table: A raw material having a composition of 3 to 6 atomic% is heat-treated at a temperature of 1300 ° C. or lower in an inert gas atmosphere other than nitrogen, and the maximum particle size is 50
Boride particles having an average particle size of 15 μm or less are obtained. Subsequently, the boride particles having a maximum particle size of 50 μm or less are crushed to obtain boride particles having a maximum particle size of 5 μm or less.

【0032】原料の組成、加熱処理における雰囲気、温
度は粉砕を行わない方法の場合と同様である。ここでは
原料となる硼素の粒径が粗いため合成された硼化物粒径
も大きくなるが、最大粒径が50μm以下で、平均粒径を1
5μm以下とすることで、粉砕工程を用いても短時間で最
大粒径5μm以下に微細化できる。粉砕時間が短かけれ
ば、不純物の混入がほとんど無い状態で硼化物粉末を得
ることができる。そして、不純物の少ない硼化物粒子を
用いることで焼結性も改善され、緻密な焼結体を得るこ
とができる。
The composition of the raw materials, the atmosphere in the heat treatment, and the temperature are the same as in the case of the method without pulverization. Here, since the grain size of boron as the raw material is coarse, the synthesized grain size of boride is also large, but the maximum grain size is 50 μm or less and the average grain size is 1
When the particle size is 5 μm or less, the maximum particle size can be reduced to 5 μm or less in a short time even if the crushing process is used. If the crushing time is short, the boride powder can be obtained with almost no impurities mixed therein. Then, by using the boride particles containing few impurities, the sinterability is also improved, and a dense sintered body can be obtained.

【0033】粉砕は、極力不純物が混入しないような条
件を選択して行うことが好ましい。ボールミルを用いた
粉砕条件例としては、ボール:アルミナ製、直径3〜6m
m、粉砕時間:4〜10時間が挙げられる。できるだけ、短
時間で粉砕を行うことが好ましい。
The crushing is preferably carried out under the condition that impurities are not mixed in as much as possible. Examples of crushing conditions using a ball mill include balls: made of alumina, diameter 3 to 6 m
m, crushing time: 4 to 10 hours. It is preferable to carry out the pulverization in a short time as much as possible.

【0034】[0034]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。 (実施例1)純度99.9%、最大粒径3μm以下の無定形硼
素粉末、純度99.9%、最大粒径40μm以下のアルミニウ
ム粉末、純度99.9%、最大粒径180μm以下のマグネシウ
ム粉末をそれぞれ85原子%、10原子%、5原子%配合混
合した。この混合粉末を高純度なアルミナるつぼにい
れ、高温雰囲気加熱炉中に設置し、99.99%以上の高純
度アルゴンガス雰囲気中、1200℃で1時間保持し、最大
粒径が5μmで平均粒径が2μmのAlMgB14粉末を得た。ま
た、上記と同様に純度99.9%、最大粒径1μm以下の無定
形硼素粉末とすることにより、最大粒径で2μm、平均粒
径で0.7μmのAlMgB1 4粉末を得た。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. (Example 1) Purity 99.9%, maximum particle size 3μm or less amorphous boron powder, purity 99.9%, maximum particle size 40μm or less aluminum powder, purity 99.9%, maximum particle size 180μm or less magnesium powder 85 atomic% , 10 atom% and 5 atom% were mixed and mixed. Place this mixed powder in a high-purity alumina crucible, set it in a high-temperature atmosphere heating furnace, and hold it at 1200 ° C for 1 hour in a high-purity argon gas atmosphere of 99.99% or more. 2 μm of AlMgB 14 powder was obtained. Further, similarly to the above 99.9% purity, by a less amorphous boron powder maximum particle size of 1 [mu] m, 2 [mu] m in maximum particle size, to obtain a AlMgB 1 4 powder 0.7μm in average particle size.

【0035】上記の各々の粒子を用いて、表2に示す組
成で最大粒径で3μm以下のTiN粒子を配合した。これら
の混合粉末をアルミナ製のボールミル容器中に、アルミ
ナ製ボール、エタノールとともに充填してボールミル
し、均質に混合した。この混合粉末を1×10−3Paの真空
中、600℃で乾燥処理したのち、ペレット状に加圧成形
した。この成形体をMo容器中に入れ、この容器を高圧高
温装置を用いて、圧力2GPa、温度1350℃で30分間保持し
て焼結体を得た。得られた焼結体のX線回折測定結果と
ビッカース硬度の測定結果も表2に示す。X線回折測定
の結果、全ての焼結体において、AlMgB14とTiN、TiB2
観察された。こられの物質以外には、MgA1 204とA1203
ピークが認められた焼結体もあった。
Using each of the above particles, the set shown in Table 2 was used.
TiN particles having a maximum particle size of 3 μm or less were mixed. these
The mixed powder of
Ball mill made by filling with balls made of Na and ethanol
And mixed homogeneously. 1 x 10 of this mixed powder−3Pa vacuum
Medium, dried at 600 ℃, then pressed into pellets
did. Place this compact in a Mo container, and
Using a temperature device, hold at a pressure of 2GPa and temperature of 1350 ℃ for 30 minutes.
To obtain a sintered body. X-ray diffraction measurement results of the obtained sintered body and
Table 2 also shows the measurement results of Vickers hardness. X-ray diffraction measurement
As a result, in all the sintered bodies, AlMgB14And TiN, TiB2But
Was observed. Other than these substances, MgA1 20FourAnd A1203of
In some sintered bodies, a peak was observed.

【0036】次に、これらの焼結体の組織を走査型電子
顕微鏡で観察したところ、微細なAlMgB14粒子は結合相
を介して相互に接合していることが認められた。
Next, when the structures of these sintered bodies were observed with a scanning electron microscope, it was found that the fine AlMgB 14 particles were bonded to each other via a binder phase.

【0037】比較例として、上記の方法で結合材を含ま
ない焼結体(比較例1-7)、さらに結合材として、TiNを
10体積%、20体積%含む焼結体(比較例1-8、1-9)を作
製した。これらのX線回折測定結果、硬度測定結果も表
2に示す。また、走査型電子顕微鏡で組織を観察したと
ころ、結合材を含む場合でもAlMgB14が相互に接触して
いる個所が多く、粒子間の三重点に結合材の多くが存在
していた。
As a comparative example, a sintered body containing no binder by the above method (Comparative Example 1-7), and TiN was used as a binder.
Sintered bodies containing 10% by volume and 20% by volume (Comparative Examples 1-8 and 1-9) were produced. Table 2 also shows the results of the X-ray diffraction measurement and the hardness measurement. In addition, when the structure was observed with a scanning electron microscope, AlMgB 14 was in many places in contact with each other even when the binder was included, and most of the binder was present at the triple points between the particles.

【0038】上記焼結体を切れ刃とする切削加工用チッ
プを製作した。これらの切削加工用チップを用いて、熱
処理した炭素鋼SCM435(HRc30)の丸棒(φ150×300m
m)の外周切削を20分間行った。切削条件はV=300m/mi
n、d=0.5mm、f=0.2mm/rev、乾式である。20分切削後
の本発明例と比較例の逃げ面摩耗量の結果を表2に示
す。
A chip for cutting was produced using the above sintered body as a cutting edge. Heat-treated carbon steel SCM435 (HRc30) round bar (φ150 × 300m) using these cutting chips
Perimeter cutting of m) was performed for 20 minutes. Cutting condition is V = 300m / mi
n, d = 0.5mm, f = 0.2mm / rev, dry type. Table 2 shows the results of the flank wear amount of the present invention example and the comparative example after cutting for 20 minutes.

【0039】[0039]

【表2】 [Table 2]

【0040】表2から明らかなように、本発明例はいず
れも25GPa以上の硬度と少ない逃げ面摩耗量を具えてお
り、優れた硬度を有する焼結体であることがわかる。
As is clear from Table 2, all of the examples of the present invention have a hardness of 25 GPa or more and a small flank wear amount, and it is understood that they are sintered bodies having excellent hardness.

【0041】(実施例2)最大粒径で2μm以下のAlMgB14
粒子と最大粒径で3μm以下の結合材粒子を表3に示す組
成で配合した。これらの混合粉末を実施例1と同様にし
て高圧高温焼結して焼結体を得た。得られた焼結体のX
線回折測定結果とビッカース硬度の測定結果を表3に示
す。全ての焼結体において、AlMgB14と配合した結合材
と結合材を形成する金属元素の硼化物が観察された。上
記の物質以外に、MgA12O4とA12O3のピークが認められ
た。
Example 2 AlMgB 14 having a maximum particle size of 2 μm or less
Particles and binder particles having a maximum particle size of 3 μm or less were blended in the composition shown in Table 3. High-pressure high-temperature sintering was performed on these mixed powders in the same manner as in Example 1 to obtain a sintered body. X of the obtained sintered body
Table 3 shows the line diffraction measurement results and the Vickers hardness measurement results. In all the sintered bodies, a binder compounded with AlMgB 14 and a boride of a metal element forming the binder were observed. In addition to the above substances, peaks of MgA1 2 O 4 and A1 2 O 3 were observed.

【0042】比較例として、表3に示すように、結合材
の配合比を50体積%以上の焼結体(比較例2-9)と10〜2
3体積%(比較例2-10〜2-12)とした焼結体も作製し
た。
As a comparative example, as shown in Table 3, a sintered body having a compounding ratio of the binder of 50% by volume or more (Comparative Example 2-9) and 10-2.
Sintered bodies having 3% by volume (Comparative Examples 2-10 to 2-12) were also prepared.

【0043】上記焼結体を切れ刃とする切削加工用チッ
プを製作した。これらの切削加工用チップを用いて、熱
処理した炭素鋼SCM435(HRc30)の丸棒(φ150×300m
m)に4本のV字溝を入れた被削材を準備し、断続切削を
行なった。切削条件はV=250m/min、d=0.2mm、f=0.1
5mm/rev、乾式である。本発明例と比較例の工具の欠損
寿命を表3に示す。
A cutting tip having the above sintered body as a cutting edge was produced. Heat-treated carbon steel SCM435 (HRc30) round bar (φ150 × 300m) using these cutting chips
A work material with four V-shaped grooves in (m) was prepared and intermittent cutting was performed. Cutting conditions are V = 250m / min, d = 0.2mm, f = 0.1
5mm / rev, dry type. Table 3 shows the fracture lives of the tools of the present invention and comparative examples.

【0044】[0044]

【表3】 [Table 3]

【0045】表3から明らかなように、本発明例はいず
れも25GPa以上の硬度を具え、さらに欠損寿命も長く、
硬度と靭性を兼備した焼結体であることがわかる。
As is clear from Table 3, all of the examples of the present invention have a hardness of 25 GPa or more and have a long defect life.
It can be seen that the sintered body has both hardness and toughness.

【0046】(実施例3)硼素とアルミニウムとリチウ
ムの組成比が82原子%、13原子%、5原子%となるよう
に、純度99.9%、最大粒径1μm以下の結晶硼素粉末と、
純度99.9%、最大粒径で300μm以下のアルミニウム-28
原子%リチウム合金粉末とをそれぞれ70重量%と30重量
%配合して混合した。この混合粉末を高純度なアルミナ
るつぼに入れ、高温雰囲気加熱炉中に設置し、99.99%
以上の高純度アルゴンガス雰囲気中、1180℃で1時間保
持し最大粒径で2μm、平均粒径で0.8μmのAlLiB14粉末
を得た。
Example 3 A crystalline boron powder having a purity of 99.9% and a maximum particle size of 1 μm or less so that the composition ratios of boron, aluminum and lithium are 82 at%, 13 at%, and 5 at%.
Aluminum with a purity of 99.9% and a maximum particle size of 300 μm or less -28
Atomic% lithium alloy powder was mixed and mixed at 70% by weight and 30% by weight, respectively. Put this mixed powder in a high-purity alumina crucible and set it in a high temperature atmosphere heating furnace.
In the above high-purity argon gas atmosphere, the temperature was maintained at 1180 ° C. for 1 hour to obtain AlLiB 14 powder having a maximum particle size of 2 μm and an average particle size of 0.8 μm.

【0047】この粉末に、表4に示す組成で最大粒径で
2μm以下のZrN粒子を配合した。これらの混合粉末をジ
ルコニア製のボールミル容器中、ジルコニア製ボール、
エタノールとともに充填してボールミルし、均質に混合
した。この混合粉末を1×10 −3Paの真空中、600℃で乾
燥処理したのち、ペレット状に加圧成形した。この成形
体をMo容器中に入れ、この容器を高圧高温装置を用い
て、圧力2GPa、温度1400℃で30分間保持して焼結体を得
た。得られた焼結体のX線回折測定結果とビッカース硬
度の測定結果を表4に示す。全ての焼結体において、Al
LiB14とZrN、ZrB2が観察された。上記の物質以外に、Al
LiO2とA12O3のピークが認められた。
This powder had the composition shown in Table 4 and the maximum particle size
ZrN particles of 2 μm or less were blended. These mixed powders are
In a ball mill container made of Luconia, balls made of zirconia,
Fill with ethanol, ball mill and mix homogeneously
did. 1 x 10 of this mixed powder −3Dry at 600 ° C in Pa vacuum
After being dried, it was pressed into pellets. This molding
Put the body in a Mo container, and use this container with a high pressure and high temperature device.
The pressure to 2GPa and the temperature to 1400 ℃ for 30 minutes to obtain a sintered body.
It was X-ray diffraction measurement results and Vickers hardness of the obtained sintered body
Table 4 shows the measurement results of the degree. Al in all sintered bodies
LiB14And ZrN, ZrB2Was observed. In addition to the above substances, Al
LiO2And A12O3Was observed.

【0048】次に、これらの焼結体の組織を走査型電子
顕微鏡で観察したところ、AlLiB14粒子は結合相を介し
て相互に接合していることが認められた。
Next, when the structures of these sintered bodies were observed with a scanning electron microscope, it was found that the AlLiB 14 particles were bonded to each other via a binder phase.

【0049】比較例として、上記の方法で結合材を含ま
ない焼結体(比較例3-5)、さらに結合材としてZrNを20
体積%含む焼結体(比較例3-6)を作製した。これらのX
線回折測定結果、硬度測定結果も表4に示す。
As a comparative example, a sintered body containing no binder by the above method (Comparative Example 3-5), and further using ZrN 20 as a binder.
A sintered body containing 3% by volume (Comparative Example 3-6) was produced. These x
Table 4 also shows the results of the line diffraction measurement and the hardness measurement.

【0050】上記焼結体を切れ刃とする切削加工用チッ
プを製作した。これらの切削加工用チップを用いて、熱
処理した炭素鋼SCM435(HRc30)の丸棒(φ150×300m
m)の連続切削を10分間行なった。切削条件はV=400m/
min、d=0.2mm、f=0.15mm/rev、乾式である。本発明
例と比較例の刃先損傷の結果を表4に示す。
A chip for cutting was produced using the above sintered body as a cutting edge. Heat-treated carbon steel SCM435 (HRc30) round bar (φ150 × 300m) using these cutting chips
m) was continuously cut for 10 minutes. Cutting condition is V = 400m /
It is a dry type with min, d = 0.2 mm, f = 0.15 mm / rev. Table 4 shows the results of damage to the cutting edges of the present invention example and the comparative example.

【0051】[0051]

【表4】 [Table 4]

【0052】表4から明らかなように、本発明例はいず
れも25GPa以上の硬度と少ない逃げ面摩耗量を具えてお
り、優れた硬度を有する焼結体であることがわかる。
As is clear from Table 4, all of the examples of the present invention have a hardness of 25 GPa or more and a small flank wear amount, indicating that they are sintered bodies having excellent hardness.

【0053】[0053]

【発明の効果】以上説明したように、本発明焼結体は、
組成がAlX≦1My≦1BZ≧12で表される硼化物が結合材に
より相互に結合された組織とすることで、切削工具とし
て用いた場合に優れた耐摩耗性と耐欠損性とを備える。
As described above, the sintered body of the present invention is
By forming a structure in which borides, whose composition is Al X ≤ 1 M y ≤ 1 B Z ≥ 12 , are mutually bonded by a binder, they have excellent wear resistance and chipping resistance when used as a cutting tool. With sex.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3C046 FF31 FF40 FF43 4G001 BA01 BA03 BA05 BA06 BA24 BA25 BA26 BA37 BA38 BA39 BA43 BA44 BA45 BA57 BB01 BB03 BB05 BB06 BB24 BB25 BB26 BB37 BB38 BB39 BB43 BB44 BB45 BB57 BC13 BD12 BD18    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 3C046 FF31 FF40 FF43                 4G001 BA01 BA03 BA05 BA06 BA24                       BA25 BA26 BA37 BA38 BA39                       BA43 BA44 BA45 BA57 BB01                       BB03 BB05 BB06 BB24 BB25                       BB26 BB37 BB38 BB39 BB43                       BB44 BB45 BB57 BC13 BD12                       BD18

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Alと、周期律表Ia族およびIIa族から選
ばれる一つの元素Mと、硼素とからなる硼化物を含む硼
化物焼結体であって、 前記硼化物焼結体は、組成がAlX≦1My≦1BZ≧12で表さ
れる硼化物が50〜75体積%と残部が結合相と不可避不純
物とからなり、 前記結合相はIVa、Va、VIa族金属の炭化物、窒化物、炭
窒化物および硼化物から選ばれる少なくとも1種または
これらの固溶体化合物からなり、 AlX≦1My≦1BZ≧12で表される硼化物が焼結体組織中で
前記結合相を介して相互に接合されていることを特徴と
する硼化物焼結体。
1. A boride sintered body containing a boride consisting of Al, one element M selected from groups Ia and IIa of the periodic table, and boron, wherein the boride sintered body comprises: Boride whose composition is represented by Al X ≤ 1 M y ≤ 1 B Z ≥ 12 is 50 to 75% by volume and the balance consists of a binder phase and unavoidable impurities, and the binder phase is IVa, Va, or a VIa group metal. Carbides, nitrides, carbonitrides and borides consisting of at least one selected from these or solid solution compounds thereof, the boride represented by Al X ≤ 1 M y ≤ 1 B Z ≥ 12 in the sintered body structure A boride sintered body, which is bonded to each other through the binder phase.
【請求項2】 上記元素MがMgであることを特徴とする
請求項1に記載の硼化物焼結体。
2. The boride sintered body according to claim 1, wherein the element M is Mg.
【請求項3】 上記元素MがLiであることを特徴とする
請求項1に記載の硼化物焼結体。
3. The boride sintered body according to claim 1, wherein the element M is Li.
【請求項4】 上記結合相がTi、Zrの炭化物、窒化物、
炭窒化物の少なくとも一種を主体とすることを特徴とす
る請求項1に記載の範囲の硼化物焼結体。
4. The binder phase is a carbide or nitride of Ti or Zr,
2. The boride sintered body according to claim 1, which is mainly composed of at least one kind of carbonitride.
【請求項5】 組成がAlX≦1My≦1BZ≧12で表される硼
化物が5μm以下の粒子からなることを特徴とする請求項
1に記載の硼化物焼結体。
5. The boride having a composition represented by Al X ≦ 1 M y ≦ 1 B Z ≧ 12 is composed of particles of 5 μm or less.
The boride sintered body according to 1.
【請求項6】 不可避不純物として、Alの酸化物、元素
Mの酸化物、Bの酸化物およびAl、元素MおよびBの複合酸
化物から選択される少なくとも1種を含むことを特徴と
する請求項1に記載の硼化物焼結体。
6. Al oxides and elements as unavoidable impurities
2. The boride sintered body according to claim 1, comprising at least one selected from an oxide of M, an oxide of B and Al, and a complex oxide of elements M and B.
JP2001386739A 2001-12-19 2001-12-19 Boride sintered body Expired - Fee Related JP4048410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001386739A JP4048410B2 (en) 2001-12-19 2001-12-19 Boride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001386739A JP4048410B2 (en) 2001-12-19 2001-12-19 Boride sintered body

Publications (2)

Publication Number Publication Date
JP2003192441A true JP2003192441A (en) 2003-07-09
JP4048410B2 JP4048410B2 (en) 2008-02-20

Family

ID=27595805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001386739A Expired - Fee Related JP4048410B2 (en) 2001-12-19 2001-12-19 Boride sintered body

Country Status (1)

Country Link
JP (1) JP4048410B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6921422B2 (en) 2002-10-29 2005-07-26 Iowa State University Research Foundation, Inc. Ductile binder phase for use with A1MgB14 and other hard materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6921422B2 (en) 2002-10-29 2005-07-26 Iowa State University Research Foundation, Inc. Ductile binder phase for use with A1MgB14 and other hard materials

Also Published As

Publication number Publication date
JP4048410B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
JP5100927B2 (en) Method for producing cubic boron nitride sintered body
EP0759480B1 (en) Plate-crystalline tungsten carbide-containing hard alloy, composition for forming plate-crystalline tungsten carbide and process for preparing said hard alloy
JPH0621313B2 (en) Sintered body for high hardness tool and manufacturing method thereof
JP2014208889A (en) Sintered body and method of producing the same
JP2017014084A (en) Cubic crystal boron nitride sintered body, method of producing cubic crystal boron nitride sintered body, tool and cutting tool
JPH07286229A (en) High pressure phase boron nitride sintered body for cutting tool and its production
JP2000044348A (en) High-hardness sintered compact for cutting working of cast iron
JP2546709B2 (en) High strength cubic boron nitride containing sintered body
JP2004026555A (en) Cubic boron nitride-containing sintered compact and method for producing the same
JP4048410B2 (en) Boride sintered body
JP4106586B2 (en) Boride sintered body and manufacturing method thereof
JP2004131769A (en) Hyperfine-grained cemented carbide
JPS6241192B2 (en)
JPH07278719A (en) Particulate plate crystal cemented carbide containing wc and its production
JP5880267B2 (en) SiAlON base particles, sintered body and tool
JP2802596B2 (en) Method for producing plate-shaped WC-containing cemented carbide
JP3553496B2 (en) Titanium carbide based alloys of hard materials, their preparation and use
JP5092237B2 (en) cBN-based ultra-high pressure sintered body and method for producing the same
JP2004076111A (en) Boride sintered compact
JP2003261382A (en) Boride sintered compact
JPH10226575A (en) High-pressure form of boron nitride sintered compact for cutting tool
JPH11335175A (en) Cubic boron nitride sintered compact
JPH11335174A (en) Cubic boron nitride sintered compact
JP3346609B2 (en) Fiber reinforced ceramics and method for producing the same
JP3481702B2 (en) Cubic boron nitride sintered body using hard alloy as binder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees