WO2022210760A1 - Drilling tip and drilling tool - Google Patents

Drilling tip and drilling tool Download PDF

Info

Publication number
WO2022210760A1
WO2022210760A1 PCT/JP2022/015626 JP2022015626W WO2022210760A1 WO 2022210760 A1 WO2022210760 A1 WO 2022210760A1 JP 2022015626 W JP2022015626 W JP 2022015626W WO 2022210760 A1 WO2022210760 A1 WO 2022210760A1
Authority
WO
WIPO (PCT)
Prior art keywords
tip
drilling
cbn
outermost layer
drilling tip
Prior art date
Application number
PCT/JP2022/015626
Other languages
French (fr)
Japanese (ja)
Inventor
雅大 矢野
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2022210760A1 publication Critical patent/WO2022210760A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts

Definitions

  • the present invention relates to drilling tips and drilling tools.
  • This application claims priority based on Japanese Patent Application No. 2021-061362 filed in Japan on March 31, 2021, the content of which is incorporated herein.
  • the tip body of the tip body made of cemented carbide has polycrystals harder than the tip body at the tip of the base body.
  • Drilling tips coated with a hard layer of sintered diamond are known.
  • Patent Document 1 such a polycrystalline A drilling tip coated with multiple hard layers of sintered diamond has been proposed.
  • Patent Literature 2 proposes a drilling tip in which a substantially conical tip portion of a tip body is coated with diamond and/or cubic boron nitride.
  • Patent Document 3 discloses that the outermost layer covering the substantially conical tip of the tip body is selected from polycrystalline diamond, polycrystalline cubic boron nitride, single-crystalline diamond, and cubic boron nitride composites. Proposed.
  • Patent Document 4 discloses a cubic boron nitride sintered body with a binder phase containing Al 2 O, AlB 2 , AlN, TiB 2 and TiN to improve strength and toughness.
  • a cutting tool has been proposed which is composed of a joint.
  • the polycrystalline diamond sintered body has higher wear resistance than cemented carbide, it has poor fracture resistance due to its low toughness. Therefore, chipping or chipping of the hard layer may occur unexpectedly during drilling of the superhard rock layer.
  • diamond sintered bodies cannot be used in Fe-based or Ni-based mines because of their high affinity.
  • the heat resistance temperature of the diamond sintered body is also about 700° C., the diamond sintered body cannot be used under the condition of being exposed to a temperature higher than this. For example, under high-temperature excavation conditions of 700° C. or higher, such as open-pit mining performed in a dry environment, diamond is graphitized and wear resistance is lowered.
  • cubic boron nitride sintered bodies have a low affinity for Fe-based and Ni-based mines, but are inferior in hardness to diamond.
  • the cubic boron nitride sintered body described in Patent Document 4 has relatively low hardness and insufficient wear resistance and chipping resistance, so it was difficult to apply it to a drilling tool.
  • abrasive wear refers to wear caused by minute cutting action caused by hard components entering between the cutting edge of the tool and the rock while the crushed rock surrounds the drilling tool.
  • a digging tool is a tool for digging through the ground or bedrock.
  • rocks in the ground are not uniform in composition and strength, and are brittle materials. Therefore, unlike cutting tools, which emphasize cutting and chipping performance, drilling tools have the performance to withstand the impact and vibration that destroy rocks, as well as the performance to withstand rotation to efficiently remove the destroyed rocks. is necessary.
  • the materials used for drilling tools are required to have fatigue wear resistance, abrasive wear resistance, and resistance to damage factors such as chipping due to impact and vibration to break rocks.
  • the present invention has been made under such a background, and has excellent fatigue wear resistance and abrasive wear resistance, and is resistant to damage factors such as fracture due to impact and vibration for breaking rocks. It is an object of the present invention to provide a tip and to provide a drilling tool fitted with such a drilling tip.
  • the present inventors paid attention to cBN sintered bodies as a material for drilling tips and studied them.
  • the binder phase in the cBN sintered body contains Ti 2 CN and TiAl 3 and the XRD peaks of these Ti 2 CN and TiAl 3 have a predetermined relationship, fatigue wear resistance and abrasive wear resistance
  • the present invention was made based on this finding, and the gist of the present invention is as follows.
  • a drilling tip is a drilling tip that is configured to be attached to the tip of a drilling bit, and has a cylindrical shape or a disk shape centered (axis) on the center line of the drilling tip.
  • a tip body having a rear end portion and a tip portion whose radius from the center line gradually decreases from the rear end portion toward the tip side of the excavation tip; and a hard layer covering the tip portion of the tip body.
  • the hard layer has an outermost layer made of a cBN sintered body having cubic boron nitride particles and a binder phase, and the binder phase contains Ti 2 CN and TiAl 3 and
  • the peak intensity I Ti2CN of Ti CN appearing at a diffraction angle (2 ⁇ ) of 41.9 to 42.2° and the diffraction angle (2 ⁇ ) of I Ti2CN /I TiAl3 , which is a ratio of the peak intensity I TiAl3 of TiAl 3 appearing at a position of 39.0 to 39.3°, may be 2.0 to 30.0.
  • the binder phase may contain Al 2 O 3 and have an average particle size of 0.9 to 2.5 ⁇ m.
  • the TiAl 3 contains an additive element M1
  • the additive element M1 is one or more of the group consisting of Si, Mg and Zn, and Auger electron spectroscopy Ratio of the average area S TiAlM1 of the region where Ti and Al and the additional element M1 overlap to the average area S TiAl of the region where Ti and Al overlap in the mapping images of Ti, Al, and the additional element M1 according to the method S TiAlM1 /S TiAl may be 0.05 to 0.98.
  • the hard layer includes an intermediate layer between the outermost layer and the tip body, and the intermediate layer contains 10.0 to 70.0 vol% of cubic boron nitride particles or diamond particles. may contain.
  • the volume fraction of the cubic boron nitride particles in the outermost layer may be 70.0 to 95.0 vol%.
  • the cubic boron nitride particles in the outermost layer may have an average particle diameter of 0.5 to 30.0 ⁇ m.
  • a digging tool of one aspect of the present invention is characterized by comprising the above-described digging tip, and a tool body that holds the digging tip on its distal end surface and is rotated around an axis.
  • a drilling tip having excellent fatigue wear resistance and abrasive wear resistance and resistance to damage factors such as chipping due to impact and vibration for breaking rocks, and such a drilling tip.
  • An attached drilling tool can be provided.
  • FIG. 1 is a cross-sectional view taken along the centerline of the tip showing an embodiment of the drilling tip of the present invention.
  • FIG. 2 is a cross-sectional view along the centerline of the tip showing a modification of the drilling tip of the present embodiment.
  • FIG. 3 is a cross-sectional view along the axis of the bit body showing an embodiment of the drilling bit of the present invention, in which the drilling tip of the present embodiment shown in FIG. 1 is attached to the tip of the bit body.
  • FIG. 4 is an X-ray diffraction pattern of Example 3 of the present invention.
  • FIG. 5 is a diagram schematically showing overlapping portions of Ti element and Al element based on elemental mapping by Auger electron spectroscopy in Example 8 of the present invention.
  • FIG. 6 is a diagram schematically showing overlapping portions of Ti element, Al element and Si element based on elemental mapping by Auger electron spectroscopy in Example 8 of the present invention.
  • FIG. 1 is a cross-sectional view showing an embodiment of the drilling tip of the present invention
  • FIG. 2 is a cross-sectional view along the centerline of the tip showing a modification of the drilling tip of the present embodiment
  • FIG. 3 is a cross-sectional view showing an embodiment of the drilling bit of the present invention to which the drilling tip of the present embodiment is attached.
  • the shape of the drilling tip of the present invention is cylindrical with one rounded end.
  • the centerline C of the tip is a straight line parallel to the axial direction of the cylindrical shape and passing through the center of the drilling tip.
  • the center of the drilling tip is the center when the drilling tip is viewed from the axial direction (planar view).
  • the excavation tip 1 of the present embodiment has a rear end portion 2A having a cylindrical shape or a disc shape centered on the center line C of the tip, and a radius from the center line C extending from the rear end portion 2A toward the tip side. It comprises a tip body 2 integrally formed with a tip portion 2B that gradually becomes smaller, and a hard layer 3 covering the surface of the tip portion 2B of the tip body 2.
  • the chip body 2 is made of cemented carbide, for example.
  • the hard layer 3 is made of a material having a higher hardness (Vickers hardness) than the tip body 2 .
  • the hard layer 3 may have a single-layer structure consisting of the outermost layer 4 as shown in FIG. It is good also as a multilayer structure provided.
  • the front end portion 2B of the tip body 2 has a convex portion 2a having a convex arc shape with a surface convex toward the tip side in a cross section along the center line C, and a cross section of the convex portion 2a having a surface. and a concave arc-shaped concave portion 2b which is in contact with the convex arc of .
  • the surface of the concave portion 2b is in contact with the convex arc of the cross section of the convex portion 2a at the point of contact P, and the outer peripheral side of the chip body 2 is gradually increased toward the rear end side of the chip body 2.
  • the surface of the convex portion 2a is formed in a convex spherical shape centered on the center line C, and the surface of the concave portion 2b in the cross section is aligned with the outer peripheral surface of the rear end portion 2A of the tip body 2. intersect at an obtuse angle.
  • the diameter D (mm) of the rear end portion 2A of the tip body 2 is appropriately selected from the viewpoint of balancing the impact load when used for excavation and the relaxation of the residual stress generated at the interface between the hard layer 3 and the tip body 2. It may be determined and may range, for example, from 8 mm to 20 mm.
  • the ratio r1/D of the radius r1 (mm) of the convex arc of the convex portion 2a in the cross section along the center line C to the diameter D (mm) of the rear end portion 2A of the tip body 2 is 0.1 to 0.1. It is preferably within the range of 0.65. By setting r1/D within this range, the residual stress at the interface between the hard layer 3 and the chip body 2 can be more reliably alleviated, and the thickness of the hard layer 3 can be sufficiently secured. As a result, it is possible to extend the life of the drilling tool.
  • the ratio r2/D of the radius r2 (mm) of the concave arc of the recess 2b in the cross section along the center line C to the diameter D (mm) of the rear end portion 2A of the tip body 2 is 0.05. It is preferably within the range of ⁇ 3.0. By setting r2/D within this range, similarly, the residual stress in the interface between the hard layer 3 and the chip body 2 can be more reliably relaxed, and the thickness of the hard layer 3 can be sufficiently secured. As a result, it is possible to extend the life of the drilling tool.
  • the angle ⁇ (°) formed by the straight line L connecting the contact point P between the convex portion 2a and the concave portion 2b and the center Q of the convex arc of the convex portion 2a with respect to the center line C may be in the range of 20 (°) to 90 (°).
  • the angle ⁇ within this range, the residual stress on the interface between the hard layer 3 and the chip body 2 can be more reliably alleviated, and a sufficient thickness of the hard layer 3 can be ensured.
  • the “cross section along the center line C” as used in this specification may be a cross section along the center line C within a range of 0.1 (mm) from the center line C.
  • the tip portion 2B of the tip body 1 is covered with the hard layer 3 .
  • the rear end portion 3A of the hard layer 3 continues to the tip side of the rear end portion 2A of the tip body 2.
  • the outer peripheral surface of the rear end portion 3A of the hard layer 3 is a cylindrical surface centered on the center line C and having a diameter D (mm) equal to that of the rear end portion 2A of the tip body 2.
  • the surface of the front end portion 3B of the hard layer 3 smoothly continues to the outer peripheral surface of the rear end portion 3A and has a convex hemispherical shape with the center Q as the center. That is, the drilling tip 1 of this embodiment is a so-called button tip.
  • the thickness of the hard layer 3 may be substantially uniform at least on the tip side of the contact point P. As shown in FIG.
  • the hard layer 3 of this embodiment has an outermost layer 4 made of a cubic boron nitride sintered body (hereinafter also referred to as a "cBN sintered body").
  • the hard layer 3 of this embodiment may have a single-layer structure (FIG. 1) consisting of only the outermost layer 4, or an intermediate layer 5 is provided between the outermost layer 4 and the chip body 2.
  • Such a multilayer structure (FIG. 2) may also be used.
  • the cBN sintered body constituting the outermost layer 4 has cubic boron nitride grains (hereinafter also referred to as “cBN grains”) and a binder phase that bonds the cBN grains to each other.
  • the average particle size of the cBN particles is not particularly limited, it is preferably in the range of 0.5 to 30.0 ⁇ m.
  • the outermost layer 4 can be provided with high fracture resistance. Specifically, it is possible to suppress the occurrence of chipping originating from unevenness caused by cBN particles falling off the surface of the outermost layer 4 during excavation.
  • the cBN particles can suppress the propagation of cracks that propagate from the interface between the cBN particles and the binder phase caused by the stress applied to the outermost layer 4 during excavation, or cracks that propagate through the cBN particles.
  • the average particle size of the cBN particles is more preferably 0.5 to 8.0 ⁇ m, more preferably 0.5 to 3.0 ⁇ m, but is not limited to this.
  • the content (vol%) of cBN particles in the cBN sintered body is not particularly limited, but is preferably in the range of 70 to 95vol%. If the content of cBN grains in the cBN sintered body is too low, the cBN grains are in contact with each other and the unsintered portion where the cBN grains are in contact with each other and cannot sufficiently react with the binder phase is reduced. As a result, the hardness of the cBN sintered body of the outermost layer 4 is lowered, and wear resistance and chipping resistance may be deteriorated. On the other hand, if the content of cBN grains is excessively high, voids that act as starting points for cracks are likely to be formed in the sintered body, and chipping resistance may be lowered.
  • the content of cBN grains in the cBN sintered body is preferably in the range of 70 to 95 vol %. More preferably 70 to 90 vol%, still more preferably 75 to 85 vol%, but not limited thereto.
  • the content of cBN particles can be adjusted by adjusting the mixing ratio of the cBN particle powder and the raw material powder for forming the binder phase when forming the outermost layer 4 .
  • the average particle diameter of cBN particles and the content of cBN particles in the cBN sintered body can be obtained as follows.
  • the average particle size of cBN particles can be obtained as follows.
  • the cross section of the cBN sintered body is mirror-finished, and the mirror-finished surface is subjected to structural observation with a scanning electron microscope (hereinafter referred to as SEM) to obtain a secondary electron image.
  • SEM scanning electron microscope
  • the cBN grain portion in the obtained image is extracted by image processing, and the average grain size, which will be described later, is calculated based on the maximum length of each grain determined by image analysis.
  • the image is displayed in 256-gradation monochrome, with 0 being black and 255 being white.
  • the peak value (v) of the pixel value of the cBN particle portion and the peak value (w) of the pixel value of the bonded phase portion are binarized using the value calculated by (w ⁇ v)/2+v as the threshold value. .
  • a region for obtaining the pixel value of the cBN grain portion for example, a region of about 0.5 ⁇ m ⁇ 0.5 ⁇ m is selected, and the average value obtained from at least three different locations within the same image region is calculated. It is preferable to use the peak value of the pixel values described above. Then, a region of about 0.2 ⁇ m ⁇ 0.2 ⁇ m to about 0.5 ⁇ m ⁇ 0.5 ⁇ m is selected as a region for obtaining the pixel value of the bonded phase portion, and similarly, from at least three different locations within the same image region.
  • the determined average value is taken as the peak value of the aforementioned pixel values of the combined phase.
  • a process for separating the portions where the cBN grains are considered to be in contact with each other such as watershed image processing, is used to separate the cBN grains that are considered to be in contact. do.
  • the part (black part) corresponding to the cBN particles in the image obtained after the above-mentioned binarization processing is subjected to particle analysis, and the obtained maximum length of each cBN particle is taken as the diameter of each cBN particle.
  • particle analysis for determining the maximum length the value of the larger length from the two lengths obtained by calculating the Feret diameter for one cBN particle is the maximum length, and that value is the diameter of each cBN particle. .
  • the volume obtained by calculation is the volume of each particle, and the cumulative volume is obtained. Based on this cumulative volume, the vertical axis is the volume percentage (%) and the horizontal axis is the diameter. ( ⁇ m), and the diameter when the volume percentage is 50% is taken as the average particle diameter of the cBN particles. This is performed for three observation areas, and the average value is taken as the average particle size of cBN particles ( ⁇ m, this average particle size is called D50).
  • the length ( ⁇ m) per pixel is set using the scale value known from the SEM in advance.
  • the observation area at least 30 or more cBN particles are observed in the observation area, that is, when the average particle size of the cBN particles is about 3 ⁇ m, the observation area is preferably about 15 ⁇ m ⁇ 15 ⁇ m, for example.
  • the content of cBN grains in the cBN sintered body can be determined as follows. First, an arbitrary cross-sectional structure of the cBN sintered body, which is the outermost layer 4, is observed by SEM to obtain a secondary electron image. A portion corresponding to the cBN grains in the obtained secondary electron image is extracted by image processing similar to the method for measuring the average grain size of the cBN grains. Then, the area occupied by the cBN particles is calculated by image analysis, and the ratio occupied by the cBN particles in one image is obtained. The average value of the content of cBN particles obtained by processing at least three images is defined as the content (vol %) of cBN particles in the cBN sintered body.
  • the observation area used for image processing is preferably a square area having a side length five times the average particle size of the cBN particles.
  • the observation area used for image processing is preferably an area of about 15 ⁇ m ⁇ 15 ⁇ m.
  • the binder phase in the cBN sintered body contains Ti2CN and TiAl3 .
  • Ti 2 CN and TiAl 3 in the binder phase, it is possible to improve the adhesion between the cBN grains and the binder phase and improve the toughness of the cBN sintered body.
  • fatigue wear resistance and abrasive wear resistance can be improved, and resistance to damage factors such as chipping due to impact and vibration during rock excavation can be improved.
  • I Ti2CN /I TiAl3 which is the ratio of the peak intensity I Ti2CN of Ti 2 CN to the peak intensity I TiAl3 of TiAl 3 , is 2.0 to 30. .0 is preferred.
  • the peak intensity I Ti2CN of Ti CN that appears at a diffraction angle (2 ⁇ ) of 41.9 to 42.2°, I Ti2CN /I TiAl3 , which is the ratio of the peak intensity I TiAl3 of TiAl 3 appearing at a diffraction angle (2 ⁇ ) of 39.0 to 39.3°, is preferably 2.0 to 30.0.
  • Ti 2 CN and TiAl 3 which are components of the binder phase, fatigue wear resistance, fatigue wear resistance, It has excellent abrasive wear resistance, and can further improve resistance to damage factors such as chipping due to impact and vibration during rock excavation. If I Ti2CN /I TiAl3 is less than 2.0, the amount of TiAl 3 in the cBN sintered body increases excessively, and cBN particles may react with this TiAl 3 to form coarse TiB 2 . As a result, coarse TiB 2 may become a starting point of fracture during excavation of rocks, resulting in damage such as the chipping described above.
  • I Ti2CN /I TiAl3 is greater than 30.0, the amount of TiAl3 in the cBN sintered body becomes excessively small, resulting in a decrease in adhesion between the cBN grains and the binder phase and a decrease in the toughness of the cBN sintered body. may invite.
  • I Ti2CN /I TiAl3 is more preferably 2.0 to 25.0, and even more preferably 5.0 to 15.0.
  • the peak intensity ratio I Ti2CN /I TiAl3 can be controlled by adjusting the compounding ratio of the raw materials of the cBN sintered body.
  • XRD X-ray analysis
  • the binder phase preferably further contains Al 2 O 3 and has an average particle size of 0.9 ⁇ m to 2.5 ⁇ m.
  • the average particle size of Al 2 O 3 is less than 0.9 ⁇ m, it is necessary to reduce the particle size of Ti 2 AlC or Ti 3 AlC 2 as a raw material, which is necessary for producing Al 2 O 3 .
  • the ratio of Ti 2 CN and TiAl 3 generated in the cBN sintered body decreases, and the toughness of the cBN sintered body may decrease.
  • the average particle size of Al 2 O 3 in the binder phase can be determined from Al element and O element mapping by SEM-EDX (Energy Dispersive X-ray Spectroscopy). That is, by SEM-EDX, the portion where these two elements overlap is recognized as Al 2 O 3 , the grain size of each recognized grain is obtained by image analysis, and then the average grain size of Al 2 O 3 is calculated.
  • SEM-EDX Energy Dispersive X-ray Spectroscopy
  • the cross-sectional structure of the cBN sintered body is observed by SEM in the same manner as in the above-described ⁇ method for measuring the average particle size of cBN particles>, and a secondary electron image is obtained.
  • a mapping image of the Al element and the O element is acquired by EDX, and the overlapping portion of the Al element and the O element is identified as Al 2 O 3 and binarized by image processing to extract Al 2 O 3 .
  • this secondary electron image is displayed in monochrome with 256 gradations, where 0 is black and 255 is white, and the above-mentioned ⁇ average of cBN particles Particle size measurement method>, binarization processing is performed so that Al 2 O 3 becomes black.
  • a process is performed to separate the portions where the Al 2 O 3 particles are considered to be in contact with each other.
  • one image processing operation watershed, is used to separate Al 2 O 3 particles that appear to be in contact.
  • the portion corresponding to Al 2 O 3 is extracted by image processing from the image obtained by binarizing the secondary electron image.
  • the portion corresponding to Al 2 O 3 extracted by the above treatment (black portion) is subjected to particle analysis, and the maximum length of the portion corresponding to Al 2 O 3 particles is obtained.
  • the determined maximum length is taken as the maximum length of each Al 2 O 3 particle, and this is taken as the diameter of each Al 2 O 3 particle.
  • the Feret diameter is calculated for one Al 2 O 3 particle, and the larger of the two obtained lengths (horizontal length and vertical length) is Let the length value be the maximum length, which is the diameter of each Al 2 O 3 particle.
  • each Al 2 O 3 particle is virtually regarded as a sphere, and the volume of each Al 2 O 3 particle is calculated from the obtained diameter.
  • the integrated distribution of the particle size of the Al 2 O 3 particles is obtained.
  • the sum of its volume and the volume of Al 2 O 3 particles having a diameter equal to or smaller than that diameter is obtained as an integrated value.
  • the vertical axis is the volume percentage [%], which is the ratio of the above integrated value of each Al 2 O 3 particle to the total volume of all Al 2 O 3 particles
  • the horizontal axis is each Al 2 Plot the graph as the O3 particle diameter [ ⁇ m].
  • the diameter (median diameter) at which the volume percentage is 50% is defined as the average particle diameter of the Al 2 O 3 particles in one image.
  • TiAl 3 in the binder phase may contain additional element M1 consisting of one or more of the group consisting of Si, Mg and Zn. That is, one or more of Si, Mg, and Zn may be present so as to be dispersed in TiAl 3 in the binder phase.
  • additional element M1 consisting of one or more of the group consisting of Si, Mg and Zn. That is, one or more of Si, Mg, and Zn may be present so as to be dispersed in TiAl 3 in the binder phase.
  • TiAl 3 in the binder phase contains the additional element M1
  • the average of the regions where Ti and Al overlap in the respective mapping images of Ti, Al, and the additional element M1 by Auger electron spectroscopy (AES) S TiAlM1 /S TiAl , which is the ratio of the average area S TiAlM1 of the overlapping region of Ti, Al, and the additive element M1 to the area S TiAl , is preferably 0.05 to 0.98.
  • FIG. 5 shows where Ti element and Al element overlap
  • Ti 2 AlC or Ti 3 AlC 2 is used as a raw material, and these can produce Ti 2 CN and TiAl 3 in the sintered body through ultra-high pressure sintering.
  • TiAl 3 and cBN react, TiAl 3 decomposes and AlN is produced together with TiB 2 .
  • This AlN has a low strength, and is particularly likely to be the starting point of fracture caused by the impact applied when the cBN sintered body is used as a drilling tool.
  • Al generated by the decomposition of TiAl 3 is mainly Since it becomes Al 2 O 3 , the generation of AlN can be suppressed.
  • the Ti—Al alloy produced by the decomposition of TiAl 3 contains one or more of Si, Mg, and Zn, it is believed that the wear resistance is improved.
  • S TiAlM1 /S TiAl is preferably 0.05 to 0.98.
  • S TiAlM1 /S TiAl is less than 0.05, a large amount of AlN is generated in the cBN sintered body, and fatigue fracture is likely to occur. In addition, since this AlN is enlarged, cracks generated in the sintered body are likely to propagate, which may reduce the toughness.
  • S TiAlM1 /S TiAl exceeds 0.98, the formation of AlN is suppressed, but a large amount of Al 2 O 3 and TiCNO are formed in the binder phase due to oxygen originating from the raw material.
  • S TiAlM1 /S TiAl is more preferably 0.15 to 0.50.
  • the binder phase in the hard layer 3 of the present embodiment has been described above. 2 , TiC, AlN, and Al 2 O 3 are preferably included. Furthermore, the hard layer 3 of the present embodiment may contain other alloys as inevitable impurities in addition to the composition described above within a range that does not impair the effects of the present invention.
  • composition of the binder phase described above can be identified by the diffraction pattern obtained by the above-described X-ray analysis (XRD).
  • FIG. 2 shows a modification of the drilling tip of this embodiment.
  • the hard layer 3 of this embodiment may include an intermediate layer 5 between the outermost layer 4 and the chip body 2 . That is, at least one intermediate layer 5 may be provided between the outermost layer 4 and the chip body 2 . Thereby, peeling of the outermost layer 4 can be prevented. That is, when the outermost layer 4 made of the above cBN sintered body is directly formed on the tip body 2, the difference in shrinkage between the tip body 2 and the outermost layer 4 made of a hard material such as cemented carbide may result in Depending on the thickness of the outermost layer 4, cracks may occur at the interface between the chip body 2 and the outermost layer 4 due to residual stress. In the modification shown in FIG. 2, since the intermediate layer 5 is provided between the outermost layer 4 and the chip body 2, the intermediate layer 5 functions as a stress relaxation layer. As a result, the occurrence of cracks can be suppressed, and peeling of the outermost layer 4 can be prevented.
  • the structure of the intermediate layer 5 is not particularly limited except that the content of the hard phase (diamond, cBN, or both) is smaller than that of the outermost layer 4 and that its hardness (Vickers hardness) is greater than that of the tip body 2.
  • the intermediate layer 5 is a cBN sintered body of a ceramic binder phase mainly composed of Ti carbonitride or boride, or a catalyst metal containing Al and at least one of Co, Ni, Mn, and Fe, and tungsten carbide. It may be a cBN sintered body sintered by. A metal additive containing at least one of W, Mo, Cr, V, Zr and Hf may be added to the metal catalyst.
  • the intermediate layer 5 can be composed of a polycrystalline diamond sintered body composed of diamond, cobalt, and tungsten carbide.
  • the intermediate layer 5 preferably contains 10.0 to 70.0 vol% of cBN grains or diamond grains.
  • the intermediate layer 5 functions as a stress relaxation layer, but has low impact resistance and is highly likely to become the starting point of breakage.
  • the content of cBN particles or diamond particles exceeds 70.0 vol%, the difference in shrinkage rate between the tip body 2 and the intermediate layer 5 becomes large, and as a result, when the drilling tip is used as a tool, Due to the impact, cracks, which are starting points of tool breakage, are likely to occur near the interface between the tip body 2 and the intermediate layer 5 . Therefore, in order for the intermediate layer 5 to sufficiently function as a stress relaxation layer, the content of cBN grains or diamond grains in the intermediate layer 5 is preferably 10.0 to 70.0 vol %. More preferably, it is 30.0 to 60.0 vol%.
  • the intermediate layer 5 has a single-layer structure (one-layer structure) in the example shown in FIG. 2, the present embodiment is not limited to this. That is, in this embodiment, the intermediate layer 5 may have a multi-layer structure of two or more layers. However, when the intermediate layer 5 has a multi-layer structure of three or more layers, it is desirable to give a gradient to the hardness so that the Vickers hardness decreases from the outermost layer 4 side toward the tip body 2 side. That is, when the intermediate layer 5 has a multi-layered structure, it is desirable to adjust so that the content of cBN grains or diamond grains in the intermediate layer 5 gradually decreases from the outermost layer 4 side toward the tip body 2 side.
  • the thickness of the outermost layer 4 on the center line C is preferably 0.3 mm or more and 4.0 mm or less. If the thickness of the outermost layer 4 is less than 0.3 mm, the drilling tip may wear out quickly and have a short life. On the other hand, if the thickness of the outermost layer 4 is more than 4.0 mm, cracks are likely to occur due to residual stress during sintering, which may lead to sudden breakage during excavation.
  • the thickness of the outermost layer 4 is more preferably 0.4 mm or more and 2.5 mm or less.
  • the thickness of the entire intermediate layer 5 on the center line C is preferably 0.2 mm or more and 1.0 mm or less.
  • the thickness of the intermediate layer 5 is less than 0.2 mm, it is difficult to form a uniform layer, and thus it is difficult to absorb the residual stress during sintering. As a result, there is a possibility that the role of stress relaxation of the chip cannot be fulfilled.
  • the thickness of the intermediate layer 5 exceeds 1.0 mm, the thickness of the entire hard layer 3 (the outermost layer 4 and the intermediate layer 5) becomes large, and cracks tend to occur due to residual stress during sintering. Furthermore, as a result, there is a risk of causing sudden breakage during excavation. Therefore, the thickness of the entire intermediate layer 5 is more preferably 0.3 mm or more and 0.8 mm or less.
  • a preferred method for manufacturing the drilling tip of this embodiment includes the steps of obtaining a mixed powder obtained by mixing the raw material powder of the binder phase in the outermost layer 4 and cBN particles, the step of heat-treating the mixed powder, and the step of heat-treating the mixed powder. and a step of sintering the mixed powder, the raw material powder of the intermediate layer 5 and the chip body 2 .
  • raw material powder of the binder phase in the outermost layer 4 and cBN particles are mixed so as to have a predetermined composition to obtain a mixed powder.
  • the raw material powder of the binder phase of the outermost layer 4 for example, Ti 2 AlC powder, Ti 3 AlC 2 powder, TiN powder, TiC powder, TiCN powder, and TiAl 3 powder with a range of 1 ⁇ m to 500 ⁇ m can be used.
  • the obtained mixed powder is subjected to heat treatment at, for example, 250° C. or higher and 900° C. or lower using a vacuum furnace.
  • the adsorbed water on the raw material surface can be reduced without decomposing coarse-grained Ti 2 AlC or Ti 3 AlC 2 into TiO 2 and Al 2 O 3 .
  • Al 2 O 3 produced can be reduced.
  • the reaction with oxygen during sintering is suppressed from progressing to the inside of the grains, and the sintered body after sintering contains Ti 2 CN and TiAl 3 can be produced.
  • TiAl 3 in the sintered body reacts with cBN to produce TiB 2 and AlN, which can increase the bonding strength between cBN and the binder phase.
  • the TiAl 3 can compensate for the decrease in toughness due to coarse grains in the binder phase component. As a result, it is possible to obtain a drilling tip that is excellent in wear resistance and abrasive wear resistance during rock excavation, and highly resistant to damage factors such as breakage due to impact and vibration during rock excavation.
  • the mixed powder after the heat treatment, the raw material powder of the intermediate layer 5, and the chip body 2 are charged into a normal ultra-high pressure sintering apparatus, and subjected to, for example, a pressure of 5 GPa or more and a temperature of 1600° C. or more. It is sintered for a predetermined time under ultra-high pressure and high temperature conditions.
  • a pressure of 5 GPa or more and a temperature of 1600° C. or more It is sintered for a predetermined time under ultra-high pressure and high temperature conditions.
  • the intermediate layer 5 and the tip body 2 in this manner, the drilling tip of the present embodiment can be manufactured.
  • a cBN sintered body containing Ti 2 CN and TiAl 3 in the binder phase fatigue wear due to impact and crushed rock surround the drilling tool.
  • a hard layer 3 according to the present embodiment that is highly resistant to abrasive wear due to minute cutting action that occurs between rocks and rocks, and damage factors such as defects due to impacts and vibrations for breaking rocks. can be done.
  • the drilling bit has a bit body 11 that is approximately cylindrical with a bottom and centered on the axis O. As shown in FIG. In this embodiment, the bottomed portion of the bit body 11 serves as the tip portion (the upper portion in FIG. 3), and the drilling tip 1 is attached to this tip portion.
  • the bit body 11 is made of, for example, steel.
  • a female screw portion 12 is formed on the inner periphery of the cylindrical rear end portion (lower portion in FIG. 2).
  • a drilling rod connected to the drilling rig is screwed into this female threaded portion 12, and the impact force and thrust toward the tip side in the direction of the axis O and the rotational force around the axis O are transmitted, whereby the drilling tip 1 Break the bedrock to form a borehole.
  • the tip of the bit body 11 has a slightly larger outer diameter than the rear end.
  • a plurality of discharge grooves 13 extending parallel to the axis O are formed on the outer periphery of the tip portion at intervals in the circumferential direction. It is discharged to the rear end side through the discharge groove 13 .
  • a blow hole 14 is formed along the axis O from the bottom surface of the female screw portion 12 having a bottom. The blow hole 14 branches obliquely with respect to the axis O at the tip of the bit body 11 and opens at the tip face of the bit body 11 . With such an arrangement, a fluid, such as compressed air, supplied through the drilling rod is ejected to facilitate the ejection of debris.
  • the tip surface of the bit body 11 is positioned on a circular face surface 15 centered on the axis O perpendicular to the axis O on the inner peripheral side, and on the outer periphery of this face surface 15. and a truncated conical gauge surface 16 directed toward the rear end side of the .
  • the blow hole 14 opens on the face surface 15 and the tip of the discharge groove 13 opens on the outer peripheral side of the gauge surface 16 .
  • a plurality of mounting holes 17 having a circular cross section are formed perpendicular to the face surface 15 and the gauge surface 16 so as to avoid openings of the blow hole 14 and the discharge groove 13, respectively. is formed in
  • the drilling tip 1 of this embodiment is embedded and attached to the attachment hole 17 as shown in FIG. Specifically, with the rear end portion 2A of the tip body 2 being buried in the mounting hole 17, the drilling tip 1 is fixed by interference fitting such as press fitting or shrink fitting, or by brazing. be done.
  • the tip of the drilling tip 1 coated with the hard layer 3 protrudes from the face surface 15 and the gauge surface 16, and crushes the bedrock by the above-described impact force, thrust force and rotational force.
  • the drilling tip 1 may be fixed at an angle with respect to the axis O of the drilling bit. does not necessarily match the axial direction of .
  • the present invention is not limited to this, and can be modified as appropriate without departing from the technical idea of the invention. . That is, each configuration and combination thereof in each embodiment of the present invention is an example, and addition, omission, replacement, and other modifications of the configuration are possible without departing from the gist of the present invention. Moreover, the present invention is not limited by the embodiments.
  • Example 1 First, as Example 1, an example of a drilling tip in which a cBN sintered body is applied to the outermost layer is given to demonstrate the effects of the present invention.
  • Outermost Layer (1-1) Preparation of Raw Material Powder for Outermost Layer
  • cBN powder cBN raw material
  • Ti 2 AlC powder and Ti 3 AlC 2 powder were prepared as raw material powders constituting the binder phase. Both the Ti 2 AlC powder and the Ti 3 AlC 2 powder had an average particle size of 50 ⁇ m.
  • TiN powder, TiC powder, TiCN powder, TiAl3 powder, Al powder, SiO2 powder, MgSiO3 powder, and ZnO powder were separately prepared as raw material powders of the binder phase.
  • the average particle size of TiN powder, TiC powder, TiCN powder, and TiAl3 powder is 0.3 ⁇ m to 0.9 ⁇ m
  • the average particle size of SiO2 powder, MgSiO3 powder, and ZnO powder is 0. 0.015 ⁇ m to 0.9 ⁇ m.
  • Table 1 shows the composition of the raw materials of the binder phase.
  • (1-3) First Temporary Heat Treatment The raw material powder for the outermost layer obtained by the above steps was subjected to a preliminary heat treatment to evaporate the adsorbed water from the powder surface.
  • the preliminary heat treatment was performed in a vacuum atmosphere with a pressure of 1 Pa or less at the "heat treatment temperature after mixing" listed in Table 3. The reason is as follows. If the heat treatment temperature in the preliminary heat treatment is less than 250°C, the adsorbed water may not be sufficiently dissociated from the raw material surface. As a result, Ti 2 AlC or Ti 3 AlC 2 reacts with the moisture adsorbed to the raw material during ultra-high pressure and high temperature sintering, and is decomposed into TiO 2 and Al 2 O 3 .
  • the heat treatment temperature in the preliminary heat treatment is higher than 900° C.
  • Ti 2 AlC or Ti 3 AlC 2 reacts with oxygen in the adsorbed water during the preliminary heat treatment and decomposes into TiO 2 and Al 2 O 3 .
  • TiAl 3 disappears in the binder phase of the sintered body after ultra-high pressure and high temperature sintering, and the toughness of the sintered body is reduced. Therefore, the heat treatment temperature in the preliminary heat treatment is preferably 250 to 900.degree.
  • diamond particles hard particles with an average particle size of 10 ⁇ m and an average particle size of 2 ⁇ m
  • Ta powder with an average particle size of 1 ⁇ m are added to the total amount of 100 vol %.
  • the contents of the diamond particles were blended so that the content of the diamond particles was the ratio shown in Table 2, wet-mixed, and dried.
  • raw material powder for the intermediate layer (type III) of the example of the present invention was obtained.
  • cBN powder hard particles
  • TiC powder with an average particle size of 4 ⁇ m are mixed, and the total amount of these is 100 vol%.
  • the contents of cBN particles were blended so as to have the proportions shown in Table 2, wet-mixed, and dried. As a result, the raw material powder of the intermediate layer (type II) of the example of the present invention was obtained.
  • the raw material powder for the outermost layer and the raw material powder for the intermediate layer after temporary heat treatment are made of a cemented carbide containing 94 wt% WC and 6 wt% Co, and the surface in contact with the raw material powder is coated with TiN. It was integrally sintered together with the base body (chip body) under the conditions of sintering pressure: 6.0 GPa, sintering temperature: 1600° C., and sintering time: 20 minutes.
  • drilling tips (invention example tips) 1 to 12 according to the present invention having a radius (2/D) of 4.5 mm and a length of 16 mm in the center line direction of the tip were produced.
  • the distal end of the tip body (tip projection) was round with a radius of 5.75 mm.
  • the thicknesses of the outermost layer and the intermediate layer in the center line direction of the chip are shown in Table 3.
  • drilling tips according to Comparative Examples 1 to 6 shown in Table 3 were manufactured.
  • a cBN raw material having an average particle size of 1.0 to 4.0 ⁇ m was prepared as a hard raw material.
  • raw material powders containing TiC, TiCN, etc., as shown in Table 1 were prepared as raw material powders constituting the binder phase. These were blended so as to have the composition shown in Table 1, and were mixed by a ball mill under the same conditions as in the above-described example of the present invention.
  • the materials for the intermediate layer used in the comparative examples were the same as those used in the examples of the present invention.
  • the raw material powder is subjected to preliminary heat treatment at a predetermined temperature in the range of 600° C. to 1200° C. (in Table 3, it is described as “heat treatment temperature after mixing”), and then WC: 94 wt%, Co:
  • the substrate was made of 6 wt% cemented carbide and the surface in contact with the raw material powder was coated with TiN. Bonding time: sintered integrally under the conditions of 20 minutes.
  • Table 3 shows the details of the drilling tips of the present invention examples and comparative examples obtained as described above.
  • the content ratio and average particle size of cBN particles in the outermost layer the peak intensity ratio I Ti2CN /I TiAl3 , the average particle size of Al 2 O 3 , the Si and Mg contained in TiAl 3 in the binder phase and presence or absence of Zn element (presence or absence of Si, Mg and Zn elements by AES), and S TiAlM1 /S TiAl were measured and calculated by the same methods as described above.
  • FIG. 4 shows the X-ray diffraction pattern of Inventive Example 3 in this example.
  • ⁇ Evaluation method> The amount of wear of the cutting edge and the state of the cutting edge were confirmed when the cutting length (cutting distance) was 750 m. However, the cutting edge was observed every 75 m of cutting length, and the presence or absence of chipping and the amount of wear were measured. If the amount of wear exceeded 2.3 mm (2300 ⁇ m), the cutting test was stopped at that point. In addition, the amount of wear was calculated by the following method. Circular wear scars are formed on the specimen after the cutting test. This circular wear mark was approximated to a circle using image analysis software "ImageJ (published by the National Institutes of Health, USA)", and the long axis at this time was calculated as the amount of wear. Table 4 shows the results.
  • the drilling tips of the examples of the present invention all have a small amount of wear, so they are excellent in abrasive wear resistance. It has resistance to damage factors such as chipping.
  • all of the drilling tips of the comparative examples either fractured or showed high wear amounts after a short cutting length. Therefore, all of the drilling tips of the comparative examples have low abrasive wear resistance and are easily chipped, making it difficult to use them as drilling tools.
  • Example 2 From among the drilling tips of the invention examples and the comparative examples shown in Table 3, seven invention examples (invention tips) 1, 3 and 11 and comparative examples (comparative example tips) 1, 2 and 5 were prepared. Then, a total of 7 drilling bits (bits 1 to 3 of the present invention, comparative example bits 1 to 3) were manufactured.
  • Drilling equipment model number H205D manufactured by TAMROCK Impact pressure: 160bar Feed pressure: 80 bar Rotation pressure: 55 bar Water (water pressure: 18 bar) was supplied from the blow hole.
  • a drilling tip having excellent fatigue wear resistance and abrasive wear resistance and resistance to damage factors such as chipping due to impact and vibration for breaking rocks, and such a drilling tip.
  • An attached drilling tool can be provided.

Abstract

A drilling tip according to the present invention comprises: a tip body (2) having a rear end part (2A) that forms a columnar shape or a disk shape around the center line (C) of the tip, and a head part (2B); and a hard layer (3) covering the head part (2B). The hard layer (3) has an outermost layer (4) comprising a cBN sintered body having cubic boron nitride particles and a binder phase. The binder phase contains Ti2CN and TiAl3.

Description

掘削チップおよび掘削工具drilling tips and drilling tools
 本発明は、掘削チップおよび掘削工具に関するものである。
 本願は、2021年3月31日に、日本に出願された特願2021-061362号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to drilling tips and drilling tools.
This application claims priority based on Japanese Patent Application No. 2021-061362 filed in Japan on March 31, 2021, the content of which is incorporated herein.
 掘削工具の先端部に取り付けられて掘削を行う掘削チップとして、打撃掘削用ビットの長寿命化を図るため、超硬合金よりなるチップ本体の基体先端部に、このチップ本体よりも硬質な多結晶ダイヤモンドの焼結体よりなる硬質層が被覆された掘削チップが知られている。例えば、特許文献1には、円柱状の後端部と、半球状をなして先端側に向かうに従い外径が小さくなる先端部と、を有するチップ本体の上記先端部に、このような多結晶ダイヤモンド焼結体の硬質層を多層に被覆した掘削チップが提案されている。 As a drilling tip that is attached to the tip of a drilling tool for drilling, in order to extend the life of the impact drilling bit, the tip body of the tip body made of cemented carbide has polycrystals harder than the tip body at the tip of the base body. Drilling tips coated with a hard layer of sintered diamond are known. For example, in Patent Document 1, such a polycrystalline A drilling tip coated with multiple hard layers of sintered diamond has been proposed.
 また、掘削チップとして、露天採掘や長壁式採掘に用いられるドラム式掘削装置の回転ドラムの外周に取り付けられるピックの先端に接合された掘削チップが知られている。特許文献2には、チップ本体の略円錐状の先端部をダイヤモンドおよび/または立方晶窒化ホウ素により被覆した掘削チップが提案されている。特許文献3には、チップ本体の略円錐状の先端部を被覆する最外層が、多結晶ダイヤモンド、多結晶立方晶窒化ホウ素、単結晶ダイヤモンド、および立方晶窒化ホウ素複合材から選択されることが提案されている。 Also, as a drilling tip, a drilling tip joined to the tip of a pick attached to the outer periphery of a rotating drum of a drum-type drilling rig used for open-pit mining or long-wall mining is known. Patent Literature 2 proposes a drilling tip in which a substantially conical tip portion of a tip body is coated with diamond and/or cubic boron nitride. Patent Document 3 discloses that the outermost layer covering the substantially conical tip of the tip body is selected from polycrystalline diamond, polycrystalline cubic boron nitride, single-crystalline diamond, and cubic boron nitride composites. Proposed.
 立方晶窒化ホウ素焼結体について、特許文献4には、強度および靱性を向上するために、AlO、AlB、AlN、TiB、およびTiNを含有する結合相を備える立方晶窒化ホウ素焼結体で構成した切削工具が提案されている。 Regarding cubic boron nitride sintered bodies, Patent Document 4 discloses a cubic boron nitride sintered body with a binder phase containing Al 2 O, AlB 2 , AlN, TiB 2 and TiN to improve strength and toughness. A cutting tool has been proposed which is composed of a joint.
米国特許第4694918号明細書(B)U.S. Pat. No. 4,694,918 (B) 米国特許第6051079号明細書(B)U.S. Pat. No. 6,051,079 (B) 欧州特許出願公開第2053198号明細書(A)European Patent Application Publication No. 2053198 (A) 日本国特開平8-197307号公報(A)Japanese Patent Laid-Open No. 8-197307 (A)
 しかしながら、多結晶ダイヤモンド焼結体は、超硬合金に比べて耐摩耗性は高いものの、靱性が低いために耐欠損性に乏しい。そのため、超硬岩層の掘削においては突発的な硬質層のチッピングや欠損が起きることがある。また、ダイヤモンド焼結体は、Fe系やNi系の鉱山では、親和性が高いために使用することができない。さらに、ダイヤモンド焼結体の耐熱温度も700℃程度であるため、これより高温に晒される条件ではダイヤモンド焼結体は使用できない。例えば、ドライ環境で行われる露天採掘のように700℃以上の高温となる掘削条件下では、ダイヤモンドが黒鉛化して耐摩耗性が低下してしまう。 However, although the polycrystalline diamond sintered body has higher wear resistance than cemented carbide, it has poor fracture resistance due to its low toughness. Therefore, chipping or chipping of the hard layer may occur unexpectedly during drilling of the superhard rock layer. In addition, diamond sintered bodies cannot be used in Fe-based or Ni-based mines because of their high affinity. Furthermore, since the heat resistance temperature of the diamond sintered body is also about 700° C., the diamond sintered body cannot be used under the condition of being exposed to a temperature higher than this. For example, under high-temperature excavation conditions of 700° C. or higher, such as open-pit mining performed in a dry environment, diamond is graphitized and wear resistance is lowered.
 また、立方晶窒化ホウ素焼結体は、Fe系やNi系の鉱山では親和性が低いものの、ダイヤモンドと比較して硬さが劣る。特許文献4に記載の立方晶窒化ホウ素焼結体は、硬さが比較的低く、耐摩耗性と耐欠損性が不十分であるため、掘削工具への適用は困難であった。 In addition, cubic boron nitride sintered bodies have a low affinity for Fe-based and Ni-based mines, but are inferior in hardness to diamond. The cubic boron nitride sintered body described in Patent Document 4 has relatively low hardness and insufficient wear resistance and chipping resistance, so it was difficult to apply it to a drilling tool.
 また、従来では、立方晶窒化ホウ素焼結体を岩石掘削用の掘削工具とした場合、繰り返し加わる衝撃による疲労摩耗に対する耐性(耐疲労摩耗性)、およびアブレッシブ摩耗に対する耐性(耐アブレッシブ摩耗性)を十分に確保できなかった。さらに、岩石を破壊するための衝撃や振動による欠損などの損傷要因に対する耐性についても、十分ではない。
なおここでいう「アブレッシブ摩耗」とは、破砕した岩石が堀削工具の周囲を取り巻く中で、硬質成分が工具刃先と岩石の間に入り込むことで生じる微小な切削作用による摩耗のことを指す。
Conventionally, when cubic boron nitride sintered bodies are used as excavating tools for rock excavation, resistance to fatigue wear due to repeated impacts (fatigue wear resistance) and resistance to abrasive wear (abrasive wear resistance) have been improved. could not secure enough. Furthermore, resistance to damage factors such as damage due to impact and vibration for breaking rocks is not sufficient.
The term "abrasive wear" as used herein refers to wear caused by minute cutting action caused by hard components entering between the cutting edge of the tool and the rock while the crushed rock surrounds the drilling tool.
 掘削工具は、地面や岩盤を掘り穿つための工具である。一方、地中の岩石は、その成分や強度は均一ではなく、脆性材料である。そのため、切り込み、削り取る性能を重視する切削工具とは異なり、掘削工具は、岩石を破壊するための衝撃や振動に耐えうる性能、さらにこの破壊した岩石を効率よく取り除くための回転に耐えうる性能が必要である。 A digging tool is a tool for digging through the ground or bedrock. On the other hand, rocks in the ground are not uniform in composition and strength, and are brittle materials. Therefore, unlike cutting tools, which emphasize cutting and chipping performance, drilling tools have the performance to withstand the impact and vibration that destroy rocks, as well as the performance to withstand rotation to efficiently remove the destroyed rocks. is necessary.
 すなわち、掘削工具に用いられる材料には、耐疲労摩耗性、耐アブレッシブ摩耗性、さらには、岩石を破壊するための衝撃や振動による欠損などの損傷要因に対する耐性が求められている。 In other words, the materials used for drilling tools are required to have fatigue wear resistance, abrasive wear resistance, and resistance to damage factors such as chipping due to impact and vibration to break rocks.
 本発明は、このような背景の下になされたもので、耐疲労摩耗性、耐アブレッシブ摩耗性に優れ、さらに、岩石を破壊するための衝撃や振動による欠損などの損傷要因に対する耐性を有する掘削チップを提供するとともに、このような掘削チップを取り付けた掘削工具を提供することを目的としている。 The present invention has been made under such a background, and has excellent fatigue wear resistance and abrasive wear resistance, and is resistant to damage factors such as fracture due to impact and vibration for breaking rocks. It is an object of the present invention to provide a tip and to provide a drilling tool fitted with such a drilling tip.
 本発明者らは、掘削チップの材料としてcBN焼結体に着目し検討した。その結果、cBN焼結体における結合相が、TiCNとTiAlを含有するとともに、これらTiCNとTiAlのXRDピークに所定の関係があるとき、耐疲労摩耗性、耐アブレッシブ摩耗性に優れ、さらに上記損傷要因に対する耐性を向上させることができるという知見を得た。
 本発明は、この知見に基づきなされたものであって、本発明の要旨は以下の通りである。
The present inventors paid attention to cBN sintered bodies as a material for drilling tips and studied them. As a result, when the binder phase in the cBN sintered body contains Ti 2 CN and TiAl 3 and the XRD peaks of these Ti 2 CN and TiAl 3 have a predetermined relationship, fatigue wear resistance and abrasive wear resistance The inventors have found that the resistance to the above-mentioned damage factors can be improved.
The present invention was made based on this finding, and the gist of the present invention is as follows.
 本発明の一態様の掘削チップは、掘削ビットの先端部に取り付けられるように構成された掘削チップであって、前記掘削チップの中心線を中心(軸)とした円柱形状または円板形状をなす後端部と、前記後端部から前記掘削チップの先端側に向かうに従い前記中心線からの半径が漸次小さくなる先端部とを有するチップ本体と、前記チップ本体の前記先端部を被覆する硬質層と、を備え、前記硬質層は、立方晶窒化ホウ素粒子と結合相とを有するcBN焼結体からなる最外層を有し、前記結合相は、TiCNとTiAlを含有することを特徴とする。 A drilling tip according to one aspect of the present invention is a drilling tip that is configured to be attached to the tip of a drilling bit, and has a cylindrical shape or a disk shape centered (axis) on the center line of the drilling tip. a tip body having a rear end portion and a tip portion whose radius from the center line gradually decreases from the rear end portion toward the tip side of the excavation tip; and a hard layer covering the tip portion of the tip body. and wherein the hard layer has an outermost layer made of a cBN sintered body having cubic boron nitride particles and a binder phase, and the binder phase contains Ti 2 CN and TiAl 3 and
 上記掘削チップにおいて、前記最外層のX線回折パターンにおいて、回折角(2θ)が41.9~42.2°の位置に出現するTiCNのピーク強度ITi2CNと、回折角(2θ)が39.0~39.3°の位置に出現するTiAlのピーク強度ITiAl3との比であるITi2CN/ITiAl3が2.0~30.0であってもよい。 In the above drilling tip, in the X-ray diffraction pattern of the outermost layer, the peak intensity I Ti2CN of Ti CN appearing at a diffraction angle (2θ) of 41.9 to 42.2° and the diffraction angle (2θ) of I Ti2CN /I TiAl3 , which is a ratio of the peak intensity I TiAl3 of TiAl 3 appearing at a position of 39.0 to 39.3°, may be 2.0 to 30.0.
 上記掘削チップにおいて、前記結合相は、Alを含有し、その平均粒径が0.9~2.5μmであってもよい。 In the above drilling tip, the binder phase may contain Al 2 O 3 and have an average particle size of 0.9 to 2.5 μm.
 上記掘削チップにおいて、前記結合相において、前記TiAlは、添加元素M1を含有し、前記添加元素M1は、Si、MgおよびZnからなる群のうち1種または2種以上であり、オージェ電子分光法による、Ti、Al、および添加元素M1それぞれのマッピング像において、TiとAlとが重なる領域の平均面積STiAlに対する、TiとAlと前記添加元素M1とが重なる領域の平均面積STiAlM1の比であるSTiAlM1/STiAlが0.05~0.98であってもよい。 In the above drilling tip, in the bonding phase, the TiAl 3 contains an additive element M1, the additive element M1 is one or more of the group consisting of Si, Mg and Zn, and Auger electron spectroscopy Ratio of the average area S TiAlM1 of the region where Ti and Al and the additional element M1 overlap to the average area S TiAl of the region where Ti and Al overlap in the mapping images of Ti, Al, and the additional element M1 according to the method S TiAlM1 /S TiAl may be 0.05 to 0.98.
 上記掘削チップにおいて、前記硬質層は、前記最外層と前記チップ本体との間に、中間層を備え、前記中間層が、10.0~70.0vol%の立方晶窒化ホウ素粒子またはダイヤモンド粒子を含有していてもよい。 In the drilling tip, the hard layer includes an intermediate layer between the outermost layer and the tip body, and the intermediate layer contains 10.0 to 70.0 vol% of cubic boron nitride particles or diamond particles. may contain.
 上記掘削チップにおいて、前記最外層における、前記立方晶窒化ホウ素粒子の体積率は、70.0~95.0vоl%であってもよい。 In the above drilling tip, the volume fraction of the cubic boron nitride particles in the outermost layer may be 70.0 to 95.0 vol%.
 上記掘削チップにおいて、前記最外層における、前記立方晶窒化ホウ素粒子の平均粒径は、0.5~30.0μmであってもよい。 In the above drilling tip, the cubic boron nitride particles in the outermost layer may have an average particle diameter of 0.5 to 30.0 μm.
 また、本発明の一態様の掘削工具は、上述の掘削チップと、先端面において前記掘削チップを保持し、軸線回りに回転させられる工具本体と、を備えることを特徴とする。 Further, a digging tool of one aspect of the present invention is characterized by comprising the above-described digging tip, and a tool body that holds the digging tip on its distal end surface and is rotated around an axis.
 本発明によれば、耐疲労摩耗性、耐アブレッシブ摩耗性に優れ、さらに、岩石を破壊するための衝撃や振動による欠損などの損傷要因に対する耐性を有する掘削チップ、ならびに、このような掘削チップを取り付けた掘削工具を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a drilling tip having excellent fatigue wear resistance and abrasive wear resistance and resistance to damage factors such as chipping due to impact and vibration for breaking rocks, and such a drilling tip. An attached drilling tool can be provided.
図1は、本発明の掘削チップの実施形態を示すチップの中心線に沿った断面図である。FIG. 1 is a cross-sectional view taken along the centerline of the tip showing an embodiment of the drilling tip of the present invention. 図2は、本実施形態の掘削チップの変形例を示すチップの中心線に沿った断面図である。FIG. 2 is a cross-sectional view along the centerline of the tip showing a modification of the drilling tip of the present embodiment. 図3は、図1に示す本実施形態の掘削チップをビット本体の先端部に取り付けた、本発明の掘削ビットの実施形態を示すビット本体の軸線に沿った断面図である。FIG. 3 is a cross-sectional view along the axis of the bit body showing an embodiment of the drilling bit of the present invention, in which the drilling tip of the present embodiment shown in FIG. 1 is attached to the tip of the bit body. 図4は、本発明例3のX線回折パターンである。FIG. 4 is an X-ray diffraction pattern of Example 3 of the present invention. 図5は、本発明例8におけるオージェ電子分光法による元素マッピングをもとに、Ti元素とAl元素の重なる箇所を模式的に示した図である。FIG. 5 is a diagram schematically showing overlapping portions of Ti element and Al element based on elemental mapping by Auger electron spectroscopy in Example 8 of the present invention. 図6は、本発明例8におけるオージェ電子分光法による元素マッピングをもとに、Ti元素とAl元素とSi元素の重なる箇所を模式的に示した図である。FIG. 6 is a diagram schematically showing overlapping portions of Ti element, Al element and Si element based on elemental mapping by Auger electron spectroscopy in Example 8 of the present invention.
 以下、本発明の掘削チップおよび掘削工具について、より詳細に説明する。なお、以下に記載する「~」を挟んで記載される数値限定範囲には、下限値および上限値がその範囲に含まれる。「未満」、「超」と示す数値には、その値が数値範囲に含まれない。 The drilling tip and drilling tool of the present invention will be described in more detail below. In addition, the lower limit value and the upper limit value are included in the numerical limitation range described below between "-". Numerical values indicated as "less than" and "greater than" do not include the value within the numerical range.
 図1は、本発明の掘削チップの実施形態を示す断面図であり、図2は、本実施形態の掘削チップの変形例を示すチップの中心線に沿った断面図である。図3は、本実施形態の掘削チップを取り付けた本発明の掘削ビットの実施形態を示す断面図である。
 本発明の掘削チップの形状は、一端が丸まった円筒形状である。チップの中心線Cは円筒形状の軸方向に平行で、かつ、掘削チップの中心を通る直線である。掘削チップの中心は、掘削チップを軸方向から見た場合(平面視した場合)の中心である。
FIG. 1 is a cross-sectional view showing an embodiment of the drilling tip of the present invention, and FIG. 2 is a cross-sectional view along the centerline of the tip showing a modification of the drilling tip of the present embodiment. FIG. 3 is a cross-sectional view showing an embodiment of the drilling bit of the present invention to which the drilling tip of the present embodiment is attached.
The shape of the drilling tip of the present invention is cylindrical with one rounded end. The centerline C of the tip is a straight line parallel to the axial direction of the cylindrical shape and passing through the center of the drilling tip. The center of the drilling tip is the center when the drilling tip is viewed from the axial direction (planar view).
 本実施形態の掘削チップ1は、チップの中心線Cを中心とした円柱形状または円板形状をなす後端部2Aと、この後端部2Aから先端側に向かうに従い中心線Cからの半径が漸次小さくなる先端部2Bとが一体に形成されたチップ本体2と、このチップ本体2の先端部2Bの表面を被覆する硬質層3とを備えている。チップ本体2は、例えば、超硬合金よりなる。また、硬質層3は、チップ本体2よりも硬度(ビッカース硬さ)の高い材料からなる。なお、硬質層3は、図1に示すように、最外層4からなる単層構造としてもよいし、図2に示すように、最外層4とチップ本体2との間に、中間層5を備えるような多層構造としてもよい。 The excavation tip 1 of the present embodiment has a rear end portion 2A having a cylindrical shape or a disc shape centered on the center line C of the tip, and a radius from the center line C extending from the rear end portion 2A toward the tip side. It comprises a tip body 2 integrally formed with a tip portion 2B that gradually becomes smaller, and a hard layer 3 covering the surface of the tip portion 2B of the tip body 2. - 特許庁The chip body 2 is made of cemented carbide, for example. Moreover, the hard layer 3 is made of a material having a higher hardness (Vickers hardness) than the tip body 2 . The hard layer 3 may have a single-layer structure consisting of the outermost layer 4 as shown in FIG. It is good also as a multilayer structure provided.
 チップ本体2の先端部2Bは、図1に示すように、中心線Cに沿った断面において、表面が先端側に凸となる凸円弧状をなす凸部2aと、表面が凸部2aの断面の凸円弧に接し、凹円弧状をなす凹部2bとを有している。具体的には、この凹部2bは、図1に示すように、表面が凸部2aの断面の凸円弧と、接点Pにおいて接しており、かつ、チップ本体2の後端側に向かうに従い外周側に広がるよう形成されている。本実施形態においては、凸部2aの表面は中心線C上に中心を有する凸球面状に形成されるとともに、上記断面において凹部2bの表面は、チップ本体2の後端部2Aの外周面に鈍角に交差している。 As shown in FIG. 1, the front end portion 2B of the tip body 2 has a convex portion 2a having a convex arc shape with a surface convex toward the tip side in a cross section along the center line C, and a cross section of the convex portion 2a having a surface. and a concave arc-shaped concave portion 2b which is in contact with the convex arc of . Specifically, as shown in FIG. 1, the surface of the concave portion 2b is in contact with the convex arc of the cross section of the convex portion 2a at the point of contact P, and the outer peripheral side of the chip body 2 is gradually increased toward the rear end side of the chip body 2. It is designed to spread over In this embodiment, the surface of the convex portion 2a is formed in a convex spherical shape centered on the center line C, and the surface of the concave portion 2b in the cross section is aligned with the outer peripheral surface of the rear end portion 2A of the tip body 2. intersect at an obtuse angle.
 チップ本体2の後端部2Aの直径D(mm)は、掘削に使用する際の衝撃荷重と、硬質層3とチップ本体2との界面に生じる残留応力の緩和とのバランスを図る観点から適宜決定してよく、例えば、8mm~20mmの範囲としてよい。 The diameter D (mm) of the rear end portion 2A of the tip body 2 is appropriately selected from the viewpoint of balancing the impact load when used for excavation and the relaxation of the residual stress generated at the interface between the hard layer 3 and the tip body 2. It may be determined and may range, for example, from 8 mm to 20 mm.
 チップ本体2の後端部2Aの直径D(mm)に対して、中心線Cに沿った断面における凸部2aの凸円弧の半径r1(mm)がなす比r1/Dは、0.1~0.65の範囲内とすることが好ましい。r1/Dを当該範囲内とすることで、硬質層3とチップ本体2との界面への残留応力を一層確実に緩和することができるとともに、硬質層3の厚みを十分に確保することができ、その結果、掘削工具の長寿命化を図ることが可能となる。 The ratio r1/D of the radius r1 (mm) of the convex arc of the convex portion 2a in the cross section along the center line C to the diameter D (mm) of the rear end portion 2A of the tip body 2 is 0.1 to 0.1. It is preferably within the range of 0.65. By setting r1/D within this range, the residual stress at the interface between the hard layer 3 and the chip body 2 can be more reliably alleviated, and the thickness of the hard layer 3 can be sufficiently secured. As a result, it is possible to extend the life of the drilling tool.
 また、チップ本体2の後端部2Aの直径D(mm)に対して、中心線Cに沿った断面における凹部2bの凹円弧の半径r2(mm)がなす比r2/Dは、0.05~3.0の範囲内とすることが好ましい。r2/Dを当該範囲内とすることで、同様に、硬質層3とチップ本体2との界面への残留応力を一層確実に緩和することができるとともに、硬質層3の厚みを十分に確保することができ、その結果、掘削工具の長寿命化を図ることが可能となる。 Also, the ratio r2/D of the radius r2 (mm) of the concave arc of the recess 2b in the cross section along the center line C to the diameter D (mm) of the rear end portion 2A of the tip body 2 is 0.05. It is preferably within the range of ~3.0. By setting r2/D within this range, similarly, the residual stress in the interface between the hard layer 3 and the chip body 2 can be more reliably relaxed, and the thickness of the hard layer 3 can be sufficiently secured. As a result, it is possible to extend the life of the drilling tool.
 さらに、中心線Cに沿った断面において、凸部2aと凹部2bとの接点Pと、凸部2aの凸円弧の中心Qとを結ぶ直線Lが中心線Cに対してなす角度θ(°)は、20(°)~90(°)の範囲内としてよい。角度θを当該範囲内とすることで、硬質層3とチップ本体2との界面への残留応力を一層確実に緩和することができるとともに、硬質層3の厚みを十分に確保することができ、その結果、掘削工具の長寿命化を図ることが可能となる。
 なお、本明細書でいう「中心線Cに沿った断面」とは、中心線Cからの距離が0.1(mm)以内の範囲で中心線Cに沿った断面であればよい。
Furthermore, in the cross section along the center line C, the angle θ (°) formed by the straight line L connecting the contact point P between the convex portion 2a and the concave portion 2b and the center Q of the convex arc of the convex portion 2a with respect to the center line C may be in the range of 20 (°) to 90 (°). By setting the angle θ within this range, the residual stress on the interface between the hard layer 3 and the chip body 2 can be more reliably alleviated, and a sufficient thickness of the hard layer 3 can be ensured. As a result, it is possible to extend the life of the drilling tool.
In addition, the “cross section along the center line C” as used in this specification may be a cross section along the center line C within a range of 0.1 (mm) from the center line C.
 本実施形態では、チップ本体1の先端部2Bに硬質層3が被覆されている。図1に示すように、硬質層3の後端部3Aは、チップ本体2の後端部2Aの先端側に連なっている。
さらに、硬質層3の後端部3Aの外周面は、中心線Cを中心とした、チップ本体2の後端部2Aと等しい直径D(mm)の円筒面状とされている。一方、硬質層3の先端部3Bの表面は、後端部3Aの外周面に滑らかに連なり、かつ上記中心Qを中心とした凸半球面状とされている。すなわち、本実施形態の掘削チップ1は、いわゆるボタンチップである。
また、硬質層3の厚さは、少なくとも上記接点Pよりも先端側では略均一とされていてもよい。
In this embodiment, the tip portion 2B of the tip body 1 is covered with the hard layer 3 . As shown in FIG. 1, the rear end portion 3A of the hard layer 3 continues to the tip side of the rear end portion 2A of the tip body 2. As shown in FIG.
Further, the outer peripheral surface of the rear end portion 3A of the hard layer 3 is a cylindrical surface centered on the center line C and having a diameter D (mm) equal to that of the rear end portion 2A of the tip body 2. As shown in FIG. On the other hand, the surface of the front end portion 3B of the hard layer 3 smoothly continues to the outer peripheral surface of the rear end portion 3A and has a convex hemispherical shape with the center Q as the center. That is, the drilling tip 1 of this embodiment is a so-called button tip.
Further, the thickness of the hard layer 3 may be substantially uniform at least on the tip side of the contact point P. As shown in FIG.
 本実施形態の硬質層3は、立方晶窒化ホウ素焼結体(以下、「cBN焼結体」ともいう)からなる最外層4を有する。ここで、本実施形態の硬質層3は、上記のとおり、最外層4のみからなる単層構造(図1)としてもよいし、最外層4とチップ本体2との間に中間層5を備えるような多層構造(図2)としてもよい。
 最外層4を構成するcBN焼結体は、立方晶窒化ホウ素粒子(以下、「cBN粒子」ともいう)と、各cBN粒子を互いに結合する結合相を有する。
The hard layer 3 of this embodiment has an outermost layer 4 made of a cubic boron nitride sintered body (hereinafter also referred to as a "cBN sintered body"). Here, as described above, the hard layer 3 of this embodiment may have a single-layer structure (FIG. 1) consisting of only the outermost layer 4, or an intermediate layer 5 is provided between the outermost layer 4 and the chip body 2. Such a multilayer structure (FIG. 2) may also be used.
The cBN sintered body constituting the outermost layer 4 has cubic boron nitride grains (hereinafter also referred to as “cBN grains”) and a binder phase that bonds the cBN grains to each other.
 cBN粒子の平均粒径は、特に限定されるものではないが、0.5~30.0μmの範囲であることが好ましい。このような粒径範囲を有する硬質なcBN粒子がcBN焼結体内に分散することにより、最外層4に高い耐欠損性を付与することができる。
具体的には、掘削時に、最外層4表面からcBN粒子が脱落することにより生じる凹凸を起点としたチッピングの発生を抑制することができる。それに加え、掘削時に、最外層4に加わる応力により引き起こされるcBN粒子と結合相との界面から進展するクラック、またはcBN粒子を貫通して進展するクラックの伝播を、cBN粒子により抑制することができる。cBN粒子の平均粒径は0.5~8.0μmであることがより好ましく、0.5~3.0μmであることがさらに好ましいが、これに限定されない。
Although the average particle size of the cBN particles is not particularly limited, it is preferably in the range of 0.5 to 30.0 μm. By dispersing the hard cBN particles having such a particle size range in the cBN sintered body, the outermost layer 4 can be provided with high fracture resistance.
Specifically, it is possible to suppress the occurrence of chipping originating from unevenness caused by cBN particles falling off the surface of the outermost layer 4 during excavation. In addition, the cBN particles can suppress the propagation of cracks that propagate from the interface between the cBN particles and the binder phase caused by the stress applied to the outermost layer 4 during excavation, or cracks that propagate through the cBN particles. . The average particle size of the cBN particles is more preferably 0.5 to 8.0 μm, more preferably 0.5 to 3.0 μm, but is not limited to this.
 cBN焼結体に占めるcBN粒子の含有量(vol%)は、特に限定されるものではないが、70~95vol%の範囲であることが好ましい。cBN焼結体に占めるcBN粒子の含有量が過度に低い場合、cBN粒子の量が少ないので、cBN粒子同士が接触し結合相と十分に反応できない未焼結な部分は少なくなるが、その一方で、最外層4のcBN焼結体の硬さが低下し、耐摩耗性や耐欠損性が劣化する場合がある。一方、cBN粒子の含有量が過度に高い場合には、焼結体中にクラックの起点となる空隙が生成しやすくなり、耐欠損性が低下する場合がある。そのため、cBN焼結体に占めるcBN粒子の含有量は、70~95vol%の範囲であることが好ましい。より好ましくは70~90vol%であり、さらに好ましくは75~85vol%であるがこれに限定されない。なお、cBN粒子の含有量は、最外層4の形成時にcBN粒子粉末と結合相形成用原料粉末との混合比率を調整することにより調整できる。 The content (vol%) of cBN particles in the cBN sintered body is not particularly limited, but is preferably in the range of 70 to 95vol%. If the content of cBN grains in the cBN sintered body is too low, the cBN grains are in contact with each other and the unsintered portion where the cBN grains are in contact with each other and cannot sufficiently react with the binder phase is reduced. As a result, the hardness of the cBN sintered body of the outermost layer 4 is lowered, and wear resistance and chipping resistance may be deteriorated. On the other hand, if the content of cBN grains is excessively high, voids that act as starting points for cracks are likely to be formed in the sintered body, and chipping resistance may be lowered. Therefore, the content of cBN grains in the cBN sintered body is preferably in the range of 70 to 95 vol %. More preferably 70 to 90 vol%, still more preferably 75 to 85 vol%, but not limited thereto. The content of cBN particles can be adjusted by adjusting the mixing ratio of the cBN particle powder and the raw material powder for forming the binder phase when forming the outermost layer 4 .
 ここで、cBN粒子の平均粒径、およびcBN焼結体に占めるcBN粒子の含有量は、以下のとおりにして求めることができる。 Here, the average particle diameter of cBN particles and the content of cBN particles in the cBN sintered body can be obtained as follows.
<cBN粒子の平均粒径の測定方法> <Method for measuring average particle size of cBN particles>
 ここで、cBN粒子の平均粒径は、以下のとおりにして求めることができる。cBN焼結体の断面を鏡面加工し、鏡面加工した面に対して走査型電子顕微鏡(ScanningElectronMicroscope:以下、SEMという)による組織観察を実施し、二次電子像を得る。次に、得られた画像内のcBN粒子の部分を画像処理にて抜き出し、画像解析より求めた各粒子の最大長を基に、後述する平均粒径を算出する。 Here, the average particle size of cBN particles can be obtained as follows. The cross section of the cBN sintered body is mirror-finished, and the mirror-finished surface is subjected to structural observation with a scanning electron microscope (hereinafter referred to as SEM) to obtain a secondary electron image. Next, the cBN grain portion in the obtained image is extracted by image processing, and the average grain size, which will be described later, is calculated based on the maximum length of each grain determined by image analysis.
 ここで、画像内のcBN粒子の部分を画像処理にて抜き出すにあたり、CBN粒子と結合相とを明確に判断するため、画像は0を黒、255を白の256階調のモノクロで表示し、cBN粒子部分の画素値のピーク値(v)と結合相部分の画素値のピーク値(w)に対して、(w-v)/2+vで算出された値を閾値として2値化処理を行う。 Here, in extracting the cBN particle portion in the image by image processing, in order to clearly determine the CBN particle and the bonding phase, the image is displayed in 256-gradation monochrome, with 0 being black and 255 being white. The peak value (v) of the pixel value of the cBN particle portion and the peak value (w) of the pixel value of the bonded phase portion are binarized using the value calculated by (w−v)/2+v as the threshold value. .
 また、cBN粒子部分の画素値を求めるための領域として、例えば、0.5μm×0.5μm程度の領域を選択し、同一画像領域内から少なくとも異なる3個所より求めた平均の値をcBN粒子の前述の画素値のピーク値とすることが好ましい。そして、結合相部分の画素値を求めるための領域として、0.2μm×0.2μm程度から0.5μm×0.5μm程度の領域を選択し、同じく、同一画像領域内から少なくとも異なる3個所より求めた平均の値を結合相の前述の画素値のピーク値とすることが好ましい。 In addition, as a region for obtaining the pixel value of the cBN grain portion, for example, a region of about 0.5 μm × 0.5 μm is selected, and the average value obtained from at least three different locations within the same image region is calculated. It is preferable to use the peak value of the pixel values described above. Then, a region of about 0.2 μm×0.2 μm to about 0.5 μm×0.5 μm is selected as a region for obtaining the pixel value of the bonded phase portion, and similarly, from at least three different locations within the same image region. Preferably, the determined average value is taken as the peak value of the aforementioned pixel values of the combined phase.
 なお、2値化処理後はcBN粒同士が接触していると考えられる部分を切り離すような処理、例えば、ウォーターシェッド(watershed)画像処理を用いて接触していると思われるcBN粒同士を分離する。 After the binarization process, a process for separating the portions where the cBN grains are considered to be in contact with each other, such as watershed image processing, is used to separate the cBN grains that are considered to be in contact. do.
 前述の2値化処理後に得られた画像内のcBN粒子にあたる部分(黒の部分)を粒子解析し、求めた各cBN粒子の最大長をそれぞれ各cBN粒子の直径とする。最大長を求める粒子解析としては、1つのcBN粒子に対してフェレ径を算出することより得られる2つの長さから大きい長さの値を最大長とし、その値を各cBN粒子の直径とする。  The part (black part) corresponding to the cBN particles in the image obtained after the above-mentioned binarization processing is subjected to particle analysis, and the obtained maximum length of each cBN particle is taken as the diameter of each cBN particle. As a particle analysis for determining the maximum length, the value of the larger length from the two lengths obtained by calculating the Feret diameter for one cBN particle is the maximum length, and that value is the diameter of each cBN particle. .
 各cBN粒子をこの直径を有する理想球体と仮定して、計算より求めた体積を各粒子の体積として累積体積を求め、この累積体積を基に縦軸を体積百分率(%)、横軸を直径(μm)としてグラフを描画させ、体積百分率が50%のときの直径をcBN粒子の平均粒径とする。これを3観察領域に対して行い、その平均値をcBN粒子の平均粒径(μm、この平均粒径をD50という)とする。 Assuming that each cBN particle is an ideal sphere having this diameter, the volume obtained by calculation is the volume of each particle, and the cumulative volume is obtained. Based on this cumulative volume, the vertical axis is the volume percentage (%) and the horizontal axis is the diameter. (μm), and the diameter when the volume percentage is 50% is taken as the average particle diameter of the cBN particles. This is performed for three observation areas, and the average value is taken as the average particle size of cBN particles (μm, this average particle size is called D50).
 この粒子解析を行う際には、あらかじめSEMにより分かっているスケールの値を用いて、1ピクセル当たりの長さ(μm)を設定しておく。観察領域として、cBN粒子が観察領域の中に少なくとも30個以上観察される領域、すなわち、cBN粒子の平均粒径が3μm程度の場合、例えば、15μm×15μm程度の観察領域が好ましい。 When performing this particle analysis, the length (μm) per pixel is set using the scale value known from the SEM in advance. As the observation area, at least 30 or more cBN particles are observed in the observation area, that is, when the average particle size of the cBN particles is about 3 μm, the observation area is preferably about 15 μm×15 μm, for example.
<cBN粒子の含有量>
 cBN焼結体に占めるcBN粒子の含有量は、以下のとおりにして求めることができる。
 まず、最外層4であるcBN焼結体の任意の断面の組織をSEMによって観察し、二次電子像を得る。得られた二次電子像内のcBN粒子に相当する部分を、cBN粒子の平均粒径の測定方法と同様の画像処理によって抜き出す。そして、画像解析によってcBN粒子が占める面積を算出し、1画像内のcBN粒子が占める割合を求める。少なくとも3画像を処理し求めたcBN粒子の含有量の平均値を、cBN焼結体に占めるcBN粒子の含有量(vol%)とする。なお、画像処理に用いる観察領域としては、cBN粒子の平均粒径の5倍の長さの一辺をもつ正方形の領域であることが好ましい。例えば、cBN粒子の平均粒径が3μmである場合は、画像処理に用いる観察領域としては、15μm×15μm程度の領域である望ましい。
<Content of cBN particles>
The content of cBN grains in the cBN sintered body can be determined as follows.
First, an arbitrary cross-sectional structure of the cBN sintered body, which is the outermost layer 4, is observed by SEM to obtain a secondary electron image. A portion corresponding to the cBN grains in the obtained secondary electron image is extracted by image processing similar to the method for measuring the average grain size of the cBN grains. Then, the area occupied by the cBN particles is calculated by image analysis, and the ratio occupied by the cBN particles in one image is obtained. The average value of the content of cBN particles obtained by processing at least three images is defined as the content (vol %) of cBN particles in the cBN sintered body. The observation area used for image processing is preferably a square area having a side length five times the average particle size of the cBN particles. For example, when the average particle size of cBN particles is 3 μm, the observation area used for image processing is preferably an area of about 15 μm×15 μm.
 本実施形態において、cBN焼結体中の結合相は、TiCNとTiAlを含有する。このように、結合相中にTiCNとTiAlを含有することにより、cBN粒子と結合相との付着力の向上や、cBN焼結体の靭性の向上を図ることができる。その結果、耐疲労摩耗性および耐アブレッシブ摩耗性の向上、ならびに、岩石掘削時の衝撃や振動による欠損などの損傷要因に対する耐性を向上させることができる。 In this embodiment, the binder phase in the cBN sintered body contains Ti2CN and TiAl3 . Thus, by including Ti 2 CN and TiAl 3 in the binder phase, it is possible to improve the adhesion between the cBN grains and the binder phase and improve the toughness of the cBN sintered body. As a result, fatigue wear resistance and abrasive wear resistance can be improved, and resistance to damage factors such as chipping due to impact and vibration during rock excavation can be improved.
 また、本実施形態においては、最外層のX線回折パターンにおいて、TiCNのピーク強度ITi2CNと、TiAlのピーク強度ITiAl3との比であるITi2CN/ITiAl3が2.0~30.0であることが好ましい。具体的には、最外層におけるX線解析(XRD)で得られる回折パターンにおいて、回折角(2θ)が41.9~42.2°の位置に出現するTiCNのピーク強度ITi2CNと、回折角(2θ)が39.0~39.3°の位置に出現するTiAlのピーク強度ITiAl3との比であるITi2CN/ITiAl3が2.0~30.0であることが好ましい。 In the present embodiment, in the X-ray diffraction pattern of the outermost layer, I Ti2CN /I TiAl3 , which is the ratio of the peak intensity I Ti2CN of Ti 2 CN to the peak intensity I TiAl3 of TiAl 3 , is 2.0 to 30. .0 is preferred. Specifically, in the diffraction pattern obtained by X-ray analysis (XRD) of the outermost layer, the peak intensity I Ti2CN of Ti CN that appears at a diffraction angle (2θ) of 41.9 to 42.2°, I Ti2CN /I TiAl3 , which is the ratio of the peak intensity I TiAl3 of TiAl 3 appearing at a diffraction angle (2θ) of 39.0 to 39.3°, is preferably 2.0 to 30.0.
 結合相の成分であるTiCNとTiAlについて、XRDにおけるそれぞれのピーク強度の比率(ITi2CN/ITiAl3)を2.0~30.0の範囲内とすることで、耐疲労摩耗性、耐アブレッシブ摩耗性に優れ、岩石掘削時の衝撃や振動による欠損などの損傷要因に対する耐性をより向上させることができる。ITi2CN/ITiAl3が2.0未満であると、cBN焼結体中のTiAlが過度に増大し、cBN粒子がこのTiAlと反応して粗大なTiBが形成されるおそれがある。その結果、粗大なTiBが岩石掘削時に破壊の起点となり、上記欠損などの損傷を招くおそれがある。一方、ITi2CN/ITiAl3が30.0より大きいと、cBN焼結体中のTiAlが過度に少なくなり、cBN粒子と結合相との付着力の低下やcBN焼結体の靭性の低下を招くおそれがある。これらのことから、ITi2CN/ITiAl3は、2.0~25.0であることがより好ましく、5.0~15.0であることがさらにより好ましい。なお、ピーク強度比ITi2CN/ITiAl3は、cBN焼結体の原料の配合比を調整することで、制御することができる。 For Ti 2 CN and TiAl 3 which are components of the binder phase, fatigue wear resistance, fatigue wear resistance, It has excellent abrasive wear resistance, and can further improve resistance to damage factors such as chipping due to impact and vibration during rock excavation. If I Ti2CN /I TiAl3 is less than 2.0, the amount of TiAl 3 in the cBN sintered body increases excessively, and cBN particles may react with this TiAl 3 to form coarse TiB 2 . As a result, coarse TiB 2 may become a starting point of fracture during excavation of rocks, resulting in damage such as the chipping described above. On the other hand, if I Ti2CN /I TiAl3 is greater than 30.0, the amount of TiAl3 in the cBN sintered body becomes excessively small, resulting in a decrease in adhesion between the cBN grains and the binder phase and a decrease in the toughness of the cBN sintered body. may invite. For these reasons, I Ti2CN /I TiAl3 is more preferably 2.0 to 25.0, and even more preferably 5.0 to 15.0. The peak intensity ratio I Ti2CN /I TiAl3 can be controlled by adjusting the compounding ratio of the raw materials of the cBN sintered body.
 ここで、TiCNのピーク強度(ITi2CN)とTiAlのピーク強度(ITiAl3)は、CuKα放射線を使用して測定するX線解析(XRD)により求める。具体的には、まずcBNの{111}面の回折ピークを2θ=43.3とし、このピーク位置(角度)を基準とする。そして、2θ=41.9~42.2°に出現するピークをTiCNとし、2θ=39.0~39.3°に出現するピークをTiAlとし、バックグラウンドを除去した後にピークサーチを行い、ITi2CNとITiAl3をそれぞれ求める。 Here, the peak intensity of Ti 2 CN (I Ti2CN ) and the peak intensity of TiAl 3 (I TiAl3 ) are determined by X-ray analysis (XRD) using CuKα radiation. Specifically, first, the diffraction peak of the {111} plane of cBN is set to 2θ=43.3, and this peak position (angle) is used as a reference. Then, the peak appearing at 2θ = 41.9 to 42.2° is Ti 2 CN, the peak appearing at 2θ = 39.0 to 39.3° is TiAl 3 , and the peak search is performed after removing the background. to obtain I Ti2CN and I TiAl3 , respectively.
 本実施形態において、結合相は、さらにAlを含有し、その平均粒径が0.9μm~2.5μmであることが好ましい。Alの平均粒径が0.9μm未満の場合、Alを生成させるために必要な、原料としてのTiAlCあるいはTiAlCの粒径を小さくする必要があり、その結果、cBN焼結体中に生成するTiCNやTiAlの割合が減少し、cBN焼結体の靭性が低下するおそれがある。一方、Alの平均粒径が2.5μmを超えると、結合相中のAl粒子を起点とする疲労蓄積によるクラックの発生が生じやすくなり、cBN焼結体の靭性が低下するおそれがある。 In this embodiment, the binder phase preferably further contains Al 2 O 3 and has an average particle size of 0.9 μm to 2.5 μm. When the average particle size of Al 2 O 3 is less than 0.9 μm, it is necessary to reduce the particle size of Ti 2 AlC or Ti 3 AlC 2 as a raw material, which is necessary for producing Al 2 O 3 . As a result, the ratio of Ti 2 CN and TiAl 3 generated in the cBN sintered body decreases, and the toughness of the cBN sintered body may decrease. On the other hand, if the average grain size of Al 2 O 3 exceeds 2.5 μm, cracks tend to occur due to fatigue accumulation originating from the Al 2 O 3 grains in the binder phase, and the toughness of the cBN sintered body decreases. There is a risk of
 結合相のAlの平均粒径は、SEM-EDX(Energy Dispersive X-ray Spectroscopy)によるAl元素とO元素のマッピングより求めることができる。つまり、SEM-EDXによって、これら2元素が重なる部位をAlとして認識し、画像解析により認識した各粒子の結晶粒径を求め、その後、Alの平均粒径を算出する。 The average particle size of Al 2 O 3 in the binder phase can be determined from Al element and O element mapping by SEM-EDX (Energy Dispersive X-ray Spectroscopy). That is, by SEM-EDX, the portion where these two elements overlap is recognized as Al 2 O 3 , the grain size of each recognized grain is obtained by image analysis, and then the average grain size of Al 2 O 3 is calculated.
 具体的には、まず、上述した<cBN粒子の平均粒径の測定方法>と同様に、cBN焼結体の断面組織をSEMによって観察し、二次電子像を得る。次に、EDXにてAl元素とO元素のマッピング像を取得し、Al元素とO元素が重なる部分をAlと判別し、画像処理によって二値化してAlを抜き出す。
 画像内のAlの部分を画像処理によって抜き出すにあたっては、まず、0を黒、255を白とする256階調のモノクロでこの二次電子像を表示し、上述した<cBN粒子の平均粒径の測定方法>と同様に、Alが黒となるように二値化処理を行う。
Specifically, first, the cross-sectional structure of the cBN sintered body is observed by SEM in the same manner as in the above-described <method for measuring the average particle size of cBN particles>, and a secondary electron image is obtained. Next, a mapping image of the Al element and the O element is acquired by EDX, and the overlapping portion of the Al element and the O element is identified as Al 2 O 3 and binarized by image processing to extract Al 2 O 3 .
In extracting the Al 2 O 3 portion in the image by image processing, first, this secondary electron image is displayed in monochrome with 256 gradations, where 0 is black and 255 is white, and the above-mentioned <average of cBN particles Particle size measurement method>, binarization processing is performed so that Al 2 O 3 becomes black.
 このような二値化処理の後、Alの粒子同士が接触していると考えられる部分を切り離す処理を行う。例えば、画像処理操作の1つであるwatershed(ウォーターシェッド)を用いて、接触していると思われるAl粒子を分離する。このように、二次電子像を二値化処理した画像から、Alに相当する部分を画像処理により抜き出す。 After such a binarization process, a process is performed to separate the portions where the Al 2 O 3 particles are considered to be in contact with each other. For example, one image processing operation, watershed, is used to separate Al 2 O 3 particles that appear to be in contact. In this way, the portion corresponding to Al 2 O 3 is extracted by image processing from the image obtained by binarizing the secondary electron image.
 上記の処理により抜き出されたAlに相当する部分(黒の部分)を粒子解析し、Al粒子に相当する部分の最大長をそれぞれ求める。求めた最大長を各Al粒子の最大長とし、それを各Al粒子の直径とする。最大長を求める粒子解析としては、1つのAl粒子に対してフェレ径を算出し、得られた2つの長さ(水平方向の長さおよび垂直方向の長さ)のうち大きい方の長さの値を最大長とし、それを各Al粒子の直径とする。 The portion corresponding to Al 2 O 3 extracted by the above treatment (black portion) is subjected to particle analysis, and the maximum length of the portion corresponding to Al 2 O 3 particles is obtained. The determined maximum length is taken as the maximum length of each Al 2 O 3 particle, and this is taken as the diameter of each Al 2 O 3 particle. As a particle analysis for determining the maximum length, the Feret diameter is calculated for one Al 2 O 3 particle, and the larger of the two obtained lengths (horizontal length and vertical length) is Let the length value be the maximum length, which is the diameter of each Al 2 O 3 particle.
 次に、各Al粒子を仮想的に球とみなし、得られた直径から各Al粒子の体積を計算する。各Al粒子の体積を基に、Al粒子の粒径の積算分布を求める。詳細には、各Al粒子について、その体積、およびその直径以下の直径を有するAl粒子の体積の総和を積算値として求める。各Al粒子について、全Al粒子の体積の総和に対する各Al粒子の上記積算値との割合である体積百分率[%]を縦軸とし、横軸を各Al粒子の直径[μm]としてグラフを描画する。体積百分率が50%となる直径(メディアン径)を1画像におけるAl粒子の平均粒径とする。 Next, each Al 2 O 3 particle is virtually regarded as a sphere, and the volume of each Al 2 O 3 particle is calculated from the obtained diameter. Based on the volume of each Al 2 O 3 particle, the integrated distribution of the particle size of the Al 2 O 3 particles is obtained. Specifically, for each Al 2 O 3 particle, the sum of its volume and the volume of Al 2 O 3 particles having a diameter equal to or smaller than that diameter is obtained as an integrated value. For each Al 2 O 3 particle, the vertical axis is the volume percentage [%], which is the ratio of the above integrated value of each Al 2 O 3 particle to the total volume of all Al 2 O 3 particles, and the horizontal axis is each Al 2 Plot the graph as the O3 particle diameter [μm]. The diameter (median diameter) at which the volume percentage is 50% is defined as the average particle diameter of the Al 2 O 3 particles in one image.
 これらの処理を、少なくとも3つの二次電子像に対して行い、それぞれの画像から得られたAl粒子の平均粒径の平均値を、結合相におけるAlの平均粒径[μm]とする。なお、このような粒子解析を行う際には、あらかじめSEMにより分かっているスケールの値を用いて、1ピクセル当たりの長さ(μm)を設定しておく。また、粒子解析の際、ノイズを除去するために、直径0.02μmより小さい領域は粒子として計算しない。 These treatments were performed on at least three secondary electron images, and the average value of the average particle size of the Al 2 O 3 particles obtained from each image was calculated as the average particle size of Al 2 O 3 in the binder phase [ μm]. When performing such particle analysis, the length (μm) per pixel is set using the scale value known in advance from the SEM. Also, in the particle analysis, in order to remove noise, regions smaller than 0.02 μm in diameter are not calculated as particles.
 本実施形態においては、結合相におけるTiAlは、Si、MgおよびZnからなる群のうち1種または2種以上からなる添加元素M1を含有してもよい。つまり、Si、Mg、Znの1種または2種以上が、結合相内におけるTiAl中に分散するよう存在していてもよい。このように、TiAl中に上記添加元素M1を含有することにより、疲労破壊を抑制することができる。 In this embodiment, TiAl 3 in the binder phase may contain additional element M1 consisting of one or more of the group consisting of Si, Mg and Zn. That is, one or more of Si, Mg, and Zn may be present so as to be dispersed in TiAl 3 in the binder phase. Thus, by including the additive element M1 in TiAl 3 , fatigue fracture can be suppressed.
 また、結合相におけるTiAlが、上記添加元素M1を含有する場合、オージェ電子分光法(AES)による、Ti、Al、および添加元素M1それぞれのマッピング像において、TiとAlとが重なる領域の平均面積STiAlに対する、TiとAlと添加元素M1とが重なる領域の平均面積STiAlM1の比であるSTiAlM1/STiAlが0.05~0.98であることが好ましい。これにより、疲労破壊をより抑制することができる。 Further, when TiAl 3 in the binder phase contains the additional element M1, the average of the regions where Ti and Al overlap in the respective mapping images of Ti, Al, and the additional element M1 by Auger electron spectroscopy (AES) S TiAlM1 /S TiAl , which is the ratio of the average area S TiAlM1 of the overlapping region of Ti, Al, and the additive element M1 to the area S TiAl , is preferably 0.05 to 0.98. Thereby, fatigue fracture can be suppressed more.
 AESによる元素マッピングの例として、後述する実施例の本発明例チップ8の観察結果を基にして、図5にTi元素とAl元素が重なる箇所、図6にTi元素、Al元素、Si元素が重なる箇所を模式的に示す。両図を比較すると、明らかなように、図5の重なる箇所は、図6の重なる箇所の一部となっている。 As an example of elemental mapping by AES, based on the observation results of the present invention chip 8 of the example described later, FIG. 5 shows where Ti element and Al element overlap, and FIG. Schematically shows overlapping portions. Comparing the two figures, as is apparent, the overlapping portion in FIG. 5 is part of the overlapping portion in FIG.
 ここで、結合相におけるTiAlにおいて、Si、Mg、Znの1種または2種以上が共に存在することによって疲労破壊が生じ難くなる理由は定かではないところがあるが、次のように推測している。 Here, it is not clear why the presence of one or more of Si, Mg, and Zn in TiAl 3 in the binder phase makes it difficult for fatigue fracture to occur, but the following assumptions are made. there is
 本発明では原料としてTiAlCあるいはTiAlCを用いるが、これらは超高圧焼結を経て焼結体内にTiCNとTiAlを生じさせることができる。このTiAlとcBNとが反応すると、TiAlが分解し、TiBと共にAlNが生成する。
このAlNは強度が低く、特に、cBN焼結体を掘削工具として用いたときに負荷される衝撃により発生する破壊の起点になりやすい。しかし、結合相の原料としてSi、Mg、Znの1種または2種以上を配合することによって、前記TiAlの分解によって生じるAlは、Si、Mg、Znを含む化合物との反応によって、主にAlとなるため、AlNの生成を抑制できる。さらに、前記TiAlの分解によって生じるTi-Al合金にSi、Mg、Znの1種または2種以上が含まれるため、耐摩耗性を向上させると考えられる。
In the present invention, Ti 2 AlC or Ti 3 AlC 2 is used as a raw material, and these can produce Ti 2 CN and TiAl 3 in the sintered body through ultra-high pressure sintering. When this TiAl 3 and cBN react, TiAl 3 decomposes and AlN is produced together with TiB 2 .
This AlN has a low strength, and is particularly likely to be the starting point of fracture caused by the impact applied when the cBN sintered body is used as a drilling tool. However, by blending one or more of Si, Mg, and Zn as raw materials for the binder phase, Al generated by the decomposition of TiAl 3 is mainly Since it becomes Al 2 O 3 , the generation of AlN can be suppressed. Furthermore, since the Ti—Al alloy produced by the decomposition of TiAl 3 contains one or more of Si, Mg, and Zn, it is believed that the wear resistance is improved.
 これらのことから、STiAlM1/STiAlは0.05~0.98であることが好ましい。STiAlM1/STiAlが0.05未満であると、AlNがcBN焼結体中に多く生成し、疲労破壊を生じやすくなる。また、このAlNは肥大であるため、焼結体中に生じたクラックを伝播しやすくなり、靭性が低下するおそれがある。一方、STiAlM1/STiAlが0.98を超えると、AlNの生成は抑制されるが、原料に起因する酸素によりAlやTiCNOが結合相中に多く生成する。このAlやTiCNOは疲労破壊を生じる起点となりやすくため、cBN焼結体の靭性を低下させるおそれがある。よって、STiAlM1/STiAlは0.15~0.50であることがより好ましい。 For these reasons, S TiAlM1 /S TiAl is preferably 0.05 to 0.98. When S TiAlM1 /S TiAl is less than 0.05, a large amount of AlN is generated in the cBN sintered body, and fatigue fracture is likely to occur. In addition, since this AlN is enlarged, cracks generated in the sintered body are likely to propagate, which may reduce the toughness. On the other hand, when S TiAlM1 /S TiAl exceeds 0.98, the formation of AlN is suppressed, but a large amount of Al 2 O 3 and TiCNO are formed in the binder phase due to oxygen originating from the raw material. Since Al 2 O 3 and TiCNO are likely to become starting points for causing fatigue fracture, there is a risk of lowering the toughness of the cBN sintered body. Therefore, S TiAlM1 /S TiAl is more preferably 0.15 to 0.50.
 以上、本実施形態の硬質層3における結合相について説明してきたが、結合相は、上記Alや、Si、Mg、Znの1種または2種以上を有するTiAlの他に、TiB、TiC、AlN、Alのうち1種または2種以上が含まれることが好ましい。さらに、本実施形態の硬質層3は、上述してきた組成に加え、本発明の効果を損なわない範囲で、不可避的な不純物として他の合金が含まれていてもよい。 The binder phase in the hard layer 3 of the present embodiment has been described above. 2 , TiC, AlN, and Al 2 O 3 are preferably included. Furthermore, the hard layer 3 of the present embodiment may contain other alloys as inevitable impurities in addition to the composition described above within a range that does not impair the effects of the present invention.
 また、以上説明してきた結合相の組織(組成)は、上述したX線解析(XRD)により得られる回折パターンによって同定することができる。 In addition, the structure (composition) of the binder phase described above can be identified by the diffraction pattern obtained by the above-described X-ray analysis (XRD).
 図2に、本実施形態の掘削チップの変形例を示す。図2に示すように、本実施形態の硬質層3は、最外層4とチップ本体2との間に、中間層5を備えてもよい。すなわち、最外層4とチップ本体2との間には、少なくとも1層の中間層5が設けられてもよい。これにより、最外層4の剥離を防止できる。すなわち、上述のcBN焼結体からなる最外層4をチップ本体2に直接形成した場合、超硬合金等の硬質材料からなるチップ本体2と最外層4との収縮率の違いにより、焼結後に応力が残留し、最外層4の厚みによっては、チップ本体2と最外層4との界面にクラックが生じるおそれがある。図2に示す変形例では、最外層4とチップ本体2との間に中間層5を設けているので、中間層5が応力緩和層として機能する。その結果、クラックの発生を抑制でき、最外層4の剥離を防止できる。 FIG. 2 shows a modification of the drilling tip of this embodiment. As shown in FIG. 2 , the hard layer 3 of this embodiment may include an intermediate layer 5 between the outermost layer 4 and the chip body 2 . That is, at least one intermediate layer 5 may be provided between the outermost layer 4 and the chip body 2 . Thereby, peeling of the outermost layer 4 can be prevented. That is, when the outermost layer 4 made of the above cBN sintered body is directly formed on the tip body 2, the difference in shrinkage between the tip body 2 and the outermost layer 4 made of a hard material such as cemented carbide may result in Depending on the thickness of the outermost layer 4, cracks may occur at the interface between the chip body 2 and the outermost layer 4 due to residual stress. In the modification shown in FIG. 2, since the intermediate layer 5 is provided between the outermost layer 4 and the chip body 2, the intermediate layer 5 functions as a stress relaxation layer. As a result, the occurrence of cracks can be suppressed, and peeling of the outermost layer 4 can be prevented.
 中間層5の構成は、硬質相(ダイヤモンド、cBNあるいはその両方など)の含有量が最外層4より小さく、またその硬さ(ビッカース硬さ)がチップ本体2より大きいこと以外は特に限定されない。例えば、中間層5はTiの炭窒化物や硼化物を主とするセラミックス結合相のcBN焼結体やAlと、Co、Ni、Mn、Feのうち少なくとも1種とを含む触媒金属および炭化タングステンにより焼結したcBN焼結体であってもよい。また、上記金属触媒に、W、Mo、Cr、V、Zr、Hfのうち少なくとも1種を含む金属添加物が添加されていてもよい。さらに、中間層5をダイヤモンド、コバルト、および炭化タングステンからなる多結晶ダイヤモンド焼結体で構成することもできる。 The structure of the intermediate layer 5 is not particularly limited except that the content of the hard phase (diamond, cBN, or both) is smaller than that of the outermost layer 4 and that its hardness (Vickers hardness) is greater than that of the tip body 2. For example, the intermediate layer 5 is a cBN sintered body of a ceramic binder phase mainly composed of Ti carbonitride or boride, or a catalyst metal containing Al and at least one of Co, Ni, Mn, and Fe, and tungsten carbide. It may be a cBN sintered body sintered by. A metal additive containing at least one of W, Mo, Cr, V, Zr and Hf may be added to the metal catalyst. Further, the intermediate layer 5 can be composed of a polycrystalline diamond sintered body composed of diamond, cobalt, and tungsten carbide.
 ここで、中間層5は、10.0~70.0vol%のcBN粒子またはダイヤモンド粒子を含有していることが好ましい。硬質粒子であるcBN粒子またはダイヤモンド粒子の含有量が10.0vol%未満の場合は、中間層5は応力緩和層として機能するが耐衝撃性が低く、破損の起点となる可能性が高い。また、cBN粒子またはダイヤモンド粒子の含有量が70.0vol%を超える場合は、チップ本体2と中間層5との収縮率の差が大きくなり、その結果、掘削チップを工具として使用する際、加わる衝撃によってチップ本体2と中間層5との界面付近に工具破損の起点となるクラックが生じやすくなる。そのため、中間層5を応力緩和層として十分に機能させるためには、中間層5におけるcBN粒子またはダイヤモンド粒子の含有量を10.0~70.0vol%とすることが好ましい。より好ましくは、30.0~60.0vol%である。 Here, the intermediate layer 5 preferably contains 10.0 to 70.0 vol% of cBN grains or diamond grains. When the content of cBN particles or diamond particles, which are hard particles, is less than 10.0 vol %, the intermediate layer 5 functions as a stress relaxation layer, but has low impact resistance and is highly likely to become the starting point of breakage. In addition, when the content of cBN particles or diamond particles exceeds 70.0 vol%, the difference in shrinkage rate between the tip body 2 and the intermediate layer 5 becomes large, and as a result, when the drilling tip is used as a tool, Due to the impact, cracks, which are starting points of tool breakage, are likely to occur near the interface between the tip body 2 and the intermediate layer 5 . Therefore, in order for the intermediate layer 5 to sufficiently function as a stress relaxation layer, the content of cBN grains or diamond grains in the intermediate layer 5 is preferably 10.0 to 70.0 vol %. More preferably, it is 30.0 to 60.0 vol%.
 なお、図2に示す例では、中間層5が単層構造(1層構造)とされているが、本実施形態はこれに限らない。すなわち、本実施形態では、中間層5が2層以上の多層構造でもよい。ただし、中間層5を3層以上の多層構造とする場合には、最外層4側からチップ本体2側に向かうに従い、ビッカース硬さが小さくなるよう、硬度に傾斜を付与することが望ましい。すなわち、中間層5を多層構造とする場合には、最外層4側からチップ本体2側に向かうに従い、中間層5のcBN粒子またはダイヤモンド粒子の含有量が漸減するよう調整することが望ましい。 Although the intermediate layer 5 has a single-layer structure (one-layer structure) in the example shown in FIG. 2, the present embodiment is not limited to this. That is, in this embodiment, the intermediate layer 5 may have a multi-layer structure of two or more layers. However, when the intermediate layer 5 has a multi-layer structure of three or more layers, it is desirable to give a gradient to the hardness so that the Vickers hardness decreases from the outermost layer 4 side toward the tip body 2 side. That is, when the intermediate layer 5 has a multi-layered structure, it is desirable to adjust so that the content of cBN grains or diamond grains in the intermediate layer 5 gradually decreases from the outermost layer 4 side toward the tip body 2 side.
 中心線C上における最外層4の厚さは、0.3mm以上4.0mm以下とすることが好ましい。最外層4の厚さが0.3mm未満の場合、掘削チップがすぐに摩滅して短寿命となるおそれがある。一方、最外層4の厚さが4.0mm超の場合、焼結時の残留応力によるクラックが発生しやすくなり、掘削時の突発欠損を招くおそれがある。最外層4の厚さは、より好ましくは0.4mm以上2.5mm以下である。 The thickness of the outermost layer 4 on the center line C is preferably 0.3 mm or more and 4.0 mm or less. If the thickness of the outermost layer 4 is less than 0.3 mm, the drilling tip may wear out quickly and have a short life. On the other hand, if the thickness of the outermost layer 4 is more than 4.0 mm, cracks are likely to occur due to residual stress during sintering, which may lead to sudden breakage during excavation. The thickness of the outermost layer 4 is more preferably 0.4 mm or more and 2.5 mm or less.
 また、中心線C上における中間層5全体の厚さは、0.2mm以上1.0mm以下とすることが好ましい。中間層5の厚さが0.2mm未満の場合、均一な層が形成され難いため、焼結時の残留応力が吸収され難くなる。その結果、チップの応力緩和の役割が果たせなくなるおそれがある。一方、中間層5の厚さが1.0mmを超える場合、硬質層3(最外層4および中間層5)全体の厚さが大きくなり、焼結時の残留応力によるクラックが発生しやすくなる。さらにその結果、掘削時の突発欠損を招くおそれがある。よって、中間層5全体の厚さはより好ましくは0.3mm以上0.8mm以下である。 Also, the thickness of the entire intermediate layer 5 on the center line C is preferably 0.2 mm or more and 1.0 mm or less. When the thickness of the intermediate layer 5 is less than 0.2 mm, it is difficult to form a uniform layer, and thus it is difficult to absorb the residual stress during sintering. As a result, there is a possibility that the role of stress relaxation of the chip cannot be fulfilled. On the other hand, if the thickness of the intermediate layer 5 exceeds 1.0 mm, the thickness of the entire hard layer 3 (the outermost layer 4 and the intermediate layer 5) becomes large, and cracks tend to occur due to residual stress during sintering. Furthermore, as a result, there is a risk of causing sudden breakage during excavation. Therefore, the thickness of the entire intermediate layer 5 is more preferably 0.3 mm or more and 0.8 mm or less.
 次に、本実施形態の掘削チップの好適な製造方法を説明する。
 本実施形態の掘削チップの好適な製造方法は、最外層4における結合相の原料粉末と、cBN粒子とを混合した混合粉末を得る工程と、混合粉末に熱処理を行う工程と、その熱処理後の混合粉末と中間層5の原料粉末とチップ本体2とを焼結する工程とを備える。
Next, a preferred method for manufacturing the drilling tip of this embodiment will be described.
A preferred method for manufacturing the drilling tip of the present embodiment includes the steps of obtaining a mixed powder obtained by mixing the raw material powder of the binder phase in the outermost layer 4 and cBN particles, the step of heat-treating the mixed powder, and the step of heat-treating the mixed powder. and a step of sintering the mixed powder, the raw material powder of the intermediate layer 5 and the chip body 2 .
 まず、最外層4における結合相の原料粉末とcBN粒子とを、所定の組成となるように混合し、混合粉末を得る。最外層4の結合相の原料粉末として、例えば、1μm~500μmの範囲のTiAlC粉末、TiAlC粉末、TiN粉末、TiC粉末、TiCN粉末、および、TiAl粉末を用いることができる。 First, raw material powder of the binder phase in the outermost layer 4 and cBN particles are mixed so as to have a predetermined composition to obtain a mixed powder. As the raw material powder of the binder phase of the outermost layer 4, for example, Ti 2 AlC powder, Ti 3 AlC 2 powder, TiN powder, TiC powder, TiCN powder, and TiAl 3 powder with a range of 1 μm to 500 μm can be used.
 次に、得られた混合粉末に対し、真空炉を用いて、例えば、250℃以上900℃以下にて熱処理を行う。これにより、粗粒なTiAlCあるいはTiAlCをTiOとAlに分解させることなく原料表面の吸着水を低減させることができ、超高圧高温焼結後の焼結体内に生じるAlを低減させることができる。 Next, the obtained mixed powder is subjected to heat treatment at, for example, 250° C. or higher and 900° C. or lower using a vacuum furnace. As a result, the adsorbed water on the raw material surface can be reduced without decomposing coarse-grained Ti 2 AlC or Ti 3 AlC 2 into TiO 2 and Al 2 O 3 . Al 2 O 3 produced can be reduced.
 ここで、原料粉末として粗粒なTiAlCあるいはTiAlCを用いることにより、焼結時の酸素との反応が粒の内部まで進行することを抑制し、焼結後の焼結体内にTiCNとTiAlを生成させることができる。焼結体中のTiAlは、cBNと反応することでTiBとAlNを生成し、これにより、cBNと結合相との結合強度を高めることができる。さらに、TiとAlの合金であるTiAlを焼結体中に残留させておくことにより、結合相成分を粗粒としたことによる靭性の低下を、このTiAlにて補うことができる。これらの結果、岩石掘削時の耐摩耗性と耐アブレッシブ摩耗性に優れ、岩石掘削時の衝撃や振動による欠損などの損傷要因に対する耐性の高い掘削チップを得ることができる。 Here, by using coarse-grained Ti 2 AlC or Ti 3 AlC 2 as the raw material powder, the reaction with oxygen during sintering is suppressed from progressing to the inside of the grains, and the sintered body after sintering contains Ti 2 CN and TiAl 3 can be produced. TiAl 3 in the sintered body reacts with cBN to produce TiB 2 and AlN, which can increase the bonding strength between cBN and the binder phase. Furthermore, by leaving TiAl 3 , which is an alloy of Ti and Al, in the sintered body, the TiAl 3 can compensate for the decrease in toughness due to coarse grains in the binder phase component. As a result, it is possible to obtain a drilling tip that is excellent in wear resistance and abrasive wear resistance during rock excavation, and highly resistant to damage factors such as breakage due to impact and vibration during rock excavation.
 次に、上記熱処理後の混合粉末と中間層5の原料粉末とチップ本体2とを、通常の超高圧焼結装置に装入し、例えば、5GPa以上の圧力、かつ、1600℃以上の温度の超高圧高温条件下で所定時間、焼結する。このように、最外層4、中間層5およびチップ本体2を一体に焼結することにより、本実施形態の掘削チップを製造することができる。また、結合相にTiCNとTiAlを含むようなcBN焼結体を作製することにより、衝撃による疲労摩耗、破砕した岩石が堀削工具の周囲を取り巻く中で岩石の硬質成分が工具刃先と岩石の間に入り込み生じる微小な切削作用によるアブレッシブ摩耗、さらには、岩石を破壊するための衝撃や振動による欠損などの損傷要因、それぞれに対する耐性の高い本実施形態に係る硬質層3を得ることができる。 Next, the mixed powder after the heat treatment, the raw material powder of the intermediate layer 5, and the chip body 2 are charged into a normal ultra-high pressure sintering apparatus, and subjected to, for example, a pressure of 5 GPa or more and a temperature of 1600° C. or more. It is sintered for a predetermined time under ultra-high pressure and high temperature conditions. By integrally sintering the outermost layer 4, the intermediate layer 5 and the tip body 2 in this manner, the drilling tip of the present embodiment can be manufactured. In addition, by producing a cBN sintered body containing Ti 2 CN and TiAl 3 in the binder phase, fatigue wear due to impact and crushed rock surround the drilling tool. To obtain a hard layer 3 according to the present embodiment that is highly resistant to abrasive wear due to minute cutting action that occurs between rocks and rocks, and damage factors such as defects due to impacts and vibrations for breaking rocks. can be done.
 次に、以上説明したような、本実施形態に係る掘削チップ1が先端部に取り付けられる掘削ビット(掘削工具)について説明する。
 本実施形態に係る掘削ビットは、図3に示すように、軸線Oを中心とした、概略有底円筒状をなすビット本体11を有する。本実施形態においては、ビット本体11の有底部が先端部(図3において上側部分)とされており、この先端部に掘削チップ1が取り付けられる。ビット本体11は、例えば、鋼材等により形成される。また、ビット本体11において、円筒状の後端部(図2において下側部分)の内周には雌ネジ部12が形成されている。掘削装置に連結された掘削ロッドがこの雌ネジ部12にねじ込まれ、軸線O方向の先端側に向けての打撃力と推力および軸線O回りの回転力が伝達されることにより、掘削チップ1によって岩盤を破砕して掘削孔を形成する。
Next, an excavation bit (excavation tool) to which the excavation tip 1 according to the present embodiment as described above is attached to the tip will be described.
As shown in FIG. 3, the drilling bit according to this embodiment has a bit body 11 that is approximately cylindrical with a bottom and centered on the axis O. As shown in FIG. In this embodiment, the bottomed portion of the bit body 11 serves as the tip portion (the upper portion in FIG. 3), and the drilling tip 1 is attached to this tip portion. The bit body 11 is made of, for example, steel. In the bit body 11, a female screw portion 12 is formed on the inner periphery of the cylindrical rear end portion (lower portion in FIG. 2). A drilling rod connected to the drilling rig is screwed into this female threaded portion 12, and the impact force and thrust toward the tip side in the direction of the axis O and the rotational force around the axis O are transmitted, whereby the drilling tip 1 Break the bedrock to form a borehole.
 ビット本体11の先端部は後端部よりも僅かに外径が大径とされている。また、この先端部の外周には、軸線Oに平行に延びる排出溝13が周方向に間隔をあけて複数条形成されており、掘削チップ1により岩盤が破砕されて生成された破砕屑がこの排出溝13を通して後端側に排出される。
 また、有底である雌ネジ部12底面からは、軸線Oに沿ってブロー孔14が形成されている。このブロー孔14は、ビット本体11の先端部において、軸線Oに対して斜めに分岐し、ビット本体11の先端面にて開口している。このような構成によって、上記掘削ロッドを介して供給される圧縮空気のような流体を噴出して破砕屑の排出を促進する。
The tip of the bit body 11 has a slightly larger outer diameter than the rear end. In addition, a plurality of discharge grooves 13 extending parallel to the axis O are formed on the outer periphery of the tip portion at intervals in the circumferential direction. It is discharged to the rear end side through the discharge groove 13 .
A blow hole 14 is formed along the axis O from the bottom surface of the female screw portion 12 having a bottom. The blow hole 14 branches obliquely with respect to the axis O at the tip of the bit body 11 and opens at the tip face of the bit body 11 . With such an arrangement, a fluid, such as compressed air, supplied through the drilling rod is ejected to facilitate the ejection of debris.
 さらに、ビット本体11の先端面は、内周側の軸線Oに垂直な軸線Oを中心とした円形のフェイス面15と、このフェイス面15の外周に位置し、外周側に向かうに従いビット本体11の後端側に向かう円錐台面状のゲージ面16とを備えている。ブロー孔14はフェイス面15に開口するとともに、排出溝13の先端はゲージ面16の外周側に開口している。また、これらフェイス面15とゲージ面16には、それぞれブロー孔14と排出溝13の開口部を避けるようにして、断面円形の複数の取付孔17がフェイス面15とゲージ面16に対して垂直に形成されている。 Further, the tip surface of the bit body 11 is positioned on a circular face surface 15 centered on the axis O perpendicular to the axis O on the inner peripheral side, and on the outer periphery of this face surface 15. and a truncated conical gauge surface 16 directed toward the rear end side of the . The blow hole 14 opens on the face surface 15 and the tip of the discharge groove 13 opens on the outer peripheral side of the gauge surface 16 . A plurality of mounting holes 17 having a circular cross section are formed perpendicular to the face surface 15 and the gauge surface 16 so as to avoid openings of the blow hole 14 and the discharge groove 13, respectively. is formed in
 本実施形態の掘削チップ1は、図3に示すように、この取付孔17に埋設されて取り付けられる。具体的には、取付孔17に、チップ本体2の後端部2Aが埋没させられた状態で、圧入や焼き嵌め等によって締まり嵌めされたり、ロウ付けされたりすることにより、掘削チップ1が固定される。そして、硬質層3が被覆された掘削チップ1の先端部がフェイス面15およびゲージ面16から突出して、上述した打撃力と推力および回転力により岩盤を破砕する。 The drilling tip 1 of this embodiment is embedded and attached to the attachment hole 17 as shown in FIG. Specifically, with the rear end portion 2A of the tip body 2 being buried in the mounting hole 17, the drilling tip 1 is fixed by interference fitting such as press fitting or shrink fitting, or by brazing. be done. The tip of the drilling tip 1 coated with the hard layer 3 protrudes from the face surface 15 and the gauge surface 16, and crushes the bedrock by the above-described impact force, thrust force and rotational force.
 なお、図3に示すように、掘削チップ1は、掘削ビットの軸線Oに対して傾斜して固定される場合があるため、掘削チップ1の中心線Cの軸方向は、掘削ビットの軸線Oの軸方向とは、必ずしも一致しない。 As shown in FIG. 3, the drilling tip 1 may be fixed at an angle with respect to the axis O of the drilling bit. does not necessarily match the axial direction of .
 以上、本発明の実施形態の掘削チップおよび掘削ビット(掘削工具)ついて説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。すなわち、本発明の各実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 Although the drilling tip and drilling bit (drilling tool) according to the embodiments of the present invention have been described above, the present invention is not limited to this, and can be modified as appropriate without departing from the technical idea of the invention. . That is, each configuration and combination thereof in each embodiment of the present invention is an example, and addition, omission, replacement, and other modifications of the configuration are possible without departing from the gist of the present invention. Moreover, the present invention is not limited by the embodiments.
 次に、本発明の掘削チップおよび掘削ビットの実施例を挙げて、本発明の効果について実証する。 Next, examples of the drilling tip and drilling bit of the present invention will be given to demonstrate the effects of the present invention.
 (実施例1)
 まず、実施例1として、cBN焼結体を最外層に適用した掘削チップの実施例を挙げて、本発明の効果について実証する。
(Example 1)
First, as Example 1, an example of a drilling tip in which a cBN sintered body is applied to the outermost layer is given to demonstrate the effects of the present invention.
(1)最外層
(1-1)最外層の原料粉末の準備
 最外層の硬質原料として、平均粒径が0.5~35μmの範囲内であるcBN粉末(cBN原料)を用意した。
 また、結合相を構成する原料粉末として、TiAlC粉末あるいはTiAlC粉末をそれぞれ用意した。TiAlC粉末およびTiAlC粉末の平均粒径はいずれも50μmであった。また、結合相の原料粉末として、さらに、TiN粉末、TiC粉末、TiCN粉末、TiAl粉末、Al粉末、SiO粉末、MgSiO粉末、ZnO粉末を別途準備した。これら原料粉末のうち、TiN粉末、TiC粉末、TiCN粉末、TiAl粉末の平均粒径は、0.3μm~0.9μmであり、SiO粉末、MgSiO粉末、ZnO粉末の平均粒径は0.015μm~0.9μmであった。結合相の原料の配合組成を表1に示す。
(1) Outermost Layer (1-1) Preparation of Raw Material Powder for Outermost Layer As a hard raw material for the outermost layer, cBN powder (cBN raw material) having an average particle size within the range of 0.5 to 35 μm was prepared.
In addition, Ti 2 AlC powder and Ti 3 AlC 2 powder were prepared as raw material powders constituting the binder phase. Both the Ti 2 AlC powder and the Ti 3 AlC 2 powder had an average particle size of 50 μm. In addition, TiN powder, TiC powder, TiCN powder, TiAl3 powder, Al powder, SiO2 powder, MgSiO3 powder, and ZnO powder were separately prepared as raw material powders of the binder phase. Among these raw material powders, the average particle size of TiN powder, TiC powder, TiCN powder, and TiAl3 powder is 0.3 μm to 0.9 μm, and the average particle size of SiO2 powder, MgSiO3 powder, and ZnO powder is 0. 0.015 μm to 0.9 μm. Table 1 shows the composition of the raw materials of the binder phase.
(1-2)第1の混合
 これら最外層の原料粉末のうち、Si、Mg、Zn元素を含む粉末以外の粉末を、超硬合金で内張りされた容器内に、超硬合金製のボールとアセトンと共に充填し、蓋をした後にボールミルにより混合した。混合時間は、原料粉末を細かく粉砕させないように、1時間とした。なお、本実施例では採用していないが、原料粉末の混合工程では、超音波攪拌装置を用いて原料粉末の凝集を解砕しながら混合することがより好ましい。
(1-2) First mixing Among these raw material powders for the outermost layer, powders other than powders containing the elements Si, Mg, and Zn are placed in a container lined with a cemented carbide with balls made of cemented carbide. It was filled with acetone, capped and mixed by a ball mill. The mixing time was set to 1 hour so as not to finely pulverize the raw material powder. Although not adopted in this embodiment, it is more preferable to use an ultrasonic stirrer to break up agglomerates of the raw material powder in the mixing process of the raw material powder.
(1-3)第1の仮熱処理
 上記工程によって得られた最外層の原料粉末を、仮熱処理し、粉末表面から吸着水を蒸発させた。
 仮熱処理は、圧力が1Pa以下の真空雰囲気中で、表3に記載の「混合後の熱処理温度」にて行った。その理由は、次のとおりである。
 仮熱処理における熱処理温度が250℃未満であると、吸着水が十分に原料表面から解離しないおそれがある。そうすると、TiAlCあるいはTiAlCが超高圧高温焼結中に、原料に吸着していた水分と反応してTiOとAlに分解されてしまい、その結果、超高圧高温焼結後の焼結体の結合相中にTiAlCとTiAlの存在が少なくなり、焼結体の靭性が低下してしまう。一方、仮熱処理における熱処理温度が900℃より高い温度であると、仮熱処理の段階でTiAlCあるいはTiAlCが吸着水の酸素と反応し、TiOとAlに分解してしまい、特に、超高圧高温焼結後の焼結体の結合相中にTiAlの存在がなくなり、焼結体の靭性が低下してしまう。よって、仮熱処理における熱処理温度は、250~900℃が好ましい。
(1-3) First Temporary Heat Treatment The raw material powder for the outermost layer obtained by the above steps was subjected to a preliminary heat treatment to evaporate the adsorbed water from the powder surface.
The preliminary heat treatment was performed in a vacuum atmosphere with a pressure of 1 Pa or less at the "heat treatment temperature after mixing" listed in Table 3. The reason is as follows.
If the heat treatment temperature in the preliminary heat treatment is less than 250°C, the adsorbed water may not be sufficiently dissociated from the raw material surface. As a result, Ti 2 AlC or Ti 3 AlC 2 reacts with the moisture adsorbed to the raw material during ultra-high pressure and high temperature sintering, and is decomposed into TiO 2 and Al 2 O 3 . The presence of Ti 2 AlC and TiAl 3 in the binding phase of the sintered body after bonding decreases, and the toughness of the sintered body decreases. On the other hand, if the heat treatment temperature in the preliminary heat treatment is higher than 900° C., Ti 2 AlC or Ti 3 AlC 2 reacts with oxygen in the adsorbed water during the preliminary heat treatment and decomposes into TiO 2 and Al 2 O 3 . In particular, TiAl 3 disappears in the binder phase of the sintered body after ultra-high pressure and high temperature sintering, and the toughness of the sintered body is reduced. Therefore, the heat treatment temperature in the preliminary heat treatment is preferably 250 to 900.degree.
(1-4)第2の混合
 上記第1の仮熱処理した原料粉末と、SiO粉末、MgSiO粉末、ZnO粉末を、超硬合金で内張りされたボールミル容器内に超硬合金製のボールとアセトンと共に充填して混合した。混合時間は原料粉を細かく粉砕させないように、1時間であった。本実施例では行っていないが、この混合も超音波攪拌装置を用いて原料粉の凝集を解砕しながら混合することがより好ましい。
(1-4) Second mixing The raw material powder subjected to the first preliminary heat treatment, SiO 2 powder, MgSiO 3 powder, and ZnO powder are placed in a ball mill container lined with cemented carbide with balls made of cemented carbide. Filled with acetone and mixed. The mixing time was 1 hour so as not to pulverize the raw material powder. Although not performed in the present embodiment, it is more preferable to perform this mixing using an ultrasonic stirrer while crushing agglomeration of the raw material powder.
(2)中間層
(2-1)中間層の原料粉末の準備
 平均粒径が6μmのcBN粉末(硬質粒子)と、平均粒径が4μmのTiCN粉末と、平均粒径が0.9μmのAl粉末とを、これらの合量を100vol%としたときのcBN粒子の含有量が表2の割合となるように配合し、湿式混合し、乾燥した。これにより、本発明例の中間層(種別I)の原料粉末を得た。
 また、平均粒径が10μmと平均粒径が2μmのダイヤモンド粒子(硬質粒子)と、平均粒径が4μmのTaC粉末と、平均粒径が1μmのTa粉末とを、これらの合量を100vol%としたときのダイヤモンド粒子の含有量が表2の割合となるように配合し、湿式混合し、乾燥した。これにより、本発明例の中間層(種別III)の原料粉末を得た。
 また、平均粒径が6μmのcBN粉末(硬質粒子)と、平均粒径が50μmのTiAlC粉末と、平均粒径が4μmのTiC粉末とを、これらの合量を100vol%としたときのcBN粒子の含有量が表2の割合となるように配合し、湿式混合し、乾燥した。これにより、本発明例の中間層(種別II)の原料粉末を得た。
(2) Intermediate layer (2-1) Preparation of raw material powder for intermediate layer cBN powder (hard particles) with an average particle size of 6 μm, TiCN powder with an average particle size of 4 μm, and Al with an average particle size of 0.9 μm and powder were blended so that the content of cBN particles when the total amount of these was 100 vol % was the ratio shown in Table 2, wet-mixed, and dried. As a result, the raw material powder of the intermediate layer (type I) of the example of the present invention was obtained.
In addition, diamond particles (hard particles) with an average particle size of 10 μm and an average particle size of 2 μm, TaC powder with an average particle size of 4 μm, and Ta powder with an average particle size of 1 μm are added to the total amount of 100 vol %. The contents of the diamond particles were blended so that the content of the diamond particles was the ratio shown in Table 2, wet-mixed, and dried. As a result, raw material powder for the intermediate layer (type III) of the example of the present invention was obtained.
In addition, cBN powder (hard particles) with an average particle size of 6 μm, Ti 2 AlC powder with an average particle size of 50 μm, and TiC powder with an average particle size of 4 μm are mixed, and the total amount of these is 100 vol%. The contents of cBN particles were blended so as to have the proportions shown in Table 2, wet-mixed, and dried. As a result, the raw material powder of the intermediate layer (type II) of the example of the present invention was obtained.
(2-2)混合
 これら中間層の原料粉末を、超硬合金で内張りされた容器内に、超硬合金製のボールとアセトンと共に充填し、蓋をした後にボールミルにより混合した。混合時間は、原料粉末を細かく粉砕させないように、1時間とした。なお、本実施例では採用していないが、中間層の原料粉末の混合でも、超音波攪拌装置を用いて原料粉末の凝集を解砕しながら混合することがより好ましい。
(2-2) Mixing These raw material powders for the intermediate layer were placed in a container lined with cemented carbide together with balls made of cemented carbide and acetone, covered, and mixed by a ball mill. The mixing time was set to 1 hour so as not to finely pulverize the raw material powder. Although not adopted in this embodiment, it is more preferable to mix the raw material powders for the intermediate layer while crushing agglomeration of the raw material powders using an ultrasonic stirrer.
(2-3)仮熱処理
 上記混合によって得られた中間層の原料粉末を、仮熱処理し、粉末表面から吸着水を蒸発させた。
 仮熱処理は、圧力が1Pa以下の真空雰囲気中で、600℃で行った。
(2-3) Temporary Heat Treatment The intermediate layer raw material powder obtained by the above mixing was subjected to a preliminary heat treatment to evaporate the adsorbed water from the powder surface.
The provisional heat treatment was performed at 600° C. in a vacuum atmosphere with a pressure of 1 Pa or less.
(3)焼結
 次いで、仮熱処理後の最外層の原料粉末と中間層の原料粉末を、WC:94wt%、Co:6wt%の超硬合金よりなり、原料粉末と接する面がTiNでコーティングされた基体(チップ本体)とともに、焼結圧力:6.0GPa、焼結温度:1600℃、焼結時間:20分の条件下で一体に焼結した。これにより、半径(2/D)4.5mm、チップの中心線方向の長さ16mmの、本発明例に係る掘削チップ(本発明例チップ)1~12を製造した。なお、チップ本体先端部(チップ凸部)は半径5.75mmのラウンド形状であった。また、チップの中心線方向における最外層および中間層を表3の層厚とした。
(3) Sintering Next, the raw material powder for the outermost layer and the raw material powder for the intermediate layer after temporary heat treatment are made of a cemented carbide containing 94 wt% WC and 6 wt% Co, and the surface in contact with the raw material powder is coated with TiN. It was integrally sintered together with the base body (chip body) under the conditions of sintering pressure: 6.0 GPa, sintering temperature: 1600° C., and sintering time: 20 minutes. As a result, drilling tips (invention example tips) 1 to 12 according to the present invention having a radius (2/D) of 4.5 mm and a length of 16 mm in the center line direction of the tip were produced. The distal end of the tip body (tip projection) was round with a radius of 5.75 mm. The thicknesses of the outermost layer and the intermediate layer in the center line direction of the chip are shown in Table 3.
 また、比較のために、表3に示す比較例1~6に係る掘削チップを製造した。比較例1~6の掘削チップを製造するにあたり、硬質原料として、平均粒径が1.0~4.0μmのcBN原料を用意した。また、結合相を構成する原料粉末として、表1に示すように、TiC、TiCNなどを含む原料粉末を用意した。これらを表1に示す組成となるように配合し、上述した本発明例と同様の条件でボールミルにより混合を行った。なお、比較例で用いた中間層用原料は、本発明例で用いた原料と同じとした。 Also, for comparison, drilling tips according to Comparative Examples 1 to 6 shown in Table 3 were manufactured. In producing the drilling tips of Comparative Examples 1 to 6, a cBN raw material having an average particle size of 1.0 to 4.0 μm was prepared as a hard raw material. In addition, raw material powders containing TiC, TiCN, etc., as shown in Table 1, were prepared as raw material powders constituting the binder phase. These were blended so as to have the composition shown in Table 1, and were mixed by a ball mill under the same conditions as in the above-described example of the present invention. The materials for the intermediate layer used in the comparative examples were the same as those used in the examples of the present invention.
 その後、原料粉末は温度600℃~1200℃の範囲内の所定の温度で仮熱処理(表3では、「混合後の熱処理温度」と記載している)し、その後、WC:94wt%、Co:6wt%の超硬合金よりなり、原料粉末と接する面がTiNでコーティングされた基体とともに、超高圧焼結装置に装入して、焼結圧力:5.0GPa、焼結温度:1600℃、焼結時間:20分の条件下で一体に焼結した。これにより、表3に示す比較例の掘削チップ(比較例チップ)1~6を製造した。なお、各比較例の掘削チップの寸法は、本発明例と同様とした。 After that, the raw material powder is subjected to preliminary heat treatment at a predetermined temperature in the range of 600° C. to 1200° C. (in Table 3, it is described as “heat treatment temperature after mixing”), and then WC: 94 wt%, Co: The substrate was made of 6 wt% cemented carbide and the surface in contact with the raw material powder was coated with TiN. Bonding time: sintered integrally under the conditions of 20 minutes. As a result, comparative drilling tips (comparative example tips) 1 to 6 shown in Table 3 were produced. The dimensions of the drilling tip of each comparative example were the same as those of the present invention example.
 以上によって得られた、本発明例および比較例の掘削チップの詳細は表3に示す通りである。なお、表3に示す、最外層におけるcBN粒子の含有割合および平均粒径、ピーク強度比ITi2CN/ITiAl3、Alの平均粒径、結合相中のTiAlに含まれるSi、MgおよびZn元素の有無(AESによるSi、MgおよびZn元素の有無)、ならびにSTiAlM1/STiAlについては、上記の同様の方法によって測定、算出した。 Table 3 shows the details of the drilling tips of the present invention examples and comparative examples obtained as described above. In addition, shown in Table 3, the content ratio and average particle size of cBN particles in the outermost layer, the peak intensity ratio I Ti2CN /I TiAl3 , the average particle size of Al 2 O 3 , the Si and Mg contained in TiAl 3 in the binder phase and presence or absence of Zn element (presence or absence of Si, Mg and Zn elements by AES), and S TiAlM1 /S TiAl were measured and calculated by the same methods as described above.
 ここで、図4に、本実施例における本発明例3のX線回折パターンを示す。図4に示すとおり、2θ=41.9~42.2°にTiCNのピークが、2θ=39.0~39.3°にTiAlのピークがそれぞれ確認できる。 Here, FIG. 4 shows the X-ray diffraction pattern of Inventive Example 3 in this example. As shown in FIG. 4, a Ti 2 CN peak can be confirmed at 2θ=41.9 to 42.2°, and a TiAl 3 peak can be confirmed at 2θ=39.0 to 39.3°.
 次に、得られた本発明例および比較例の各掘削チップをNC旋盤に取り付け、以下の条件にて湿式切削試験を行い、評価した。 Next, the obtained drilling tips of the present invention examples and comparative examples were attached to an NC lathe, and a wet cutting test was performed under the following conditions for evaluation.
<湿式切削試験の条件>
 切削速度:150m/min
 切込量:0.3mm
 送り量:0.1mm/rev
 被削材:花崗岩(滝根産)、形状Φ150mm×200mmL
<Conditions of wet cutting test>
Cutting speed: 150m/min
Cutting depth: 0.3mm
Feed rate: 0.1mm/rev
Work Material: Granite (produced in Takine), Shape Φ150mm×200mmL
<評価方法>
 切削長(切削距離)が750mのときの刃先の摩耗量と刃先の状態を確認した。ただし、切削長が75m毎に刃先を観察し、欠損の有無、摩耗量を測定した。摩耗量が2.3mm(2300μm)を超えていればその時点で切削試験を中止した。なお、摩耗量は以下の方法で算出した。
 切削試験後の試料には円形の摩耗痕が生じる。この円形摩耗痕を、画像解析ソフト「ImageJ(米国国立衛生研究所公開)」を用いて円近似し、このときの長軸を摩耗量として算出した。結果を表4に示す。
<Evaluation method>
The amount of wear of the cutting edge and the state of the cutting edge were confirmed when the cutting length (cutting distance) was 750 m. However, the cutting edge was observed every 75 m of cutting length, and the presence or absence of chipping and the amount of wear were measured. If the amount of wear exceeded 2.3 mm (2300 μm), the cutting test was stopped at that point. In addition, the amount of wear was calculated by the following method.
Circular wear scars are formed on the specimen after the cutting test. This circular wear mark was approximated to a circle using image analysis software "ImageJ (published by the National Institutes of Health, USA)", and the long axis at this time was calculated as the amount of wear. Table 4 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、本発明例の掘削チップは、いずれも摩耗量が少ないことから、耐アブレッシブ摩耗性に優れ、さらに掘削工具として用いても、岩石を破壊するための衝撃や振動による欠損などの損傷要因に対する耐性を有する。一方、比較例の掘削チップはいずれも、わずかな切削長さで、欠損が発生するか、または高い摩耗量を示した。したがって、比較例の掘削チップはいずれも、耐アブレッシブ摩耗性能は低く、欠損しやすいため、掘削工具として用いることが困難である。 As is clear from Table 4, the drilling tips of the examples of the present invention all have a small amount of wear, so they are excellent in abrasive wear resistance. It has resistance to damage factors such as chipping. On the other hand, all of the drilling tips of the comparative examples either fractured or showed high wear amounts after a short cutting length. Therefore, all of the drilling tips of the comparative examples have low abrasive wear resistance and are easily chipped, making it difficult to use them as drilling tools.
(実施例2)
 表3に示す本発明例および比較例の掘削チップの中から本発明例(本発明チップ)1,3,11および比較例(比較例チップ)1,2,5を各々7つ準備した。そして、図3に示したようなビット径45mmのビット本体におけるフェイス面に2つ、ゲージ面に5つの、合わせて7つ取り付けた6種の掘削ビット(本発明ビット1~3、比較例ビット1~3)を製造した。
(Example 2)
From among the drilling tips of the invention examples and the comparative examples shown in Table 3, seven invention examples (invention tips) 1, 3 and 11 and comparative examples (comparative example tips) 1, 2 and 5 were prepared. Then, a total of 7 drilling bits (bits 1 to 3 of the present invention, comparative example bits 1 to 3) were manufactured.
 次に、これらの掘削ビットにより、1つの掘削長が4mの掘削孔を複数掘削する掘削作業を行い、掘削チップが寿命に至るまでのトータル掘削長(m)を測定した。加えて、掘削チップが寿命に達したときのチップ破損状態を確認した。結果を表5に示す。
 なお、掘削チップ(ボタンチップ)がチッピング等の欠損を生じることなく最外層が徐々に摩耗した場合は正常摩耗と判断した。これらの摩耗領域(摩耗量)が大きくなり、最終的にゲージ径がビット本体の外径と等しくなったときにビットが寿命に達したと判断した。一方、チップ本体が2つ以上欠損し、その影響で掘削速度が低下したときもビットが寿命に達したと判断した。なお、掘削条件は以下のとおりとした。
Next, these drilling bits were used to drill a plurality of drilling holes each having a drilling length of 4 m, and the total drilling length (m) up to the end of the life of the drilling tip was measured. In addition, the state of chip breakage was confirmed when the drilling chip reached the end of its life. Table 5 shows the results.
When the outermost layer of the drilling tip (button tip) was gradually worn away without causing damage such as chipping, it was judged to be normal wear. It was determined that the bit had reached the end of its life when these wear areas (amount of wear) increased and finally the gauge diameter became equal to the outer diameter of the bit body. On the other hand, it was determined that the bit had reached the end of its life when two or more tip bodies were chipped and the excavation speed was reduced as a result. The excavation conditions were as follows.
<掘削条件>
 掘削装置:TAMROCK社製型番H205D
 打撃圧力:160bar
 フィード(送り)圧力:80bar
 回転圧力:55bar
 ブロー孔からは水(水圧:18bar)を供給した。
<Drilling conditions>
Drilling equipment: model number H205D manufactured by TAMROCK
Impact pressure: 160bar
Feed pressure: 80 bar
Rotation pressure: 55 bar
Water (water pressure: 18 bar) was supplied from the blow hole.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示すとおり、比較例(比較例チップ)1,2,5を取り付けた比較例ビット1~3はいずれも、寿命までの掘削長が100mに及ばず、欠損により掘削チップは寿命に達した。これに対して、発明例(比較例チップ)1,3,11を取り付けた本発明ビット1~3はいずれも、100m以上の掘削が可能であった。 As shown in Table 5, the excavation length of bits 1 to 3 attached with comparative examples (comparative tips) 1, 2, and 5 did not exceed 100 m until the end of their life, and the drilling tips reached the end of their life due to chipping. did. On the other hand, the present invention bits 1 to 3 to which invention examples (comparative tips) 1, 3, and 11 were attached were all capable of excavating 100 m or more.
 本発明によれば、耐疲労摩耗性、耐アブレッシブ摩耗性に優れ、さらに、岩石を破壊するための衝撃や振動による欠損などの損傷要因に対する耐性を有する掘削チップ、ならびに、このような掘削チップを取り付けた掘削工具を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a drilling tip having excellent fatigue wear resistance and abrasive wear resistance and resistance to damage factors such as chipping due to impact and vibration for breaking rocks, and such a drilling tip. An attached drilling tool can be provided.
 1  掘削チップ
 2  チップ本体
 2A  チップ本体2の後端部
 2B  チップ本体2の先端部
 2a  凸部
 2b  凹部
 3  硬質層
 4  最外層
 5  中間層
 11  ビット本体
 C  中心線
 O  ビット本体11の軸線
 D  チップ本体2の後端部2Aの直径
 r1  中心線Cに沿った断面において凸部2aがなす凸円弧の半径
 r2  中心線Cに沿った断面において凹部2bがなす凹円弧の半径
 P  中心線Cに沿った断面における凸部2aと凹部2bとの接点
 Q  中心線Cに沿った断面における凸部2aがなす凸円弧の中心
 L  接点Pと中心Qとを結ぶ直線
 θ  中心線Cに沿った断面において直線Lが中心線Cに対してなす角度
REFERENCE SIGNS LIST 1 drilling tip 2 tip body 2A rear end of tip body 2 2B tip of tip body 2 2a projection 2b recess 3 hard layer 4 outermost layer 5 intermediate layer 11 bit body C center line O axis of bit body 11 D tip body The diameter of the rear end portion 2A of 2 r1 The radius of the convex arc formed by the convex portion 2a in the cross section along the center line C r2 The radius P of the concave arc formed by the concave portion 2b in the cross section along the center line C Point of contact between convex portion 2a and concave portion 2b in cross section Q Center of arc formed by convex portion 2a in cross section along center line C L Straight line connecting point of contact P and center Q θ Straight line L in cross section along center line C angle with respect to the center line C

Claims (8)

  1.  掘削ビットの先端部に取り付けられるように構成された掘削チップであって、
     前記掘削チップの中心線を中心とした円柱形状または円板形状をなす後端部と、前記後端部から前記掘削チップの先端側に向かうに従い前記中心線からの半径が漸次小さくなる先端部とを有するチップ本体と、
     前記チップ本体の前記先端部を被覆する硬質層と、
    を備え、
     前記硬質層は、立方晶窒化ホウ素粒子と結合相とを有するcBN焼結体からなる最外層を有し、
     前記結合相は、TiCNとTiAlを含有することを特徴とする掘削チップ。
    A drilling tip configured to be attached to the tip of a drilling bit, comprising:
    a rear end portion having a cylindrical shape or a disc shape centered on the center line of the drilling tip; and a front end portion whose radius from the center line gradually decreases toward the front end side of the drilling tip from the rear end portion. a chip body having
    a hard layer covering the tip portion of the tip body;
    with
    The hard layer has an outermost layer made of a cBN sintered body having cubic boron nitride particles and a binder phase,
    A drilling tip, wherein the binder phase contains Ti2CN and TiAl3 .
  2.  前記最外層のX線回折パターンにおいて、回折角(2θ)が41.9~42.2°の位置に出現するTiCNのピーク強度ITi2CNと、回折角(2θ)が39.0~39.3°の位置に出現するTiAlのピーク強度ITiAl3との比であるITi2CN/ITiAl3が2.0~30.0であることを特徴とする請求項1に記載の掘削チップ。 In the X-ray diffraction pattern of the outermost layer, the peak intensity I Ti2CN of Ti CN appearing at a diffraction angle (2θ) of 41.9 to 42.2° and a diffraction angle (2θ) of 39.0 to 39 The drilling tip according to claim 1, characterized in that I Ti2CN /I TiAl3 , which is a ratio of the peak intensity I TiAl3 of TiAl 3 appearing at a position of 0.3°, is between 2.0 and 30.0.
  3.  前記結合相は、Alを含有し、その平均粒径が0.9~2.5μmであることを特徴とする請求項1または2に記載の掘削チップ。 The drilling tip according to claim 1 or 2, wherein the binder phase contains Al 2 O 3 and has an average grain size of 0.9 to 2.5 µm.
  4.  前記結合相において、前記TiAlは、添加元素M1を含有し、
     前記添加元素M1は、Si、MgおよびZnからなる群のうち1種または2種以上であり、
     オージェ電子分光法による、Ti、Al、および添加元素M1それぞれのマッピング像において、TiとAlとが重なる領域の平均面積STiAlに対する、TiとAlと前記添加元素M1とが重なる領域の平均面積STiAlM1の比であるSTiAlM1/STiAlが0.05~0.98であることを特徴とする請求項1~3の何れか一項に記載の掘削チップ。
    In the binder phase, the TiAl 3 contains an additive element M1,
    The additive element M1 is one or more of the group consisting of Si, Mg and Zn,
    In the mapping images of Ti, Al, and the additive element M1 obtained by Auger electron spectroscopy, the average area S of the regions where Ti and Al overlap. The drilling tip according to any one of claims 1 to 3, characterized in that the ratio of TiAlM1 , S TiAlM1 /S TiAl , is 0.05 to 0.98.
  5.  前記硬質層は、前記最外層と前記チップ本体との間に、中間層を備え、
     前記中間層が、10.0~70.0vol%の立方晶窒化ホウ素粒子またはダイヤモンド粒子を含有することを特徴とする請求項1~4の何れか一項に記載の掘削チップ。
    the hard layer comprises an intermediate layer between the outermost layer and the tip body,
    A drilling tip according to any one of claims 1 to 4, characterized in that said intermediate layer contains 10.0 to 70.0 vol% of cubic boron nitride particles or diamond particles.
  6.  前記最外層における、前記立方晶窒化ホウ素粒子の体積率は、70.0~95.0vоl%であることを特徴とする請求項1~5の何れか一項に記載の掘削チップ。 The drilling tip according to any one of claims 1 to 5, wherein the volume fraction of the cubic boron nitride particles in the outermost layer is 70.0 to 95.0 vol%.
  7.  前記最外層における、前記立方晶窒化ホウ素粒子の平均粒径は、0.5~30.0μmであることを特徴とする請求項1~6の何れか一項に記載の掘削チップ。 The drilling tip according to any one of claims 1 to 6, wherein the cubic boron nitride particles in the outermost layer have an average particle diameter of 0.5 to 30.0 µm.
  8.  請求項1~7の何れか一項に記載の掘削チップと、
     先端面において前記掘削チップを保持し、軸線回りに回転させられる工具本体と、を備えることを特徴とする掘削工具。
    a drilling tip according to any one of claims 1 to 7;
    A drilling tool, comprising: a tool body that holds the drilling tip on a tip surface thereof and is rotatable about an axis.
PCT/JP2022/015626 2021-03-31 2022-03-29 Drilling tip and drilling tool WO2022210760A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-061362 2021-03-31
JP2021061362 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210760A1 true WO2022210760A1 (en) 2022-10-06

Family

ID=83456388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015626 WO2022210760A1 (en) 2021-03-31 2022-03-29 Drilling tip and drilling tool

Country Status (1)

Country Link
WO (1) WO2022210760A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039329A (en) * 2005-08-03 2007-02-15 Smith Internatl Inc High content cbn-containing material, compact incorporating the same and method of making the same
JP2008517868A (en) * 2004-10-29 2008-05-29 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Cubic boron nitride compact
WO2010119962A1 (en) * 2009-04-17 2010-10-21 株式会社タンガロイ Cubic boron nitride sintered compact and coated cubic boron nitride sintered compact
JP2013234093A (en) * 2012-05-09 2013-11-21 Sumitomo Electric Ind Ltd SiAlON-BASED PARTICLE, SINTERED BODY AND TOOL
JP2019065513A (en) * 2017-09-29 2019-04-25 三菱マテリアル株式会社 Drilling chip, drilling tool, and production method of drilling chip

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517868A (en) * 2004-10-29 2008-05-29 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Cubic boron nitride compact
JP2007039329A (en) * 2005-08-03 2007-02-15 Smith Internatl Inc High content cbn-containing material, compact incorporating the same and method of making the same
WO2010119962A1 (en) * 2009-04-17 2010-10-21 株式会社タンガロイ Cubic boron nitride sintered compact and coated cubic boron nitride sintered compact
JP2013234093A (en) * 2012-05-09 2013-11-21 Sumitomo Electric Ind Ltd SiAlON-BASED PARTICLE, SINTERED BODY AND TOOL
JP2019065513A (en) * 2017-09-29 2019-04-25 三菱マテリアル株式会社 Drilling chip, drilling tool, and production method of drilling chip

Similar Documents

Publication Publication Date Title
EP2342418B1 (en) Insert for an attack tool, method for making same and tools incorporating same
JP6881200B2 (en) Drilling Tips, Drilling Tools, and Methods for Manufacturing Drilling Tips
US20220371962A1 (en) Superhard constructions and methods of making same
US20230202847A1 (en) Superhard constructions and methods of making same
US11794245B2 (en) Superhard constructions and methods of making same
WO2022210760A1 (en) Drilling tip and drilling tool
WO2022168655A1 (en) Sintered cbn
WO2022210771A1 (en) Drilling tip and drilling tool
WO2022176569A1 (en) Cbn sintered body
WO2021182462A1 (en) Hard composite material
WO2021182463A1 (en) Hard composite material
KR102423112B1 (en) Drilling chips, drilling tools, and methods of making drilling chips
US11383305B2 (en) cBN sintered compact and cutting tool
US11565317B2 (en) Superhard constructions and methods of making same
WO2022163572A1 (en) Cbn sintered compact
KR102589417B1 (en) Drill tip and drill bit
JP2021143105A (en) Hard composite material
WO2020179809A1 (en) cBN SINTERED COMPACT AND CUTTING TOOL
WO2018122310A1 (en) Superhard constructions &amp; methods of making same
JP2021143106A (en) Hard composite material
JP6933017B2 (en) Cubic boron nitride base sintered body and cutting tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780971

Country of ref document: EP

Kind code of ref document: A1