JP2013231551A - Absorption refrigerating machine - Google Patents

Absorption refrigerating machine Download PDF

Info

Publication number
JP2013231551A
JP2013231551A JP2012103674A JP2012103674A JP2013231551A JP 2013231551 A JP2013231551 A JP 2013231551A JP 2012103674 A JP2012103674 A JP 2012103674A JP 2012103674 A JP2012103674 A JP 2012103674A JP 2013231551 A JP2013231551 A JP 2013231551A
Authority
JP
Japan
Prior art keywords
pressure
exhaust gas
pipe
temperature regenerator
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012103674A
Other languages
Japanese (ja)
Other versions
JP5954652B2 (en
Inventor
Shuji Ishizaki
修司 石崎
Takao Shibata
隆雄 柴田
Tsunehito Momose
恒仁 百瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012103674A priority Critical patent/JP5954652B2/en
Publication of JP2013231551A publication Critical patent/JP2013231551A/en
Application granted granted Critical
Publication of JP5954652B2 publication Critical patent/JP5954652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an absorption refrigerating machine capable of detecting the pressure of an exhaust gas while preventing the corrosion of a sensing part of a pressure detection means.SOLUTION: An absorption refrigerating machine including a high temperature regenerator 5, a low temperature regenerator, a condenser, an evaporator, and an absorber which are connected by piping and form circulation paths for each of an absorption liquid and a refrigerant includes an exhaust route 17 that exhausts exhaust gas externally from a combustion chamber 5A of the high temperature regenerator 5, a branch pipe 72 that diverges the exhaust gas from the exhaust route 17, and a pressure detection means 71 that is provided at the branch pipe 72 and detects the pressure of the exhaust gas, in which the branch pipe 72 is provided with a damming part 73 that breaks when the pressure of the exhaust gas becomes higher than predetermined pressure.

Description

本発明は、圧力検出手段を排気ガスの排気経路に設けた吸収式冷凍機に関する。   The present invention relates to an absorption chiller in which pressure detection means is provided in an exhaust gas exhaust path.

従来、高温再生器、低温再生器、凝縮器、蒸発器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成した吸収式冷凍機が知られている(例えば、特許文献1参照)。この種の吸収式冷凍機においては、高温再生器に、高温再生器の燃焼室からの排気ガスを外部に排気する排気経路が設けられている。   2. Description of the Related Art Conventionally, absorption refrigerating machines that include a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, and an absorber, which are connected to each other by piping to form a circulation path for absorption liquid and refrigerant, are known (for example, , See Patent Document 1). In this type of absorption refrigerator, the high temperature regenerator is provided with an exhaust path for exhausting the exhaust gas from the combustion chamber of the high temperature regenerator to the outside.

特開2011−208845号公報JP2011-208845A

ところで、吸収式冷凍機においては、煙突や煙突に接続される設備側の煙道部が閉塞されること等により排気経路の圧力が上昇した場合に吸収式冷凍機を停止するため、排気経路に排気ガスの圧力を検出する圧力検出手段を設けることが望まれている。
しかしながら、排気経路に圧力検出手段を設けた場合、圧力検出手段が常に排気ガスに接触することとなるため、排気ガスに含まれる成分により、圧力検出手段の圧力感知部が腐食するおそれがある。
本発明は、上述した事情に鑑みてなされたものであり、圧力検出手段の圧力感知部の腐食を防止しつつ、排気ガスの圧力を検出可能な吸収式冷凍機を提供することを目的とする。
By the way, in the absorption chiller, in order to stop the absorption chiller when the pressure of the exhaust path rises due to the blockage of the chimney or the flue part on the equipment side connected to the chimney, etc. It is desired to provide a pressure detection means for detecting the pressure of the exhaust gas.
However, when the pressure detection means is provided in the exhaust path, the pressure detection means is always in contact with the exhaust gas, so that the pressure sensing part of the pressure detection means may be corroded by the components contained in the exhaust gas.
The present invention has been made in view of the above-described circumstances, and an object thereof is to provide an absorption refrigerator that can detect the pressure of exhaust gas while preventing corrosion of the pressure sensing part of the pressure detecting means. .

上記目的を達成するために、本発明は、高温再生器、低温再生器、凝縮器、蒸発器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成した吸収式冷凍機において、前記高温再生器の燃焼室からの排気ガスを外部に排気する排気経路と、前記排気経路から前記排気ガスを分岐する分岐管と、前記分岐管に設けられ、前記排気ガスの圧力を検出する圧力検出手段と、を備え、前記分岐管には、前記排気ガスの圧力が所定圧力以上となったときに堰切れする堰止部を設けたことを特徴とする。   In order to achieve the above object, the present invention comprises a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, and an absorber, which are connected to each other to form a circulation path for absorbing liquid and refrigerant. In the refrigerator, the exhaust path for exhausting the exhaust gas from the combustion chamber of the high-temperature regenerator to the outside, the branch pipe for branching the exhaust gas from the exhaust path, and the branch pipe, Pressure detecting means for detecting pressure, and the branch pipe is provided with a damming portion that breaks when the pressure of the exhaust gas exceeds a predetermined pressure.

上記構成において、前記堰止部は、液体を溜めた液溜部であってもよい。   In the above configuration, the damming portion may be a liquid reservoir that stores a liquid.

上記構成において、前記分岐管は、前記排気ガスの圧力が前記所定圧力以上となったときに、前記液体が前記圧力検出手段に到達しない長さを有してもよい。   In the above configuration, the branch pipe may have such a length that the liquid does not reach the pressure detection means when the pressure of the exhaust gas becomes equal to or higher than the predetermined pressure.

上記構成において、前記分岐管は、前記排気経路に着脱自在に取り付けられる接続口を有してもよい。   The said structure WHEREIN: The said branch pipe may have a connection port detachably attached to the said exhaust route.

本発明によれば、排気経路から排気ガスを分岐する分岐管と、分岐管に設けられ、排気ガスの圧力を検出する圧力検出手段と、を備え、分岐管には、排気ガスの圧力が所定圧力以上となったときに堰切れする堰止部を設けたため、圧力検出手段が排気ガスに接触する時間を短くできるので、圧力検出手段の圧力感知部の腐食を防止しつつ、排気ガスの圧力を検出できる。   According to the present invention, there is provided a branch pipe that branches the exhaust gas from the exhaust path, and a pressure detection means that is provided in the branch pipe and detects the pressure of the exhaust gas, and the pressure of the exhaust gas is predetermined in the branch pipe. Since the damming portion that breaks when the pressure exceeds the pressure is provided, the time for the pressure detecting means to contact the exhaust gas can be shortened, so that the pressure sensing portion of the pressure detecting means can be prevented from corroding and the pressure of the exhaust gas can be reduced. Can be detected.

本発明の実施の形態に係る吸収式冷凍機の概略構成図である。It is a schematic block diagram of the absorption refrigerator which concerns on embodiment of this invention. 圧力検出手段を示す模式図である。It is a schematic diagram which shows a pressure detection means. 圧力検出ユニットを示す斜視図である。It is a perspective view which shows a pressure detection unit. 分岐管の一部を示す図であり、(A)は平面図、(B)は正面図、(C)は側面図である。It is a figure which shows a part of branch pipe, (A) is a top view, (B) is a front view, (C) is a side view. 煙突閉塞率と排気ガス圧力との関係を示すグラフである。It is a graph which shows the relationship between a chimney obstruction | occlusion rate and exhaust gas pressure. 分岐管の堰切れ状態を模式的に示す説明図であり、(A)は堰止め状態を、(B)は圧力上昇時を、(C)は堰切れ状態を示す図である。It is explanatory drawing which shows the damming state of a branch pipe typically, (A) is a damming state, (B) is the time of a pressure rise, (C) is a figure which shows a damming state. 本発明の他の実施の形態に係る圧力検出ユニットを示す図であり、(A)は平面図、(B)は正面図、(C)は側面図である。It is a figure which shows the pressure detection unit which concerns on other embodiment of this invention, (A) is a top view, (B) is a front view, (C) is a side view.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下、図面を参照して本発明の実施の形態について説明する。
図1は、本実施の形態に係る吸収式冷凍機の概略構成図である。
吸収式冷凍機100は、冷媒に水を、吸収液に臭化リチウム(LiBr)水溶液を使用した二重効用型の吸収式冷凍機である。吸収式冷凍機100は、図1に示すように、蒸発器1と、この蒸発器1に並設された吸収器2と、これら蒸発器1及び吸収器2を収納した蒸発器吸収器胴3と、ガスバーナ4を備えた高温再生器5と、低温再生器6と、この低温再生器6に並設された凝縮器7と、これら低温再生器6及び凝縮器7を収納した低温再生器凝縮器胴8と、低温熱交換器12と、高温熱交換器13と、冷媒ドレン熱交換器16と、稀吸収液ポンプP1と、濃吸収液ポンプP2と、冷媒ポンプP3とを備え、これらの各機器が吸収液管21〜25及び冷媒管31〜35などを介して配管接続されている。
また、符号14は、蒸発器1内で冷媒と熱交換したブラインを、図示しない熱負荷(例えば空気調和装置)に循環供給するための冷/温水管であり、この冷/温水管14の一部に形成された伝熱管14Aが蒸発器1内に配置されている。冷/温水管14の伝熱管14A下流側には、当該冷/温水管14内を流通するブラインの温度を計測する温度センサ61が設けられている。符号15は、吸収器2及び凝縮器7に順次冷却水を流通させるための冷却水管であり、この冷却水管15の一部に形成された各伝熱管15A、15Bがそれぞれ吸収器2及び凝縮器7内に配置されている。符号50は、吸収式冷凍機100全体の制御を司る制御装置である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an absorption refrigerator according to the present embodiment.
The absorption refrigerator 100 is a double-effect absorption refrigerator that uses water as a refrigerant and a lithium bromide (LiBr) aqueous solution as an absorption liquid. As shown in FIG. 1, the absorption refrigerator 100 includes an evaporator 1, an absorber 2 provided in parallel with the evaporator 1, and an evaporator absorber body 3 that houses the evaporator 1 and the absorber 2. A high temperature regenerator 5 having a gas burner 4, a low temperature regenerator 6, a condenser 7 arranged in parallel with the low temperature regenerator 6, and a low temperature regenerator condensing the low temperature regenerator 6 and the condenser 7. The body 8, the low-temperature heat exchanger 12, the high-temperature heat exchanger 13, the refrigerant drain heat exchanger 16, the rare absorbent liquid pump P 1, the concentrated absorbent liquid pump P 2, and the refrigerant pump P 3 are provided. Each device is connected by piping through absorption liquid pipes 21 to 25, refrigerant pipes 31 to 35, and the like.
Reference numeral 14 denotes a cold / hot water pipe for circulatingly supplying brine heat exchanged with the refrigerant in the evaporator 1 to a heat load (not shown) (for example, an air conditioner). A heat transfer tube 14 </ b> A formed in the section is arranged in the evaporator 1. A temperature sensor 61 for measuring the temperature of the brine flowing through the cold / hot water pipe 14 is provided on the downstream side of the heat transfer pipe 14 </ b> A of the cold / hot water pipe 14. Reference numeral 15 denotes a cooling water pipe for sequentially flowing the cooling water to the absorber 2 and the condenser 7, and the heat transfer pipes 15 </ b> A and 15 </ b> B formed in a part of the cooling water pipe 15 are respectively connected to the absorber 2 and the condenser. 7 is arranged. Reference numeral 50 is a control device that controls the absorption refrigerator 100 as a whole.

吸収器2は、蒸発器1で蒸発した冷媒蒸気を吸収液に吸収させ、蒸発器吸収器胴3内の圧力を高真空状態に保つ機能を有する。この吸収器2の下部には、冷媒蒸気を吸収して稀釈された稀吸収液が溜る稀吸収液溜り2Aが形成され、この稀吸収液溜り2Aには、インバータ51により周波数可変に制御される稀吸収液ポンプP1が設けられた稀吸収液管21の一端が接続されている。この稀吸収液管21は、稀吸収液ポンプP1の下流側で第1稀吸収液管21Aと第2稀吸収液管21Bとに分岐され、第1稀吸収液管21Aは冷媒ドレン熱交換器16を経由し、第2稀吸収液管21Bは低温熱交換器12を経由した後に再び合流する。稀吸収液管21の他端は、高温熱交換器13を経由した後、第3稀吸収液管21Cと第4稀吸収液管(吸収液管)21Dとに分岐され、第3稀吸収液管21Cは高温再生器5内に形成された熱交換部(燃焼室)5Aの上方に位置する気層部5Bに開口し、第4稀吸収液管21Dは排ガス熱回収器40を経由した後、高温再生器5の気層部5Bに開口している。   The absorber 2 has a function of absorbing the refrigerant vapor evaporated in the evaporator 1 into the absorption liquid and maintaining the pressure in the evaporator absorber body 3 in a high vacuum state. Under the absorber 2, a rare absorbing liquid reservoir 2A is formed in which the diluted absorbing liquid diluted by absorbing the refrigerant vapor is accumulated. The rare absorbing liquid reservoir 2A is controlled by the inverter 51 so that the frequency is variable. One end of the rare absorbent pipe 21 provided with the rare absorbent pump P1 is connected. The rare absorbent pipe 21 is branched into a first rare absorbent pipe 21A and a second rare absorbent pipe 21B on the downstream side of the rare absorbent pump P1, and the first rare absorbent pipe 21A is a refrigerant drain heat exchanger. 16, the second rare absorbent pipe 21 </ b> B joins again after passing through the low-temperature heat exchanger 12. The other end of the rare absorbent pipe 21 passes through the high-temperature heat exchanger 13, and then is branched into a third rare absorbent pipe 21C and a fourth rare absorbent pipe (absorbent liquid pipe) 21D, and the third rare absorbent pipe 21D. The pipe 21C opens to the gas layer part 5B located above the heat exchange part (combustion chamber) 5A formed in the high temperature regenerator 5, and the fourth rare absorbent pipe 21D passes through the exhaust gas heat recovery unit 40. The air layer 5B of the high temperature regenerator 5 is open.

高温再生器5の下部には、例えば都市ガス等の燃料に点火する点火器4Aと、燃料量を制御して熱源量を可変にする燃料制御弁4Bとを備えるガスバーナ4が収容されている。高温再生器5には、ガスバーナ4の上方に当該ガスバーナ4の火炎を熱源として吸収液を加熱再生する熱交換部5Aが形成されている。この熱交換部5Aには、ガスバーナ4で燃焼された排気ガスが流通する排気経路17が接続され、この排気経路17には、排ガス熱回収器40が設けられている。熱交換部5Aの側方には、この熱交換部5Aで加熱再生された中間吸収液が溜る中間吸収液溜り5Cが形成されている。   A gas burner 4 including an igniter 4A that ignites fuel such as city gas and a fuel control valve 4B that controls the amount of fuel to change the amount of heat source is accommodated in the lower portion of the high-temperature regenerator 5. The high-temperature regenerator 5 is formed with a heat exchanging unit 5 </ b> A that heats and regenerates the absorbing liquid using the flame of the gas burner 4 as a heat source above the gas burner 4. An exhaust path 17 through which exhaust gas combusted by the gas burner 4 flows is connected to the heat exchanging section 5A, and an exhaust gas heat recovery device 40 is provided in the exhaust path 17. On the side of the heat exchanging part 5A, an intermediate absorbing liquid reservoir 5C in which the intermediate absorbing liquid heated and regenerated by the heat exchanging part 5A is formed.

中間吸収液溜り5Cの下端には、中間吸収液管22の一端が接続され、この中間吸収液管22の他端は、高温熱交換器13を介して、低温再生器6内の上部に形成された気層部6Aに開口している。高温熱交換器13は、中間吸収液溜り5Cから流出した高温の吸収液の温熱で稀吸収液管21を流れる吸収液を加熱するものであり、高温再生器5におけるガスバーナ4の燃料消費量の低減を図っている。また、中間吸収液管22の高温熱交換器13上流側と吸収器2とは開閉弁V1が介在する吸収液管23により接続されている。   One end of the intermediate absorption liquid pipe 22 is connected to the lower end of the intermediate absorption liquid reservoir 5C, and the other end of the intermediate absorption liquid pipe 22 is formed in the upper part of the low temperature regenerator 6 via the high temperature heat exchanger 13. The gas layer 6A is opened. The high temperature heat exchanger 13 heats the absorption liquid flowing through the rare absorption liquid pipe 21 with the high temperature of the high temperature absorption liquid flowing out from the intermediate absorption liquid reservoir 5C, and the fuel consumption of the gas burner 4 in the high temperature regenerator 5 is increased. We are trying to reduce it. Further, the upstream side of the high-temperature heat exchanger 13 of the intermediate absorption liquid pipe 22 and the absorber 2 are connected by an absorption liquid pipe 23 with an on-off valve V1 interposed therebetween.

低温再生器6は、高温再生器5で分離された冷媒蒸気を熱源として、気層部6Aの下方に形成された吸収液溜り6Bに溜った吸収液を加熱再生するものであり、吸収液溜り6Bには、高温再生器5の上端部から凝縮器7の底部への延びる冷媒管31の一部に形成される伝熱管31Aが配置されている。この冷媒管31に冷媒蒸気を流通させることにより、上記伝熱管31Aを介して、冷媒蒸気の温熱が吸収液溜り6Bに溜った吸収液に伝達され、この吸収液が更に濃縮される。
低温再生器6の吸収液溜り6Bの下端には、濃吸収液管24の一端が接続され、この濃吸収液管24の他端は、濃吸収液ポンプP2及び低温熱交換器12を介して、吸収器2の気層部2B上部に設けられる濃液散布器2Cに接続されている。低温熱交換器12は、低温再生器6の吸収液溜り6Bから流出した濃吸収液の温熱で第2稀吸収液管21Bを流れる稀吸収液を加熱するものである。また、濃吸収液ポンプP2の上流側には、この濃吸収液ポンプP2及び低温熱交換器12をバイパスするバイパス管25が設けられており、濃吸収液ポンプP2の運転が停止している場合には、低温再生器6の吸収液溜り6Bから流出した吸収液は、バイパス管25通じて低温熱交換器12を経由することなく吸収器2内に供給される。
The low-temperature regenerator 6 uses the refrigerant vapor separated by the high-temperature regenerator 5 as a heat source to heat and regenerate the absorption liquid stored in the absorption liquid reservoir 6B formed below the gas layer portion 6A. In 6B, a heat transfer tube 31A formed in a part of the refrigerant tube 31 extending from the upper end of the high temperature regenerator 5 to the bottom of the condenser 7 is disposed. By circulating the refrigerant vapor through the refrigerant pipe 31, the heat of the refrigerant vapor is transmitted to the absorption liquid stored in the absorption liquid reservoir 6B via the heat transfer pipe 31A, and the absorption liquid is further concentrated.
One end of a concentrated absorption liquid pipe 24 is connected to the lower end of the absorption liquid reservoir 6B of the low temperature regenerator 6, and the other end of the concentrated absorption liquid pipe 24 is connected via the concentrated absorption liquid pump P2 and the low temperature heat exchanger 12. The absorber 2 is connected to a concentrated liquid spreader 2C provided on the upper part of the gas layer 2B. The low-temperature heat exchanger 12 heats the rare absorbent flowing through the second rare absorbent pipe 21B with the warm heat of the concentrated absorbent flowing out from the absorbent pool 6B of the low-temperature regenerator 6. Further, a bypass pipe 25 that bypasses the concentrated absorbent pump P2 and the low-temperature heat exchanger 12 is provided upstream of the concentrated absorbent pump P2, and the operation of the concentrated absorbent pump P2 is stopped. In this case, the absorption liquid flowing out from the absorption liquid reservoir 6B of the low-temperature regenerator 6 is supplied into the absorber 2 through the bypass pipe 25 without passing through the low-temperature heat exchanger 12.

上述のように、高温再生器5の気層部5Bと凝縮器7の底部とは、低温再生器6の吸収液溜り6Bに配管された伝熱管31A及び冷媒ドレン熱交換器16を経由する冷媒管31により接続され、この冷媒管31の伝熱管31A上流側と吸収器2の気層部2Bとは開閉弁V2が介在する冷媒管32により接続されている。また、凝縮器7の底部と蒸発器1の気層部1AとはUシール部33Aが介在する冷媒管33により接続されている。また、蒸発器1の下方には、液化した冷媒が溜る冷媒液溜り1Bが形成され、この冷媒液溜り1Bと蒸発器1の気層部1A上部に配置される散布器1Cとは冷媒ポンプP3が介在する冷媒管34により接続されている。この冷媒管34の冷媒ポンプP3下流側と吸収器2の吸収液溜り2Aとは冷媒管35により接続されている。また、冷却水管15の伝熱管15B出口側との冷/温水管14の伝熱管14Aの出口側とは、開閉弁V3が介在する連通管36により接続されている。   As described above, the gas layer 5B of the high-temperature regenerator 5 and the bottom of the condenser 7 are the refrigerant that passes through the heat transfer pipe 31A and the refrigerant drain heat exchanger 16 that are piped to the absorption liquid reservoir 6B of the low-temperature regenerator 6. The refrigerant pipe 31 is connected to the upstream side of the heat transfer pipe 31A and the gas layer 2B of the absorber 2 by a refrigerant pipe 32 having an on-off valve V2. Further, the bottom of the condenser 7 and the gas layer part 1A of the evaporator 1 are connected by a refrigerant pipe 33 with a U seal part 33A interposed therebetween. A refrigerant liquid reservoir 1B in which liquefied refrigerant accumulates is formed below the evaporator 1, and the refrigerant liquid reservoir 1B and the spreader 1C disposed above the gas layer portion 1A of the evaporator 1 are refrigerant pumps P3. The refrigerant pipe 34 is connected. The refrigerant pipe 34 is connected to the downstream side of the refrigerant pump P3 and the absorbing liquid reservoir 2A of the absorber 2 through a refrigerant pipe 35. The outlet side of the heat transfer pipe 14A of the cold / hot water pipe 14 and the outlet side of the heat transfer pipe 15B of the cooling water pipe 15 are connected by a communication pipe 36 with an on-off valve V3 interposed therebetween.

吸収式冷凍機100は、制御装置50の制御により、冷/温水管14から冷水を取り出す冷房運転と、この冷/温水管14から温水を取り出す暖房運転とに切り替え運転される。
冷房運転時には、冷/温水管14を介して図示しない熱負荷に循環供給されるブライン(例えば冷水)の蒸発器1出口側温度が所定の設定温度、例えば7℃になるように吸収式冷凍機100に投入される熱量が制御装置50により制御される。具体的には、制御装置50は、すべてのポンプP1〜P3を起動し、且つ、ガスバーナ4においてガスを燃焼させ、温度センサ61が計測するブラインの温度が所定の7℃となるようにガスバーナ4の火力を制御する。なお、冷房運転時には、開閉弁V1〜V3は閉じられる。
Under the control of the control device 50, the absorption refrigerator 100 is switched between a cooling operation in which cold water is extracted from the cold / hot water pipe 14 and a heating operation in which hot water is extracted from the cold / hot water pipe 14.
During the cooling operation, the absorption refrigerator is used so that the evaporator 1 outlet side temperature of brine (for example, cold water) circulated and supplied to a heat load (not shown) through the cold / hot water pipe 14 becomes a predetermined set temperature, for example, 7 ° C. The amount of heat input to 100 is controlled by the control device 50. Specifically, the control device 50 starts all the pumps P1 to P3, burns the gas in the gas burner 4, and the gas burner 4 so that the temperature of the brine measured by the temperature sensor 61 becomes a predetermined 7 ° C. Control the firepower. During the cooling operation, the on-off valves V1 to V3 are closed.

吸収器2から稀吸収液管21を介して、稀吸収液ポンプP1により揚液された稀吸収液は、冷媒ドレン熱交換器16又は低温熱交換器12と、高温熱交換器13とを経由するとともに、一部は排ガス熱回収器40を経由して高温再生器5へ送られる。高温再生器5に搬送された稀吸収液は、この高温再生器5でガスバーナ4による火炎および高温の燃焼ガスにより加熱されるため、この稀吸収液中の冷媒が蒸発分離する。高温再生器5で冷媒を蒸発分離して濃度が上昇した中間吸収液は、高温熱交換器13を経由して低温再生器6へ送られる。この低温再生器6において、中間吸収液は、高温再生器5から冷媒管31を介して供給されて伝熱管31Aに流入する高温の冷媒蒸気により加熱され、さらに冷媒が分離して濃度が一段と高くなり、この濃吸収液が濃吸収液ポンプP2及び低温熱交換器12を経由して吸収器2へ送られ、濃液散布器2Cの上方から散布される。   The rare absorbent pumped by the rare absorbent pump P1 from the absorber 2 through the rare absorbent pipe 21 passes through the refrigerant drain heat exchanger 16 or the low temperature heat exchanger 12 and the high temperature heat exchanger 13. At the same time, a part is sent to the high temperature regenerator 5 via the exhaust gas heat recovery unit 40. Since the rare absorption liquid conveyed to the high temperature regenerator 5 is heated by the flame and high temperature combustion gas by the gas burner 4 in the high temperature regenerator 5, the refrigerant in the rare absorption liquid evaporates and separates. The intermediate absorbing liquid whose concentration has been increased by evaporating and separating the refrigerant in the high temperature regenerator 5 is sent to the low temperature regenerator 6 via the high temperature heat exchanger 13. In this low-temperature regenerator 6, the intermediate absorbent is heated by the high-temperature refrigerant vapor supplied from the high-temperature regenerator 5 through the refrigerant pipe 31 and flowing into the heat transfer pipe 31A, and the refrigerant is further separated to further increase the concentration. Thus, the concentrated absorbent is sent to the absorber 2 via the concentrated absorbent pump P2 and the low-temperature heat exchanger 12, and sprayed from above the concentrated liquid sprayer 2C.

一方、低温再生器6で分離生成した冷媒は凝縮器7に入って凝縮する。そして、凝縮器7で生成された冷媒液は冷媒管33を経由して蒸発器1に入り、冷媒ポンプP3の運転により揚液されて散布器1Cから冷/温水管14の伝熱管14Aの上に散布される。
伝熱管14Aの上に散布された冷媒液は、伝熱管14Aの内部を通るブラインから気化熱を奪って蒸発するので、伝熱管14Aの内部を通るブラインは冷却され、こうして温度を下げたブラインが冷/温水管14から熱負荷に供給されて冷房等の冷却運転が行われる。
そして、蒸発器1で蒸発した冷媒は吸収器2へ入り、低温再生器6より供給されて上方から散布される濃吸収液に吸収されて、吸収器2の稀吸収液溜り2Aに溜り、稀吸収液ポンプP1によって高温再生器5に搬送される循環を繰り返す。なお、吸収液が冷媒を吸収する際に発生する熱は、吸収器2内に配置される冷却水管15の伝熱管15Aにより冷却される。
On the other hand, the refrigerant separated and generated by the low temperature regenerator 6 enters the condenser 7 and condenses. Then, the refrigerant liquid generated in the condenser 7 enters the evaporator 1 through the refrigerant pipe 33, is pumped by the operation of the refrigerant pump P3, and passes from the spreader 1C to the heat transfer pipe 14A of the cold / hot water pipe 14. Sprayed on.
The refrigerant liquid sprayed on the heat transfer tube 14A evaporates by removing vaporization heat from the brine passing through the inside of the heat transfer tube 14A, so that the brine passing through the inside of the heat transfer tube 14A is cooled, and the brine thus lowered in temperature is A cooling operation such as cooling is performed by supplying the heat load from the cold / hot water pipe 14.
Then, the refrigerant evaporated in the evaporator 1 enters the absorber 2, is absorbed by the concentrated absorbent supplied from the low temperature regenerator 6 and sprayed from above, and accumulates in the rare absorbent reservoir 2A of the absorber 2, The circulation conveyed to the high temperature regenerator 5 by the absorption liquid pump P1 is repeated. Note that the heat generated when the absorbing liquid absorbs the refrigerant is cooled by the heat transfer pipe 15 </ b> A of the cooling water pipe 15 disposed in the absorber 2.

暖房運転時には、冷/温水管14を介して熱負荷に循環供給されるブライン(例えば温水)の蒸発器1出口側温度が所定の設定温度、例えば55℃になるように吸収式冷凍機100に投入される熱量が制御装置50により制御される。具体的には、制御装置50は、すべてのポンプP1〜P3を起動し、且つ、ガスバーナ4においてガスを燃焼させ、温度センサ61が計測するブラインの温度が所定の55℃となるようにガスバーナ4の火力を制御する。また、冷却水管15への冷却水の流通が止められる。なお、暖房運転時には、開閉弁V1〜V3は開かれる。
この場合、高温再生器5で稀吸収液から蒸発した冷媒は、冷媒管31の途中から主に流路抵抗の小さい冷媒管32を通って吸収器2、蒸発器1に入り、冷/温水管14から供給される水と伝熱管14Aを介して熱交換して凝縮し、このときの凝縮熱によって伝熱管14Aの内部を流れる水が加熱される。こうして温度を上げたブラインが冷/温水管14から熱負荷に供給されて暖房運転が行われる。
During the heating operation, the absorption refrigerator 100 is set so that the temperature at the outlet side of the evaporator 1 of the brine (for example, hot water) circulated and supplied to the heat load via the cold / hot water pipe 14 becomes a predetermined set temperature, for example, 55 ° C. The amount of heat input is controlled by the control device 50. Specifically, the control device 50 starts all the pumps P1 to P3, burns the gas in the gas burner 4, and the gas burner 4 so that the temperature of the brine measured by the temperature sensor 61 becomes a predetermined 55 ° C. Control the firepower. Further, the circulation of the cooling water to the cooling water pipe 15 is stopped. In the heating operation, the on-off valves V1 to V3 are opened.
In this case, the refrigerant evaporated from the rare absorbent in the high-temperature regenerator 5 enters the absorber 2 and the evaporator 1 mainly from the middle of the refrigerant pipe 31 through the refrigerant pipe 32 having a small channel resistance, and enters the cold / hot water pipe. The water supplied from 14 is condensed by exchanging heat through the heat transfer tube 14A, and the water flowing inside the heat transfer tube 14A is heated by the condensation heat at this time. The brine whose temperature has been raised in this way is supplied from the cold / hot water pipe 14 to the heat load, and the heating operation is performed.

蒸発器1で加熱作用を行って凝縮した冷媒は、蒸発器1の底部の冷媒液溜り1Bから冷媒ポンプP3によって、冷媒管35を通って吸収器2に入り、この吸収器2内で、吸収液管23及び開閉弁V1を通って高温再生器5から流入する吸収液と混合され、稀吸収液ポンプP1の運転によって、稀吸収液管21から冷媒ドレン熱交換器16又は低温熱交換器12と、高温熱交換器13とを経由するとともに、一部は排ガス熱回収器40を経由して高温再生器5へ送られる。   The refrigerant condensed by the heating action in the evaporator 1 enters the absorber 2 from the refrigerant liquid reservoir 1B at the bottom of the evaporator 1 through the refrigerant pipe 35 by the refrigerant pump P3, and is absorbed in the absorber 2. The refrigerant is mixed with the absorption liquid flowing in from the high temperature regenerator 5 through the liquid pipe 23 and the on-off valve V1, and the refrigerant drain heat exchanger 16 or the low temperature heat exchanger 12 is discharged from the rare absorption liquid pipe 21 by the operation of the rare absorption liquid pump P1. And the high-temperature heat exchanger 13 and a part thereof is sent to the high-temperature regenerator 5 via the exhaust gas heat recovery unit 40.

吸収式冷凍機100においては、煙道や煙突等が閉塞した場合により排気経路17の圧力が上昇した場合には、失火となって吸収式冷凍機100の運転が停止するまでの間に、高温再生器5で発生する一酸化炭素の量が増加するため、吸収式冷凍機100の運転を停止する必要がある。したがって、排気経路17に、排気ガスの圧力を検出する圧力検出手段71を設けることが考えられる。しかしながら、圧力検出手段71の圧力感知部71D(図2参照)が排気ガスに常時接触していると、排気ガスに含まれる成分(例えば、硫黄成分)によって、圧力感知部71Dが腐食するおそれがある。   In the absorption chiller 100, when the pressure in the exhaust path 17 increases due to the blockage of a flue, chimney, or the like, the temperature rises until the absorption chiller 100 stops operating due to misfire. Since the amount of carbon monoxide generated in the regenerator 5 increases, it is necessary to stop the operation of the absorption chiller 100. Therefore, it is conceivable to provide the pressure detection means 71 for detecting the pressure of the exhaust gas in the exhaust path 17. However, if the pressure sensing unit 71D (see FIG. 2) of the pressure detecting means 71 is constantly in contact with the exhaust gas, the pressure sensing unit 71D may be corroded by a component (for example, sulfur component) contained in the exhaust gas. is there.

そこで、本実施の形態では、排気経路17から排気ガスを分岐する分岐管72を設けて、この分岐管72に圧力検出手段71を取り付けるとともに、分岐管72に、排気ガスの圧力が所定圧力以上となったときに堰切れする堰止部(後述する液溜部73)を設けている。なお、これら圧力検出手段71及び分岐管72は、本実施の形態の圧力検出ユニット70を構成している。以下、圧力検出ユニット70について説明する。   Therefore, in the present embodiment, a branch pipe 72 that branches the exhaust gas from the exhaust path 17 is provided, and the pressure detection means 71 is attached to the branch pipe 72, and the pressure of the exhaust gas is equal to or higher than a predetermined pressure in the branch pipe 72. A damming portion (a liquid reservoir portion 73 described later) is provided that breaks when it becomes. The pressure detection means 71 and the branch pipe 72 constitute a pressure detection unit 70 of the present embodiment. Hereinafter, the pressure detection unit 70 will be described.

図2は、圧力検出手段71を示す模式図である。図3は、圧力検出ユニット70を示す斜視図である。図4は、分岐管72の一部を示す図であり、図4(A)は平面図、図4(B)は正面図、図4(C)は側面図である。
図2に示すように、圧力検出手段71は筐体71Aを備え、この筐体71Aには、当該筐体71A内に排気ガスを導く高圧側接続口71Bと、筐体71Aの外部(例えば、吸収式冷凍機100が配置される機械室)に開口する低圧側接続口71Cとが設けられている。筐体71A内には、高圧側接続口71Bと低圧側接続口71Cとの間に介在する圧力感知部71Dと、この圧力感知部71Dに接続されたスイッチ71Eとが設けられている。
FIG. 2 is a schematic diagram showing the pressure detecting means 71. FIG. 3 is a perspective view showing the pressure detection unit 70. 4A and 4B are diagrams showing a part of the branch pipe 72. FIG. 4A is a plan view, FIG. 4B is a front view, and FIG. 4C is a side view.
As shown in FIG. 2, the pressure detection means 71 includes a casing 71A. The casing 71A includes a high-pressure side connection port 71B that guides exhaust gas into the casing 71A, and an outside of the casing 71A (for example, A low-pressure side connection port 71 </ b> C that opens to a machine room in which the absorption refrigerator 100 is disposed. In the housing 71A, a pressure sensing unit 71D interposed between the high-pressure side connection port 71B and the low-pressure side connection port 71C and a switch 71E connected to the pressure sensing unit 71D are provided.

圧力感知部71Dは、高圧側接続口71Bからの排気ガスの圧力と、低圧側接続口71Cが開口する外部の圧力(大気圧)との差圧によって移動する感知部である。なお、以下に説明する圧力は、大気圧との差圧を示すものとする。圧力感知部71Dは、0〜300Pa程度(本実施の形態では、150Pa)の圧力によって移動可能なように、例えばゴム系材質製の薄板状に形成されている。
スイッチ71Eは、制御装置50に接続されており、所定圧力(後述する500Pa)以上が10秒続いたときに作動し、その検出結果を制御装置50に出力するように構成されている。
このように構成された圧力検出手段71は、図3に示すように、ブラケット71Fを介して排気経路17に固定されている。
The pressure sensing unit 71D is a sensing unit that moves due to a differential pressure between the pressure of the exhaust gas from the high-pressure side connection port 71B and the external pressure (atmospheric pressure) that the low-pressure side connection port 71C opens. In addition, the pressure demonstrated below shall show a differential pressure | voltage with atmospheric pressure. The pressure sensing unit 71D is formed in a thin plate shape made of, for example, a rubber-based material so that it can be moved by a pressure of about 0 to 300 Pa (in this embodiment, 150 Pa).
The switch 71E is connected to the control device 50, and is activated when a predetermined pressure (500 Pa described later) or more continues for 10 seconds, and outputs the detection result to the control device 50.
As shown in FIG. 3, the pressure detecting means 71 configured in this way is fixed to the exhaust path 17 via a bracket 71F.

本実施の形態では、排気経路17の一部を構成する排ガス熱回収器40が、第4稀吸収液管21D(図1)の一部を収容してこの第4稀吸収液管21Dを流れる稀吸収液を高温再生器5の熱交換部5Aからの排気ガスで加熱する熱交換室40Aと、熱交換後の排気ガスを設備側の煙道部80に排気する煙突40Bとを備えている。煙突40Bの下部には、煙突40Bや煙道部80で発生した結露水を排水する排水管41が接続されている。   In the present embodiment, the exhaust gas heat recovery device 40 constituting a part of the exhaust path 17 accommodates a part of the fourth rare absorbent pipe 21D (FIG. 1) and flows through the fourth rare absorbent pipe 21D. A heat exchange chamber 40A for heating the rare absorbent with the exhaust gas from the heat exchange section 5A of the high-temperature regenerator 5 and a chimney 40B for exhausting the exhaust gas after heat exchange to the flue section 80 on the equipment side are provided. . A drain pipe 41 that drains the condensed water generated in the chimney 40B and the flue section 80 is connected to the lower part of the chimney 40B.

分岐管72は、排気経路17に接続される接続部74、堰止部(液溜部73)、及び、この液溜部73と圧力検出手段71の高圧側接続口71B(図2)とを接続するチューブ75を備えて構成されている。接続部74は、排気ガスに対して耐食性を有する素材(例えば、ステンレス鋼)によって形成された円筒状部材であり、一端に排気経路17に対して着脱自在なソケット(接続口)76を備え、他端は蓋体77によって閉塞されている。これらのソケット76及び蓋体77も、排気ガスに対して耐食性を有する素材(例えば、ステンレス鋼)によって形成されている。ソケット76は、内面にねじ部76Aを有する円筒部であり、このねじ部76Aが接続部74の一端の外周面に形成されたねじ部74Aに螺合して、ソケット76が接続部74に固定される。ソケット76は、煙突40Bに設けられた排気経路側接続口42のねじ部42Aに螺合することで、排気経路17に接続部74が略水平に接続される。
なお、本実施の形態では、分岐管72が煙突40Bの排水管41の上方に接続されているため、接続部74内で発生した結露水は排水管41から排出される。
The branch pipe 72 includes a connection portion 74 connected to the exhaust path 17, a blocking portion (a liquid reservoir portion 73), and the liquid reservoir portion 73 and a high-pressure side connection port 71 </ b> B (FIG. 2) of the pressure detection means 71. A tube 75 to be connected is provided. The connection part 74 is a cylindrical member formed of a material (for example, stainless steel) having corrosion resistance against exhaust gas, and includes a socket (connection port) 76 that can be attached to and detached from the exhaust path 17 at one end. The other end is closed by a lid 77. The socket 76 and the lid 77 are also formed of a material (for example, stainless steel) having corrosion resistance against exhaust gas. The socket 76 is a cylindrical portion having a screw portion 76 </ b> A on the inner surface. The screw portion 76 </ b> A is screwed into a screw portion 74 </ b> A formed on the outer peripheral surface of one end of the connection portion 74, and the socket 76 is fixed to the connection portion 74. Is done. The socket 76 is screwed into the screw portion 42A of the exhaust path side connection port 42 provided in the chimney 40B, so that the connection portion 74 is connected to the exhaust path 17 substantially horizontally.
In this embodiment, since the branch pipe 72 is connected above the drain pipe 41 of the chimney 40B, the condensed water generated in the connection portion 74 is discharged from the drain pipe 41.

本実施の形態の堰止部は、液体Fを溜めることが可能な液溜部73として構成されており、より詳細には、略U字状に湾曲した湾曲部となっている。液溜部73の一端73Aは接続部74を貫通して接続部74の内面から突出した状態で固定されており、液溜部73の他端73Bは所定圧力以上となったときに堰切れする高さHに位置している。液体Fには、排気ガスの熱によって膨張しにくい材料、例えばシリコンオイルが用いられる。この液体Fは、液溜部73の他端73Bまで入れられる。なお、排気経路17を通る排気ガスの熱は、排ガス熱回収器40が有る場合には100℃程度になるが、接続部74と液溜部73の径が小さく、本実施の形態ではそれぞれ13mm、6mm程度であるため、堰止め状態では排気ガスが接続部74内でほとんど流れないので、液溜部73の温度は40℃程度となる。   The damming portion of the present embodiment is configured as a liquid reservoir 73 capable of storing the liquid F, and more specifically, is a curved portion curved in a substantially U shape. One end 73A of the liquid reservoir 73 passes through the connecting portion 74 and is fixed in a state protruding from the inner surface of the connecting portion 74, and the other end 73B of the liquid reservoir 73 breaks down when the pressure exceeds a predetermined pressure. Located at height H. For the liquid F, a material that does not easily expand due to the heat of the exhaust gas, such as silicon oil, is used. This liquid F is put into the other end 73 </ b> B of the liquid reservoir 73. Note that the heat of the exhaust gas passing through the exhaust path 17 is about 100 ° C. when the exhaust gas heat recovery device 40 is provided, but the diameters of the connecting portion 74 and the liquid reservoir 73 are small, and in this embodiment, 13 mm each. Therefore, since the exhaust gas hardly flows in the connecting portion 74 in the dammed state, the temperature of the liquid reservoir 73 is about 40 ° C.

チューブ75は、排気ガスに対して耐食性のある素材(例えば、シリコン)で形成され、一端が湾曲部に接続されるとともに、他端が圧力検出手段71の高圧側接続口71B(図2)に着脱自在に接続されている。チューブ75は、液溜部73の他端73Bから高圧側接続口71Bまでの長さが、液溜部73が堰切れした際に液体Fが圧力検出手段71に到達しない長さとなるように、所定の長さを有して構成されている。チューブ75と高圧側接続口71B及び液溜部73とは、図示は省略するが結束バンドで固定されている。   The tube 75 is formed of a material (for example, silicon) that is corrosion resistant to the exhaust gas. One end of the tube 75 is connected to the curved portion, and the other end is connected to the high-pressure side connection port 71B (FIG. 2) of the pressure detecting means 71. Removably connected. The length of the tube 75 from the other end 73B of the liquid reservoir 73 to the high-pressure side connection port 71B is such that the liquid F does not reach the pressure detection means 71 when the liquid reservoir 73 is cut off. It has a predetermined length. The tube 75, the high-pressure side connection port 71 </ b> B, and the liquid reservoir 73 are fixed with a binding band although not shown.

図5は、煙突閉塞率と排気ガス圧力との関係を示すグラフである。なお、図5では、横軸に煙突閉塞率、縦軸に排気ガス圧力を示す。また、図5中、線Aは吸収式冷凍機100の燃焼負荷が100%のときの結果を、線Bは燃焼負荷が50%のときの結果を、線Cは燃焼負荷が25%のときの結果を示す。
この図に示すように、吸収式冷凍機100では、煙突閉塞率が高くなるほど排気ガスの圧力が上昇しており、また、燃焼負荷が高いほど圧力上昇が大きい。
FIG. 5 is a graph showing the relationship between the chimney blockage rate and the exhaust gas pressure. In FIG. 5, the horizontal axis represents the chimney blockage rate and the vertical axis represents the exhaust gas pressure. In FIG. 5, line A shows the result when the combustion load of the absorption chiller 100 is 100%, line B shows the result when the combustion load is 50%, and line C shows the result when the combustion load is 25%. The results are shown.
As shown in this figure, in the absorption refrigeration machine 100, the exhaust gas pressure increases as the chimney blockage rate increases, and the pressure increase increases as the combustion load increases.

なお、この吸収式冷凍機100において、燃焼負荷が100%の場合には煙突閉塞率が90%〜100%で失火が発生するが、燃焼負荷が25%、50%の場合には煙突閉塞率が100%となっても失火は発生しない。また、煙突閉塞率が92%を上回る場合には一酸化炭素量が所定値(本実施の形態では、100ppm)を超えることが実験により得られている。
したがって、圧力の上限値を、煙突閉塞率が92%において一番圧力が低い、燃焼負荷が25%のときの所定圧力(例えば、50mmAq(500Pa))に設定することで、一酸化炭素の増加を防止することができる。
なお、本実施の形態では、圧力検出手段71の圧力感知部71Dが動作する感知圧力を150Paと設定しているため、液溜部73は、堰切れ圧力が所定圧力500Paから感知圧力150Paを差し引いた350Paを超えると堰切れするように構成されている。
In this absorption refrigeration machine 100, when the combustion load is 100%, misfire occurs when the chimney blockage rate is 90% to 100%, but when the combustion load is 25% and 50%, the chimney blockage rate. Misfire does not occur even if becomes 100%. Further, it has been experimentally obtained that the amount of carbon monoxide exceeds a predetermined value (in this embodiment, 100 ppm) when the chimney blockage rate exceeds 92%.
Therefore, by setting the upper limit of the pressure to a predetermined pressure (for example, 50 mmAq (500 Pa)) when the pressure is the lowest when the chimney blockage rate is 92% and the combustion load is 25%, the increase in carbon monoxide Can be prevented.
In the present embodiment, since the sensing pressure at which the pressure sensing unit 71D of the pressure detecting means 71 operates is set to 150 Pa, the liquid reservoir 73 has a weir break pressure that is obtained by subtracting the sensing pressure 150 Pa from the predetermined pressure 500 Pa. In addition, when it exceeds 350 Pa, the weir is cut off.

次に、図6を参照し、本実施の形態の作用について説明する。
図6は、分岐管72の堰切れ状態を模式的に示す説明図であり、図6(A)は堰止め状態を、図6(B)は圧力上昇時を、図6(C)は堰切れ状態を示す図である。
図6(A)に示すように、排気ガスの圧力が通常状態の場合には、液溜部73は堰止めされているため、排気ガスは圧力検出手段71に流れない。
排気ガスの圧力が上昇すると、図6(B)に示すように、液溜部73の液体Fが徐々に押し上げられ、排気ガスの圧力が堰切れ圧力(350Pa)を超えると、図6(C)に示すように、液体Fがさらに押し上げられて液溜部73が堰切れする。
Next, the operation of this embodiment will be described with reference to FIG.
6A and 6B are explanatory views schematically showing a state in which the branch pipe 72 is out of the weir. FIG. 6A shows a dammed state, FIG. 6B shows a state when the pressure rises, and FIG. It is a figure which shows a cutting | disconnection state.
As shown in FIG. 6A, when the pressure of the exhaust gas is in a normal state, the liquid reservoir 73 is blocked, so that the exhaust gas does not flow to the pressure detection means 71.
When the pressure of the exhaust gas rises, as shown in FIG. 6B, the liquid F in the liquid reservoir 73 is gradually pushed up, and when the pressure of the exhaust gas exceeds the weir-breaking pressure (350 Pa), FIG. ), The liquid F is further pushed up, and the liquid reservoir 73 is cut off.

排気ガスの圧力が、さらに感知圧力(150Pa)を超えて、所定圧力(350Pa+150Pa=500Pa)以上が10秒続くと、圧力検出手段71のスイッチ71Eが作動し、その結果が制御装置50に出力される。ここで、所定圧力以上が10秒継続する前に、排気ガスの圧力が低くなった場合には、圧力検出手段71のスイッチ71Eが動作することはなく、液体Fは、図6(A)又は図6(B)に示すように、堰止めされた状態に戻る。
制御装置50は、圧力検出手段71からの検出結果を受信すると、一酸化炭素量が所定値を超えるおそれがあると判断し、吸収式冷凍機100の運転を停止する。
When the pressure of the exhaust gas further exceeds the sensed pressure (150 Pa) and continues for a predetermined pressure (350 Pa + 150 Pa = 500 Pa) or more for 10 seconds, the switch 71E of the pressure detecting means 71 is activated, and the result is output to the control device 50. The Here, when the pressure of the exhaust gas becomes low before the predetermined pressure or more continues for 10 seconds, the switch 71E of the pressure detecting means 71 does not operate, and the liquid F is in the state shown in FIG. As shown in FIG. 6B, the state returns to the weired state.
When receiving the detection result from the pressure detection means 71, the control device 50 determines that the carbon monoxide amount may exceed a predetermined value, and stops the operation of the absorption chiller 100.

以上説明したように、本実施の形態によれば、高温再生器5の熱交換部5Aからの排気ガスを外部に排気する排気経路17と、排気経路17から排気ガスを分岐する分岐管72と、分岐管72に設けられ、排気ガスの圧力を検出する圧力検出手段71と、を備え、分岐管72には、排気ガスの圧力が所定圧力以上となったときに堰切れする堰止部(液溜部73)を設ける構成とする。この構成により、圧力検出手段71の圧力感知部71Dは排気ガスの圧力が所定圧力以上となったときのみ排気ガスと接触することとなり、圧力感知部71Dが排気ガスに接触する時間を短くできるので、圧力感知部71Dの腐食を防止しつつ、排気ガスの圧力を検出できる。   As described above, according to the present embodiment, the exhaust path 17 that exhausts the exhaust gas from the heat exchange unit 5A of the high-temperature regenerator 5 to the outside, and the branch pipe 72 that branches the exhaust gas from the exhaust path 17 And a pressure detecting means 71 provided on the branch pipe 72 for detecting the pressure of the exhaust gas. The branch pipe 72 has a damming portion (were cut when the pressure of the exhaust gas exceeds a predetermined pressure). A liquid reservoir 73) is provided. With this configuration, the pressure sensing part 71D of the pressure detecting means 71 comes into contact with the exhaust gas only when the pressure of the exhaust gas exceeds a predetermined pressure, and the time for the pressure sensing part 71D to contact the exhaust gas can be shortened. The pressure of the exhaust gas can be detected while preventing corrosion of the pressure sensing unit 71D.

また、本実施の形態によれば、堰止部を、液体Fを溜めた液溜部73としたため、例えば、略U字状の液溜部73を形成し、この液溜部73に液体Fを満たすという簡単な構成で堰止部を形成できるので、堰止部を安価に設けることができる。   Further, according to the present embodiment, since the damming portion is the liquid reservoir 73 in which the liquid F is stored, for example, a substantially U-shaped liquid reservoir 73 is formed, and the liquid F is stored in the liquid reservoir 73. Since the damming portion can be formed with a simple configuration that satisfies the above condition, the damming portion can be provided at low cost.

また、本実施の形態によれば、分岐管72は、排気ガスの圧力が所定圧力以上となったときに、液体Fが圧力検出手段71に到達しない長さを有する構成とした。この構成により、液溜部73が堰切れしても、液体Fが圧力検出手段71に流れ込むことがないので、液体Fが圧力検出手段71内に浸入することよる故障や誤検出を防止することができる。   Further, according to the present embodiment, the branch pipe 72 has such a length that the liquid F does not reach the pressure detection means 71 when the pressure of the exhaust gas becomes equal to or higher than a predetermined pressure. With this configuration, even if the liquid reservoir 73 is cut off, the liquid F does not flow into the pressure detection means 71, so that failure or erroneous detection due to the liquid F entering the pressure detection means 71 can be prevented. Can do.

また、本実施の形態によれば、分岐管72は、排気経路17に着脱自在に取り付けられるソケット76を有するため、分岐管72を簡単に取り外しできるので、分岐管72のメンテナンス(例えば、分岐管72内の洗浄や液体Fの交換)を容易に行うことができる。   Further, according to the present embodiment, since the branch pipe 72 has the socket 76 that is detachably attached to the exhaust path 17, the branch pipe 72 can be easily removed, so that the maintenance of the branch pipe 72 (for example, the branch pipe 72). 72 and cleaning of the liquid F) can be easily performed.

但し、上記実施の形態は本発明の一態様であり、本発明の趣旨を逸脱しない範囲において適宜変更可能であるのは勿論である。
例えば、上記実施の形態では、分岐管72を煙突40Bに取り付けたが、分岐管72は、高温再生器5からの排気経路17に設けられればよく、例えば、煙突40Bの下流の煙道部80に設けられてもよい。また、図7に示すように、排ガス熱回収器40を備えない排気経路17に分岐管72を取り付けてもよい。なお、排気経路17を通る排気ガスの熱は、排ガス熱回収器40がない場合には最高で200〜250℃程度であるが、接続部74と液溜部73の径が小さく、本実施の形態ではそれぞれ13mm、6mm程度であるため、堰止め状態では排気ガスが接続部74内でほとんど流れないので、液溜部73の温度は40℃程度となる。
However, the above embodiment is an aspect of the present invention, and it is needless to say that the embodiment can be appropriately changed without departing from the gist of the present invention.
For example, in the above embodiment, the branch pipe 72 is attached to the chimney 40B. However, the branch pipe 72 may be provided in the exhaust path 17 from the high temperature regenerator 5, for example, the flue section 80 downstream of the chimney 40B. May be provided. Further, as shown in FIG. 7, a branch pipe 72 may be attached to the exhaust path 17 that does not include the exhaust gas heat recovery device 40. Note that the heat of the exhaust gas passing through the exhaust path 17 is about 200 to 250 ° C. at maximum in the absence of the exhaust gas heat recovery device 40, but the diameters of the connecting portion 74 and the liquid reservoir portion 73 are small, and this embodiment In the form, since they are about 13 mm and 6 mm, respectively, the exhaust gas hardly flows in the connecting portion 74 in the dammed state, so that the temperature of the liquid reservoir 73 is about 40 ° C.

また、上記実施の形態では、液溜部73の液体Fをシリコンオイルとして説明したが、この液体Fはこれに限定されず、その他の液体(例えば、水)であってもよい。
また、上記実施の形態では、排気ガスを堰き止める堰止部を液溜部73として構成したが、堰止部は、この構成に限定されるものではなく、排気ガスの圧力が所定圧力以上となったときに、分岐管72に排気ガスを流通させる、例えば弁等の手段であってもよい。
Moreover, in the said embodiment, although the liquid F of the liquid storage part 73 was demonstrated as silicone oil, this liquid F is not limited to this, Other liquids (for example, water) may be sufficient.
Moreover, in the said embodiment, although the dam part which dams exhaust gas was comprised as the liquid reservoir part 73, a dam part is not limited to this structure, and the pressure of exhaust gas is more than predetermined pressure. For example, it may be a means such as a valve that causes the exhaust gas to flow through the branch pipe 72.

また、上記実施の形態では、高温再生器5にて吸収液を加熱する加熱手段として燃料ガスを燃焼させて加熱を行うガスバーナ4を備える構成について説明したが、これに限るものではなく、灯油やA重油を燃焼させるバーナを備える構成や、蒸気や排気ガス等の温熱を用いて加熱する構成としてもよい。
また、上記実施の形態では、吸収式冷凍機100は、冷房及び暖房運転を行う吸収式冷温水機として説明したが、吸収式冷凍機100は、これに限定されるものではなく、例えば、冷房運転のみを行う吸収式冷凍機であってもよい。
Moreover, although the said embodiment demonstrated the structure provided with the gas burner 4 which burns and burns fuel gas as a heating means which heats absorption liquid in the high temperature regenerator 5, it is not restricted to this, Kerosene or It is good also as a structure provided with the burner which burns A heavy oil, or the structure heated using warm heat, such as a vapor | steam and exhaust gas.
In the above embodiment, the absorption chiller 100 has been described as an absorption chiller / heater that performs cooling and heating operations. However, the absorption chiller 100 is not limited to this, and for example, a cooling It may be an absorption refrigerator that performs only operation.

また、上記実施の形態では、吸収式冷凍機100は、高温再生器5から流出した吸収液を低温再生器6に供給するいわゆるシリーズフローサイクルに形成されていたが、これに限定されず、例えば、吸収器から延びる高温再生器及び低温再生器へと2つに分岐するいわゆるパラレルフローサイクルや、低温再生器から流出した吸収液を高温再生器に供給するいわゆるリバースフローサイクルに形成された吸収式冷凍機に本発明を適用してもよい。   Moreover, in the said embodiment, although the absorption refrigerator 100 was formed in what is called a series flow cycle which supplies the absorption liquid which flowed out from the high temperature regenerator 5 to the low temperature regenerator 6, it is not limited to this, For example, An absorption type formed in a so-called parallel flow cycle that branches into two, a high-temperature regenerator and a low-temperature regenerator extending from the absorber, and a so-called reverse flow cycle that supplies the absorption liquid flowing out from the low-temperature regenerator The present invention may be applied to a refrigerator.

また、上記実施の形態では、吸収式冷凍機は二重効用型であるが、一重効用型を始め、一重二重効用型及び三重効用型の吸収式冷凍機及び吸収式ヒートポンプ装置に本発明を適用可能なことは勿論である。   In the above embodiment, the absorption refrigerator is a double effect type, but the present invention is applied to a single effect type, a single double effect type and a triple effect type absorption refrigerator and an absorption heat pump device. Of course, it is applicable.

1 蒸発器
2 吸収器
5 高温再生器
5A 熱交換部(燃焼室)
6 低温再生器
7 凝縮器
17 排気経路
71 圧力検出手段
72 分岐管
73 液溜部(堰止部)
74 接続口
100 吸収式冷凍機
DESCRIPTION OF SYMBOLS 1 Evaporator 2 Absorber 5 High temperature regenerator 5A Heat exchange part (combustion chamber)
6 Low-temperature regenerator 7 Condenser 17 Exhaust path 71 Pressure detection means 72 Branch pipe 73 Liquid reservoir (damming part)
74 Connection port 100 Absorption type refrigerator

Claims (4)

高温再生器、低温再生器、凝縮器、蒸発器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成した吸収式冷凍機において、
前記高温再生器の燃焼室からの排気ガスを外部に排気する排気経路と、
前記排気経路から前記排気ガスを分岐する分岐管と、
前記分岐管に設けられ、前記排気ガスの圧力を検出する圧力検出手段と、を備え、
前記分岐管には、前記排気ガスの圧力が所定圧力以上となったときに堰切れする堰止部を設けたことを特徴とする吸収式冷凍機。
In an absorption refrigerating machine comprising a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, and an absorber, and connecting these pipes to form a circulation path for an absorbing liquid and a refrigerant,
An exhaust path for exhausting exhaust gas from the combustion chamber of the high-temperature regenerator to the outside;
A branch pipe for branching the exhaust gas from the exhaust path;
Provided in the branch pipe, and a pressure detecting means for detecting the pressure of the exhaust gas,
An absorption refrigerating machine, wherein the branch pipe is provided with a damming portion that breaks when a pressure of the exhaust gas exceeds a predetermined pressure.
前記堰止部は、液体を溜めた液溜部であることを特徴とする請求項1に記載の吸収式冷凍機。   The absorption chiller according to claim 1, wherein the damming portion is a liquid reservoir that stores a liquid. 前記分岐管は、前記排気ガスの圧力が前記所定圧力以上となったときに、前記液体が前記圧力検出手段に到達しない長さを有することを特徴とする請求項2に記載の吸収式冷凍機。   3. The absorption refrigerator according to claim 2, wherein the branch pipe has a length that prevents the liquid from reaching the pressure detecting means when the pressure of the exhaust gas becomes equal to or higher than the predetermined pressure. . 前記分岐管は、前記排気経路に着脱自在に取り付けられる接続口を有することを特徴とする請求項1乃至3のいずれかに記載の吸収式冷凍機。   The absorption refrigerator according to any one of claims 1 to 3, wherein the branch pipe has a connection port that is detachably attached to the exhaust path.
JP2012103674A 2012-04-27 2012-04-27 Absorption refrigerator Active JP5954652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012103674A JP5954652B2 (en) 2012-04-27 2012-04-27 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012103674A JP5954652B2 (en) 2012-04-27 2012-04-27 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2013231551A true JP2013231551A (en) 2013-11-14
JP5954652B2 JP5954652B2 (en) 2016-07-20

Family

ID=49678149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012103674A Active JP5954652B2 (en) 2012-04-27 2012-04-27 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP5954652B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269076A (en) * 1985-09-20 1987-03-30 川重冷熱工業株式会社 Method of controlling absorption refrigerator
JPH07145925A (en) * 1993-11-25 1995-06-06 Mitsubishi Heavy Ind Ltd Soot blower controller
JPH08263147A (en) * 1995-03-24 1996-10-11 Yazaki Corp Unit for controlling temperature of multipoint operation and method therefor
JPH1026340A (en) * 1996-05-08 1998-01-27 Nkk Corp Heating furnace and operating method thereof
JPH10104380A (en) * 1996-10-01 1998-04-24 Japan Nuclear Fuel Co Ltd<Jnf> Nuclear fuel pellet sintering device
JP2003014633A (en) * 2001-06-28 2003-01-15 Ishikawajima Harima Heavy Ind Co Ltd So3 densitometer
JP2006090682A (en) * 2004-09-27 2006-04-06 Yazaki Corp Absorption chiller/heater
JP2007322296A (en) * 2006-06-02 2007-12-13 Nippon Pneumatics Fluidics System Co Ltd Differential pressure detection device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269076A (en) * 1985-09-20 1987-03-30 川重冷熱工業株式会社 Method of controlling absorption refrigerator
JPH07145925A (en) * 1993-11-25 1995-06-06 Mitsubishi Heavy Ind Ltd Soot blower controller
JPH08263147A (en) * 1995-03-24 1996-10-11 Yazaki Corp Unit for controlling temperature of multipoint operation and method therefor
JPH1026340A (en) * 1996-05-08 1998-01-27 Nkk Corp Heating furnace and operating method thereof
JPH10104380A (en) * 1996-10-01 1998-04-24 Japan Nuclear Fuel Co Ltd<Jnf> Nuclear fuel pellet sintering device
JP2003014633A (en) * 2001-06-28 2003-01-15 Ishikawajima Harima Heavy Ind Co Ltd So3 densitometer
JP2006090682A (en) * 2004-09-27 2006-04-06 Yazaki Corp Absorption chiller/heater
JP2007322296A (en) * 2006-06-02 2007-12-13 Nippon Pneumatics Fluidics System Co Ltd Differential pressure detection device

Also Published As

Publication number Publication date
JP5954652B2 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
JP2008008581A (en) Absorption type space heating/hot water supply device
JP5954652B2 (en) Absorption refrigerator
JP5575519B2 (en) Absorption refrigerator
JP6754981B2 (en) Absorption chiller
JP2019190708A (en) Absorptive refrigerator
JP2012202589A (en) Absorption heat pump apparatus
CN102141319B (en) Absorption-type refrigerator
JP5461269B2 (en) Exhaust gas outlet chimney structure of exhaust gas heat recovery unit
JP5570969B2 (en) Exhaust gas heat recovery device and absorption refrigerator
CN107356010A (en) Absorption Refrigerator
JP6789846B2 (en) Absorption chiller
JP5967407B2 (en) Absorption type water heater
JP5449862B2 (en) Absorption refrigeration system
JP6264636B2 (en) Absorption refrigerator
JP5456368B2 (en) Absorption refrigerator
JP2010266170A (en) Absorption-type refrigerating machine
JP6364238B2 (en) Absorption type water heater
JP2010276244A (en) Absorption type water chiller/heater
JP7054855B2 (en) Absorption chiller
JP4326478B2 (en) Single double-effect absorption refrigerator
JP6765056B2 (en) Absorption chiller
JP6789847B2 (en) Absorption chiller
JP2011033261A (en) Absorption type refrigerating machine
JP6653444B2 (en) Absorption refrigerator
JP2019190709A (en) Absorptive refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160603

R151 Written notification of patent or utility model registration

Ref document number: 5954652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151