JP2003014633A - So3 densitometer - Google Patents

So3 densitometer

Info

Publication number
JP2003014633A
JP2003014633A JP2001196479A JP2001196479A JP2003014633A JP 2003014633 A JP2003014633 A JP 2003014633A JP 2001196479 A JP2001196479 A JP 2001196479A JP 2001196479 A JP2001196479 A JP 2001196479A JP 2003014633 A JP2003014633 A JP 2003014633A
Authority
JP
Japan
Prior art keywords
gas
pressure
concentration
cell
gas cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001196479A
Other languages
Japanese (ja)
Other versions
JP4674417B2 (en
Inventor
Takao Kurata
孝男 倉田
Takeshi Kobayashi
健 小林
Taketo Yagi
武人 八木
Masataka Obara
正孝 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2001196479A priority Critical patent/JP4674417B2/en
Publication of JP2003014633A publication Critical patent/JP2003014633A/en
Application granted granted Critical
Publication of JP4674417B2 publication Critical patent/JP4674417B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an SO3 densitometer capable of accurately measuring the concentration of SO3 by introducing high temperature to monitor the pressure thereof in a gas cell. SOLUTION: In the SO3 densitometer for measuring the concentration of SO3 in the exhaust gas introduced into the gas cell 1 by ultraviolet absorption analysis, a trap 15 with a cooler 16 for cooling the exhaust gas is connected to the gas discharge side of the gas cell 12 and a pressure monitor 18 for detecting the internal pressure of the gas cell 12 is connected to the discharge side of the trap 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃焼排ガス中のS
3 のガス濃度を紫外線吸収分析により計測するSO3
濃度計に関するものである。
TECHNICAL FIELD The present invention relates to S in combustion exhaust gas.
SO 3 for measuring the gas concentration of O 3 by ultraviolet absorption analysis
It concerns a densitometer.

【0002】[0002]

【従来の技術】一般に、紫外線吸収分析でのガス中の濃
度の検出は、既知濃度の紫外線吸収スペクトルをとり、
吸光度を濃度毎にプロットした検量線を作成した後で、
未知濃度の吸光度と対比することで、ガスの濃度を求め
ている。
2. Description of the Related Art In general, the detection of the concentration in a gas by ultraviolet absorption analysis takes an ultraviolet absorption spectrum of known concentration,
After creating a calibration curve that plots the absorbance for each concentration,
The gas concentration is determined by comparing the absorbance with the unknown concentration.

【0003】検量線による濃度の測定は、ランベルトベ
ールの法則により作成した検量線が、直線になるので、
その直線の式を求めれば、吸光度の代入で濃度が求めら
れるという原理による。
Since the calibration curve prepared by Lambert-Beer's law becomes a straight line in the measurement of the concentration by the calibration curve,
This is based on the principle that the concentration can be obtained by substituting the absorbance if the straight line equation is obtained.

【0004】この検量線に基づくボイラの排煙中のSO
2 等のガス濃度を紫外線吸収分析により測定する場合、
煙道中の排ガスをポンプの吸引力でガスセル内に導入
し、そのガスセルに紫外線を透過して吸収スペクトルを
求めて計測することが行われている。
SO in the smoke emitted from the boiler based on this calibration curve
When measuring the gas concentration of 2 etc. by ultraviolet absorption analysis,
Exhaust gas in a flue gas is introduced into a gas cell by a suction force of a pump, ultraviolet rays are transmitted through the gas cell, and an absorption spectrum is obtained and measured.

【0005】この際、排煙中には、SO2 の他にSO3
が含まれ、両者の吸収スペクトル帯が同じために、これ
らを個々に計測することが困難であったが、本出願人が
先に出願した特願平11−374106号(発明の名
称:煙道中のSO3 ガスの濃度算出方法)により、SO
2 とSO3 の濃度を検出することが可能となった。この
濃度算出方法は、SO3 の濃度を検出する際に妨害ガス
となるSO2 を混入したガスで、SO3 の組成比を変え
ながら吸光度スペクトルをとり、その吸光度スペクトル
データを基に、PLS(Partial Least Squares)等によ
る多変量解析により、SO2 とSO3 検量線を作成し、
その検量線を基に、煙道中の排ガスを紫外線吸収分析し
て排ガス中の、未知濃度のSO2 とSO3 を計測できる
ようにしたものである。
At this time, during flue gas, in addition to SO 2 , SO 3
However, it was difficult to measure these individually because the absorption spectrum bands of both are the same. However, Japanese Patent Application No. 11-374106 filed earlier by the present applicant (the title of the invention: SO 3 gas concentration calculation method)
It became possible to detect the concentrations of 2 and SO 3 . This concentration calculation method is a gas mixed with SO 2 which becomes an interfering gas when the concentration of SO 3 is detected, and an absorbance spectrum is taken while changing the composition ratio of SO 3 , and PLS ( Partial Least Squares) and other multivariate analysis to create SO 2 and SO 3 calibration curves,
Based on the calibration curve, the exhaust gas in the flue gas is subjected to ultraviolet absorption analysis so that unknown concentrations of SO 2 and SO 3 in the exhaust gas can be measured.

【0006】[0006]

【発明が解決しようとする課題】ところで、SO3 は、
腐食性ガスであり、しかも350℃以下では、排ガス中
の水蒸気と結合して硫酸となるため、350℃以上に加
熱しなければ、紫外線吸収法での吸収スペクトル分析が
できない。
By the way, SO 3 is
It is a corrosive gas, and at 350 ° C. or lower, it combines with water vapor in exhaust gas to form sulfuric acid. Therefore, unless it is heated to 350 ° C. or higher, the absorption spectrum analysis by the ultraviolet absorption method cannot be performed.

【0007】また、煙道ダクト中の圧力変化、またガス
セル内に導入する排ガスからダストを除去するためのフ
ィルターの目詰まり程度、ポンプの吸引力の変化等種々
の要因により、ガスセル内圧力が変化する。ガスセル内
のガス圧が変わると吸光度の計測値も変化してしまうた
め、計測には、ガスセル内の圧力を一定に保つ必要があ
る。
Further, the pressure in the gas cell changes due to various factors such as the pressure change in the flue duct, the degree of clogging of the filter for removing dust from the exhaust gas introduced into the gas cell, and the change in the suction force of the pump. To do. When the gas pressure in the gas cell changes, the measured value of the absorbance also changes, so it is necessary to keep the pressure in the gas cell constant for measurement.

【0008】しかしながら、ガスセル圧力を一定に保つ
には、一次圧(煙道側)が不安定なことや、一次圧と2
次圧側の圧力差があまりないことにより、ガスセル内圧
力を一定に保つのは困難である。
However, in order to keep the gas cell pressure constant, the primary pressure (flue side) is unstable, and the primary pressure and 2
Since there is not much pressure difference on the secondary pressure side, it is difficult to keep the gas cell internal pressure constant.

【0009】このため、ガスセルに濃度補正用の圧力モ
ニターを設置することが考えられるが、高温に耐え、し
かも腐食に強い圧力モニターは、現状ではなく、作ると
しても非常に高価なものとなると共に劣悪な環境では、
応答性がよく、しかも長期間安定したモニターができな
い問題がある。
For this reason, it is conceivable to install a pressure monitor for concentration correction in the gas cell, but a pressure monitor that withstands high temperatures and is resistant to corrosion is not currently available, and is very expensive to make. In a poor environment,
There is a problem that the response is good and stable monitoring cannot be performed for a long time.

【0010】そこで、本発明の目的は、上記課題を解決
し、高温の排ガスを導入し、そのガスセル内圧力をモニ
ターしてSO3 濃度を的確に測定できるSO3 濃度計を
提供することにある。
An object of the present invention is to solve the above problems, by introducing a high-temperature exhaust gas is to provide a SO 3 concentration meter the SO 3 concentration by monitoring the gas cell pressure can be accurately measured .

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明は、ガスセル内に導入した排ガス中
のSO3 の濃度を紫外線吸収分析により計測するSO3
濃度計において、ガスセルのガス排出側に排ガスを冷却
するクーラー付きトラップを接続し、そのトラップの排
気側にガスセル内圧力を検出する圧力モニターを接続し
たSO3 濃度計である。
In order to achieve the above object, the invention of claim 1 is an SO 3 system for measuring the concentration of SO 3 in exhaust gas introduced into a gas cell by ultraviolet absorption analysis.
In the densitometer, this is a SO 3 densitometer in which a trap with a cooler for cooling the exhaust gas is connected to the gas discharge side of the gas cell, and a pressure monitor for detecting the pressure inside the gas cell is connected to the exhaust side of the trap.

【0012】請求項2の発明は、ガスセルにセル内温度
を350〜450℃に保持するヒータを設けた請求項1
記載のSO3 濃度計である。
According to the second aspect of the present invention, the gas cell is provided with a heater for keeping the temperature inside the cell at 350 to 450 ° C.
It is the described SO 3 concentration meter.

【0013】[0013]

【発明の実施の形態】以下、本発明の好適一実施の形態
を添付図面に基づいて詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

【0014】先ず、図1により、本発明における煙道中
の排ガスの紫外線吸収分析装置を説明する。
First, the ultraviolet absorption analyzer for exhaust gas in a flue according to the present invention will be described with reference to FIG.

【0015】図1において、10は、ボイラからの排ガ
スが流れる煙道で、その煙道10にガス吸込管11を介
してガスセル12が接続される。ガス吸込管11には、
排ガス中のダストを除去するフィルター13が接続され
る。
In FIG. 1, 10 is a flue channel through which exhaust gas from a boiler flows, and a gas cell 12 is connected to the flue channel 10 via a gas suction pipe 11. In the gas suction pipe 11,
A filter 13 for removing dust in the exhaust gas is connected.

【0016】ガスセル12は、出口管14を介してトラ
ップ15が接続される。トラップ15は、導入した排ガ
スを冷却するクーラー16が設けられている。
A trap 15 is connected to the gas cell 12 via an outlet pipe 14. The trap 15 is provided with a cooler 16 that cools the introduced exhaust gas.

【0017】トラップ15からの排気管17には、半導
体圧力センサからなる圧力モニター18が接続されると
共に煙道10からの排ガスをガスセル12を通して吸引
排気するためのポンプ20が接続される。
An exhaust pipe 17 from the trap 15 is connected to a pressure monitor 18 composed of a semiconductor pressure sensor and a pump 20 for sucking and exhausting the exhaust gas from the flue gas 10 through the gas cell 12.

【0018】排気管17の下流側は図示していないが、
排ガスを煙道10に戻すようにしても或いは他の排気処
理系に供給するようにしてもよい。
Although the downstream side of the exhaust pipe 17 is not shown,
The exhaust gas may be returned to the flue 10 or may be supplied to another exhaust treatment system.

【0019】ガスセル12には導入した排ガスを350
〜450℃に保つためのヒータ19が設けられる。
The exhaust gas introduced into the gas cell 12 is 350
A heater 19 is provided to keep the temperature at 450 ° C.

【0020】ガスセル12の一方には、ガスセル12に
紫外線を透過するためのXeランプ等の光源21が設け
られると共に分光器及び光検出器22が設けられ、その
検出信号25がデータ処理装置24に入力される。
On one side of the gas cell 12, a light source 21 such as a Xe lamp for transmitting ultraviolet rays to the gas cell 12 is provided, and a spectroscope and a photodetector 22 are provided, and a detection signal 25 thereof is sent to a data processing device 24. Is entered.

【0021】この光源21と分光器及び光検出器22
は、図では、光源21からの紫外線UVをガスセル12
を1回透過させ、その吸光度を分光器及び光検出器22
で検出する例を示しているが、反射ミラーを用いてガス
セル12内を複数回反射させて光路長を長くして吸光度
を計測するようにする。
The light source 21, the spectroscope and the photodetector 22
In the figure, the ultraviolet light UV from the light source 21 is shown in the gas cell 12
Is transmitted once, and the absorbance is measured by the spectroscope and the photodetector 22.
Although an example of detection is shown, the reflection mirror is used to reflect the gas cell 12 a plurality of times to increase the optical path length and measure the absorbance.

【0022】分光器及び光検出器22は、紫外線(領域
0〜400nm)中の200〜350nmの範囲の波長
を分光し、それを検出素子に入射し、その検出素子で検
出された吸光度データがデータ処理装置24に入力され
て演算される。
The spectroscope and the photodetector 22 disperse the wavelength in the range of 200 to 350 nm in the ultraviolet ray (range 0 to 400 nm), enter it into the detecting element, and the absorbance data detected by the detecting element is obtained. It is input to the data processing device 24 and calculated.

【0023】この図1において、ポンプ20の吸引によ
りセル12内には、煙道10内の排ガスがフィルター1
3で除塵されて導入される。この排ガス中には、SO3
とSO2 が含まれるが、上述した先願の発明に基づくS
3 とSO2 の検量線を基にSO3 とSO2 の濃度を求
めることができる。
In FIG. 1, the exhaust gas in the flue 10 is introduced into the cell 12 by the suction of the pump 20 into the cell 12.
Dust is removed in 3 and introduced. In this exhaust gas, SO 3
And SO 2 are included, but S based on the invention of the above-mentioned prior application is included.
The concentrations of SO 3 and SO 2 can be determined based on the calibration curve of O 3 and SO 2 .

【0024】この場合、ガスセル12内温度が350℃
以下となると、排ガス中のSO3 とH2 Oとが結合して
硫酸となり、 SO3 の紫外線吸収が無くなるため、ヒ
ータ19によりガスセル内温度を350〜450℃に保
つようにする。また、ガスセル12内の圧力が変動する
と、吸光度の計測値も変化する。そこで、ガスセル12
内のガス圧と検量線の関係を調べたところ、ガス圧と検
量線の傾きは比例しており、ガス圧が判れば濃度の補正
が可能なことが判った。しかし、ガスセル12内は、約
300〜400℃あり、現状では高温使用で且つ応答速
度の速い圧力モニターはないため、ガスセル12内の排
ガスを出口管14からトラップ15に排出し、そこで排
ガスの温度を100℃以下まで、クーラー16で冷却
し、その冷却後の排ガスを排気管17に接続した半導体
圧力センサ等からなる圧力モニター18で圧力を検出
し、その圧力信号26をデータ処理装置24に入力す
る。
In this case, the temperature inside the gas cell 12 is 350 ° C.
In the following cases, SO 3 and H 2 O in the exhaust gas are combined to form sulfuric acid and SO 3 does not absorb UV light. Therefore, the heater 19 keeps the temperature inside the gas cell at 350 to 450 ° C. Moreover, when the pressure in the gas cell 12 changes, the measured value of the absorbance also changes. Therefore, the gas cell 12
When the relationship between the gas pressure inside and the calibration curve was examined, it was found that the gas pressure was proportional to the slope of the calibration curve, and the concentration could be corrected if the gas pressure was known. However, since the inside of the gas cell 12 is about 300 to 400 ° C., and there is currently no pressure monitor that is used at high temperature and has a fast response speed, the exhaust gas in the gas cell 12 is discharged from the outlet pipe 14 to the trap 15, where the temperature of the exhaust gas is changed. Is cooled by a cooler 16 to 100 ° C. or lower, the exhaust gas after cooling is detected by a pressure monitor 18 including a semiconductor pressure sensor connected to an exhaust pipe 17, and the pressure signal 26 is input to a data processing device 24. To do.

【0025】この際、排ガス中のSO3 は、トラップ1
5内での冷却で、硫酸になるか或いは排ガス中にアンモ
ニアが含まれていた場合には、酸性硫安又は硫安となっ
て捕集され、排気管17に、SO3 が流れないため、圧
力モニター18及びポンプ20の腐食からの保護が可能
となる。また圧力モニター18を排気管17に接続し、
この検出圧力をガスセル12内の圧力とするが、圧力の
伝搬は瞬時であり、ガスセル12から離れていても実質
的にガスセル12の圧力を検出していることと等価であ
り、圧力モニター18を、高温と腐食環境から保護でき
る。
At this time, SO 3 in the exhaust gas is trapped by the trap 1.
If the sulfuric acid is cooled or the exhaust gas contains ammonia in the cooling in 5, the ammonium sulfate or ammonium sulfate is collected and SO 3 does not flow into the exhaust pipe 17, so the pressure monitor Protection of 18 and pump 20 from corrosion is possible. Also, connect the pressure monitor 18 to the exhaust pipe 17,
This detected pressure is taken as the pressure in the gas cell 12, but the propagation of the pressure is instantaneous, and it is equivalent to detecting the pressure of the gas cell 12 substantially even if it is separated from the gas cell 12, and the pressure monitor 18 is used. Can protect from high temperature and corrosive environment.

【0026】次に、ガスセル12内のガス圧力と検量線
の関係を説明する。
Next, the relationship between the gas pressure in the gas cell 12 and the calibration curve will be described.

【0027】(1)試験方法 圧力依存性の確認試験パラメータを表1の条件で、紫外
線吸収スペクトルを採取し、検量線を作成した。
(1) Test Method Confirmation of Pressure Dependence Under the test parameters shown in Table 1, an ultraviolet absorption spectrum was sampled and a calibration curve was prepared.

【0028】[0028]

【表1】 [Table 1]

【0029】この確認試験は、SO2 濃度が0,100
0,1500ppmのサンプルにそれぞれSO3 濃度を
0,10,20,30と変えて合計12のガスサンプル
に対して、設定圧力(任意)を0MPaとし、その圧力
に対して−0.01MPa、−0.015MPaにセル
圧力を保って紫外線吸収スペクトルを採取し、上述した
先願発明の手法に則ってSO2 とSO3 の検量線を求め
た。
In this confirmation test, the SO 2 concentration was 0,100.
The set pressure (arbitrary) was set to 0 MPa for a total of 12 gas samples by changing the SO 3 concentration to 0, 10, 20, and 30, respectively, for the 0, 1500 ppm sample, and -0.01 MPa,- An ultraviolet absorption spectrum was collected while maintaining the cell pressure at 0.015 MPa, and the calibration curves for SO 2 and SO 3 were obtained according to the method of the above-mentioned prior invention.

【0030】(2)試験結果 先ず、SO2 の計測結果を図2と表2に示す。(2) Test Results First, the results of SO 2 measurement are shown in FIG. 2 and Table 2.

【0031】[0031]

【表2】 [Table 2]

【0032】図2は、260nmのSO2 吸光度を濃度
ごとにプロットしたもので、計測圧力ごとに示したもの
である。
FIG. 2 is a plot of the SO 2 absorbance at 260 nm for each concentration, which is shown for each measurement pressure.

【0033】図2は、圧力ごとに検量線が異なっている
ことを示している。しかし、各圧力の比は略同じであ
り、吸光度の大きさはセル中の分子数に依存していると
考えられる。
FIG. 2 shows that the calibration curve is different for each pressure. However, the ratio of each pressure is almost the same, and it is considered that the magnitude of the absorbance depends on the number of molecules in the cell.

【0034】図3は圧力による分子数を補正してプロッ
トしたものである。各プロットは分子数から、下式
(1)により、1気圧の濃度に換算してプロットした。
FIG. 3 is a plot obtained by correcting the number of molecules due to pressure. Each plot was converted from the number of molecules into a concentration of 1 atm by the following formula (1) and plotted.

【0035】 換算濃度= 濃度 × 0.1(MPa)/[0.1(MPa)+ セルゲージ圧(MPa)] …(1) 圧力で補正すると、図3に示すように、異なっていた検
量線の傾き(y=0.0016x+0.00222)が
一つにまとめられた。
Converted concentration = concentration × 0.1 (MPa) / [0.1 (MPa) + cell gauge pressure (MPa)] (1) When corrected with pressure, as shown in FIG. 3, different calibration curves were obtained. (Y = 0.016x + 0.00222) were combined.

【0036】なお、Rは相関係数であり、R2 が0.9
983と、Rがより1に近いことが分かる。
R is a correlation coefficient and R 2 is 0.9
At 983, it can be seen that R is closer to 1.

【0037】同様に、図4に、PLS回帰分析により圧
力補正によるSO2 の検量線の計算結果を示した。PL
S回帰分析においても圧力補正すればよいことが分かっ
た。図5は、SO2 を0、1000、1500ppm、
また圧力を0、−0.01、−0.015MPaと変化
させたときのSO3 の濃度算出結果を示したものであ
る。
Similarly, FIG. 4 shows the calculation results of the calibration curve of SO 2 by pressure correction by PLS regression analysis. PL
It was found that pressure correction should be performed also in S regression analysis. FIG. 5 shows that SO 2 is 0, 1000, 1500 ppm,
Further, the results of calculating the SO 3 concentration when the pressure is changed to 0, −0.01, and −0.015 MPa are shown.

【0038】図5において、横軸に示す濃度は圧力補正
を行った調整濃度(標準ガスを決められた組成比で調整
した濃度)であり、縦軸に示す濃度は採集して求めたス
ペクトルからPLS回帰計算を実施して計算した出力濃
度であり、検量線の傾き(y=0.9952x+5.5
858)、相関係数R2 は0.9997であった。
In FIG. 5, the concentration on the abscissa is the adjusted concentration after pressure correction (concentration of the standard gas adjusted by the determined composition ratio), and the concentration on the ordinate is from the spectrum obtained by collection. This is the output concentration calculated by performing PLS regression calculation, and is the slope of the calibration curve (y = 0.952x + 5.5).
858), and the correlation coefficient R 2 was 0.9997.

【0039】なお、上記(1)式を一般的に記述すると
以下のようになる。
The above equation (1) is generally described as follows.

【0040】 検量線作成時; 濃度 = 調整濃度 × 基準とする圧力(絶対圧)/計測時の圧力(絶対圧 ) …(2) サンプル計測時; 濃度 = 計測濃度 × 検量線作成時に基準とした圧力(絶対圧)/計測時 の圧力(絶対圧) …(3) 次に計測時のフローを説明する。[0040]   When creating a calibration curve;   Concentration = Adjusted concentration x Reference pressure (absolute pressure) / measurement pressure (absolute pressure) )                                                               … (2)   When measuring samples;   Concentration = Measured concentration x Pressure (absolute pressure) used as a reference when creating a calibration curve / During measurement             Pressure (absolute pressure) (3) Next, the flow of measurement will be described.

【0041】先ず検量線作成時のフローチャートを図6
により説明する。
First, FIG. 6 is a flow chart for creating a calibration curve.
Will be described.

【0042】図6に示すように、計測時、基準となるガ
ス圧を決定(通常1気圧)する(S10)。次にガス圧
力モニターしながら、ガス組成を変えて吸収スペクトル
を採取する(S11)。
As shown in FIG. 6, during measurement, a reference gas pressure is determined (usually 1 atm) (S10). Next, while monitoring the gas pressure, the gas composition is changed and the absorption spectrum is sampled (S11).

【0043】採取した吸収スペクトルから求めた濃度を
上記(2)式により計測時ガス圧で補正する(S1
3)。
The concentration obtained from the collected absorption spectrum is corrected by the gas pressure during measurement according to the above equation (2) (S1).
3).

【0044】補正した濃度と吸光度で検量線を作成し
(S14)、検量線作成のフローを終了する(S1
5)。
A calibration curve is created with the corrected concentration and absorbance (S14), and the flow for creating the calibration curve ends (S1).
5).

【0045】サンプル計測時のフローチャートを図7に
より説明する。
A flow chart for sample measurement will be described with reference to FIG.

【0046】図7に示すように、ガス圧力をモニターし
ながら、サンプルスペクトルを採取する(S20)。
As shown in FIG. 7, a sample spectrum is collected while monitoring the gas pressure (S20).

【0047】次に、採取した吸収スペクトルから求めた
濃度を上記(3)式により計測時ガス圧力で補正する
(S21)。
Next, the concentration obtained from the collected absorption spectrum is corrected by the gas pressure during measurement according to the above equation (3) (S21).

【0048】補正した濃度と図6で求めた検量線よりサ
ンプル濃度を求め(S22)、計測フローを終了する
(S23)。
The sample concentration is obtained from the corrected concentration and the calibration curve obtained in FIG. 6 (S22), and the measurement flow ends (S23).

【0049】このように、ガスセル12内の圧力とガス
の分子数が比例し、同じ濃度でも紫外線吸収法で計測さ
れる濃度は、セル圧力と比例して変化することに着目
し、計測時のセル圧力を計測し、そのセル圧力で補正す
ることで、正確な濃度測定が行える。
As described above, paying attention to the fact that the pressure in the gas cell 12 is proportional to the number of gas molecules, and the concentration measured by the ultraviolet absorption method changes even in the same concentration in proportion to the cell pressure. Accurate concentration measurement can be performed by measuring the cell pressure and correcting with the cell pressure.

【0050】この際、ガスセル12内の排ガスをヒータ
ー19で350〜450℃の範囲に保ち、そのガスを排
出する際に、クーラー16付きトラップ15で冷却する
ことで、排ガス中のSO3 が硫酸としてトラップ15内
に捕集できるため、排気管17には、低温で腐食ガスを
含まないガスが流れるため圧力モニター18は、一般的
な圧力モニターで十分計測可能であり、圧力モニターの
寿命を延ばすことができる。
At this time, the exhaust gas in the gas cell 12 is kept in the range of 350 to 450 ° C. by the heater 19, and when the gas is discharged, it is cooled by the trap 15 with the cooler 16 so that SO 3 in the exhaust gas is sulfuric acid. Since it can be trapped in the trap 15 as a gas, a gas that does not contain corrosive gas at a low temperature flows through the exhaust pipe 17, so that the pressure monitor 18 can be sufficiently measured by a general pressure monitor, and the life of the pressure monitor is extended. be able to.

【0051】[0051]

【発明の効果】以上要するに本発明によれば、紫外線吸
収分析によるSO3 濃度を補正する際のガスセルの圧力
を、排ガスを冷却し排ガス中のSO3 を除去した後のガ
ス圧を計測することで圧力モニターの寿命を延ばすこと
ができるとともに、正確なSO 3 の濃度計測が行える。
In summary, according to the present invention, the ultraviolet absorption is
SO by income analysis3 Pressure of gas cell when correcting concentration
The SO in the exhaust gas by cooling the exhaust gas3 After removing the
To extend the life of the pressure monitor by measuring the pressure
Accurate SO 3 The concentration of can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にSO3 濃度計の概要を説明する図であ
る。
FIG. 1 is a diagram illustrating an outline of an SO 3 concentration meter according to the present invention.

【図2】本発明おいて、各圧力ごとのSO2 検量線を示
す図である。
FIG. 2 is a diagram showing an SO 2 calibration curve for each pressure in the present invention.

【図3】本発明において、圧力で補正したSO2 検量線
を示す図である。
FIG. 3 is a diagram showing a pressure-corrected SO 2 calibration curve in the present invention.

【図4】本発明において、PLS回帰分析での圧力補正
によるSO2 検量線を示す図である。
FIG. 4 is a diagram showing an SO 2 calibration curve by pressure correction in PLS regression analysis in the present invention.

【図5】本発明において、圧力を補正したときのSO3
検量線を示す図である。
FIG. 5 is a graph showing SO 3 when pressure is corrected in the present invention.
It is a figure which shows a calibration curve.

【図6】本発明において、検量線作成時のフローチャー
トを示す図である。
FIG. 6 is a diagram showing a flow chart when creating a calibration curve in the present invention.

【図7】本発明において、計測時のフローチャートを示
す図である。
FIG. 7 is a diagram showing a flowchart at the time of measurement in the present invention.

【符号の説明】[Explanation of symbols]

10 煙道 12 ガスセル 15 トラップ 16 クーラー 18 圧力モニター 21 光源 22 分光器及び光検出器 24 データ処理装置 10 flue 12 gas cells 15 traps 16 cooler 18 Pressure monitor 21 light source 22 Spectrometer and photodetector 24 Data processing equipment

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 健 東京都江東区豊洲三丁目1番15号 石川島 播磨重工業株式会社東京エンジニアリング センター内 (72)発明者 八木 武人 東京都江東区豊洲三丁目1番15号 石川島 播磨重工業株式会社東京エンジニアリング センター内 (72)発明者 小原 正孝 東京都江東区豊洲三丁目2番16号 石川島 播磨重工業株式会社東京エンジニアリング センター技術開発本部内 Fターム(参考) 2G042 AA01 BB12 CA01 CB01 2G052 AA02 AB08 AC25 AD02 AD22 AD42 BA03 BA14 CA04 CA12 EA03 EB11 EB13 GA11 HA18 HB07 HC02 HC08 HC09 JA10 2G059 AA01 BB01 CC06 DD02 DD12 DD13 DD17 EE01 HH03 HH06 JJ01 MM01 MM12 NN04    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Ken Kobayashi             3-15 Toyosu, Koto-ku, Tokyo Ishikawajima             Harima Heavy Industries Tokyo Engineering Co., Ltd.             In the center (72) Inventor Takehito Yagi             3-15 Toyosu, Koto-ku, Tokyo Ishikawajima             Harima Heavy Industries Tokyo Engineering Co., Ltd.             In the center (72) Inventor Masataka Ohara             3-2-16 Toyosu, Koto-ku, Tokyo Ishikawajima             Harima Heavy Industries Tokyo Engineering Co., Ltd.             Center Technology Development Division F term (reference) 2G042 AA01 BB12 CA01 CB01                 2G052 AA02 AB08 AC25 AD02 AD22                       AD42 BA03 BA14 CA04 CA12                       EA03 EB11 EB13 GA11 HA18                       HB07 HC02 HC08 HC09 JA10                 2G059 AA01 BB01 CC06 DD02 DD12                       DD13 DD17 EE01 HH03 HH06                       JJ01 MM01 MM12 NN04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガスセル内に導入した排ガス中のSO3
の濃度を紫外線吸収分析により計測するSO3 濃度計に
おいて、ガスセルのガス排出側に排ガスを冷却するクー
ラー付きトラップを接続し、そのトラップの排気側にガ
スセル内圧力を検出する圧力モニターを接続したことを
特徴とするSO3 濃度計。
1. SO 3 in exhaust gas introduced into a gas cell
In the SO 3 concentration meter that measures the concentration of the gas by ultraviolet absorption analysis, a trap with a cooler for cooling the exhaust gas was connected to the gas discharge side of the gas cell, and a pressure monitor for detecting the pressure inside the gas cell was connected to the exhaust side of the trap. SO 3 concentration meter characterized by:
【請求項2】 ガスセルにセル内温度を350〜450
℃に保持するヒータを設けた請求項1記載のSO3 濃度
計。
2. The temperature inside the cell is set to 350 to 450 in the gas cell.
The SO 3 concentration meter according to claim 1, further comprising a heater for maintaining the temperature at ℃.
JP2001196479A 2001-06-28 2001-06-28 SO3 densitometer Expired - Fee Related JP4674417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001196479A JP4674417B2 (en) 2001-06-28 2001-06-28 SO3 densitometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001196479A JP4674417B2 (en) 2001-06-28 2001-06-28 SO3 densitometer

Publications (2)

Publication Number Publication Date
JP2003014633A true JP2003014633A (en) 2003-01-15
JP4674417B2 JP4674417B2 (en) 2011-04-20

Family

ID=19034285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001196479A Expired - Fee Related JP4674417B2 (en) 2001-06-28 2001-06-28 SO3 densitometer

Country Status (1)

Country Link
JP (1) JP4674417B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231551A (en) * 2012-04-27 2013-11-14 Panasonic Corp Absorption refrigerating machine
JP2016191616A (en) * 2015-03-31 2016-11-10 日本電信電話株式会社 Analyzer and method for analyzing so3
KR20180128848A (en) * 2017-05-24 2018-12-04 가부시키가이샤 호리바 세이샤쿠쇼 Probe device, analysis apparatus for exhaust gas and correction method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195330A (en) * 1985-02-25 1986-08-29 Sumitomo Electric Ind Ltd Method and equipment for detecting sulphur
JPS62257045A (en) * 1986-04-30 1987-11-09 Anritsu Corp Ultraviolet ray absorbing type ammonia gas analyser
JPH02500541A (en) * 1987-08-18 1990-02-22 ソシエテ・ナシオナル・エルフ・アキテーヌ Method for measuring the concentration of a gas in a gas mixture and apparatus for carrying out this method
JPH03113369A (en) * 1989-09-28 1991-05-14 Nkk Corp Analysis of so2 in presence of ammonia
JPH03264849A (en) * 1990-03-15 1991-11-26 Horiba Ltd Method for measuring so2 in exhaust gas by oxidizing method
JPH11295293A (en) * 1998-04-09 1999-10-29 Ishikawajima Harima Heavy Ind Co Ltd Method and device for measuring sulfuric anhydride in exhaust gas and device for neutralizing sulfuric anhydride
JP2000009603A (en) * 1998-06-26 2000-01-14 Shimadzu Corp Ammonia analyzer
JP2000304695A (en) * 1999-04-23 2000-11-02 Mitsubishi Heavy Ind Ltd Measuring apparatus for concentration of sulfur trioxide in exhaust gas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195330A (en) * 1985-02-25 1986-08-29 Sumitomo Electric Ind Ltd Method and equipment for detecting sulphur
JPS62257045A (en) * 1986-04-30 1987-11-09 Anritsu Corp Ultraviolet ray absorbing type ammonia gas analyser
JPH02500541A (en) * 1987-08-18 1990-02-22 ソシエテ・ナシオナル・エルフ・アキテーヌ Method for measuring the concentration of a gas in a gas mixture and apparatus for carrying out this method
JPH03113369A (en) * 1989-09-28 1991-05-14 Nkk Corp Analysis of so2 in presence of ammonia
JPH03264849A (en) * 1990-03-15 1991-11-26 Horiba Ltd Method for measuring so2 in exhaust gas by oxidizing method
JPH11295293A (en) * 1998-04-09 1999-10-29 Ishikawajima Harima Heavy Ind Co Ltd Method and device for measuring sulfuric anhydride in exhaust gas and device for neutralizing sulfuric anhydride
JP2000009603A (en) * 1998-06-26 2000-01-14 Shimadzu Corp Ammonia analyzer
JP2000304695A (en) * 1999-04-23 2000-11-02 Mitsubishi Heavy Ind Ltd Measuring apparatus for concentration of sulfur trioxide in exhaust gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231551A (en) * 2012-04-27 2013-11-14 Panasonic Corp Absorption refrigerating machine
JP2016191616A (en) * 2015-03-31 2016-11-10 日本電信電話株式会社 Analyzer and method for analyzing so3
US10101270B2 (en) 2015-03-31 2018-10-16 Nippon Telegraph And Telephone Corporation SO3 analysis method and analysis device
KR20180128848A (en) * 2017-05-24 2018-12-04 가부시키가이샤 호리바 세이샤쿠쇼 Probe device, analysis apparatus for exhaust gas and correction method
KR102600381B1 (en) * 2017-05-24 2023-11-10 가부시키가이샤 호리바 세이샤쿠쇼 Probe device, analysis apparatus for exhaust gas and correction method

Also Published As

Publication number Publication date
JP4674417B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
EP1715338B1 (en) Exhaust gas component analyzer
US9410872B2 (en) Exhaust gas flowmeter and exhaust gas analyzing system
TW561543B (en) On-line UV-visible halogen gas analyzer for semiconductor processing effluent monitoring
US7297549B2 (en) Method of determining measurement bias in an emissions monitoring system
US10295460B2 (en) Laser-based IR spectroscopy for measuring sulfur trioxide in the exhaust gas of gas power plants
JP2006275801A (en) Component analyzer of exhaust gas
CN109425489B (en) Exhaust gas analyzing apparatus, exhaust gas analyzing method, and storage medium
US10788416B2 (en) Multiple wavelength light source for colorimetric measurement
CN108037084A (en) A kind of anti-jamming measurement methods suitable for photometry principle water quality automatic analyzer
CN108801718A (en) A kind of tail gas on-line monitoring system peculiar to vessel
KR101030405B1 (en) Analytical sensitivity enhancement by catalytic transformation
JP4674417B2 (en) SO3 densitometer
JP4550645B2 (en) Vehicle-mounted exhaust gas analyzer
JP2003014632A (en) Gas pressure correction method for gas concentration monitor due to ultraviolet absorption or the like and correction system therefor
JP2001289783A (en) Method and device for measuring so3 concentration in exhaust gas
CN117169146A (en) NO (NO) x And SO 2 Flue gas monitoring method
KR20090030656A (en) Method and apparatus for measuring water contained in the chimney gas
CN114184566B (en) Sulfate radical concentration measurement model applicable to different temperatures based on ultraviolet absorption spectrometry and verification method thereof
CN116499983A (en) Natural gas water content and hydrogen sulfide measurement system and method based on laser method
WO2003078961A2 (en) Device for measuring gas concentration
JP2003042949A (en) Multicomponent concentration analyzer
JP2003014626A (en) Method of correcting base of so3 analyzer
JP2004138467A (en) Ultraviolet absorption type measuring instrument and method for treating measurement specimen
JPH09178655A (en) Infrared gas analyzer
JP4899259B2 (en) SO3, NH3 simultaneous continuous concentration meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees