JPH02500541A - Method for measuring the concentration of a gas in a gas mixture and apparatus for carrying out this method - Google Patents

Method for measuring the concentration of a gas in a gas mixture and apparatus for carrying out this method

Info

Publication number
JPH02500541A
JPH02500541A JP50532588A JP50532588A JPH02500541A JP H02500541 A JPH02500541 A JP H02500541A JP 50532588 A JP50532588 A JP 50532588A JP 50532588 A JP50532588 A JP 50532588A JP H02500541 A JPH02500541 A JP H02500541A
Authority
JP
Japan
Prior art keywords
gas
optical path
path difference
concentration
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP50532588A
Other languages
Japanese (ja)
Inventor
マレシヤル,アンドレ
Original Assignee
ソシエテ・ナシオナル・エルフ・アキテーヌ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソシエテ・ナシオナル・エルフ・アキテーヌ filed Critical ソシエテ・ナシオナル・エルフ・アキテーヌ
Publication of JPH02500541A publication Critical patent/JPH02500541A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N2021/3129Determining multicomponents by multiwavelength light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 体 4 の′スの゛ を゛ る 法 びこの 法をるための 本発明は、気体混合物中のガスの濃度を測定する方法及びこの方法を実施するた めの装置に係わる。[Detailed description of the invention] The method for using the body 4's method and the method for using this method The present invention provides a method for measuring the concentration of a gas in a gas mixture and a method for implementing this method. related to the equipment.

ガスの吸収スペクトル検査によるガス濃度の測定は、フーリエ形式の適用及びこ れらの方法を実施するための簡単な装置の構想によって目覚ましい進歩をとげて きた。Measurement of gas concentration by gas absorption spectroscopy involves the application of the Fourier format and Remarkable progress has been made by the conception of simple devices for carrying out these methods. came.

仏画特許第2,168,948号、第2,216,565号、第2,300,9 98号、第2,300,999号、第2,340,540号、第2,420,7 54号、第2.555,747号、第2,555,748号、第2,566.5 32号及び第2,581゜190号には、波数σに基づく周期pをもつほぼ周期 的な精造を局部的に含む吸収スペクトルを有するガスの濃度測定に適した前記方 法の基礎となる主要操作ステップが開示されている。French Painting Patent No. 2,168,948, No. 2,216,565, No. 2,300,9 No. 98, No. 2,300,999, No. 2,340,540, No. 2,420,7 No. 54, No. 2.555,747, No. 2,555,748, No. 2,566.5 No. 32 and No. 2,581゜190 contain an approximately periodic model with a period p based on the wave number σ. The method described above is suitable for measuring the concentration of a gas that has an absorption spectrum that locally includes The main operational steps underlying the law are disclosed.

実際、干渉計システムによって得られる前述のごときガスの吸収スペクトルのフ ーリエ変換図形(transform6e deFourier)は、周期Pに 対応して光路差(difference demarehe)Δe=1/pの近 傍に検出可能な信号を含む、この信号は吸収スペクトル線のスペクトル位置の周 期性を表す。In fact, the absorption spectra of the gases mentioned above obtained by the interferometer system are The Fourier transform figure (transform6e de Fourier) is Correspondingly, the optical path difference is close to Δe=1/p. This signal is located around the spectral position of the absorption spectral line, with a detectable signal nearby. Represents periodicity.

この信号は分子に特異的な信号であり、該分子を検出し且つその濃度を測定する のに使用できる。吸収バンドのスペクトル位置σと前記干渉計信号とを同時に使 用すれば同定を極めて確実に実施せしめる二成分スペクトル符号定数(sign ature)が得られる。従って、マイクルソン干渉計の使用は不要になり、Δ Cに近い一定の光路差に合わせて調整した複屈折板を用いる簡単な装置だけでよ いことになる。This signal is specific to the molecule and is used to detect the molecule and measure its concentration. Can be used for. The spectral position σ of the absorption band and the interferometer signal are used simultaneously. The two-component spectral sign constant (sign ature) is obtained. Therefore, the use of the Michelson interferometer becomes unnecessary and Δ All it takes is a simple device using a birefringent plate adjusted to a constant optical path difference close to C. It will be bad.

勿論、前記信号が最大になる時の△の値を選択する方が有利である。Of course, it is advantageous to choose the value of Δ at which the signal is at its maximum.

前出の様々な特許明細書にはこの方法の詳細と、該方法を実施するための幾つか の装置とが記述されている。The various patent specifications mentioned above contain details of this method and some methods for carrying out the method. The following equipment is described.

この方法は、多くのガス、特にSO3、No、、No、 HCIのような成る種 の汚染物質の濃度を簡単且つ確実に測定することができる。This method is suitable for many gases, especially species such as SO3, No, HCI, etc. The concentration of pollutants can be easily and reliably measured.

しかしながらこの方法は実際には、同じスペクトル範囲内に位置し且つ互いに類 似したもしくは同じ2つの周期P、poをもつく従って同じ符号定数をもつ)は ぼ周期的な精造を有する吸収スペクトルをもつ2種類のガスを含むような気体混 合物の検査には不向きである。However, this method actually only applies to have similar or the same period P, po (and therefore have the same sign constant) A gas mixture containing two gases with absorption spectra with approximately periodic refinement. It is not suitable for inspecting compounds.

本発明の目的は、前述のごとき利点を有すると共に、装置を余り複雑化すること なく、分子M1と実質的に同等の前記2つのスペクトル特性をもつ寄生分子(m olecule para−site)N2の存在下で分子H8を検出するとい う典型的用途にも使用できる新規の測定方法を提供することにある0本発明を使 用すれば気体分子の同定をより確実に行うことができる。It is an object of the present invention to have the above-mentioned advantages and to avoid complicating the device too much. A parasitic molecule (m olecule para-site) to detect molecule H8 in the presence of N2. The purpose of the present invention is to provide a new measurement method that can also be used in typical applications. If used, gas molecules can be identified more reliably.

前記2つの分子の特性値σ及びΔCが実質的に同じ場合には、これらの分子を見 分けるための第3の基準を見つけると都合がよい、そのためには、△C領域内で 干渉計を正確に使用することが提案される。If the characteristic values σ and ΔC of the two molecules are substantially the same, then look at these molecules. It would be convenient to find a third criterion for the separation; for this purpose, within the △C region, It is proposed to use interferometers precisely.

そこで本発明では先ず、周期pのほぼ周期的な構造を局部的に含む吸収スペクト ルを有する第1ガスと、pと類似の又は同じ周期p°のほぼ周期的な構造をもつ 吸収スペクトルを有する第2ガスとを含む気体混合物の第1ガスの濃度を測定す る方法を提案する。この方法は干渉計システムによって生じる吸収スペクトルの フーリエ変換図形を分析することからなり、干渉計システムによって光路差が導 入された時に生じる信号の強さを測定することを特徴とする。Therefore, in the present invention, first, an absorption spectrum that locally includes a substantially periodic structure with a period p is obtained. a first gas having a period p° similar to or the same as p; Measuring the concentration of a first gas in a gas mixture containing a second gas having an absorption spectrum We propose a method for This method uses the absorption spectrum produced by an interferometer system. It consists of analyzing the Fourier transform shape, and the optical path difference is derived by an interferometer system. It is characterized by measuring the strength of the signal generated when the signal is input.

尚、前記光路差は、前記信号の振幅に対する第2ガスの影響が皆無であるか又は 一定しているような光路差である。Note that the optical path difference is such that the second gas has no influence on the amplitude of the signal or The optical path difference appears to be constant.

本発明では更に、前記方法を実施するための装置も提案する。この装置は光源と 、被検気体混合物の入った容器を透過する光束を形成する光学システムと、光路 差を正確に変化させる補償板を含む干渉装置とで構成される。The invention furthermore proposes a device for carrying out the method. This device is a light source and , an optical system forming a beam of light transmitted through a container containing the gas mixture to be tested, and an optical path. and an interference device including a compensating plate that changes the difference accurately.

以下、添付図面に基づき本発明をより詳細に説明する。Hereinafter, the present invention will be explained in more detail based on the accompanying drawings.

これらの図面中。In these drawings.

−第1図は光源からの発光スペクトル及び(吸収スペクトル線が規則的間隔で位 置する場合の)第1ガスの吸収スペクトルを示している。- Figure 1 shows the emission spectrum from a light source and (absorption spectral lines) located at regular intervals. 3 shows the absorption spectrum of the first gas when

−第2図は第1ガスの試料を透過した光の吸収スペクトル−第3図は第1ガスを 透過した後のスペクトルのインターフェログラムの振動部分を第2ガスの透過の 結果得られるスペクトルと比較して詳細に示している。-Figure 2 shows the absorption spectrum of light transmitted through the sample of the first gas -Figure 3 shows the absorption spectrum of the light transmitted through the sample of the first gas The oscillating part of the interferogram of the spectrum after transmission is expressed as A comparison with the resulting spectra is shown in detail.

−第4図は本発明の測定装置の説明口である。- FIG. 4 is an explanatory diagram of the measuring device of the present invention.

−第5図は本発明の測定装置の第1具体例を示している。- FIG. 5 shows a first embodiment of the measuring device of the invention.

−第6図は本発明の測定装置の第2具体例を示している。- FIG. 6 shows a second embodiment of the measuring device according to the invention.

第1図は光源からの発光の連続スペクトルS0と、50カ〜ら引き離されること になる低濃度分子の検出すべき吸収スペクトルS1とを示している。このスペク トルは、吸収最大値が強さは変化するが規則的間隔をおいて位置するため、はぼ 周期的と言える。これら最大値の間の間隔はスペクトル周期pを決定する。Figure 1 shows the continuous spectrum S0 of the light emitted from the light source, and the fact that it is separated from 50 degrees. The absorption spectrum S1 to be detected of low concentration molecules is shown. This spec The absorption maxima vary in strength but are located at regular intervals, so that the It can be said to be cyclical. The interval between these maxima determines the spectral period p.

第2図には、光源から送出された光束が吸収性ガスを透過した結果生じる光束の 典型的インターフェログラムが示されている(曲線C)、従ってこの第2図では 、横座標に光路差が示され、縦座標に干渉計信号が示されている。S、に関する 情報を運ぶ可変部分をi(Δ)とすれば、■(△)=Io”i(Δ)である、こ のガスの吸収スペクトルがほぼ周期的であるため、対応光路差△e=17pの周 囲に信号が発生する。Figure 2 shows the luminous flux generated as a result of the luminous flux transmitted from the light source passing through the absorbing gas. A typical interferogram is shown (curve C), so in this second figure , the optical path difference is shown on the abscissa and the interferometer signal is shown on the ordinate. Regarding S. If the variable part that carries information is i(Δ), then ■(Δ)=Io”i(Δ). Since the absorption spectrum of the gas is almost periodic, the period of corresponding optical path difference △e=17p A signal is generated in the surrounding area.

周知のように、頻繁に撒き散らされる多くの分子は曲線S、のようにほぼ周期的 な構造を局部的に含む吸収スペクトルを有する(第1図)、これは特に、前述の ような汚染物質S02、Not、No、 IIcI、03等に関して顕著である 。As is well known, many molecules that are frequently scattered are approximately periodic, as shown by the curve S. It has an absorption spectrum that locally includes a structure (Fig. 1), which is particularly due to the above-mentioned It is remarkable for contaminants such as S02, Not, No, IIcI, 03, etc. .

また、これも周知であるが、光束のスペクトル分布のフーリエ変換図形は干渉計 を用いて得ることができ、従って光路差Δext/pの近傍の信号の強さに基づ いてスペクトル周期pのほぼ周期的な構造を含むガスの濃度を測定することがで きる。Also, this is well known, but the Fourier transform figure of the spectral distribution of the luminous flux is determined by the interferometer. Therefore, based on the signal strength near the optical path difference Δext/p, It is possible to measure the concentration of a gas containing an approximately periodic structure with a spectral period p. Wear.

この方法は勿論、互いに同じスペクトル範囲内の吸収スペクトルを有し且つ互い に極めて類似した周期のほぼ周期的な構造をもつ2種類の分子M1及びN2を含 む被検気体混合物には使用できない、その場合は、ΔC近併のN3及びN2のイ ンターフェログラムが、台、及びM、(夫々曲線C1及びC2)のi(Δ)の振 動を拡大して示す第3図に見られるように互いに類似し得るからである。これら 2種類の分子は(σ及び△Cの値は同じであっても)互いに異なる分子であるた め、Ml及びN2のゼロ位置及びi(△)位置は同一にはなり得ない。This method, of course, allows the absorption spectra to be within the same spectral range and Contains two types of molecules M1 and N2 with an almost periodic structure with a period very similar to Cannot be used for test gas mixtures containing The interferogram shows the amplitude of i(Δ) of the platform and M, (curves C1 and C2, respectively). This is because they can be similar to each other, as shown in FIG. 3, which shows an enlarged view of the motion. these The two types of molecules are different molecules (even if the values of σ and △C are the same). Therefore, the zero position and i(Δ) position of Ml and N2 cannot be the same.

従って、△に関する曲線の位置、特にi(ム)のゼロ位置を正確に知ることが極 めて重要になる91(△)を最大又は最小にするΔ値のマーキングが(特に△の 変調に起因して)ゼロのマーキングより正確な場合には、i(△)3固定的にす る△の値も操作することができる。Therefore, it is extremely important to accurately know the position of the curve regarding △, especially the zero position of i (mu). The marking of the Δ value that maximizes or minimizes 91 (△), which is especially important for (due to modulation), i(△)3 is fixedly The value of Δ can also be manipulated.

本発明では、前記2つの基準と共に第3の基準を使用することを提案する。この 第3の基準とはスペクトル信号の可変部分のゼロ値の正確な位置である。実際、 スペクトル信号の可変部分がゼロになる時の光路差が2種類のガスの各々につい て同一になることは普通はない。従って、この性質を一方のガスの濃度測定に利 用することができる。In the present invention, we propose to use a third criterion together with the above two criteria. this The third criterion is the exact location of the zero value of the variable part of the spectral signal. actual, The optical path difference when the variable part of the spectral signal becomes zero is for each of the two gases. They are usually not the same. Therefore, this property can be used to measure the concentration of one gas. can be used.

2種類のガスM1及びN2の混合物の検査は下記のように案施し得る: 先ず、例えばN1の測定を妨害し得るような適当な割合の分子M2を含んだ雰囲 気を容器内に導入し、装置がN2の存在に感応しないように、N2の信号を相殺 する光路差△Cに合わせて正確な調整を行う0次いで、N2を存在させずに既知 の割合の1を導入して、分子M1に対する装置の感度を較正する。最後にM、、 M、混合物を導入し、この混合物の存在下で測定を行う。Testing of a mixture of two gases M1 and N2 can be carried out as follows: First, an atmosphere containing an appropriate proportion of molecules M2 that can interfere with the measurement of N1, for example. Air is introduced into the container to cancel out the N2 signal so that the device is not sensitive to the presence of N2. Make accurate adjustments to the optical path difference △C to , to calibrate the sensitivity of the instrument to molecule M1. Finally M... M, a mixture is introduced and the measurement is carried out in the presence of this mixture.

このような光路差を用いる場合には、第1ガスに対する感度が通常は最大になら ない地点で測定が行われる。従ってガスM1のみに関する測定条件は最良ではな いが、この欠点は、第2ガスの影響が皆無であり従って実施される測定が第2ガ スの濃度に些かも左右されることな(M、濃度にのみ依存するという事実によっ て相殺される。When using such an optical path difference, the sensitivity to the first gas is usually maximized. Measurements are taken at a location that is not available. Therefore, the measurement conditions for only gas M1 are not the best. However, the disadvantage of this is that there is no influence of the second gas and therefore the measurements carried out are (M, due to the fact that it depends only on the concentration) will be canceled out.

また、M、 、M、混合物の存在下で装置の応答曲線が正確に測定されるように することもできる。濃度C1、C2が低い場合には実験曲線が、C3及びC3に 比例した係数で容易に知ることのできるN3だけの濃度曲線及びN2だけの濃度 曲線を直線的に組合わせたものからなる。この方法を用いれば精度も高くなり得 る。Also, so that the response curve of the device is accurately measured in the presence of M, , M, mixtures. You can also. When the concentrations C1 and C2 are low, the experimental curve changes to C3 and C3. Concentration curve of only N3 and concentration of only N2 which can be easily known by proportional coefficients It consists of a combination of curved lines in a straight line. This method can also improve accuracy. Ru.

本発明の装置は前記方法を実施するためのものである。The apparatus of the invention is for carrying out the method.

好ましい一興体例として本発明の装置は、連続多色光源(1)、例えば赤外領域 のタングステンフィラメントランプと、被検気体混合物の入った吸収容器(4) を透過する光束を形成する光学システム(2,3)と、吸収バンドのスペクトル 領域σに合わせて調整した非色消しフィルタ(5)と、光路差△Cに合わせて調 整した干渉システム(6)と、光電受信器(7)と、同期検出器(8)とを含む 0本発明の装置では多数の干渉システムを使用し得る。このシステムは、被検気 体混合物の入った容器(4)を透過する光束のスペクトルの特徴を表し且つ装置 に導入された光路差に依存する干渉計信号が受信器(7)レベルに得られるよう にする任意のシステムである。As a preferred example, the device of the invention comprises a continuous polychromatic light source (1), for example in the infrared region. tungsten filament lamp and an absorption vessel containing the gas mixture to be tested (4) an optical system (2, 3) that forms a beam of light that passes through the A non-achromatic filter (5) adjusted according to the area σ and an adjusted according to the optical path difference △C. a coherent interference system (6), a photoelectric receiver (7), and a synchronization detector (8). 0 A number of interference systems can be used in the device of the invention. This system It represents the spectral characteristics of the light flux transmitted through the container (4) containing the body mixture, and the device so that an interferometer signal depending on the optical path difference introduced into the receiver (7) level is obtained. Any system you want to use.

好ましい具体例の1つとして、該測定装置で使用される最も簡単な構造の干渉計 は偏光子(10)と分析器(11)との間に配置された複屈折結晶板(9)を含 む。As one preferred example, an interferometer with the simplest structure used in the measuring device includes a birefringent crystal plate (9) placed between the polarizer (10) and the analyzer (11). nothing.

結晶板9は偏光子によって生じた光の軸線に対して45°の角度で配置する。そ の厚みは、偏光された光の2つの成分の間に本発明の方法の実施に必要な光路差 ΔCが生じるように、語根の構成材料に応じて選択する。同期検出器は信号を妨 害し得るノイズの大部分を通常の方法で該信号から除去せしめる。The crystal plate 9 is arranged at an angle of 45° to the axis of the light produced by the polarizer. So The thickness of The selection is made depending on the constituent material of the word root so that ΔC occurs. The synchronous detector interferes with the signal. Most of the potentially harmful noise is removed from the signal in the usual way.

本発明を実施するためには、干渉計システム(6)が更に、成る波長領域で偏光 された光の2つの成分の間に導入される光路差を極めて正確に変化させることの できる複屈折補償板(12)も含む。In order to carry out the invention, the interferometer system (6) further comprises polarizing light in a wavelength range consisting of: It is possible to very precisely vary the optical path difference introduced between the two components of the transmitted light. It also includes a birefringence compensator (12) that can be used.

複屈折補償板(12)は、厚みが変化する複屈折板の等個物を精成すべく一方が 他方の上を滑動し得る2つの楔形複屈折プレートからなる「ソレイユの補償板」 でもよい。The birefringence compensating plate (12) has one side in order to refine the uniformity of the birefringent plate whose thickness changes. "Soleil compensator" consisting of two wedge-shaped birefringent plates that can slide on top of each other But that's fine.

この補償板があるために、本発明の装置は可変周期のほぼ周期的な構造をもつ複 数のガスの濃度測定に使用できる5この補償板はまた。1つの気体混合物中に含 まれる第1ガス及び第2ガスの濃度を測定したい場合に、本発明の方法のいずれ かの実施態様に従って測定位置を決定する光路差を変化させることも可能にする 。Because of this compensating plate, the device of the present invention has a nearly periodic structure with a variable period. This compensator plate can also be used to measure the concentration of several gases. contained in one gas mixture When it is desired to measure the concentration of the first gas and the second gas contained in the It also makes it possible to vary the optical path difference determining the measurement position according to some embodiments. .

光路差の変化は、複屈折結晶板(9)の温度を変えることによっても生じ得る。The optical path difference can also be changed by changing the temperature of the birefringent crystal plate (9).

この場合の構造は第5図及び第6図のようになる。これらの構造では補償板(1 2)は使用されず、板(9)の温度を調節する制御装置が使用される。The structure in this case is as shown in FIGS. 5 and 6. In these structures, the compensator plate (1 2) is not used, but a control device is used to regulate the temperature of the plate (9).

特に紫外線で使用される別の具体例では、干渉計システム(6)が、複屈折板( 9)に接続され且つ2つのつオラストンプリズム(14)、(15)の間に配置 された光弾性変調器(13)を含む。この場合も補償板(12)を使用する。In another embodiment, particularly used in the ultraviolet, the interferometer system (6) comprises a birefringent plate ( 9) and placed between the two Oraston prisms (14) and (15) includes a photoelastic modulator (13). In this case as well, a compensating plate (12) is used.

光弾性変調器(13)は干渉計システムによって導入された光路差を高周波数で 変化させ、従って信号対ノイズの比を改善せしめる。A photoelastic modulator (13) modulates the optical path difference introduced by the interferometer system at high frequencies. change and thus improve the signal-to-noise ratio.

フィルタ(5)は、第1ガスの周期pとほぼ又は全く同じ周期をもつが第1ガス とは異なるスペクトル領域内に位置するほぼ周期的な吸収スペクトル線をスペク トルの一部分にわたって有するガスが信号に何等かの影響を及ぼすのを阻止する 。The filter (5) has a period almost or exactly the same as the period p of the first gas, but Spectral absorption spectral lines that are approximately periodic and located in a different spectral region than Prevent gas having over a portion of the torque from having any effect on the signal .

特に有用な具体例ではフィルタ(5)に代えて、例えば、2つのスリット(17 )、(18)の間に配置された格子(16)からなるモノクロメータを使用し得 る。この場合は、入射ビームの軸線に対する格子の方位を変化させればスペクト ルの選択領域を変えることができる。In a particularly useful embodiment, instead of the filter (5), for example two slits (17 ), (18) may be used. Ru. In this case, the spectrum can be changed by changing the orientation of the grating with respect to the axis of the incident beam. You can change the selection area of the file.

以上、2種類のガスを含む混合物を例にとって本発明の詳細な説明してきたが、 本発明の方法はn種類のガスからなる気体混合物にも容易に適用できる。各測定 をいずれがのガスの影響が皆無であるような光路差で行いながら3回の測定を実 施するとn個の未知数の一次方程式が成立し、これらの方程式を解けばn個の濃 度が検出される。The present invention has been described above in detail using a mixture containing two types of gas as an example. The method of the invention can also be easily applied to gas mixtures consisting of n types of gases. each measurement Measurements were carried out three times, with optical path differences such that there was no influence of either gas. Then, linear equations with n unknowns are established, and by solving these equations, n concentrations are obtained. degree is detected.

国際調査報告international search report

Claims (6)

【特許請求の範囲】[Claims] 1.周期pのほぼ周期的な構造を局部的に含む吸収スペクトルを有する第1ガス と、pと類似の又は同じ周期p′のほぼ周期的な構造をもつ吸収スペクトルを有 する第2ガスとを含む気体混合物の第1ガスの濃度を測定する方法であって、干 渉計システムによって生じる吸収スペクトルのフーリエ変換図形を分析すること からなり、信号の振幅に対する第2ガスの影響が皆無であるか又は一定している ような光路差が干渉計システムによって導入された時に生じる信号の強さを測定 することを特徴とする方法。1. a first gas having an absorption spectrum that locally includes a substantially periodic structure with period p; and has an absorption spectrum with an almost periodic structure with a period p′ similar to or the same as p. A method for measuring the concentration of a first gas in a gas mixture containing a second gas, the method comprising: Analyzing the Fourier transform shape of the absorption spectrum produced by the interpolation system and the influence of the second gas on the amplitude of the signal is zero or constant. Measures the strength of the signal that occurs when an optical path difference like this is introduced by an interferometer system A method characterized by: 2.測定を行う時の光路差を、純粋な第2ガスのインターフェログラムの分析に よって予め決定しておくことを特徴とする請求項1に記載の方法。2. The optical path difference during measurement can be used to analyze the interferogram of a pure second gas. 2. A method according to claim 1, characterized in that it is therefore predetermined. 3.第1ガス及び第2ガスの役割を順次交換して、これら2種類のガスの各濃度 を測定することを特徴とする請求項1又は2に記載の方法。3. By sequentially exchanging the roles of the first gas and the second gas, each concentration of these two gases is The method according to claim 1 or 2, characterized in that: . 4.請求項1から3のいずれかに記載の方法を実施するための装置であって、光 源(1)と、被検気体混合物の入った容器(4)を透過する光束を形成する光学 システム(2、3)と、光路差を正確に変化させる手段を含む干渉装置とを含む ことを特徴とする装置。4. An apparatus for carrying out the method according to any one of claims 1 to 3, comprising: optics forming a beam of light transmitted through the source (1) and the container (4) containing the gas mixture to be tested; system (2, 3) and an interferometric device including means for precisely varying the optical path difference. A device characterized by: 5.光路差を正確に変化させる手段が「ソレイユ補償板」と称する補償板である ことを特徴とする請求項4に記載の装置。5. The means to accurately change the optical path difference is a compensation plate called a ``Soleil compensation plate.'' 5. A device according to claim 4, characterized in that: 6.干渉装置が複屈折板(9)と該板の温度を変化させることによって導入光路 差を変化させる手段とを含むことを特徴とする請求項4に記載の装置。6. The interference device changes the introduced optical path by changing the birefringent plate (9) and the temperature of the plate. 5. The apparatus according to claim 4, further comprising means for varying the difference.
JP50532588A 1987-08-18 1988-08-17 Method for measuring the concentration of a gas in a gas mixture and apparatus for carrying out this method Pending JPH02500541A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8711677A FR2619621B1 (en) 1987-08-18 1987-08-18 METHOD FOR MEASURING THE CONCENTRATION OF A GAS IN A GAS MIXTURE AND DEVICE FOR CARRYING OUT SAID METHOD
FR87/11677 1987-08-18

Publications (1)

Publication Number Publication Date
JPH02500541A true JPH02500541A (en) 1990-02-22

Family

ID=9354271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50532588A Pending JPH02500541A (en) 1987-08-18 1988-08-17 Method for measuring the concentration of a gas in a gas mixture and apparatus for carrying out this method

Country Status (3)

Country Link
JP (1) JPH02500541A (en)
FR (1) FR2619621B1 (en)
WO (1) WO1989001621A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014633A (en) * 2001-06-28 2003-01-15 Ishikawajima Harima Heavy Ind Co Ltd So3 densitometer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3923831A1 (en) * 1989-07-19 1991-01-31 Hartmann & Braun Ag INTERFEROMETRIC DEVICE
DE4314535C2 (en) * 1993-05-03 1997-05-07 Sick Ag Inferferometric gas component measuring device
FR2713774B1 (en) * 1993-12-13 1997-05-30 Philippe Minghetti Device for the quantitative and qualitative analysis of gases dissolved in a liquid.
CN102288550B (en) * 2010-06-21 2013-03-27 张国胜 Differential measuring method and device applicable to photoelectric detection

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2555747B1 (en) * 1983-11-29 1986-08-14 Elf France INTERFEROMETRIC GAS DETECTOR
FR2581190B1 (en) * 1985-04-25 1987-06-19 Elf France INTERFEROMETRIC GAS DETECTOR

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014633A (en) * 2001-06-28 2003-01-15 Ishikawajima Harima Heavy Ind Co Ltd So3 densitometer
JP4674417B2 (en) * 2001-06-28 2011-04-20 株式会社Ihi SO3 densitometer

Also Published As

Publication number Publication date
FR2619621B1 (en) 1989-12-22
FR2619621A1 (en) 1989-02-24
WO1989001621A1 (en) 1989-02-23

Similar Documents

Publication Publication Date Title
EP0396320A2 (en) A method and apparatus for remotely and portably measuring a gas of interest
US4371785A (en) Method and apparatus for detection and analysis of fluids
JP4926957B2 (en) Optical characteristic measuring apparatus and optical characteristic measuring method
CN103954589B (en) The precision measurement apparatus of a kind of optical material specific refractory power and method
US6473181B1 (en) Measurement of waveplate retardation using a photoelastic modulator
Crawford et al. Field-induced absorption in hydrogen
US4057349A (en) Spectroscopic temperature measurement
US6480277B1 (en) Dual circular polarization modulation spectrometer
JPH02500541A (en) Method for measuring the concentration of a gas in a gas mixture and apparatus for carrying out this method
Möllmann et al. Fourier transform infrared spectroscopy in physics laboratory courses
US5696586A (en) Optical correlation gas analyzer
JP3797477B2 (en) Thickness and moisture measuring method and thickness and moisture measuring device
Desse Recording and processing of interferograms by spectral characterization of the interferometric setup
EP0144115B1 (en) An ellipsometer
US4167338A (en) Method and apparatus for determining the quantity ratio of two components of a multi-substance mixture
Graf et al. Polarization modulation Fourier transform infrared ellipsometry of thin polymer films
Alexandrov et al. Interference method for determination of the refractive index and thickness
JP2006189411A (en) Measuring instrument and measuring method for phase delay
Goldovsky et al. Correlational gas analyzer
US4018529A (en) Spectroscopic temperature measurement
Yin et al. Trace gas detect based on spectral analysis and harmonic ratio
WO2001063231A1 (en) Dual circular polarization modulation spectrometer
SU958922A1 (en) Device for measuring non-uniformity of double refraction in crystals
US2882787A (en) Micro-measurement apparatus
Lin Theory and analysis of phase sensitivity-tunable optical sensor based on total internal reflection