JP2013229438A5 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2013229438A5
JP2013229438A5 JP2012100038A JP2012100038A JP2013229438A5 JP 2013229438 A5 JP2013229438 A5 JP 2013229438A5 JP 2012100038 A JP2012100038 A JP 2012100038A JP 2012100038 A JP2012100038 A JP 2012100038A JP 2013229438 A5 JP2013229438 A5 JP 2013229438A5
Authority
JP
Japan
Prior art keywords
light emitting
emitting device
wavelength conversion
particles
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012100038A
Other languages
Japanese (ja)
Other versions
JP2013229438A (en
JP6051578B2 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from JP2012100038A external-priority patent/JP6051578B2/en
Priority to JP2012100038A priority Critical patent/JP6051578B2/en
Priority to CN201310100170.2A priority patent/CN103367611B/en
Priority to EP13161479.4A priority patent/EP2645433B1/en
Priority to KR1020130032959A priority patent/KR101549736B1/en
Priority to US13/852,332 priority patent/US8994259B2/en
Publication of JP2013229438A publication Critical patent/JP2013229438A/en
Priority to US14/590,520 priority patent/US9835310B2/en
Publication of JP2013229438A5 publication Critical patent/JP2013229438A5/en
Publication of JP6051578B2 publication Critical patent/JP6051578B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、粒状の無機蛍光体を含有する無機材料からなる波長変換用成形体を備えた発光装置に関する。 The present invention relates to a light-emitting equipment provided with a wavelength conversion moldings made of an inorganic material containing an inorganic phosphor particulate.

本発明はかかる問題に鑑み、厚さ、形状及び用いる無機蛍光体の制約が少ない波長変換用成形体を備えた発光装置を提供することを課題とする。 The invention according view of the problems, the thickness, and to provide a shape and emission equipment with an inorganic phosphor constraint is less wavelength conversion molded article to be used.

本発明は前記した課題を解決するために創案されたものであり、第1の発明に係る発光装置は、半導体発光素子と、無機材料からなる波長変換部材の粒子を含有する無機粒子層と、を有し、前記無機粒子層は、凝集体と、被覆層と、空隙と、を有して構成した。
なお、本発明における「発光装置」とは、半導体発光素子に波長変換部材が装着されており、電気的な接続により目的とする発光波長を出すものである。
The present invention has been devised to solve the above-described problem, and a light-emitting device according to a first invention includes a semiconductor light-emitting element, an inorganic particle layer containing particles of a wavelength conversion member made of an inorganic material, The inorganic particle layer has an aggregate, a coating layer, and voids.
The “light-emitting device” in the present invention is a device in which a wavelength conversion member is attached to a semiconductor light-emitting element and emits a target light emission wavelength by electrical connection.

かかる構成によれば、半導体発光素子が発光し、無機粒子層に入射した第1の波長の光は、波長変換部材により吸収され、第1の波長とは異なる第2の波長の光に波長変換されて発光する。このとき、無機粒子層への入射光は、無機粒子層内に存在する空隙によって散乱され、無機粒子層内の波長変換部材に効率的に照射される。これによって、入射光は波長変換部材の粒子に効率的に吸収され、第2の波長の光に波長変換される。 According to such a configuration, the semiconductor light emitting element emits light, the light of the first wavelength incident on the inorganic particle layer is absorbed by the wavelength converting member, the wavelength conversion into light of the second wavelength different from the first wavelength Is emitted. At this time, the incident light to the inorganic particle layer is scattered by the voids existing in the inorganic particle layer, and is efficiently irradiated to the wavelength conversion member in the inorganic particle layer. Thus, the incident light is efficiently absorbed by the particles of the wavelength conversion member, is wavelength-converted into light of the second wavelength.

なお、波長変換部材は、第1の波長の光を吸収し、第1の波長とは異なる第2の波長の光を発光するものであり、例えば、窒化物蛍光体やフッ化物蛍光体などの無機蛍光体である。また、無機粒子層において、波長変換部材の粒子は、当該粒子同士又は半導体発光素子と接触することで連続的に繋がった凝集体となる。そして、半導体発光素子の表面及び波長変換部材の粒子の表面は、無機材料からなる被覆層によって連続的に被覆される。すなわち、波長変換を行う層である無機粒子層の厚さや形状は、波長変換部材の粒子の凝集体の厚さや形状によって定められる。また、無機粒子層の内部には、被覆層で被覆された粒子、又は、被覆層で被覆された粒子及び被覆層で被覆された半導体発光素子によって取り囲まれた空隙が形成される。 The wavelength conversion member absorbs light of a first wavelength, the first wavelength is intended to emit light of a second wavelength different from, for example, such as a nitride phosphor and fluoride phosphor It is an inorganic phosphor. Moreover, in the inorganic particle layer, the particles of the wavelength conversion member become aggregates continuously connected by contacting the particles or the semiconductor light emitting element. And the surface of the semiconductor light-emitting device and the surface of the particle | grains of the wavelength conversion member are continuously coat | covered with the coating layer which consists of inorganic materials. That is, the thickness and shape of the inorganic particle layer, which is a layer that performs wavelength conversion, are determined by the thickness and shape of the aggregate of particles of the wavelength conversion member. Further, inside the inorganic particle layer, a void surrounded by the particles coated with the coating layer, or the particles coated with the coating layer and the semiconductor light emitting device coated with the coating layer is formed.

かかる構成によれば、発光装置は、この範囲の空隙率の空隙によって、高い含有率で波長変換部材を含有すると共に、入射光を良好に散乱して無機粒子層内の波長変換部材を照射し、効率的に入射光を波長変換する。また、この範囲の空隙率の空隙によって、発光装置は、発光装置の線膨張率と無機粒子層の線膨張率との間に差がある場合でも、発熱時の熱膨張による歪を吸収してクラックの発生を防止する。 According to such a configuration, the light-emitting device contains the wavelength conversion member with a high content rate due to the voids in this range, and scatters incident light well and irradiates the wavelength conversion member in the inorganic particle layer. Efficiently converts the wavelength of incident light. In addition, the voids with a porosity in this range allow the light-emitting device to absorb strain due to thermal expansion during heat generation even when there is a difference between the linear expansion coefficient of the light-emitting device and the linear expansion coefficient of the inorganic particle layer. Prevents the generation of cracks.

第3の発明に係る発光装置は、前記波長変換部材の粒子の平均粒径が、0.1〜100μmであり、前記被覆層の平均厚さが10nm〜50μmとすることができる。 In the light emitting device according to the third invention, the wavelength conversion member may have an average particle diameter of 0.1 to 100 μm, and the coating layer may have an average thickness of 10 nm to 50 μm.

この範囲の平均粒径の波長変換部材を用いることで、厚さの薄い波長変換用無機変換部材とすることができる。また、被覆層の平均厚さをこの範囲とすることで、波長変換部材の粒子を良好に被覆することができる。 By using a wavelength conversion member having an average particle diameter in this range, a thin wavelength conversion inorganic conversion member can be obtained. Moreover, the particle | grains of the wavelength conversion member can be coat | covered favorably by making the average thickness of a coating layer into this range.

第4の発明に係る発光装置は、前記無機粒子層の表面に、前記波長変換部材の粒子の粒径に起因する凹凸形状が形成されていることが好ましい。 In the light emitting device according to the fourth aspect of the invention, it is preferable that a concavo-convex shape resulting from the particle diameter of the wavelength conversion member is formed on the surface of the inorganic particle layer.

かかる構成によれば、発光装置は、好適な材料からなる被覆層で、波長変換部材の粒子を良好に被覆する。 According to such a configuration, the light emitting device satisfactorily coats the particles of the wavelength conversion member with the coating layer made of a suitable material.

第7の発明に係る発光装置は、前記波長変換部材が、硫化物系蛍光体、ハロゲンケイ酸塩系蛍光体、窒化物蛍光体、及び酸窒化物蛍光体から構成される群から選択される少なくとも一種の化合物を含有することができる。 In the light emitting device according to the seventh invention, the wavelength conversion member is selected from the group consisting of sulfide phosphors, halogen silicate phosphors, nitride phosphors, and oxynitride phosphors. At least one compound can be contained.

かかる構成によれば、発光装置は、熱により失活しやすいこれらの無機蛍光体を用いて、波長変換を行うことができる。 According to this configuration, the light emitting device can perform wavelength conversion using these inorganic phosphors that are easily deactivated by heat.

第8の発明に係る発光装置は、前記波長変換部材が、フッ化物蛍光体を、少なくとも含有することができる。 In the light emitting device according to the eighth invention, the wavelength conversion member may contain at least a fluoride phosphor.

かかる構成によれば、発光装置は、水分により劣化しやすいフッ化物蛍光体を用いて、波長変換を行うことができる。 According to such a configuration, the light emitting device can perform wavelength conversion using the fluoride phosphor that easily deteriorates due to moisture.

第9の発明に係る発光装置は、前記波長変換部材の粒子が、当該粒子同士及び前記半導体発光素子と無機結着材により結着していることが好ましい。 In the light emitting device according to the ninth invention, it is preferable that the particles of the wavelength conversion member are bound to each other and to the semiconductor light emitting element by an inorganic binder.

かかる構成によれば、発光装置の無機粒子層は、無機結着材により波長変換部材の粒子の凝集体が散逸することなく形成される。 According to such a configuration, the inorganic particle layer of the light emitting device is formed without dissipating the aggregate of the particles of the wavelength conversion member by the inorganic binder.

第1の発明によれば、波長変換を行う層である無機粒子層の厚さや形状は、波長変換部材の粒子の凝集体を被覆層で被覆して、内部に空隙を設けた状態で厚さや形状を定められるため、厚さや形状を自由に定めることができる。また、このように構成することで、無機粒子層は、無機粒子層における波長変換部材の含有率を高くすることができると共に、内部に設けられた空隙の光散乱効果により、高い波長変換効率を得ることができるため、一定の波長変換率を得るための無機粒子層の厚さを薄くすることができる。また、無機粒子層は、樹脂などの有機材料を用いることなく、無機材料で構成されるため、高輝度の光の照射や高温に晒される場合でも、経時劣化の少ない発光装置とすることができる。 According to the first invention, the thickness and shape of the inorganic particle layer, which is a layer that performs wavelength conversion, can be determined by covering the aggregates of the particles of the wavelength conversion member with the coating layer and providing voids therein. Since the shape can be determined, the thickness and shape can be freely determined. In addition, with this configuration, the inorganic particle layer can increase the content of the wavelength conversion member in the inorganic particle layer, and has high wavelength conversion efficiency due to the light scattering effect of the voids provided inside. Therefore, the thickness of the inorganic particle layer for obtaining a certain wavelength conversion rate can be reduced. In addition, since the inorganic particle layer is made of an inorganic material without using an organic material such as a resin, a light-emitting device with little deterioration over time can be obtained even when exposed to high-luminance light irradiation or high temperatures. .

第2の発明によれば、適度な空隙率の空隙を設けることで、良好な波長変換効率が得られるため、無機粒子層の厚さを薄くすることができる。また、クラックの発生を防止することができるため、製造時の歩留まりと、使用時の信頼性とを向上することができる。 According to the second invention, by providing a void having an appropriate porosity, a good wavelength conversion efficiency can be obtained, so that the thickness of the inorganic particle layer can be reduced. Moreover, since generation | occurrence | production of a crack can be prevented, the yield at the time of manufacture and the reliability at the time of use can be improved.

第3の発明によれば、適度な平均粒径の波長変換部材と、適度な厚さの被覆層で構成することにより、無機粒子層の厚さを薄くすることができる。 According to 3rd invention, the thickness of an inorganic particle layer can be made thin by comprising with the wavelength conversion member of a moderate average particle diameter, and the coating layer of moderate thickness.

第5の発明によれば、原子層堆積法による緻密で均一な被覆層によって波長変換部材が被覆されるため、水分などの雰囲気により劣化しやすい蛍光体を用いても、信頼性の高い発光装置とすることができる。また、原子層堆積法により、比較的低温で被覆層が形成されるため、熱により劣化しやすい蛍光体を用いた発光装置を形成することができる。更に、無機粒子層の粒子間の隙間に良好に空隙が形成されるため、波長変換効率を向上することができる。 According to the fifth aspect of the invention, since the wavelength conversion member is covered with a dense and uniform coating layer formed by the atomic layer deposition method, a highly reliable light-emitting device even when using a phosphor that easily deteriorates in an atmosphere such as moisture It can be. Further, since the coating layer is formed at a relatively low temperature by the atomic layer deposition method, a light emitting device using a phosphor that is easily deteriorated by heat can be formed. Furthermore, since the voids are favorably formed in the gaps between the particles of the inorganic particle layer, the wavelength conversion efficiency can be improved.

第6の発明によれば、好適な材料を用いた被覆層により波長変換部材が雰囲気から保護されるため、信頼性が向上する。 According to the sixth aspect of the invention, the wavelength conversion member is protected from the atmosphere by the coating layer using a suitable material, so that the reliability is improved.

第7の発明又は第8の発明によれば、波長変換部材として、熱や雰囲気により失活しやすい蛍光体を用いることができるため、様々な波長、例えば、赤色に波長変換する波長変換用無機蛍光体を構成することができる。 According to the seventh invention or the eighth invention, as the wavelength conversion member, it is possible to use inactivated easily phosphor by heat or atmosphere, a variety of wavelengths, for example, inorganic wavelength converting wavelength conversion to red A phosphor can be constructed.

第9の発明によれば、無機結着材により波長変換部材の粒子の凝集体が散逸することなく発光装置が形成されるため、無機粒子層の形状が安定する。 According to the ninth aspect, since the light emitting device is formed without dissipating the aggregate of the particles of the wavelength conversion member by the inorganic binder, the shape of the inorganic particle layer is stabilized.

<発光装置>
[発光装置の構成]
本発明の実施形態に係る発光装置の構造を、図1を参照して説明する。
図1(a)に示すように、第1実施形態に係る発光装置1は、半導体発光素子2の側面及び、半導体発光素子2の上面に、蛍光体層(無機粒子層)3が設けられている。また、蛍光体層3は、粒状の無機蛍光体(波長変換部材)31と、無機蛍光体31を被覆する被覆層32とから形成されている。更に詳細には、図1(b)に示すように、蛍光体層3の内部には、空隙33が形成されている。
<Light emitting device>
[Configuration of light emitting device]
A structure of a light emitting device according to an embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 1A, the light emitting device 1 according to the first embodiment is provided with a phosphor layer (inorganic particle layer) 3 on the side surface of the semiconductor light emitting element 2 and the upper surface of the semiconductor light emitting element 2. Yes. The phosphor layer 3 is formed of a granular inorganic phosphor ( wavelength conversion member) 31 and a coating layer 32 that covers the inorganic phosphor 31. More specifically, as shown in FIG. 1B, a gap 33 is formed inside the phosphor layer 3.

(無機蛍光体(波長変換部材))
無機蛍光体31は、蛍光体層3に入射した光を吸収し、入射光の色とは異なる色の光を発光する無機材料からなる蛍光体である。
無機蛍光体31として使用される蛍光体材料は、励起光である入射光を吸収して、異なる色(波長)の光に色変換(波長変換)するものであればよい。特に、無機蛍光体31が、紫外光ないし青色光を吸収して、青色光ないし赤色光を放出する材料であることが好ましい。
(Inorganic phosphor ( wavelength conversion member))
The inorganic phosphor 31 is a phosphor made of an inorganic material that absorbs light incident on the phosphor layer 3 and emits light of a color different from the color of the incident light.
The phosphor material used as the inorganic phosphor 31 may be any material that absorbs incident light that is excitation light and performs color conversion (wavelength conversion) to light of a different color (wavelength). In particular, the inorganic phosphor 31 is preferably a material that absorbs ultraviolet light or blue light and emits blue light or red light.

(蛍光体層形成工程(無機粒子層形成工程))
蛍光体層形成工程S14は、半導体発光素子2の表面に、半導体発光素子2が発光する第1の色の光を吸収し、第1の色とは異なる第2の色の光を発光する無機材料からなる波長変換部材(無機蛍光体31)の粒子を含有する凝集体(粒子層34)を形成する工程である。
蛍光体層形成工程S14において、図5(c)に示すように、導電体層6を一方の電極として、電気沈着(電着)法又は静電塗装法により、半導体発光素子2の表面(上面及び側面)に、導電体層6を介して無機蛍光体31の粒子層34を形成する。
なお、半導体発光素子2が絶縁体であっても、導電体である金属を導電体層6として用いることで、導電体層6を電極として、電気沈着法や静電塗装法により無機蛍光体31の粒子層34を形成することができる。
(Phosphor layer forming step (inorganic particle layer forming step))
In the phosphor layer forming step S14, the surface of the semiconductor light emitting element 2 absorbs the first color light emitted from the semiconductor light emitting element 2 and emits the second color light different from the first color. This is a step of forming an aggregate (particle layer 34) containing particles of a wavelength conversion member (inorganic phosphor 31) made of a material.
In the phosphor layer forming step S14, as shown in FIG. 5C, the surface (upper surface) of the semiconductor light-emitting element 2 is formed by electro-deposition (electrodeposition) method or electrostatic coating method using the conductor layer 6 as one electrode. And the side surface), the particle layer 34 of the inorganic phosphor 31 is formed via the conductor layer 6.
Even if the semiconductor light emitting element 2 is an insulator, by using a metal as a conductor as the conductor layer 6, using the conductor layer 6 as an electrode, the inorganic phosphor 31 can be formed by an electrodeposition method or an electrostatic coating method. The particle layer 34 can be formed.

(被覆層形成工程)
被覆層形成工程S16は、半導体発光素子2の表面及び波長変換部材(無機蛍光体31)の粒子の表面を連続的に被覆する無機材料からなる被覆層32を形成する工程である。
被覆層形成工程S16において、図5(e)に示すように、蛍光体層形成工程S14で形成した無機蛍光体31の粒子層34を被覆し、粒子同士を固着させる被覆層32を形成する。被覆層形成工程S16において、被覆層32は、ALD法やMOCVD法などによって形成することができる。無機蛍光体31の粒子は被覆層32によって被覆されると共に、無機蛍光体31の粒子及び透光性層5、並びに無機蛍光体31の粒子同士が固着して、一体化した発光装置が得られる。
(Coating layer forming process)
The coating layer forming step S16 is a step of forming the coating layer 32 made of an inorganic material that continuously covers the surface of the semiconductor light emitting element 2 and the surface of the particles of the wavelength conversion member (inorganic phosphor 31).
In the coating layer forming step S16, as shown in FIG. 5E, the particle layer 34 of the inorganic phosphor 31 formed in the phosphor layer forming step S14 is coated to form a coating layer 32 for fixing the particles together. In the coating layer forming step S16, the coating layer 32 can be formed by an ALD method, an MOCVD method, or the like. The particles of the inorganic phosphor 31 are covered with the coating layer 32, and the particles of the inorganic phosphor 31 and the translucent layer 5 and the particles of the inorganic phosphor 31 are fixed to each other, thereby obtaining an integrated light emitting device. .

次に、この保護層7を形成する保護層形成工程について説明する。
保護層形成工程は、被覆層形成工程の後、最終個片化工程の前に、半導体発光素子2の表面及び波長変換部材(無機蛍光体31)の粒子の表面を連続的に被覆する無機材料からなる被覆層32の上部に酸化膜からなる保護層7を形成する工程である。
Next, a protective layer forming process for forming the protective layer 7 will be described.
The protective layer forming step is an inorganic material that continuously covers the surface of the semiconductor light emitting device 2 and the surface of the wavelength conversion member (inorganic phosphor 31) after the coating layer forming step and before the final singulation step. In this step, the protective layer 7 made of an oxide film is formed on the coating layer 32 made of

1、1A、1B、1C 発光装置
2 半導体発光素子
3 蛍光体層(無機粒子層)
31 無機蛍光体(波長変換部材)
32 被覆層
33 空隙
34 粒子層(凝集体)
5 透光性層
6 導電体層
7 保護層
8 フィラー粒子
15 パッケージ
15a 凹部
1, 1A, 1B, 1C Light emitting device 2 Semiconductor light emitting element 3 Phosphor layer (inorganic particle layer)
31 Inorganic phosphor ( wavelength conversion member)
32 Coating layer 33 Void 34 Particle layer (aggregate)
5 Translucent Layer 6 Conductor Layer 7 Protective Layer 8 Filler Particle 15 Package 15a Concave

Claims (9)

半導体発光素子と、
前記半導体発光素子の少なくとも上面に設けられ、前記半導体発光素子が発光する第1の波長の光を吸収し、前記第1の波長とは異なる第2の波長の光を発光する無機材料からなる波長変換部材の粒子を含有する無機粒子層と、を有し、
前記無機粒子層は、
前記粒子が、当該粒子同士又は前記半導体発光素子と接触することで連続的に繋がった凝集体と、
前記半導体発光素子の表面及び前記粒子の表面を連続的に被覆する無機材料からなる被覆層と、
前記被覆層で被覆された前記粒子、又は、前記被覆層で被覆された前記粒子及び前記被覆層で被覆された前記半導体発光素子によって取り囲まれた空隙と、
を有することを特徴とする発光装置。
A semiconductor light emitting device;
Said provided at least the upper surface of the semiconductor light emitting element, the wavelength of an inorganic material first absorbs light of a wavelength, emits light of a second wavelength different from said first wavelength, wherein the semiconductor light emitting element emits light An inorganic particle layer containing particles of the conversion member,
The inorganic particle layer is
Aggregates in which the particles are continuously connected by contacting the particles or the semiconductor light emitting element,
A coating layer made of an inorganic material that continuously covers the surface of the semiconductor light emitting element and the surface of the particles;
A void surrounded by the particles coated with the coating layer, or the particles coated with the coating layer and the semiconductor light emitting device coated with the coating layer ;
A light emitting device comprising:
前記無機粒子層における前記空隙は、空隙率が1〜50%であることを特徴とする請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the voids in the inorganic particle layer have a porosity of 1 to 50%. 前記波長変換部材の粒子の平均粒径は、0.1〜100μmであり、
前記被覆層の平均厚さが10nm〜50μmであることを特徴とする請求項1又は請求項2に記載の発光装置。
The average particle diameter of the wavelength conversion member particles is 0.1 to 100 μm,
3. The light emitting device according to claim 1, wherein an average thickness of the coating layer is 10 nm to 50 μm.
前記無機粒子層の表面は、前記波長変換部材の粒子の粒径に起因する凹凸形状が形成されていることを特徴とする請求項1乃至請求項3の何れか一項に記載の発光装置。 4. The light emitting device according to claim 1, wherein the surface of the inorganic particle layer has a concavo-convex shape due to a particle diameter of the wavelength conversion member. 5. 前記被覆層は、原子層堆積法により形成されたことを特徴とする請求項1乃至請求項4の何れか一項に記載の発光装置。   The light emitting device according to any one of claims 1 to 4, wherein the covering layer is formed by an atomic layer deposition method. 前記被覆層は、Al、SiO、ZrO、HfO、TiO、ZnO、Ta、及びNb、In、SnO、TiN、及びAlNから構成される群から選択される少なくとも一種の化合物を含有することを特徴とする請求項1乃至請求項5の何れか一項に記載の発光装置。 The coating layer is made of Al 2 O 3 , SiO 2 , ZrO 2 , HfO 2 , TiO 2 , ZnO, Ta 2 O 5 , and Nb 2 O 5 , In 2 O 3 , SnO 2 , TiN, and AlN. The light-emitting device according to claim 1, comprising at least one compound selected from the group consisting of: 前記波長変換部材は、硫化物系蛍光体、ハロゲンケイ酸塩系蛍光体、窒化物蛍光体、及び酸窒化物蛍光体から構成される群から選択される少なくとも一種の化合物を含有することを特徴とする請求項1乃至請求項6の何れか一項に記載の発光装置。 The wavelength conversion member contains at least one compound selected from the group consisting of sulfide phosphors, halogen silicate phosphors, nitride phosphors, and oxynitride phosphors. The light emitting device according to any one of claims 1 to 6. 前記波長変換部材は、フッ化物蛍光体を、少なくとも含有することを特徴とする請求項1乃至請求項7の何れか一項に記載の発光装置。 The light emitting device according to any one of claims 1 to 7, wherein the wavelength conversion member contains at least a fluoride phosphor. 前記波長変換部材の粒子は、当該粒子同士及び前記半導体発光素子と無機結着材により結着していることを特徴とする請求項1乃至請求項8の何れか一項に記載の発光装置。 The light emitting device according to any one of claims 1 to 8, wherein the particles of the wavelength conversion member are bound to each other and the semiconductor light emitting element by an inorganic binder.
JP2012100038A 2012-03-28 2012-04-25 Light emitting device Active JP6051578B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012100038A JP6051578B2 (en) 2012-04-25 2012-04-25 Light emitting device
CN201310100170.2A CN103367611B (en) 2012-03-28 2013-03-26 Wavelength conversion inorganic formed body and its manufacture method and light-emitting device
EP13161479.4A EP2645433B1 (en) 2012-03-28 2013-03-27 Wave-length conversion inorganic member, method for manufacturing the same, and light emitting device
KR1020130032959A KR101549736B1 (en) 2012-03-28 2013-03-27 Inorganic shaped body for converting wavelength and method for manufacturing the same, and light emitting device
US13/852,332 US8994259B2 (en) 2012-03-28 2013-03-28 Wave-length conversion inorganic member, and method for manufacturing the same
US14/590,520 US9835310B2 (en) 2012-03-28 2015-01-06 Wave-length conversion inorganic member, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012100038A JP6051578B2 (en) 2012-04-25 2012-04-25 Light emitting device

Publications (3)

Publication Number Publication Date
JP2013229438A JP2013229438A (en) 2013-11-07
JP2013229438A5 true JP2013229438A5 (en) 2015-06-18
JP6051578B2 JP6051578B2 (en) 2016-12-27

Family

ID=49676791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012100038A Active JP6051578B2 (en) 2012-03-28 2012-04-25 Light emitting device

Country Status (1)

Country Link
JP (1) JP6051578B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436380B2 (en) 2018-10-24 2024-02-21 デンカ株式会社 Method for manufacturing surface-coated phosphor particles, method for manufacturing composite, and method for manufacturing light-emitting device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6209949B2 (en) 2013-11-13 2017-10-11 日亜化学工業株式会社 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
US9461214B2 (en) 2013-11-29 2016-10-04 Nichia Corporation Light emitting device with phosphor layer
JP6221696B2 (en) * 2013-11-29 2017-11-01 日亜化学工業株式会社 Light emitting device manufacturing method and light emitting device
JP6246622B2 (en) 2014-03-05 2017-12-13 シャープ株式会社 Light source device and lighting device
JP2015192096A (en) * 2014-03-28 2015-11-02 豊田合成株式会社 Light emitting device
JP6428194B2 (en) * 2014-11-21 2018-11-28 日亜化学工業株式会社 Wavelength converting member, method for manufacturing the same, and light emitting device
JP6557970B2 (en) * 2014-12-26 2019-08-14 日亜化学工業株式会社 Light emitting device
JP6646934B2 (en) * 2015-02-10 2020-02-14 アルパッド株式会社 Semiconductor light emitting device and method of manufacturing semiconductor light emitting device
JP6288061B2 (en) 2015-12-10 2018-03-07 日亜化学工業株式会社 Method for manufacturing light emitting device
US10700242B2 (en) 2016-12-27 2020-06-30 Nichia Corporation Method of producing wavelength conversion member
DE102017104128A1 (en) 2017-02-28 2018-08-30 Osram Gmbh Conversion element, optoelectronic component and method for producing a conversion element
US10950762B2 (en) 2017-04-13 2021-03-16 Lightizer Co., Ltd Round chip scale package and manufacturing method therefor
JP6933726B2 (en) * 2017-11-30 2021-09-08 マクセル株式会社 Fluorescent material member and light source device
JP6508368B2 (en) * 2018-02-07 2019-05-08 日亜化学工業株式会社 Light emitting device
JP6963720B2 (en) 2018-08-30 2021-11-10 日亜化学工業株式会社 Light emitting device
JP7161100B2 (en) 2018-09-25 2022-10-26 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2495789A1 (en) * 2002-08-29 2004-03-11 Ifire Technology Corp. Fine-grained rare earth activated zinc sulfide phosphors for electroluminescent displays
JP4450547B2 (en) * 2002-08-29 2010-04-14 日亜化学工業株式会社 Method for manufacturing light emitting device
JP4418685B2 (en) * 2003-01-10 2010-02-17 豊田合成株式会社 Light emitting device
JP2006303001A (en) * 2005-04-18 2006-11-02 Konica Minolta Opto Inc Light emitting diode and its manufacturing method
JP4810977B2 (en) * 2005-11-08 2011-11-09 日亜化学工業株式会社 LIGHT EMITTING DEVICE AND METHOD FOR FORMING THE SAME
US20070125984A1 (en) * 2005-12-01 2007-06-07 Sarnoff Corporation Phosphors protected against moisture and LED lighting devices
US7833437B2 (en) * 2006-01-26 2010-11-16 Global Tungsten & Powders Corp. Moisture-resistant electroluminescent phosphor with high initial brightness and method of making
JP5614675B2 (en) * 2010-02-16 2014-10-29 独立行政法人物質・材料研究機構 Method for manufacturing wavelength conversion member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436380B2 (en) 2018-10-24 2024-02-21 デンカ株式会社 Method for manufacturing surface-coated phosphor particles, method for manufacturing composite, and method for manufacturing light-emitting device

Similar Documents

Publication Publication Date Title
JP2013229438A5 (en) Light emitting device
JP2013247067A5 (en) Inorganic molded body for wavelength conversion and light emitting device
JP6428194B2 (en) Wavelength converting member, method for manufacturing the same, and light emitting device
JP2013216800A5 (en) Inorganic molded body for wavelength conversion, method for producing the same, and light emitting device
JP2013203822A5 (en) Inorganic molded body for wavelength conversion, method for producing the same, and light emitting device
US10205067B2 (en) LED with ceramic green phosphor and protected red phosphor layer
TWI418064B (en) Light emitting device
US9966503B2 (en) Optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component
JP6051578B2 (en) Light emitting device
EP3454384B1 (en) Quantum dot-based color-converted light emitting device
TWI637539B (en) Light emitting semiconductor component and fabricating method thereof
WO2012132232A1 (en) Semiconductor light-emitting device
TW201631806A (en) Light emitting device and manufacturing method thereof
JP2013213131A5 (en) Inorganic molded body for wavelength conversion and light emitting device
KR20130110101A (en) Inorganic shaped body for converting wavelength and method for manufacturing the same, and light emitting device
JP2013216800A (en) Inorganic molded product for color conversion, method for manufacturing the same, and light emitting device
TW201145604A (en) Method for forming a light conversion material
JP2016072412A (en) Light-emitting device and method of manufacturing light-emitting device
JP2015153856A (en) Light emitting device and method for manufacturing the same
JP2018056552A5 (en)
JP5966529B2 (en) Inorganic molded body for wavelength conversion and light emitting device
JP2011204986A (en) Lamp and method for manufacturing the same
KR20150127133A (en) Optoelectronic component and method for producing an optoelectronic component
JP2015038978A (en) Wavelength conversion member
WO2015087970A1 (en) Optical semiconductor, method for producing same, surface treatment agent for silver, and light-emitting device