JP2013226494A - Granular adsorbent - Google Patents

Granular adsorbent Download PDF

Info

Publication number
JP2013226494A
JP2013226494A JP2012099426A JP2012099426A JP2013226494A JP 2013226494 A JP2013226494 A JP 2013226494A JP 2012099426 A JP2012099426 A JP 2012099426A JP 2012099426 A JP2012099426 A JP 2012099426A JP 2013226494 A JP2013226494 A JP 2013226494A
Authority
JP
Japan
Prior art keywords
granular
powder
crushing
value
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012099426A
Other languages
Japanese (ja)
Other versions
JP6005389B2 (en
Inventor
Kaizo Furukawa
改造 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ever Wings Kk
Original Assignee
Ever Wings Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ever Wings Kk filed Critical Ever Wings Kk
Priority to JP2012099426A priority Critical patent/JP6005389B2/en
Publication of JP2013226494A publication Critical patent/JP2013226494A/en
Application granted granted Critical
Publication of JP6005389B2 publication Critical patent/JP6005389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a granular adsorbent excellent in adsorption characteristic for radioactive substances.SOLUTION: For a granular adsorbent, by mixing 100 pts.wt. of glassy material powder, 200-300 pts.wt. of a particulate mixture for which two or more different groups are selected from four kinds of groups of tuff particulates, pumice particulates, brick particulates and secondary concrete product particulates and materials are selected from the groups and combined, and 0.6-15 pts.wt. of foaming material powder, heating the mixture in the range of 700-900°C to accelerate foaming and heat denaturation, cooling it, and then crushing it, the granular adsorbent is obtained.

Description

本発明は、放射性物質の吸着特性に優れた粒状吸着剤に関し、更に詳細には、凝灰岩類粉粒体、軽石類粉粒体、レンガ類粉粒体、コンクリート二次製品類粉粒体の4種の粉粒体と、ガラス質材粉及び発泡材粉とで構成する混合物を加熱してガラス質材粉の溶融発泡を促し、4種の混合粉粒体を熱変性させてなる粒状吸着材に関する。   The present invention relates to a granular adsorbent excellent in radioactive material adsorption characteristics, and more specifically, tuffstone granule, pumice granule, brick granule, concrete secondary product granule 4 A granular adsorbent obtained by heating a mixture composed of seed powder, vitreous material powder and foam powder to promote melting and foaming of the vitreous material powder and heat-denaturing the four mixed powder particles About.

従来より、無機系廃材の一種であるガラス質や石炭灰などの再資源化のために、該無機系廃材の数種を混合加熱し、ガラス質等のマトリックス中に独立気泡を形成して、断熱性や防音性に優れたガラス質発泡体や軽量の人工骨材等が開発されている。   Conventionally, in order to recycle glassy or coal ash, which is a kind of inorganic waste material, several types of inorganic waste material are mixed and heated, forming closed cells in a matrix such as glassy material, Glassy foams that are excellent in heat insulation and sound insulation, lightweight artificial aggregates, and the like have been developed.

また最近では、所望する比重のガラス質発泡体を形成する無機系発泡体組成物が提供され、板状の長尺発泡体として水質改善実用化への提案となっている(特許文献1)。
その概略は、ガラス質廃材、燃焼灰、煉瓦質廃材などの無機系発泡体組成物粉体と貝殻粉体を混合し、メッシュベルトの上に厚さ7mm、幅0.4m、長さ1.2mに堆積させ、600〜960℃の段階的加熱を30〜60分間行い、該無機系発泡体組成物粉体は厚さ15mm、幅0.4m、長さ1.2mに容積が約2倍に発泡し、板状の長尺無機系発泡体を得ている。この段階的加熱法により、該発泡体は比重の異なる低比重発泡体層と高比重発泡体層の一体化を成すことができるので、湖底などでの使用時には、該低比重発泡体層を上にし、該高比重発泡体層を下にして設置することができる。斯様な設置方法により、水中の有機物の分解など水質浄化を効率良く行うことができ、金属イオンの溶出による漁礁が形成され、藻が付着して生物膜が生息し易くなる提案である。
しかし、上記技術では、貝殻の熱分解で発生する二酸化炭素が、溶融したガラス質等の持つ粘性のためにガラス層から連続して抜け出ることができず、独立気泡は形成できるが、通気孔を有する連続気孔は形成できていない。従って、水質改善、空気質改善など種々の改善には限度があり、断熱性や防音性などに限定されているのが実情である。
Recently, an inorganic foam composition that forms a vitreous foam having a desired specific gravity has been provided, which has been proposed as a plate-like long foam for practical use in improving water quality (Patent Document 1).
The outline is that inorganic foam composition powder such as glassy waste, combustion ash, brick waste and shell powder are mixed, and the thickness is 7 mm, the width is 0.4 m, and the length is 1. on the mesh belt. The inorganic foam composition powder is 15 mm thick, 0.4 m wide, and 1.2 m long, with a volume approximately doubled. To obtain a plate-like long inorganic foam. By this stepwise heating method, the foam can be integrated with a low specific gravity foam layer and a high specific gravity foam layer having different specific gravity. And can be placed with the high specific gravity foam layer facing down. By such an installation method, water purification such as decomposition of organic substances in water can be performed efficiently, fishing reefs formed by elution of metal ions are formed, and algae attach to biofilms.
However, in the above technique, carbon dioxide generated by the thermal decomposition of the shell cannot continuously escape from the glass layer due to the viscosity of molten glass, etc., and closed cells can be formed. The continuous pore which has is not able to be formed. Therefore, there are limits to various improvements such as water quality improvement and air quality improvement, and the actual situation is limited to heat insulation and sound insulation.

一方、放射性廃棄物を埋設した処分場の人工地熱系環境下に対応して、止水作用および吸着作用を有する放射性廃棄物埋設用充填材の提案がある(特許文献2)。
この提案は、放射性廃薬物を地下に埋設する際に用いる緩衝材または埋め戻し材で、ベントナイト等と微細なクラックを有する火山ガラスを混合し、または、さらにフライアッシュを混合してなる放射性廃棄物埋設用充填材としている。
しかしこの技術は、ベントナイトが地熱を受けて性能劣化を起こすことに鑑み、火山ガラスをベントナイトの代替材料として使用せんとするものであって、放射性物質の吸着特性を向上させるものではない。
On the other hand, there is a proposal of a radioactive waste burying material having a water stopping action and an adsorption action corresponding to the artificial geothermal environment of a disposal site where the radioactive waste is buried (Patent Document 2).
This proposal is a radioactive material made by mixing bentonite and volcanic glass with fine cracks, or further mixing fly ash with a buffer material or backfill material used when burying radioactive waste drugs underground. It is used as a filling material for burial.
However, this technology uses volcanic glass as an alternative material for bentonite in view of the fact that bentonite is subjected to geothermal heat and deteriorates its performance, and does not improve the adsorption properties of radioactive substances.

特開2004−123425号JP 2004-123425 A 特許4096328号Patent 4096328

本発明者は、放射性物質の吸着材を対象として研究を重ねたところ、凝灰岩類粉粒体、軽石類粉粒体、レンガ類粉粒体、コンクリート二次製品類粉粒体の4種の粉粒体に700〜900℃の熱処理を施すことにより、放射性物質の吸着特性に優れた能力向上が見られることを見い出し、ガラス質材粉及び発泡材粉を活用して、これら粉粒体を組み合わせた粒状吸着材を提案するものである。   The present inventor conducted research on radioactive material adsorbents. As a result, four types of powders, tuff granule, pumice granule, brick granule, and concrete secondary product granule, were obtained. By performing heat treatment at 700-900 ° C on the granule, it is found that the ability improvement excellent in the adsorption characteristic of the radioactive substance can be seen, and the vitreous material powder and the foam material powder are utilized to combine these granular materials. A granular adsorbent is proposed.

前記目的を達成するために、請求項1記載の粒状吸着材は、a)ガラス質材粉100重量部と、大谷石、若草石、深岩石等を砕いてなる凝灰岩類粉粒体と、人工軽量気泡コンクリート又は天然軽石を砕いてなる軽石類粉粒体と、レンガ、瓦、タイルからなる群のうち少なくとも1つ以上を砕いてなるレンガ類粉粒体と、コンクリート二次製品を砕いてなるコンクリート二次製品類粉粒体との4種のグループのうち異なる2種以上のグループを選び、その選ばれたグループの中から少なくとも1つ以上の材料を選択して組合わせた混合粉粒体を200〜300重量部と、発泡材粉0.6〜15重量部と、を混合し、 b)上記混合物を700〜900℃の範囲で加熱して熱変性を促すと共に、発泡を伴って連続気泡を含んだ塊状とし、c)該塊状化したものを冷却後砕いて粒状体を得ることを特徴とする。   In order to achieve the above object, the granular adsorbent according to claim 1 includes: a) 100 parts by weight of vitreous material powder, tuffite granule obtained by crushing Otani stone, Wakakusa stone, deep rock stone and the like; Crushing pumice powder granules made by crushing lightweight cellular concrete or natural pumice, brick granules made by crushing at least one of the group consisting of bricks, tiles and tiles, and concrete secondary products Mixed granular material in which two or more different groups are selected from the four types of concrete secondary product granular materials, and at least one material is selected from the selected group and combined. 200 to 300 parts by weight and 0.6 to 15 parts by weight of foaming material powder are mixed. B) The mixture is heated in the range of 700 to 900 ° C. to promote thermal denaturation and continuously with foaming. A lump containing bubbles; c) the lump The ones crushed after cooling, characterized in that to obtain granules.

請求項2に記載の粒状吸着材は、混合粉粒体を、その粒子径を1〜1000μmの粉粒体としてなる。 The granular adsorbent according to claim 2 is a mixed granular material having a particle diameter of 1 to 1000 μm.

請求項3に記載の粒状吸着材は、ガラス質材粉を、窓用板ガラス及び/又はコップ及び/又ビンとし、その粒子径を1〜1000μmの粉粒体としてなる。   The granular adsorbent according to claim 3 is made of a vitreous material powder as window glass and / or a cup and / or a bottle and having a particle diameter of 1 to 1000 μm.

請求項4に記載の粒状吸着材は、発泡材粉を、あこや貝殻、ほたて貝殻、牡蠣殻等の貝殻由来の炭酸カルシウムとし、その粒子径を1〜1000μmの粉粒体としてなる。 In the granular adsorbent according to claim 4, the foam powder is calcium carbonate derived from shells such as akoya shells, scallop shells, oyster shells, and the like, and the particle size is a granular material having a particle diameter of 1-1000 μm.

凝灰岩類粉粒体と、軽石類粉粒体と、レンガ類粉粒体と、コンクリート二次製品類粉粒体の4種のグループは、熱変性後にあって夫々に異なる優れた放射性物質の吸着特性を有する。例えば、凝灰岩類粉粒体は、総線量値(CPM値)、セシウム値(Cs値)、ストロンチウム(Sr値)のいずれにも優れた吸着能を示し、軽石類粉粒体はCPM値、Cs値に優れた吸着能を示し、レンガ類粉粒体は、CPM値、Cs値、Sr値、特にSr値に優れた吸着能を示し、コンクリート二次製品類粉粒体は、CPM値、Cs値に優れた吸着能を示す。又、グループ毎に、異なる組織成分の比率や、空隙形態に夫々異なった特性を備える。
上記グループは、熱で軟化したガラス質材粉を核として粉粒体が互いに結合し、該結合が2組以上の組み合わせとなることで、目的とする放射性物質の吸着に対応させて、最も適した放射性物質の吸着特性及び形態が具現できる。
上述の放射性物質の吸着特性にあって、上記グループに属す粉粒体は、Al2O3-SiO2系でこれにCaO、Fe2O3、Na2O、K2O、TiO2等の加わった非晶質を形成し、700〜900℃の範囲での加熱によって何らかの組織変化が促される熱変性が起こり、加熱前と比べてCPM値、Cs値、Sr値等に優れた特性の向上が図られる。
又、発泡材粉とその加熱によって、連続気泡を含んだカルメ状の軽量の発泡体が得られ、それを粒状化することで、外表面及び内表面の双方に大きな表面積を備えた、放射性物質の吸着特性に優れた粒状体が得られる。
Four types of groups, tuff granule, pumice granule, brick granule, and concrete secondary product granule, adsorb excellent radioactive materials which are different after thermal denaturation. Has characteristics. For example, tuff granulates have excellent adsorbability in all dose values (CPM values), cesium values (Cs values), and strontium (Sr values), and pumice powder granules have CPM values, Cs Adhesive capacity excellent in value, brick powder particles show CPM value, Cs value, Sr value, especially adsorbability excellent in Sr value, concrete secondary product powder particles show CPM value, Cs Excellent adsorption capacity in value. Each group has different tissue component ratios and different characteristics in the void form.
The above group is most suitable for adsorbing the target radioactive substance by combining the powder particles together with the glassy material powder softened by heat as the core, and the combination becomes a combination of two or more. The adsorption characteristics and form of radioactive materials can be realized.
In the above-mentioned adsorption characteristics of radioactive substances, the powders belonging to the above group are Al 2 O 3 —SiO 2 system, such as CaO, Fe 2 O 3 , Na 2 O, K 2 O, TiO 2 etc. Formed amorphous, heat denaturation that causes some structural change is promoted by heating in the range of 700-900 ° C, and improved characteristics such as CPM value, Cs value, Sr value, etc. compared to before heating Is planned.
Also, a foam material powder and its heating yielded a light-weight carme-like foam containing open cells, and by granulating it, a radioactive material having a large surface area on both the outer and inner surfaces Granules having excellent adsorption characteristics can be obtained.

凝灰岩類粉粒体のうち、大谷石の熱変性前の電子顕微鏡写真である。It is an electron micrograph before heat denaturation of Otani stone among tuff powder granular materials. 軽石類粉粒体流体のうち、人工軽量気泡コンクリート(ALC)の熱変性前の電子顕微鏡写真である。It is an electron micrograph before heat denaturation of artificial lightweight cellular concrete (ALC) among pumice granular fluid. 軽石類粉粒体流体のうち、天然軽石の熱変性前の電子顕微鏡写真である。It is an electron micrograph before heat denaturation of natural pumice among pumice powder fluids. レンガ類粉粒体のうち、レンガの熱変性前の電子顕微鏡写真である。It is an electron micrograph before heat denaturation of a brick among brick type granular materials. レンガ類粉粒体のうち、瓦の熱変性前の電子顕微鏡写真である。It is an electron micrograph before heat denaturation of a tile among brick granular materials. レンガ類粉粒体のうち、タイルの熱変性前の電子顕微鏡写真である。It is an electron micrograph before heat denaturation of a tile among brick granular materials. コンクリート二次製品類粉粒体のうち、側溝の熱変性前の電子顕微鏡写真である。It is an electron micrograph before heat denaturation of a side groove among concrete secondary product granular materials. 本発明の凝灰岩類粉粒体に属する大谷石の汚染水に対する放射性物質の吸着除去状況をゼオライトと比較しつつ示すグラフ図で、(A)が熱変性前のCPM(1分間当りの放射線量)を示すグラフ、(B)が熱変性後のCPMを示すグラフ、(C)が熱変性後のSe値を比較したグラフ、(D)が熱変性後のSr値を示すグラフである。It is a graph showing the adsorption and removal status of radioactive materials with respect to contaminated water of Otani stone belonging to the tuff granule of the present invention, comparing with zeolite, (A) is CPM before heat denaturation (radiation dose per minute) (B) is a graph showing CPM after heat denaturation, (C) is a graph comparing Se values after heat denaturation, and (D) is a graph showing Sr values after heat denaturation. 本発明の軽石類粉粒体に属する人工軽量気泡コンクリート(ALC)の汚染水に対する吸着除去状況をゼオライトと比較しつつ示すグラフ図で、(A)が熱変性前のCPMを示すグラフ、(B)が熱変性後のCPMを示すグラフ、(C)が熱変性後のSe値を比較したグラフ、(D)が熱変性後のSr値を示すグラフである。The graph which shows the adsorption removal condition with respect to the contaminated water of the artificial lightweight aerated concrete (ALC) which belongs to the pumice granular material of this invention, comparing with a zeolite, (A) is a graph which shows CPM before heat denaturation, (B ) Is a graph showing CPM after heat denaturation, (C) is a graph comparing Se values after heat denaturation, and (D) is a graph showing Sr values after heat denaturation. 本発明のレンガ類粉粒体に属するレンガの汚染水に対する吸着除去状況をゼオライトと比較しつつ示すグラフ図で、(A)が熱変性前のCPMを示すグラフ、(B)が熱変性後のCPMを示すグラフ、(C)が熱変性後のSe値を比較したグラフ、(D)が熱変性後のSr値を示すグラフである。The graph which shows the adsorption removal condition with respect to the contaminated water of the brick which belongs to the brick granular material of this invention comparing with a zeolite, (A) is a graph which shows CPM before heat denaturation, (B) is after heat denaturation. A graph showing CPM, (C) is a graph comparing Se values after heat denaturation, and (D) is a graph showing Sr values after heat denaturation. 本発明のコンクリート二次製品類粉粒体に属する側溝の汚染水に対する吸着除去状況をゼオライトと比較しつつ示すグラフ図で、(A)が熱変性前のCPMを示すグラフ、(B)が熱変性後のCPMを示すグラフ、(C)が熱変性後のSe値を比較したグラフ、(D)が熱変性後のSr値を示すグラフである。The graph which shows the adsorption removal condition with respect to the contaminated water of the side groove | channel which belongs to the concrete secondary product granular material of this invention, comparing with a zeolite, (A) is a graph which shows CPM before heat denaturation, (B) is heat The graph which shows CPM after modification | denaturation, (C) is the graph which compared Se value after heat denaturation, (D) is a graph which shows Sr value after heat denaturation.

そこで本発明の実施の形態を図1〜図11に基づき、説明する。
本発明は、凝灰岩類粉粒体、軽石類粉粒体、レンガ粉類、コンクリート二次製品類粉粒体の4種の粉粒体、ガラス質材粉および発泡材粉を構成素材とするが、各素材の機能等を説明する。
Accordingly, an embodiment of the present invention will be described with reference to FIGS.
The present invention comprises four types of granular materials, tuff powder, foam material powder and foam material powder of tuff powder powder, pumice powder granular material, brick powder, concrete secondary product granular material. The function of each material will be described.

先ず、凝灰岩類粉粒体、軽石類粉粒体、レンガ類粉粒体、コンクリート二次製品類粉粒体の4種の粉粒体について説明する。
1つ目のグループの凝灰岩類粉粒体は、大谷石、若草石、深岩石等の凝灰岩で構成され、SiO2(66.96%)、Al2O3(12.55%)を主成分とし、これにNa2O(2.87%)、K2O(2.35%)等を含んで、内部に多孔質を形成する(括弧内は大谷石の成分値を示す)。
図1による電子顕微鏡写真に示される如く、内部には多孔質が形成されていることが確認できる。
斯かる凝灰岩類粉粒体は、放射性物質の吸着能に優れ、後述する本発明加熱に伴う熱変性による改質後には、例えば場大谷石はシンチレーションLSC7400カウンターによるCPM(総線量)値が改質前60から改質後に20に低下するという(ゼオライトを上まわる)顕著な吸着効果を示す(図8(A)(B))。
即ち、改質前、ゼオライトのCPMが25であったのに対し、大谷石は60とゼオライトには劣った値であったが、改質後にはCPM値が20となり、ゼオライトの25を上まわる値を示した。
放射性物質にあってセシウム(Cs)とストロンチウム(Sr)に分けて測定したところ、Csにあっては、改質後の線量値が0.002を示し、Srにあっては0.0075を示し、いずれも優れた吸着能が確認された(図8(C))。
特に、Srにあっては、ゼオライトの0.36に対し、改質後の大谷石は0.0075と極めて優れた値を示し、Srの吸着特性に優れることが確認された(図8(D))。
尚、本願の混合粉粒体に対しては、比較対象として放射性物質に対し優れた吸着能を示すゼオライトを挙げ、このゼオライトとの比較で性能比較を行うこととした。
First, four types of granular materials, tuff granule, pumice granular material, brick granular material, and concrete secondary product granular material will be described.
The first group of tuff granulates is composed of tuff such as Otani stone, Wakakusa stone, and pebble stone, and mainly composed of SiO 2 (66.96%) and Al 2 O 3 (12.55%). This contains Na 2 O (2.87%), K 2 O (2.35%), etc., and forms a porous structure inside (the parentheses indicate the component values of Oyaishi).
As shown in the electron micrograph according to FIG. 1, it can be confirmed that a porous material is formed inside.
Such tuff particles are excellent in the ability to adsorb radioactive substances, and after modification by thermal denaturation accompanying the heating of the present invention, which will be described later, for example, Oyaishi has a CPM (total dose) value modified by a scintillation LSC7400 counter. It shows a remarkable adsorption effect (over zeolite over) from the front 60 to 20 after reforming (FIGS. 8A and 8B).
That is, before the modification, the CPM of the zeolite was 25, whereas Otaniishi was 60, which was inferior to the zeolite, but after the modification, the CPM value was 20, which exceeded 25 of the zeolite. The value is shown.
When it was a radioactive substance and was measured separately for cesium (Cs) and strontium (Sr), the dose value after modification showed 0.002 for Cs, and 0.0075 for Sr. In both cases, excellent adsorption ability was confirmed (FIG. 8C).
In particular, in the case of Sr, Oyaishi after modification showed an extremely excellent value of 0.0075 compared to 0.36 of zeolite, and it was confirmed that the adsorption characteristics of Sr were excellent (FIG. 8 (D )).
In addition, with respect to the mixed granular material of the present application, a zeolite that exhibits an excellent adsorbing ability with respect to a radioactive substance is cited as a comparison object, and the performance comparison is performed by comparison with this zeolite.

2つ目のグループの軽石類粉粒体は、ヘーベル(商標)等の人工軽量気泡コンクリート(ALC)、又は天然軽石で構成され、SiO2(47.9%)、Al2O3(12.47%)にCaO(32.8%)等が加わり、気泡性コンクリートの特徴としての多孔性を示す(括弧内はALCの成分値を示す)。
天然軽石においては、SiO2(61.75%)、Al2O3(11.88%)に、Fe2O3(5.99%)、CaO(6.67%)等の成分組成を示す。
図2及び図3による電子顕微鏡写真に示される如く、内部には多孔質が形成されていることが確認できる。
斯かる軽石類粉粒体は、上記凝灰岩には及ばないものの優れた放射性物質の吸着能を示す。
即ち、例えばALCにあっては、図9(A)(B)に示す如く、改質前にあっては、CPMが53とゼオライトの25に劣るが、改質後にあってはCPM31とゼオライトの25に近づく優れた吸着能を示した。
Cs値は、改質後にあっては0.0052とゼオライトの0.003に近い値を示し、Srにあっても、改質後にはゼオライトの0.36に対し0.58の値を示した(図8(C)(D))。
The second group of pumice grains is composed of artificial lightweight cellular concrete (ALC) such as Hebel (trademark) or natural pumice, and is composed of SiO 2 (47.9%), Al 2 O 3 (12. 47%) and CaO (32.8%) are added to show porosity as a feature of the cellular concrete (the values in parentheses indicate ALC component values).
In natural pumice, SiO 2 (61.75%), Al 2 O 3 (11.88%), Fe 2 O 3 (5.99%), CaO (6.67%), etc. are shown. .
As shown in the electron micrographs shown in FIGS. 2 and 3, it can be confirmed that a porous material is formed inside.
Such a pumice powder granule exhibits an excellent ability to adsorb radioactive substances, although it does not reach the tuff.
That is, for example, in ALC, as shown in FIGS. 9A and 9B, CPM is inferior to 53 and 25 of zeolite before reforming, but after reforming, CPM31 and zeolite Excellent adsorption capacity approaching 25 was exhibited.
The Cs value was 0.0052, which was close to 0.003 of the zeolite after the modification, and even in Sr, the value was 0.58 relative to 0.36 of the zeolite after the modification. (FIGS. 8C and 8D).

3つ目のグループのレンガ粉類粉粒体は、粘土を一定以上の温度で加熱して固化させてなるもので、レンガ、瓦、タイルのいずれかからなり、SiO2(62.8%)、Al2O3(22.9%)を主成分とし,これにFe2O3(6.78%)、CaO(0.95%)、MgO(1.47%)等を含めてなる。
瓦は、SiO2(50.08%)、Al2O3(10.22%)、Fe2O3(6.21%)、CaO(11.15%)、Na2O(1.67%)、K2O(4.53%)等の成分組成を示す。
タイルは、SiO2(71.36%)、Al2O3(19.57%)、Na2O(0.94%)、K2O(1.39%)等の成分組成を示す。
図4、図5、図6による電子顕微鏡写真に示される如く、内部に微細な空隙を有していることが確認できる。
斯かるレンガ粉類粉粒体は、改質後のCPMはゼオライトと同等であるが、Srはゼオライトを上まわるという優れた特性が確認された。
即ち、例えば、レンガは図10(A)(B)に示す如く、改質前のCPMは43で25のゼオライトに劣るが、改質後にはCPM値28と25のゼオライトと同等の値を示した。
Cs値にあっては、0.0015と0.0003のゼオライトと同等の値を示すが、Srにあっては0.36のゼオライトに対して0.035とゼオライトを大幅に上まわる優れた吸着特性が確認された(図10(C)(D))。
The third group of powdered bricks is made by solidifying by heating clay at a temperature above a certain level. It consists of bricks, tiles or tiles. SiO 2 (62.8%) , Al 2 O 3 (22.9%) as a main component, which includes Fe 2 O 3 (6.78%), CaO (0.95%), MgO (1.47%), and the like.
The roof tiles are SiO 2 (50.08%), Al 2 O 3 (10.22%), Fe 2 O 3 (6.21%), CaO (11.15%), Na 2 O (1.67%). ) And K 2 O (4.53%).
The tile has a component composition such as SiO 2 (71.36%), Al 2 O 3 (19.57%), Na 2 O (0.94%), K 2 O (1.39%).
As shown in the electron micrographs shown in FIGS. 4, 5, and 6, it can be confirmed that there are fine voids inside.
Such brick powder particles were confirmed to have excellent properties in that the CPM after modification was equivalent to zeolite, but Sr was superior to zeolite.
That is, for example, as shown in FIGS. 10 (A) and 10 (B), the CPM before reforming is 43, which is inferior to 25 zeolite, but after reforming, CPM values 28 and 25 are equivalent to zeolite. It was.
The Cs value shows the same value as 0.0015 and 0.0003 zeolite, but Sr has an excellent adsorption that greatly exceeds 0.035 for 0.36 zeolite. The characteristics were confirmed (FIGS. 10C and 10D).

4つ目のグループのコンクリート二次製品類粉粒体は、側溝、排水溝、マンホール、ヒューム管、縁石等のコンクリートの二次製品を指し、SiO2(76.83%)、Al2O3(12.47%)、を主成分とし、これにCaO(12.3%)、Fe2O3(1.0%)、Na2O(3.5%)、K2O(5.0%)等を含めてなる。
図7による電子顕微鏡写真に示される如く、レンガと同様内部に微細な空隙を有していることが確認される。
斯かるコンクリート二次製品類粉粒体は、凝灰岩には及ばないが、優れた放射性物質の吸着能を示す。
即ち、例えば側溝は、図11(A)(B)に示す如く、改質前のCPMは32でゼオライトの25に近く、改質後にあってはCPM28とゼオライトの25に近づく優れた吸着能を示した。
Cs値は、改質後にあっては0.0011とゼオライトの0.003に近い値を示し、Srにあっても、改質後にはゼオライトの0.36に対し0.6の値を示した(図11(C)(D))。
The fourth group of concrete secondary product granular materials refers to concrete secondary products such as side grooves, drainage grooves, manholes, fume pipes, curbs, etc., SiO 2 (76.83%), Al 2 O 3 (12.47%) as a main component, and CaO (12.3%), Fe 2 O 3 (1.0%), Na 2 O (3.5%), K 2 O (5.0 %) Etc.
As shown in the electron micrograph according to FIG. 7, it is confirmed that there are fine voids inside as with the brick.
Such a concrete secondary product granular material does not reach tuff, but exhibits an excellent radioactive substance adsorbing ability.
That is, for example, as shown in FIGS. 11 (A) and 11 (B), the side groove has an excellent adsorptive capacity close to 25 of zeolite, with CPM before modification being 32, and close to 25 of zeolite and CPM after modification. Indicated.
The Cs value was 0.0011, which was close to 0.003 of the zeolite after the modification, and even in Sr, the value was 0.6 relative to 0.36 of the zeolite after the modification. (FIGS. 11C and 11D).

上記グループの特性を要約すると、1つ目のグループ(凝灰岩類粉粒体)は、改質後のCPM値、Cs値、Sr値のいずれにも優れた吸着能を示し、2つ目のグループ(軽石類粉粒体)は、改質後のCPM値、Cs値に優れた吸着能を示し、3つ目のグループ(レンガ類粉粒体)は、改質後のCPM値、Cs値、Sr値、特にSr値に優れた吸着能を示し、4つ目のグループ(コンクリート二次製品類粉粒体)は、改質後のCPM値、Cs値に優れた吸着能を示す。又、グループ毎に、異なる組織成分の比率や、空隙形態の違いが見られる。
従って、これら異なるグループの特性を考慮し、グループの選択を組み合わせることにより、目的とする放射性物質の吸着をどう具現させるかの手段が決定される。
例えば、全体的にCPMの減少を目的とする場合にはグループ1またはグループ2を選択すると共にその割合を増やすが、特にCsを吸着の対象とする場合には、グループ2及び4を加えて広いグループの選択が可能となる。特にSrの吸着を対象とする場合には、グループ1及びグループ3の活用が有効となる。且つ、この放射性物質の吸着特性に加えて、各グループの組織成分や、硬度、空隙性、軽量性等を加えて総合的に判断するものとする。
組み合わせは、4種のグループのうち異なる2種以上のグループを選び、その選ばれたグループの中から少なくとも1つ以上の材料を選択して組合わせる。従って、目的に合わせて2組、3組及び4組と組み合わせを変え、又、そのグループの中から属する素材の選択を変えることも可能である。
Summarizing the characteristics of the above group, the first group (tuffstone granule) showed excellent adsorbing ability in all of the modified CPM value, Cs value, and Sr value. (Pumice granular material) shows the adsorbing ability excellent in CPM value and Cs value after modification, and the third group (brick granular material) is CPM value, Cs value after modification, Adsorption ability excellent in Sr value, especially Sr value is shown, and the fourth group (concrete secondary product powder) shows excellent adsorption ability in CPM value and Cs value after modification. Moreover, the difference of the ratio of a different structure | tissue component and a void | hole form is seen for every group.
Therefore, in consideration of the characteristics of these different groups, a combination of group selections determines how to implement the intended radioactive substance adsorption.
For example, when the objective is to reduce CPM as a whole, group 1 or group 2 is selected and its ratio is increased. In particular, when Cs is the target of adsorption, groups 2 and 4 are added to increase the ratio. A group can be selected. In particular, when targeting Sr adsorption, the use of group 1 and group 3 is effective. Further, in addition to the adsorption characteristics of the radioactive substance, a comprehensive determination is made by adding the tissue components of each group, hardness, porosity, lightness, and the like.
In the combination, two or more different groups are selected from the four groups, and at least one material is selected from the selected groups and combined. Therefore, it is possible to change the combination of 2, 3, and 4 according to the purpose, and to change the selection of the material belonging to the group.

次いで、上記粉粒体はガラス質材粉及び発泡材粉を混合するが、先ずガラス質材粉について説明する。
ガラス質材粉は窓用板ガラス、コップ、ビンなどを原料とし、クラッシャーに掛けて粉砕し、粒子径を1〜1000μmの粉粒体とする。ガラス質材粉は、上記粉粒体や発泡材粉より先に700℃位の低い温度でその表面の軟化溶融が始まり、昇温につれて軟化した溶融ガラスに混合粉粒体及び発泡材粉が付着し、互いが結合された状態となる。
このとき、該ガラス質材粉は、混合粉粒体200〜300重量部に対して、100重量部と比較的含有割合が少ないので、全体が堅蜜に固まったものではなく、ガラスを融着の中心点としその四方に混合粉粒体が継がれた形態となり、後述の如く加熱すると、ガラス質が粉粒体の個々を融着し、それ以外の融着の少ない部分が空孔や通気孔となり、立体的には多孔質性粉粒体として現れることになる。
Subsequently, although the said granular material mixes glass material powder and foaming material powder, glass material powder is demonstrated first.
The glassy material powder is made from window glass, cups, bottles and the like as raw materials, crushed by a crusher, and made into a granular material having a particle diameter of 1-1000 μm. The glassy material powder begins to soften and melt at a temperature as low as 700 ° C. prior to the powder and foam powder, and the mixed powder and foam powder adhere to the molten glass softened as the temperature rises. Then, they are connected to each other.
At this time, since the vitreous material powder has a relatively small content ratio of 100 parts by weight with respect to 200 to 300 parts by weight of the mixed granular material, the whole is not hardened and the glass is fused. When heated as described below, the vitreous material melts the individual particles, and the other parts with less fusion are pores and through holes. It becomes pores and appears three-dimensionally as a porous granular material.

次いで、該発泡材粉は、例えば、あこや貝殻、ほたて貝殻、牡蠣殻など貝殻由来の炭酸カルシウム粉体とし、0.6〜15重量部の配合割合とすると共に、その粒子径を1〜1000μmの粉体、粒体とする。貝殻の場合には、海水の塩分は該無機系粉体の発泡を阻害するので、水洗するか、自然放置して塩分を除去する。粒子径を1〜1000μmとしたのは、炭酸カルシウムが熱分解して多量の二酸化炭素を発生させ得る粒子径としたもので、この二酸化炭素が、上記軟化したガラス質材粉によって結合して一旦塊状となったものを膨出させ、これを炉から出して冷却させて連続気泡と発泡空隙体を含んだカルメ状の膨張固体とする。
このカルメ状の膨張体は、表面積の非常に大きいAl2O3-SiO2系非晶質粉粒体となると共に、比較的脆い性状を備える。そこで、最終段階として、これを粉砕機等で粉砕して粒状体とし、粒状吸着材として利用し易い形態とする。
Next, the foamed powder is, for example, calcium carbonate powder derived from shells such as coconut shells, scallop shells, oyster shells, and the blending ratio is 0.6 to 15 parts by weight, and the particle diameter is 1 to 1000 μm. Use powder and granules. In the case of shells, the salt content of seawater inhibits the foaming of the inorganic powder, so it is washed with water or left to stand to remove the salt content. The particle diameter was set to 1 to 1000 μm because the calcium carbonate was thermally decomposed to generate a large amount of carbon dioxide, which was once bound by the softened glassy material powder. The agglomerated material is swelled, and it is taken out of the furnace and cooled to obtain a calme-like expanded solid containing open cells and foamed voids.
This carme-like expanded body becomes an Al 2 O 3 —SiO 2 -based amorphous granular material having a very large surface area and has relatively brittle properties. Therefore, as a final stage, this is pulverized with a pulverizer or the like to form a granular material, which is easily used as a granular adsorbent.

上記各混合すべき素材の配合割合を示すと表1の如くとなる。
Table 1 shows the blending ratio of the materials to be mixed.

さて、上記700℃〜900℃の加熱過程において、Al2O3-SiO2系構造体をなす混合粉粒体には下記の熱変性が惹起されることが確認された。
即ち、上記4つのグループからなる混合粉粒体にあっては、700〜900℃の加熱によって、放射性物質の吸着能に大幅な能力向上が見られる。
例えば、大谷石にあっては、シンチレーションLSC7400カウンターによるCPM値が改質前の60から改質後には20に低下し、Csにあっては、改質後の線量値が0.002を示し、Srにあっては0.0075を示し、いずれも吸着能の向上が確認されている。他の粉粒体にあっても、同様の吸着能の向上がみられることは前述の通りである。
このように、700〜900℃の加熱によって、放射性物質の吸着能に大幅な向上がみられる(これを上述の如く熱変性又は改質と呼んだ)が、この熱変性が起こる原因については、未だ正確な理由は定かではないが、以下の如くに推察される。
即ち、上記の如く、本発明に列挙した4つのグループに属する粉粒体は、主体となるAl2O3-SiO2系構造体に、CaO、Fe2O3、Na2O、K2O、TiO2等の成分が加わり、Na2O-Al2O3-SiO2系、CaO-K2O-Al2O3-SiO2系、Fe2O3-TiO2-
Na2O-Al2O3-SiO2系などの非晶質体を形成するが、この非晶質体は、全体が結晶体にはよらないものの、一部には結晶質が含まれるものと解され、斯かる非晶質体に700℃〜900℃の熱が加えられ且つ冷却されると、全体的な非晶質と一部の結晶質との間に相互作用が惹起され、全体の結合形態に何らかの変化が促される。その結合形態の変化により、放射性物質の吸着特性等に性能変化が生まれ、この結果、一部のものはゼオライトの放射性物質の吸着特性に近づき、或いは一部のものはゼオライトを超える特性を備えるに至るものと考えられる。
In the heating process at 700 ° C. to 900 ° C., it was confirmed that the following thermal denaturation is induced in the mixed powder particles forming the Al 2 O 3 —SiO 2 structure.
That is, in the mixed granular material consisting of the above four groups, a significant improvement in the ability to adsorb radioactive substances can be seen by heating at 700 to 900 ° C.
For example, in Otani stone, the CPM value by the scintillation LSC7400 counter decreases from 60 before reforming to 20 after reforming, and in Cs, the dose value after reforming shows 0.002. In Sr, it shows 0.0075, and it has been confirmed that the adsorption capacity is improved. As described above, the same adsorptive capacity is improved even in other granular materials.
As described above, the heating at 700 to 900 ° C. shows a significant improvement in the ability to adsorb radioactive substances (this was called thermal denaturation or modification as described above). The cause of this thermal denaturation is as follows. The exact reason is not clear yet, but it is presumed as follows.
That is, as described above, the granular materials belonging to the four groups listed in the present invention have CaO, Fe 2 O 3 , Na 2 O, K 2 O in the main Al 2 O 3 —SiO 2 structure. , TiO 2 and other components added, Na 2 O-Al 2 O 3 -SiO 2 system, CaO-K 2 O-Al 2 O 3 -SiO 2 system, Fe 2 O 3 -TiO 2-
Forms an amorphous body such as Na 2 O-Al 2 O 3 -SiO 2, but this amorphous body does not depend on the crystalline body, but partly contains crystalline It is understood that when 700 ° C. to 900 ° C. heat is applied to such an amorphous body and cooled, an interaction is induced between the entire amorphous body and a part of the crystalline body, Some kind of change is urged. Due to the change in the binding form, performance changes occur in the adsorption characteristics etc. of radioactive substances. As a result, some of them approach the adsorption characteristics of zeolite radioactive substances, or some have characteristics that exceed those of zeolite. It is thought that

本発明吸着材は、主に放射性物質の吸着にその優れた特性を発揮することが確認されたが、上記特性から、重金属等の吸着にも応用が可能である。   Although it has been confirmed that the adsorbent of the present invention exhibits excellent characteristics mainly for the adsorption of radioactive substances, the above characteristics can also be applied to adsorption of heavy metals and the like.

尚、上記放射性物質の総放射線量(CPM)の測定方法は、放射性物質総放射線の数150cpmを放射する汚染水に、熱処理前の粉体と熱処理後の粉体とを夫々30分間撹拌することで吸着させ、その後夫々をろ過処理してシンチレーションLSC7400にて計測し、測定値をcpmとした。
又、セシウム及びストロンチウム吸着の測定方法は、セシウム及びストロンチウム濃度1ppmの汚染水に、質量比4%の熱処理後の粉体を添加し、30分間撹拌することで放射性物質を吸着させ、その後、該粉体をろ過処理して、処理後の汚染水の放射性物質の濃度をICP質量分析装置(Agilent Technologies 社製、Agilent 7500cx )にて計測し、測定値をppmとした。
The method for measuring the total radiation dose (CPM) of the radioactive material is to stir the powder before heat treatment and the powder after heat treatment for 30 minutes in contaminated water that radiates several 150 cpm of total radiation of radioactive material. Then, each was filtered and measured with scintillation LSC7400, and the measured value was cpm.
In addition, the method for measuring cesium and strontium adsorption is to add 4% mass powder after heat treatment to contaminated water with a cesium and strontium concentration of 1 ppm, and stir for 30 minutes to adsorb the radioactive material. The powder was filtered, and the concentration of radioactive material in the contaminated water after the treatment was measured with an ICP mass spectrometer (Agilent Technologies, Agilent 7500cx), and the measured value was ppm.

本発明は、凝灰岩類粉粒体、軽石類粉粒体、レンガ粉類、コンクリート二次製品類粉粒体に廃棄物を利用することができるので、これを活用して安価で量産容易な放射性物質の吸着材が具現できる。
In the present invention, waste can be used for tuff granule, pumice granule, brick powder, concrete secondary product granule, and it is cheap and easy to mass produce using this. Can adsorb material.

Claims (4)

a)ガラス質材粉100重量部と、
大谷石、若草石、深岩石等を砕いてなる凝灰岩類粉粒体と、人工軽量気泡コンクリート又は天然軽石を砕いてなる軽石類粉粒体と、レンガ、瓦、タイルからなる群のうち少なくとも1つ以上を砕いてなるレンガ類粉粒体と、コンクリート二次製品を砕いてなるコンクリート二次製品類粉粒体との4種のグループのうち異なる2種以上のグループを選び、その選ばれたグループの中から少なくとも1つ以上の材料を選択して組合わせた混合粉粒体を200〜300重量部と、
発泡材粉0.6〜15重量部と、
を混合し、
b)上記混合物を700〜900℃の範囲で加熱して熱変性を促すと共に、発泡を伴って連続気泡を含んだ塊状とし、
c)該塊状化したものを冷却後砕いて粒状体を得る、
ことを特徴とする粒状吸着材。
a) 100 parts by weight of vitreous material powder;
At least one of the group consisting of tuffstone granule made by crushing Otani stone, Wakakusa stone, deep rock stone, etc., pumice granule made by crushing artificial lightweight cellular concrete or natural pumice, and brick, tile, tile Two or more different groups were selected from the four groups of bricks and granules made by crushing two or more and concrete secondary products and granules made by crushing a secondary concrete product. 200 to 300 parts by weight of a mixed granular material obtained by selecting and combining at least one material from a group;
0.6 to 15 parts by weight of foam material powder,
Mix and
b) The above mixture is heated in the range of 700 to 900 ° C. to promote thermal denaturation, and into a lump containing open cells with foaming,
c) The agglomerated material is crushed after cooling to obtain a granular material,
A granular adsorbent characterized by that.
混合粉粒体を、その粒子径を1〜1000μmの粉粒体としてなる請求項1記載の粒状吸着材。 The granular adsorbent according to claim 1, wherein the mixed granular material is a granular material having a particle diameter of 1 to 1000 µm. ガラス質材粉を、窓用板ガラス及び/又はコップ及び/又はビンとし、その粒子径を1〜1000μmの粉粒体としてなる請求項1又は2に記載の粒状吸着材。   The granular adsorbent according to claim 1 or 2, wherein the vitreous material powder is window glass and / or a cup and / or a bottle, and the particle diameter thereof is a granular material having a particle diameter of 1 to 1000 µm. 発泡材粉を、あこや貝殻、ほたて貝殻、牡蠣殻等の貝殻由来の炭酸カルシウムとし、その粒子径を1〜1000μmの粉粒体としてなる請求項1〜3のいずれかに記載の粒状吸着材。
The granular adsorbent according to any one of claims 1 to 3, wherein the foamed material powder is calcium carbonate derived from shells such as oyster shells, scallop shells, oyster shells, and the like, and the particle size is in the form of powder having a particle diameter of 1 to 1000 µm.
JP2012099426A 2012-04-25 2012-04-25 Granular adsorbent Active JP6005389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012099426A JP6005389B2 (en) 2012-04-25 2012-04-25 Granular adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012099426A JP6005389B2 (en) 2012-04-25 2012-04-25 Granular adsorbent

Publications (2)

Publication Number Publication Date
JP2013226494A true JP2013226494A (en) 2013-11-07
JP6005389B2 JP6005389B2 (en) 2016-10-12

Family

ID=49674761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012099426A Active JP6005389B2 (en) 2012-04-25 2012-04-25 Granular adsorbent

Country Status (1)

Country Link
JP (1) JP6005389B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173847A (en) * 2013-03-05 2014-09-22 Toyokazutada Kk Radioactive element adsorbent and radioactive element removal method, and processing method for adsorbent on which radioactive element is adsorbed

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070125A (en) * 2004-08-13 2007-03-22 Kaizo Furukawa Glass foamed body
JP2013174544A (en) * 2012-02-27 2013-09-05 Junichi Iwamura Radioactive material remover and radioactive material separation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070125A (en) * 2004-08-13 2007-03-22 Kaizo Furukawa Glass foamed body
JP2013174544A (en) * 2012-02-27 2013-09-05 Junichi Iwamura Radioactive material remover and radioactive material separation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173847A (en) * 2013-03-05 2014-09-22 Toyokazutada Kk Radioactive element adsorbent and radioactive element removal method, and processing method for adsorbent on which radioactive element is adsorbed

Also Published As

Publication number Publication date
JP6005389B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
Okada et al. Water-retention properties of porous ceramics prepared from mixtures of allophane and vermiculite for materials to counteract heat island effects
CN108164224A (en) A kind of preparation method of the environment friendly pervious concrete of highway engineering
JP6005389B2 (en) Granular adsorbent
KR101461073B1 (en) Functional adhesive composition and method of manufacturing the same
JP4494311B2 (en) Glass foam
CN104446171A (en) Building material
JP5037797B2 (en) Porous lightweight material and manufacturing method thereof
JP5959832B2 (en) Porous ceramic using volcanic ash as raw material and method for producing the same
CN106631149A (en) Gravel-shaped light ceramsite with air purification function and volcaniclastic rock
KR101427360B1 (en) Chaff charcoal board for the construction material and a manufacturing method thereof
CN106431301A (en) Rubble-shaped light fly ash ceramsite with air purification function
CN106431267A (en) Round-ball-shaped tephra light-weight through hole porcelain granule with air purification function
CN106396630A (en) Crushed stone-type alumina light ceramsite with air purifying function
WO2017154078A1 (en) Coal ash granules, method for producing same, and method for improving bed of water
CN106431259A (en) Light gravel-shaped bagasse fly ash-containing ceramsite with air purification function
JP2005350333A (en) Environmental protection type lightweight concrete
CN106431229A (en) Rubble-shaped molecular sieve lightweight ceramsite with air purification function
CN106431325A (en) Production method of multifunctional plum-blossom-shaped water-granulated slag lightweight through-hole ceramsite
CN106431281A (en) Spherical light kaolin ceramsite with air purification function and through holes
CN106467410A (en) Gravel has the volcanic ash light ceramic of air purification function
JP2003212640A (en) Inorganic foamed body, its composition and its manufacturing method
JP2005139038A (en) Foam glass grain and its manufacturing method
JP2006016227A5 (en)
CN106431275A (en) Aggregate lightweight wollastonite ceramic granules with air purification function
CN106431294A (en) Aggregate lightweight red mud ceramic granules with air purification function

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150320

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160907

R150 Certificate of patent or registration of utility model

Ref document number: 6005389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250