JP2014173847A - Radioactive element adsorbent and radioactive element removal method, and processing method for adsorbent on which radioactive element is adsorbed - Google Patents

Radioactive element adsorbent and radioactive element removal method, and processing method for adsorbent on which radioactive element is adsorbed Download PDF

Info

Publication number
JP2014173847A
JP2014173847A JP2013043483A JP2013043483A JP2014173847A JP 2014173847 A JP2014173847 A JP 2014173847A JP 2013043483 A JP2013043483 A JP 2013043483A JP 2013043483 A JP2013043483 A JP 2013043483A JP 2014173847 A JP2014173847 A JP 2014173847A
Authority
JP
Japan
Prior art keywords
adsorbent
radioactive element
acid
alkali metal
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013043483A
Other languages
Japanese (ja)
Other versions
JP6074802B2 (en
Inventor
Yutaka Uehara
豊 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYOKAZUTADA KK
Original Assignee
TOYOKAZUTADA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYOKAZUTADA KK filed Critical TOYOKAZUTADA KK
Priority to JP2013043483A priority Critical patent/JP6074802B2/en
Publication of JP2014173847A publication Critical patent/JP2014173847A/en
Application granted granted Critical
Publication of JP6074802B2 publication Critical patent/JP6074802B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radioactive element adsorbent that can efficiently and rapidly adsorb and remove a radioactive element, and can further prevent the radioactive element from flowing out by rainwater or the like from the adsorbent on which the radioactive element is adsorbed.SOLUTION: The radioactive element adsorbent contains a granular material composition including (A) one kind or two kinds or more of volcanic ejecta foams and (B) inorganic salt exhibiting alkaline so that a weight ratio of (A) and (B) [(A):(B)] is between 1:0.3 and 1:1.5.

Description

本発明は、火山噴出物発泡体を使用して簡便に調製することができ、放射性物質を含む土壌、水および気体の浄化を目的として使用される放射性元素吸着剤に関する。   The present invention relates to a radioactive element adsorbent that can be easily prepared using a volcanic ejecta foam and is used for the purpose of purifying soil, water, and gas containing radioactive substances.

2011年3月11日の東日本大震災の際、原子力発電所の事故が発生してから2年近く経過したが、漏出した放射能による環境汚染が深刻な問題となっている。また住宅などの除染に使用した汚染水を直接、河川に廃棄する事案などが問題になっている。学校、幼稚園など公共施設の汚染土壌も、フレキシブルコンテナバッグに入れられたまま山積みに放置されていて、解決策が見出せないまま深刻な問題となっている。高い放射能の被爆は、人類、動物、植物などあらゆる生命体に対して重大な影響を及ぼす。従って、放射性セシウム等の放射性元素を迅速かつ効率的に除去し得る除去剤または処理剤が求められている。   Nearly two years have passed since the accident of the nuclear power plant during the Great East Japan Earthquake on March 11, 2011, but environmental pollution due to leaked radioactivity has become a serious problem. Another problem is the disposal of contaminated water used for decontamination of houses directly into rivers. Contaminated soil in public facilities such as schools and kindergartens is also left as a pile in flexible container bags, and there is a serious problem without finding a solution. High radiation exposure has a significant impact on all life forms such as human beings, animals and plants. Accordingly, there is a need for a removal agent or treatment agent that can quickly and efficiently remove radioactive elements such as radioactive cesium.

放射性セシウム等の放射性元素の除去には、陽イオン交換能を有するゼオライトが汎用される。また、放射性元素を含む汚染水に対し、逆浸透膜を用いたろ過による除去が検討されている(非特許文献1)。   For the removal of radioactive elements such as radioactive cesium, zeolite having a cation exchange capacity is widely used. Moreover, removal by filtration using a reverse osmosis membrane is examined with respect to the contaminated water containing a radioactive element (nonpatent literature 1).

しかし、吸着塔による放射性セシウムの除去に必要なゼオライト量および交換頻度を試算したところ、ゼオライトの使用可能期間が短く(非特許文献1)、多量の放射性元素を含むゼオライトの蓄積およびその処理が問題となる。また、逆浸透膜による除去処理については、放射性元素の濃縮水が発生し、その処理が問題となる(非特許文献1)。さらに、逆浸透膜は有機物であるため、その焼却処理によるセシウム等放射性元素の放出、および放射性元素を含む焼却灰の処理も問題となる。   However, when the amount of zeolite necessary for the removal of radioactive cesium by the adsorption tower and the frequency of exchange were calculated, the usable period of zeolite was short (Non-patent Document 1), and the accumulation and treatment of zeolite containing a large amount of radioactive elements was a problem. It becomes. Moreover, about the removal process by a reverse osmosis membrane, the concentrated water of a radioactive element generate | occur | produces and the process becomes a problem (nonpatent literature 1). Further, since the reverse osmosis membrane is an organic substance, the release of radioactive elements such as cesium by the incineration treatment and the treatment of incinerated ash containing the radioactive elements are also problematic.

放射性物質の挙動からみた適正な廃棄物処理処分(技術資料),平成23年12月2日第一版,(独)国立環境研究所 資源循環・廃棄物研究センター,pp.48−52Appropriate waste disposal from the viewpoint of the behavior of radioactive materials (technical data), December 2, 2011, first edition, National Institute for Environmental Studies, Resource Recycling and Waste Research Center, pp. 48-52

そこで、本発明は、放射性元素を効率的かつ迅速に吸着除去することができ、なおかつ放射性元素を吸着した吸着剤から、雨水などにより放射性元素が流出することのない放射性元素吸着剤を提供することを目的とする。   Accordingly, the present invention provides a radioactive element adsorbent that can adsorb and remove radioactive elements efficiently and quickly, and that does not cause radioactive elements to flow out of the adsorbent that adsorbs the radioactive elements due to rainwater or the like. With the goal.

本発明者は、上記課題を解決するべく鋭意研究した結果、火山噴出物発泡体の1種または2種以上と、アルカリ性を示す無機塩とを特定の重量比で含有する粉粒体組成物が、放射性元素の吸着除去機能に優れること、さらには、放射性元素を吸着した後において、簡単にガラス化または固化させ得ることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that a granular composition containing one or more of volcanic ejecta foams and an inorganic salt exhibiting alkalinity in a specific weight ratio. The present inventors have found that the present invention is excellent in the function of removing and adsorbing radioactive elements, and that it can be easily vitrified or solidified after adsorbing the radioactive elements.

すなわち本発明は、以下の通りである。
[1](A)火山噴出物発泡体の1種または2種以上と、(B)アルカリ性を示す無機塩とを、(A)と(B)の重量比[(A):(B)]が1:0.3〜1:1.5となるように含む粉粒体組成物を含有する、放射性元素吸着剤。
[2]粉粒体組成物に含まれる(A)火山噴出物発泡体の1種または2種以上と(B)アルカリ性を示す無機塩との重量比[(A):(B)]が1:0.8〜1:1.3である、上記[1]に記載の吸着剤。
[3]粉粒体組成物の平均粒子径が0.5mm〜6mmである、上記[1]または[2]に記載の吸着剤。
[4]火山噴出物発泡体の1種または2種以上が、シラス発泡体、黒曜石発泡体および真珠岩発泡体からなる群より選択される、上記[1]〜[3]のいずれかに記載の吸着剤。
[5]アルカリ性を示す無機塩が無機弱酸のアルカリ金属塩である、上記[1]〜[4]のいずれかに記載の吸着剤。
[6]無機弱酸のアルカリ金属塩が、オルトケイ酸、メタケイ酸およびメタ二ケイ酸のアルカリ金属塩からなる群より選択される1種または2種以上である、上記[5]に記載の吸着剤。
[7]粉粒体組成物が二酸化炭素により固化されたものである、上記[1]〜[6]のいずれかに記載の吸着剤。
[8]粉粒体組成物がパネル状に成形されている、上記[1]〜[7]のいずれかに記載の吸着剤。
[9]上記[1]〜[8]のいずれかに記載の吸着剤により放射性元素を吸着除去する、放射性元素の除去方法。
[10]上記[1]〜[8]のいずれかに記載の吸着剤を用いてなる、放射性元素の吸着除去装置。
[11]上記[1]〜[8]のいずれかに記載の吸着剤に放射性元素を吸着させた後、前記吸着剤を焼成してガラス化させる、放射性元素を吸着した吸着剤の処理方法。
[12]焼成する前に、ホウ酸およびその塩の1種または2種以上を加えて混合し、次いでケイ酸のアルカリ金属塩を加えて混合する、上記[11]に記載の処理方法。
[13]ホウ酸およびその塩の1種または2種以上が、オルトホウ酸およびホウ酸のナトリウム塩より選択される、上記[12]に記載の処理方法。
[14]焼成し、ガラス化させた後にセメントを加えて固化させる、上記[11]〜[13]のいずれかに記載の処理方法。
[15]焼成し、ガラス化させた後にケイ酸のアルカリ金属塩を加えて混合し、次いで二酸化炭素により固化させる、上記[11]〜[13]のいずれかに記載の処理方法。
[16]上記[1]〜[8]のいずれかに記載の吸着剤に放射性元素を吸着させた後、前記吸着剤にケイ酸のアルカリ金属塩を加えて混合し、次いで二酸化炭素により固化させる、放射性元素を吸着した吸着剤の処理方法。
[17]ケイ酸のアルカリ金属塩を加えて混合する前にセメントを添加混合する、上記[16]に記載の処理方法。
[18](A)火山噴出物発泡体の1種または2種以上と、(B)アルカリ性を示す無機塩とを、(A)と(B)の重量比[(A):(B)]が1:0.8〜1:1.3となるように含む、粉粒体組成物。
[19]粉粒体の平均粒子径が0.5mm〜6mmである、上記[18]に記載の組成物。
[20]火山噴出物発泡体の1種または2種以上が、シラス発泡体、黒曜石発泡体および真珠岩発泡体からなる群より選択される、上記[18]または[19]に記載の組成物。
[21]アルカリ性を示す無機塩が無機弱酸のアルカリ金属塩である、上記[18]〜[20]のいずれかに記載の組成物。
[22]無機弱酸のアルカリ金属塩がオルトケイ酸、メタケイ酸およびメタ二ケイ酸のアルカリ金属塩からなる群より選択される1種または2種以上である、上記[21]に記載の組成物。
[23]二酸化炭素により固化された、上記[18]〜[22]のいずれかに記載の組成物。
[24]パネル状に成形されている、上記[18]〜[23]のいずれかに記載の組成物。
[25](A)火山噴出物発泡体の1種または2種以上と、(B)アルカリ性を示す無機塩とを、(A)と(B)との重量比[(A):(B)]が1:0.8〜1:1.3となるように混合する工程を含む、粉粒体組成物の製造方法。
[26]さらに、造粒および/または整粒する工程を含む、上記[25]に記載の製造方法。
[27]火山噴出物発泡体の1種または2種以上が、シラス発泡体、黒曜石発泡体および真珠岩発泡体からなる群より選択される、上記[25]または[26]に記載の製造方法。
That is, the present invention is as follows.
[1] (A) One or more types of volcanic ejecta foams and (B) an inorganic salt exhibiting alkalinity, (A) and (B) weight ratio [(A): (B)] The radioactive element adsorbent containing the granular material composition which contains so that it may become 1: 0.3-1: 1.5.
[2] The weight ratio [(A) :( B)] of (A) one or more of volcanic ejecta foams contained in the granular composition and (B) an inorganic salt exhibiting alkalinity is 1 : The adsorbent according to [1], which is 0.8 to 1: 1.3.
[3] The adsorbent according to [1] or [2] above, wherein the average particle diameter of the granular composition is 0.5 mm to 6 mm.
[4] One or more of the volcanic ejecta foams are selected from the group consisting of shirasu foams, obsidian foams, and pearlite foams, according to any one of [1] to [3] above. Adsorbent.
[5] The adsorbent according to any one of [1] to [4], wherein the inorganic salt exhibiting alkalinity is an alkali metal salt of an inorganic weak acid.
[6] The adsorbent according to [5], wherein the alkali metal salt of the weak inorganic acid is one or more selected from the group consisting of alkali metal salts of orthosilicic acid, metasilicic acid and metadisilicic acid. .
[7] The adsorbent according to any one of [1] to [6] above, wherein the granular composition is solidified with carbon dioxide.
[8] The adsorbent according to any one of [1] to [7], wherein the powder composition is formed into a panel shape.
[9] A method for removing a radioactive element, wherein the radioactive element is adsorbed and removed by the adsorbent according to any one of [1] to [8].
[10] A radioactive element adsorption removal apparatus using the adsorbent according to any one of [1] to [8].
[11] A method for treating an adsorbent adsorbed with a radioactive element, wherein the adsorbent according to any one of [1] to [8] is adsorbed with a radioactive element, and then the adsorbent is baked and vitrified.
[12] The processing method according to [11] above, wherein one or more of boric acid and a salt thereof are added and mixed before firing, and then an alkali metal salt of silicic acid is added and mixed.
[13] The processing method according to [12], wherein one or more of boric acid and a salt thereof are selected from orthoboric acid and a sodium salt of boric acid.
[14] The processing method according to any one of the above [11] to [13], wherein after baking and vitrification, cement is added and solidified.
[15] The processing method according to any one of the above [11] to [13], wherein after baking and vitrification, an alkali metal salt of silicic acid is added and mixed, and then solidified with carbon dioxide.
[16] After adsorbing a radioactive element to the adsorbent according to any one of [1] to [8] above, an alkali metal salt of silicic acid is added to and mixed with the adsorbent, and then solidified with carbon dioxide. The processing method of the adsorbent which adsorbed the radioactive element.
[17] The processing method according to [16] above, wherein the cement is added and mixed before the alkali metal salt of silicic acid is added and mixed.
[18] (A) One or more types of volcanic ejecta foams and (B) an inorganic salt exhibiting alkalinity, (A): (B) weight ratio [(A): (B)] Is a powder composition containing 1: 0.8 to 1: 1.3.
[19] The composition according to [18] above, wherein the average particle size of the powder is 0.5 mm to 6 mm.
[20] The composition according to [18] or [19] above, wherein one or more of the volcanic ejecta foam is selected from the group consisting of shirasu foam, obsidian foam and nacreite foam. .
[21] The composition according to any one of [18] to [20], wherein the inorganic salt exhibiting alkalinity is an alkali metal salt of a weak inorganic acid.
[22] The composition according to [21], wherein the alkali metal salt of the weak inorganic acid is one or more selected from the group consisting of alkali metal salts of orthosilicic acid, metasilicic acid and metadisilicic acid.
[23] The composition according to any one of [18] to [22], which is solidified with carbon dioxide.
[24] The composition according to any one of [18] to [23], which is formed into a panel shape.
[25] The weight ratio of (A) and (B) to (A) one or more of volcanic ejecta foams and (B) an alkaline salt exhibiting alkalinity [(A) :( B) ] The manufacturing method of a granular material composition including the process mixed so that it may become 1: 0.8-1: 1.3.
[26] The production method according to [25], further including a step of granulating and / or sizing.
[27] The production method according to the above [25] or [26], wherein one or more of the volcanic ejecta foam is selected from the group consisting of shirasu foam, obsidian foam, and nacreous foam. .

本発明により、放射性セシウム等の放射性元素の吸着除去機能に優れた放射性元素吸着剤を提供することができ、該吸着剤を用いることにより、放射性元素の効率的な除去方法、ならびに放射性元素の吸着除去装置を提供することができる。また、本発明により、放射性元素を吸着した後の吸着剤を簡便かつ安全に処理することができる。
さらに、本発明の放射性元素吸着剤は、簡便に製造することができ、火山噴出物発泡体を利用するため、安価に提供することができる。
According to the present invention, it is possible to provide a radioactive element adsorbent excellent in the adsorption removal function of radioactive elements such as radioactive cesium. By using the adsorbent, an efficient removal method of radioactive elements, and adsorption of radioactive elements A removal device can be provided. Further, according to the present invention, the adsorbent after adsorbing the radioactive element can be easily and safely treated.
Furthermore, since the radioactive element adsorbent of the present invention can be easily produced and uses a volcanic ejecta foam, it can be provided at low cost.

図1は、本発明の実施例1の放射性元素吸着剤による放射性セシウムの吸着、除去のようすを示す図である。FIG. 1 is a diagram showing how radioactive cesium is adsorbed and removed by the radioactive element adsorbent of Example 1 of the present invention. 図2は、本発明の実施例2の放射性元素吸着剤による放射性セシウムの吸着、除去のようすを示す図である。FIG. 2 is a diagram showing how radioactive cesium is adsorbed and removed by the radioactive element adsorbent of Example 2 of the present invention.

本発明の放射性元素吸着剤は、(A)火山噴出物発泡体の1種または2種以上と、(B)アルカリ性を示す無機塩とを、(A)と(B)の重量比[(A):(B)]が1:0.3〜1:1.5となるように含む粉粒体組成物を含有する。   The radioactive element adsorbent of the present invention comprises (A) one or more volcanic ejecta foams and (B) an inorganic salt exhibiting alkalinity, and a weight ratio of (A) and (B) [(A ) :( B)] contains a granular composition containing 1: 0.3 to 1: 1.5.

本発明の放射性元素吸着剤に用いる(A)火山噴出物発泡体は、火山噴出物の細粒や粉末を700℃〜1,100℃程度、好ましくは850℃〜1,000℃程度に加熱して発泡させることにより得られる。
上記火山噴出物発泡体の調製に用いる火山噴出物は、火山活動の際に地表に噴出した物質であり、火山灰、火山礫等の火山砕屑物などが含まれる。本発明の目的には、火山噴出物として、シラス、軽石、ボラ土、黒曜石、真珠岩等が好ましく用いられる。なかでもシラス、軽石、黒曜石、真珠岩がより好ましい。
The (A) volcanic ejecta foam used in the radioactive element adsorbent of the present invention heats the fine particles and powder of the volcanic ejecta to about 700 ° C to 1,100 ° C, preferably about 850 ° C to 1,000 ° C. Obtained by foaming.
The volcanic ejecta used for the preparation of the above volcanic ejecta foam is a substance ejected to the ground surface during volcanic activity, and includes volcanic debris such as volcanic ash and volcanic gravel. For the purposes of the present invention, shirasu, pumice, mullet, obsidian, nacre, etc. are preferably used as volcanic ejecta. Of these, shirasu, pumice, obsidian, and pearlite are more preferred.

本発明において、火山噴出物発泡体としては、シラスを発泡させたシラス発泡体(シラスバルーン)、黒曜石の発泡体(黒曜石パーライト)および真珠岩の発泡体(真珠岩パーライト)が好ましく、放射性セシウム等の放射性元素の吸着、除去能に優れている点で、シラス発泡体がより好ましい。   In the present invention, the volcanic ejecta foam is preferably a shirasu foamed shirasu (shirasu balloon), obsidian foam (obsidian perlite), or pearlite foam (pearlite pearlite), such as radioactive cesium. Shirasu foam is more preferable because of its excellent ability to adsorb and remove radioactive elements.

本発明において用いる火山噴出物発泡体の平均粒子径は、後述するふるい分け法により測定し算出した値で通常6μm〜500μmであり、30μm〜300μmであることが好ましい。
また、本発明の目的には、火山噴出物発泡体の真比重は通常2〜2.5であり、2〜2.3であることが好ましく、嵩比重は、通常は0.6g/mL以下であり、0.15g/mL〜0.4g/mLであることが好ましい。
The average particle diameter of the foamed volcanic foam used in the present invention is usually 6 μm to 500 μm, preferably 30 μm to 300 μm, as measured and calculated by a screening method described later.
For the purpose of the present invention, the true specific gravity of the volcanic product foam is usually 2 to 2.5, preferably 2 to 2.3, and the bulk specific gravity is usually 0.6 g / mL or less. It is preferable that it is 0.15 g / mL-0.4 g / mL.

本発明においては、上記火山噴出物発泡体から1種または2種以上を選択して用いる。なお、上記火山噴出物発泡体を含む粉粒体組成物を用いた場合、放射性元素の吸着、除去能および吸着、除去速度に優れる点、軽量である点、ならびに放射性元素を吸着させた後の吸着剤の処理において、該吸着剤のガラス化または固化が容易である点で有利である。   In this invention, 1 type (s) or 2 or more types are selected and used from the above volcanic ejecta foam. In addition, when using the granular material composition containing the above volcanic ejecta foam, it is excellent in adsorption, removal ability and adsorption of radioactive elements, removal speed, light weight, and after adsorbing radioactive elements In the treatment of the adsorbent, it is advantageous in that the adsorbent can be easily vitrified or solidified.

本発明における(B)アルカリ性を示す無機塩としては、38重量%〜52重量%の水溶液としたときに、9〜13以上のpHを示す無機塩が好ましく、ケイ酸、ホウ酸、炭酸等の無機弱酸のアルカリ金属塩が好ましいものとして例示される。これらの中でも、粉粒体組成物の強度および成形性等の観点から、オルトケイ酸、メタケイ酸およびメタ二ケイ酸のアルカリ金属塩がより好ましく、オルトケイ酸、メタケイ酸およびメタ二ケイ酸のナトリウム塩およびカリウム塩がさらに好ましい。本発明においては、(B)アルカリ性を示す無機塩として、前記したものより1種または2種以上を選択し用いることができる。   (B) The inorganic salt exhibiting alkalinity in the present invention is preferably an inorganic salt exhibiting a pH of 9 to 13 or more when an aqueous solution of 38% to 52% by weight is used, such as silicic acid, boric acid and carbonic acid. The alkali metal salt of an inorganic weak acid is illustrated as a preferable thing. Among these, from the viewpoints of strength and moldability of the powder composition, alkali metal salts of orthosilicic acid, metasilicic acid and metadisilicic acid are more preferable, and sodium salts of orthosilicic acid, metasilicic acid and metadisilicic acid. And potassium salts are more preferred. In the present invention, (B) one or two or more kinds of inorganic salts exhibiting alkalinity can be selected from those described above.

本発明の放射性元素吸着剤は、(A)火山噴出物発泡体の1種または2種以上と、(B)アルカリ性を示す無機塩とを、これらの重量比[(A):(B)]が1:0.3〜1:1.5となるように含む粉粒体組成物を含有する。また、前記粉粒体組成物における(A)と(B)との重量比[(A):(B)]は1:0.35〜1:1.4とすることが好ましく、1:0.5〜1:1.3とすることがより好ましく、1:0.8〜1:1.3とすることがさらに好ましい。   The radioactive element adsorbent of the present invention comprises (A) one or more types of volcanic ejecta foam and (B) an inorganic salt exhibiting alkalinity in a weight ratio [(A) :( B)]. Contains a granular composition containing 1: 0.3 to 1: 1.5. Moreover, it is preferable that the weight ratio [(A) :( B)] of (A) and (B) in the said granular material composition shall be 1: 0.35-1: 1.4, and it is 1: 0. It is more preferable to set it as 5-1: 1.3, and it is still more preferable to set it as 1: 0.8-1: 1.3.

(A)に対する(B)の重量比[(B)/(A)]が0.3未満であると、粉粒体組成物の強度が低くなり、汚染水等の浄化時に粉粒体組成物における多孔性構造の崩壊が生じて、吸着機能が低下し好ましくない。一方、(A)に対する(B)の重量比[(B)/(A)]が1.5を超えると、粉粒体組成物の乾燥、整粒等に相当な時間を要し、製造効率が低下するため、好ましくない。   When the weight ratio [(B) / (A)] of (B) to (A) is less than 0.3, the strength of the powder composition is lowered, and the powder composition is at the time of purification of contaminated water or the like. This is not preferable because the porous structure collapses and the adsorption function is lowered. On the other hand, when the weight ratio [(B) / (A)] of (B) to (A) exceeds 1.5, considerable time is required for drying, sizing and the like of the granular composition, and the production efficiency Is unfavorable because of lowering.

本発明において、(B)アルカリ性を示す無機塩は、粉体のまま用いてもよく、水溶液として用いてもよい。水溶液として用いる場合には、(A)火山噴出物発泡体の1種または2種以上と混合した後の乾燥および造粒等の効率を考慮すると、30重量%〜52重量%の濃度とすることが好ましく、38重量%〜45重量%の濃度とすることがより好ましい。   In the present invention, the inorganic salt (B) showing alkalinity may be used as a powder or may be used as an aqueous solution. When used as an aqueous solution, considering the efficiency of drying and granulation after mixing with one or more of (A) volcanic ejecta foam, the concentration should be 30% to 52% by weight. The concentration is preferably 38 wt% to 45 wt%.

本発明において粉粒体組成物には、上記(A)火山噴出物発泡体の1種または2種以上、および(B)アルカリ性を示す無機塩に加えて、本発明の特徴を損なわない範囲で、さらに活性炭、木炭、竹炭等の吸着剤等を添加することができる。   In the present invention, in addition to (A) one or more types of volcanic ejecta foam and (B) an inorganic salt exhibiting alkalinity, the powder composition is within the range not impairing the characteristics of the present invention. Further, an adsorbent such as activated carbon, charcoal, bamboo charcoal, or the like can be added.

本発明において粉粒体組成物は、(A)火山噴出物発泡体の1種または2種以上と、(B)アルカリ性を示す無機塩とを、上記した重量比で混合し、場合により他の吸着剤等を添加して粉粒体の凝集物とした後、必要により乾燥した後粉砕し、さらに必要により造粒、整粒、焼成等の処理を行って製造される。   In the present invention, the granular composition is prepared by mixing (A) one or more types of volcanic ejecta foams and (B) an inorganic salt exhibiting alkalinity in the above-described weight ratio. It is produced by adding an adsorbent or the like to obtain an agglomerate of powder particles, and if necessary, drying and then pulverizing, and further performing granulation, sizing, firing, and the like as necessary.

(A)火山噴出物発泡体の1種または2種以上と、(B)アルカリ性を示す無機塩、あるいはさらに他の添加成分の混合は、粉粒体の混合に用いられる一般的な混合方法により行うことができ、水平円筒型混合機、V型混合機、二重円錐型混合機、揺動回転型混合機、単軸リボン型混合機、複軸パドル型混合機、回転働型混合機、円錐スクリュー型混合機等を用いて行う。   Mixing of (A) one or more of volcanic ejecta foams and (B) an inorganic salt exhibiting alkalinity, or other additional components is performed by a general mixing method used for mixing granular materials. Horizontal cylinder type mixer, V type mixer, double cone type mixer, oscillating rotary type mixer, single axis ribbon type mixer, double axis paddle type mixer, rotary working type mixer, cone Use a screw-type mixer or the like.

上記粉粒体凝集物の粉砕は、一般的な粉砕方法により行うことができ、混合時における(B)アルカリ性を示す無機塩の状態により、乾式粉砕、湿式粉砕のいずれをも用いることができる。すなわち、(B)アルカリ性を示す無機塩を固体状で混合する場合には、乾式粉砕が好ましく採用され、水溶液の状態で混合する場合には、湿式粉砕が好ましく採用される。
乾式粉砕としては、ジェットミル粉砕およびメカノケミカル粉砕が挙げられ、湿式粉砕としては、コロイドミル粉砕が挙げられる。
The powder aggregates can be pulverized by a general pulverization method, and either dry pulverization or wet pulverization can be used depending on the state of the inorganic salt (B) that is alkaline during mixing. That is, (B) When the inorganic salt showing alkalinity is mixed in a solid state, dry pulverization is preferably employed, and when mixed in the form of an aqueous solution, wet pulverization is preferably employed.
Examples of dry pulverization include jet mill pulverization and mechanochemical pulverization. Examples of wet pulverization include colloid mill pulverization.

上記粉粒体組成物の造粒は、一般的な造粒方法により行うことができ、混合時における(B)アルカリ性を示す無機塩の状態により、乾式造粒、湿式造粒のいずれをも用いることができる。すなわち、(B)アルカリ性を示す無機塩を固体状で混合する場合には、乾式造粒が好ましく採用され、水溶液の状態で混合する場合には、湿式造粒が好ましく採用される。
乾式造粒としては、スラッグ法、ローラーコンパクター法等が挙げられ、湿式造粒としては、撹拌混合造粒法、噴霧乾燥造粒法、流動層造粒法、転動造粒法、転動流動層造粒法、押し出し造粒法等が挙げられる。
The granule composition can be granulated by a general granulation method, and either dry granulation or wet granulation is used depending on the state of the inorganic salt (B) alkalinity during mixing. be able to. That is, when (B) the inorganic salt exhibiting alkalinity is mixed in a solid state, dry granulation is preferably employed, and when mixing in the form of an aqueous solution, wet granulation is preferably employed.
Examples of the dry granulation include a slug method and a roller compactor method, and examples of the wet granulation include a stirring and mixing granulation method, a spray drying granulation method, a fluidized bed granulation method, a rolling granulation method, and a rolling fluidization method. Examples include layer granulation method and extrusion granulation method.

上記粉粒体組成物の整粒についても、一般的な整粒方法を採用することができる。かかる整粒方法としては、摩砕整粒、分級機能付解砕整粒、破砕整粒、湿式連続整粒、回転式遠心砕塊整粒、高速又は低速回転型整粒、球形整粒等が挙げられる。   A general sizing method can also be employed for sizing the powder composition. Such sizing methods include grinding sizing, pulverization sizing with classification function, pulverization sizing, wet continuous sizing, rotary centrifugal crushed sizing, high speed or low speed rotary sizing, spherical sizing, etc. Can be mentioned.

上記粉粒体組成物の乾燥は、風乾、天日乾燥等、自然乾燥により行うことが好ましい。粉粒体組成物を焼成する場合は、ロータリーキルン等において通常850℃〜1,300℃程度で5分〜20分間程度行う。   The powder composition is preferably dried by natural drying such as air drying or sun drying. When baking a granular material composition, it is normally performed at about 850 to 1,300 ° C. for about 5 to 20 minutes in a rotary kiln or the like.

上記粉粒体組成物の平均粒子径は、後述するふるい分け法により測定し、算出した値で通常0.3mm〜8mmであり、好ましくは0.5mm〜6mm、より好ましくは1mm〜5mmである。   The average particle diameter of the above-mentioned granular composition is usually 0.3 mm to 8 mm, preferably 0.5 mm to 6 mm, more preferably 1 mm to 5 mm as a calculated value measured by a screening method described later.

また、本発明において、(B)アルカリ性を示す無機塩として、二酸化炭素と反応することによりゲル状の水和物を生成し固化する性質を有するものを用いた場合、(A)火山噴出物発泡体の1種または2種以上と、(B)アルカリ性を示す無機塩を含む粉粒体の凝集物に炭酸ガスを吹き込む等して、二酸化炭素により固化させることができる。
粉粒体組成物を固化させるのに必要な二酸化炭素の量は、上記粉粒体の凝集物1,000g(乾燥重量)に対し100g〜600g程度である。
なお、上記のような性質を有する(B)アルカリ性を示す無機塩としては、ケイ酸ナトリウム、ケイ酸カリウム等のケイ酸の金属塩を挙げることができる。これらは二酸化炭素と反応してケイ酸を遊離させ、ゲル状の水和物となるため、これらを含む粉粒体組成物を良好に固化させることができる。
In the present invention, when (B) an inorganic salt exhibiting alkalinity has a property of generating and solidifying a gel-like hydrate by reacting with carbon dioxide, (A) volcanic ejecta foaming It can be solidified with carbon dioxide, for example, by blowing carbon dioxide into agglomerates of powders containing one or more of the bodies and (B) an inorganic salt exhibiting alkalinity.
The amount of carbon dioxide necessary for solidifying the powder composition is about 100 g to 600 g with respect to 1,000 g (dry weight) of the above-mentioned powder aggregate.
Examples of the inorganic salt (B) having alkalinity having the above properties include metal salts of silicic acid such as sodium silicate and potassium silicate. Since these react with carbon dioxide to release silicic acid and become a gel-like hydrate, the powder composition containing them can be solidified well.

本発明においては、上記した粉粒体組成物をそのまま、または他の吸着剤や賦形剤、結合剤、固定化剤、滑沢剤等の添加剤を加えて放射性元素吸着剤とする。本発明の放射性元素吸着剤における上記粉粒体組成物の含有量は、好ましくは60重量%〜100重量%であり、より好ましくは80重量%〜100重量%である。   In the present invention, the above-described powder composition is used as a radioactive element adsorbent as it is or by adding additives such as other adsorbents, excipients, binders, immobilizing agents and lubricants. The content of the particulate composition in the radioactive element adsorbent of the present invention is preferably 60% by weight to 100% by weight, more preferably 80% by weight to 100% by weight.

また、本発明において、上記粉粒体組成物は、加圧成形または無圧成形によりパネル状とすることができる。粉粒体組成物の加圧成形または無圧成形は、それぞれ汎用される加圧成形機または無圧成形機を用いて行うことができる。
(B)アルカリ性を示す無機塩として、二酸化炭素と反応することによりゲル状の水和物を生成し固化する性質を有するものを用いた場合には、所望の形状を有する金属製、プラスチック製等の型内に充填し、ドライアイスと接触させる、または炭酸ガスを添加する等、二酸化炭素により固化させることができる。粉粒体組成物の固化、成形に必要な二酸化炭素の量は、粉粒体組成物1,000g(乾燥重量)に対し、100g〜600g程度である。
あるいは、上記粉粒体組成物にアルミナセメントを加え、その水和反応により固化させることもできる。粉粒体組成物の固化、成形に必要なアルミナセメントの添加量は、粉粒体組成物1,000g(乾燥重量)に対し、300g〜600g程度である。
Moreover, in this invention, the said granular material composition can be made into a panel form by pressure molding or pressureless molding. The pressure molding or the pressureless molding of the powder composition can be performed using a pressure molding machine or a pressureless molding machine which are generally used.
(B) In the case where an inorganic salt exhibiting alkalinity is used, which has the property of generating and solidifying a gel hydrate by reacting with carbon dioxide, it is made of metal, plastic, etc. having a desired shape It can be solidified with carbon dioxide, such as filling in a mold and contacting with dry ice or adding carbon dioxide. The amount of carbon dioxide required for solidification and molding of the granular composition is about 100 g to 600 g with respect to 1,000 g (dry weight) of the granular composition.
Alternatively, alumina cement can be added to the powder composition and solidified by the hydration reaction. The addition amount of alumina cement required for solidification and molding of the powder composition is about 300 to 600 g with respect to 1,000 g (dry weight) of the powder composition.

なお、粉粒体組成物の多孔性構造に与える影響を考慮すると、無圧成形または二酸化炭素による固化により成形することが好ましく、成形速度、粉粒体の強度および安定性等の観点からは、炭酸ガス添加による固化により成形することがより好ましい。
パネル状成形物の形状および大きさは、放射性元素の吸着除去装置の形状、放射性元素を含む被吸着物の種類等によって決定されるが、一般的には、一辺の長さが5cm〜200cmで厚さが5cm〜200cmの直方体または立方体、直径が5cm〜200cmで厚さが5cm〜200cmの円柱体等とすることができる。
In consideration of the influence on the porous structure of the powder composition, it is preferable to form by pressureless molding or solidification with carbon dioxide, from the viewpoint of molding speed, strength and stability of the powder, It is more preferable to mold by solidification by adding carbon dioxide gas.
The shape and size of the panel-shaped molded product are determined depending on the shape of the radioactive element adsorption / removal device, the type of the adsorbent containing the radioactive element, etc. In general, the length of one side is 5 cm to 200 cm. A rectangular parallelepiped or a cube having a thickness of 5 cm to 200 cm, a cylinder having a diameter of 5 cm to 200 cm, and a thickness of 5 cm to 200 cm can be used.

上記粉粒体組成物を含有する本発明の放射性元素吸着剤は、放射性セシウム等の放射性元素に対し、優れた吸着能を有し、放射性元素を含む土壌や海水、河川水、湖沼水、水道水、地下水、空気等から放射性元素を吸着除去するのに好ましく使用される。   The radioactive element adsorbent of the present invention containing the particulate composition has excellent adsorbing ability for radioactive elements such as radioactive cesium, and contains soil, seawater, river water, lake water, and tap water containing radioactive elements. It is preferably used to adsorb and remove radioactive elements from water, groundwater, air and the like.

従って、本発明はまた、上記放射性元素吸着剤を用いて放射性元素を吸着除去する方法を提供する。
放射性元素の吸着除去は、放射性元素を含む汚染土壌や汚染水を本発明の放射性元素吸着剤と接触させることにより行う。具体的には、汚染土壌を水で洗浄した後の洗浄水や汚染水に、本発明の放射性元素吸着剤を加えて混合、攪拌した後、ろ過、遠心分離等により放射性元素を吸着した吸着剤を回収する、本発明の放射性元素吸着剤をろ材として充填したろ過器等の吸着除去装置を用いて、前記洗浄水や汚染水をろ過する、あるいは、放射性元素を含む気体を、本発明の放射性元素吸着剤を充填した吸着除去装置に通す、といった方法が挙げられる。
Therefore, the present invention also provides a method for adsorbing and removing radioactive elements using the above-mentioned radioactive element adsorbent.
The radioactive element is removed by adsorption by bringing contaminated soil or water containing the radioactive element into contact with the radioactive element adsorbent of the present invention. Specifically, the adsorbent adsorbed with the radioactive element by filtration, centrifugation, etc. after adding and mixing and stirring the radioactive element adsorbent of the present invention to the washing water and contaminated water after washing the contaminated soil with water Using an adsorption removal device such as a filter packed with the radioactive element adsorbent of the present invention as a filter medium, the washing water or contaminated water is filtered, or the gas containing the radioactive element is removed from the radioactive material of the present invention. A method of passing through an adsorption removal device filled with an element adsorbent can be mentioned.

それゆえ、本発明はさらにまた、放射性元素の吸着除去装置を提供する。本発明の放射性元素の吸着除去装置としては、プラスチック製、ステンレス製等のカラムに、ステンレス製等のフィルターを備え、前記フィルター上に本発明の放射性元素吸着剤をろ材として充填してなるろ過器や、プラスチック製、ステンレス製等の円柱状または直方体もしくは立方体状の槽内に、円柱体または直方体もしくは立方体パネル状に成形した本発明の放射性元素吸着剤を設置した吸着槽等が挙げられる。   Therefore, the present invention further provides an apparatus for adsorbing and removing radioactive elements. The radioactive element adsorption / removal device of the present invention is a filter comprising a column made of plastic, stainless steel, etc., equipped with a filter made of stainless steel, etc., and packed with the radioactive element adsorbent of the present invention as a filter medium on the filter. In addition, an adsorption tank in which the radioactive element adsorbent of the present invention formed into a cylindrical body, a rectangular parallelepiped or a cubic panel is installed in a cylindrical or rectangular parallelepiped or cubic tank made of plastic, stainless steel or the like.

本発明の放射性元素吸着剤は、放射性セシウム等の放射性元素を吸着させた後、焼成してガラス化することにより、容易に処理することができる。あるいは、ケイ酸のアルカリ金属塩を加えて混合した後、二酸化炭素を加えてケイ酸を遊離させて固化させることによっても、容易に処理することができる。   The radioactive element adsorbent of the present invention can be easily processed by adsorbing a radioactive element such as radioactive cesium and then baking and vitrifying it. Alternatively, it can be easily treated by adding and mixing an alkali metal salt of silicic acid, and then adding carbon dioxide to liberate and solidify silicic acid.

従って、本発明はまた、放射性元素を吸着した吸着剤の処理方法を提供する。   Therefore, this invention also provides the processing method of the adsorption agent which adsorb | sucked the radioactive element.

本発明の吸着剤の処理方法においては、本発明の上記放射性元素吸着剤により放射性元素を吸着させた後、放射性元素を吸着した本発明の吸着剤を、850℃〜1,300℃、好ましくは950℃〜1,200℃で5分〜20分間、好ましくは5分〜15分間焼成してガラス化する。   In the method for treating an adsorbent of the present invention, the adsorbent of the present invention having adsorbed the radioactive element after the radioactive element is adsorbed by the above-mentioned radioactive element adsorbent of the present invention is 850 ° C to 1,300 ° C, preferably It is vitrified by firing at 950 ° C. to 1,200 ° C. for 5 minutes to 20 minutes, preferably 5 minutes to 15 minutes.

なお、放射性元素を吸着した吸着剤を焼成処理する前に、ホウ酸およびその塩の1種または2種以上を加えて混合し、次いで、ケイ酸ナトリウム、ケイ酸カリウム等のケイ酸のアルカリ金属塩を加えて混合してもよい。かかる処理を行うことにより、吸着剤のガラス化効率を上げることができる。
ホウ酸およびその塩の1種または2種以上としては、オルトホウ酸およびホウ酸のナトリウム塩から選択することが好ましい。ホウ酸のナトリウム塩としては、四ホウ酸ナトリウム、四ホウ酸ナトリウム十水和物(ホウ砂)等が挙げられ、ホウ砂がより好ましく用いられる。
ホウ酸およびその塩の1種または2種以上は、放射性元素を吸着した吸着剤の乾燥重量1,000gに対し、50g〜150g程度を加えることが好ましく、80g〜120g程度を加えることがより好ましい。
ケイ酸のアルカリ金属塩は、放射性元素を吸着した吸着剤の乾燥重量1,000gに対し、100g〜800g程度を加えることが好ましく、200g〜500g程度を加えることがより好ましい。
In addition, before firing the adsorbent adsorbing the radioactive element, one or more of boric acid and its salt are added and mixed, and then alkali metal of silicic acid such as sodium silicate, potassium silicate, etc. Salt may be added and mixed. By performing such treatment, the vitrification efficiency of the adsorbent can be increased.
As one or more of boric acid and its salt, it is preferable to select from orthoboric acid and sodium salt of boric acid. Examples of the sodium salt of boric acid include sodium tetraborate, sodium tetraborate decahydrate (borax), and borax is more preferably used.
One or more of boric acid and its salts are preferably added in an amount of about 50 g to 150 g, more preferably about 80 g to 120 g, per 1,000 g of the dry weight of the adsorbent adsorbing the radioactive element. .
The alkali metal salt of silicic acid is preferably added in an amount of about 100 g to 800 g, more preferably about 200 g to 500 g, per 1,000 g of the dry weight of the adsorbent adsorbing the radioactive element.

ガラス化した上記吸着剤は、そのまま、または粉砕機により粉砕し、さらにセメントを加えて固化させてもよい。セメントとしては、固化処理に通常用いられるものを広く用いることができるが、ポルトランドセメント、アルミナセメント等が好ましく用いられる。セメントは、ガラス化した上記吸着剤1,000gに対し、200g〜800g程度を加えることが好ましく、300g〜600g程度を加えることがより好ましい。なお、セメントによる固化は、通常上記セメント1,000gに対し、水道水等の水を500g〜2,000g程度添加して混合攪拌することにより行う。   The vitrified adsorbent may be ground as it is, or may be pulverized by a pulverizer and further cemented to be solidified. As the cement, those usually used in the solidification treatment can be widely used, but Portland cement, alumina cement and the like are preferably used. The cement is preferably added in an amount of about 200 g to 800 g, more preferably about 300 g to 600 g, per 1,000 g of the adsorbent that has been vitrified. Solidification with cement is usually performed by adding about 500 g to 2,000 g of tap water or the like to 1,000 g of the cement and mixing and stirring.

あるいは、セメントにより固化させる代わりに、ケイ酸のアルカリ金属塩を加えて混合し、次いで二酸化炭素を加えてケイ酸を遊離させて固化させてもよい。ケイ酸のアルカリ金属塩としては、ケイ酸ナトリウム、ケイ酸カリウム等が好ましい。ケイ酸のアルカリ金属塩は、ガラス化した上記吸着剤1,000gに対し、300g〜800g程度を加えることが好ましく、400g〜600g程度を加えることがより好ましい。また、二酸化炭素(炭酸ガス)は、ガラス化した上記吸着剤1,000gに対し、100g〜300g程度を加えることが好ましく、150g〜250g程度を加えることがより好ましい。
なお、ケイ酸のアルカリ金属塩とともにセメントを添加し、次いで二酸化炭素を加えて固化させてもよい。かかる場合のセメントの添加量は、ガラス化した上記吸着剤1,000gに対し、300g〜600g程度である。
Alternatively, instead of solidifying with cement, an alkali metal salt of silicic acid may be added and mixed, and then carbon dioxide may be added to liberate the silicic acid and solidify. As the alkali metal salt of silicic acid, sodium silicate, potassium silicate and the like are preferable. The alkali metal salt of silicic acid is preferably added in an amount of about 300 g to 800 g, more preferably about 400 g to 600 g, per 1,000 g of the adsorbent vitrified. Carbon dioxide (carbon dioxide gas) is preferably added in an amount of about 100 g to 300 g, more preferably about 150 g to 250 g, with respect to 1,000 g of the vitrified adsorbent.
Cement may be added together with the alkali metal salt of silicic acid, and then carbon dioxide may be added and solidified. In this case, the amount of cement added is about 300 g to 600 g with respect to 1,000 g of the adsorbent vitrified.

また、本発明の吸着剤の処理方法においては、焼成処理を行う代わりに、ケイ酸ナトリウム、ケイ酸カリウム等のケイ酸のアルカリ金属塩を加えて混合し、次いで二酸化炭素を加えて固化させてもよい。その際、二酸化炭素を加える前に、加圧機により加圧して圧縮することにより、固化効率を上げることができる。
ケイ酸のアルカリ金属塩は、放射性元素を吸着した吸着剤の乾燥重量1,000gに対し、500g〜1,400g程度を加えることが好ましく、700g〜1,000g程度を加えることがより好ましい。また、二酸化炭素(炭酸ガス)は、放射性元素を吸着した吸着剤の乾燥重量1,000gに対し、100g〜600g程度を加えることが好ましく、200g〜500g程度を加えることがより好ましい。
なお、加圧機による圧縮処理は、20kg/cm〜40kg/cm程度の圧力下に行うことが好ましい。
In the adsorbent treatment method of the present invention, instead of performing the firing treatment, an alkali metal salt of silicic acid such as sodium silicate or potassium silicate is added and mixed, and then carbon dioxide is added and solidified. Also good. In that case, before adding carbon dioxide, it can pressurize and compress by a pressurization machine and can raise solidification efficiency.
The alkali metal salt of silicic acid is preferably added in an amount of about 500 g to 1,400 g, more preferably about 700 g to 1,000 g, per 1,000 g of the dry weight of the adsorbent adsorbing the radioactive element. Carbon dioxide (carbon dioxide gas) is preferably added in an amount of about 100 g to 600 g, more preferably about 200 g to 500 g, per 1,000 g of the dry weight of the adsorbent adsorbing the radioactive element.
Incidentally, the pressurized compression processing by the intensifier is preferably carried out under a pressure of about 20kg / cm 2 ~40kg / cm 2 .

さらに、放射性元素を吸着した吸着剤に、ケイ酸のアルカリ金属塩とともにセメントを添加し、次いで二酸化炭素を加えて固化させてもよい。かかる場合のセメントの添加量は、放射性元素を吸着した吸着剤の乾燥重量1,000gに対し、300g〜600g程度である。   Further, cement may be added together with an alkali metal salt of silicic acid to the adsorbent that has adsorbed the radioactive element, and then carbon dioxide may be added and solidified. In such a case, the amount of cement added is about 300 to 600 g with respect to the dry weight of 1,000 g of the adsorbent adsorbing the radioactive element.

なお、放射性元素を吸着した吸着剤について、上記した焼成によるガラス化処理、またはケイ酸のアルカリ金属塩および二酸化炭素による固化処理を行う際、放射性元素を吸着した吸着剤をあらかじめ乾燥することが、処理効率を上げる上で好ましい。放射性元素を吸着した吸着剤の乾燥は、200℃〜600℃で行うことが好ましく、300℃〜500℃で行うことがより好ましい。また、前記乾燥は、1時間〜3時間程度行うことが好ましい。   In addition, about the adsorbent which adsorb | sucked the radioactive element, when performing the vitrification process by baking mentioned above, or the solidification process by the alkali metal salt of silicic acid and a carbon dioxide, drying the adsorbent which adsorb | sucked the radioactive element beforehand is carried out, It is preferable for increasing the processing efficiency. It is preferable to perform drying of the adsorbent which adsorb | sucked the radioactive element at 200 to 600 degreeC, and it is more preferable to carry out at 300 to 500 degreeC. The drying is preferably performed for about 1 to 3 hours.

上記の本発明の吸着剤の処理方法により、放射性元素を吸着した吸着剤の乾燥重量1,000gあたりの体積(4,000mL)を、通常600mL〜1,500mL程度、好ましくは600mL〜1,000mL程度に圧縮することができる。従って、放射性元素を吸着した吸着剤の保存、廃棄等においても有利である。   By the adsorbent treatment method of the present invention, the volume (4,000 mL) per 1,000 g of dry weight of the adsorbent adsorbed with the radioactive element is usually about 600 mL to 1,500 mL, preferably 600 mL to 1,000 mL. Can be compressed to a degree. Therefore, it is advantageous also in storage, disposal, etc. of the adsorbent which adsorbed the radioactive element.

本発明はまた、(A)火山噴出物発泡体の1種または2種以上と、(B)アルカリ性を示す無機塩とを、(A)と(B)の重量比[(A):(B)]が1:0.8〜1:1.3となるように含む粉粒体組成物を提供する。
上記粉粒体組成物は、特に優れた放射性元素の吸着機能を示し、造粒等の製造効率、成形性等も特に良好であり、放射性元素吸着剤として特に好適である。
The present invention also provides (A) one or more types of volcanic ejecta foam and (B) an inorganic salt exhibiting alkalinity, wherein the weight ratio of (A) and (B) [(A) :( B )] Is provided so as to be 1: 0.8 to 1: 1.3.
The above-mentioned granular material composition exhibits a particularly excellent radioactive element adsorption function, has particularly good production efficiency such as granulation, moldability and the like, and is particularly suitable as a radioactive element adsorbent.

次に、実施例により本発明をさらに具体的に説明する。   Next, the present invention will be described more specifically with reference to examples.

[平均粒子径の測定方法]
以下の発明の実施例において、火山噴出物発泡体および粉粒体組成物の平均粒子径の測定は、以下に示すふるい分け法により行った。
電磁式ふるい振とう器(アズワン株式会社製)に標準ふるいを5段〜10段装着し、試料をふるい振とうして分級し、各ふるいに分級される粒子の重量比を測定した。すなわち、標準ふるいを目開きの大きいものを上にして順次重ね、上段に試料20gを入れて15分間ふるい振とうし、各ふるい上に存在する試料の重量を測定し、粒度分布を求めた。
次いで、各ふるいにふるい分けられた粒子の重量の試料全重量に対する割合(重量%)を算出し、各ふるいの目開きに対して、各ふるいにふるい分けられた粒子の重量の試料全重量に対する割合をプロットした曲線から、メディアン径として重量平均粒子径を求めた。
[Measurement method of average particle size]
In the examples of the following invention, the average particle size of the volcanic ejecta foam and the granular composition was measured by the screening method shown below.
5 to 10 stages of standard sieves were attached to an electromagnetic sieve shaker (manufactured by ASONE Co., Ltd.), the sample was sieved and classified, and the weight ratio of particles classified into each sieve was measured. That is, a standard sieve was placed one after another with a large mesh on top, 20 g of the sample was placed in the upper stage, shaken for 15 minutes, the weight of the sample present on each sieve was measured, and the particle size distribution was determined.
Next, the ratio (% by weight) of the weight of the particles sieved to each sieve to the total weight of the sample is calculated, and the ratio of the weight of the particles sieved to each sieve to the total weight of the sample is calculated for each sieve opening. From the plotted curve, the weight average particle diameter was determined as the median diameter.

[実施例1]放射性元素吸着剤の調製
シラス発泡体(「シラスバルーン」:平均粒子径=70μm、豊和直株式会社製)1,000gを撹拌機(豊和直株式会社製)に投入し、次いでケイ酸カリウム水溶液(日本化学工業株式会社製:ケイ酸カリウム含有濃度=38重量%〜52重量%)1,000gを徐々に散布し満遍なく攪拌した後、網目6mmのステンレス網を通過させ、平均粒子径が4mmとなるように整粒した後、ポリ袋に入れ、炭酸ガス200gを添加し固化させた。前記の固化させた組成物2,200gを4時間天日乾燥して、平均粒子径が4mmの粉粒体組成物2,000gを得、放射性元素吸着剤とした。
Example 1 Preparation of Radioactive Element Adsorbent Shirasu foam (“Shirasu Balloon”: average particle size = 70 μm, manufactured by Naoto Toyohashi Co., Ltd.) 1,000 g was charged into a stirrer (manufactured by Naoto Toyoda Corporation), and then An aqueous solution of potassium silicate (manufactured by Nippon Chemical Industry Co., Ltd .: potassium silicate content concentration = 38 wt% to 52 wt%) was gradually dispersed and stirred uniformly, and then passed through a 6 mm mesh stainless steel mesh to obtain average particles. After the particle size was adjusted to 4 mm, it was put in a plastic bag, and 200 g of carbon dioxide gas was added and solidified. 2,200 g of the solidified composition was dried in the sun for 4 hours to obtain 2,000 g of a powder composition having an average particle diameter of 4 mm, which was used as a radioactive element adsorbent.

[実施例2]放射性元素吸着剤の調製
シラス発泡体(「シラスバルーン」:平均粒子径=70μm、豊和直株式会社製)1,000gを撹拌機(タニナカO&K株式会社製)に投入し、次いでケイ酸カリウム水溶液(日本化学工業株式会社製:ケイ酸カリウム含有濃度=38重量%〜52重量%)1,000gを徐々に散布し満遍なく攪拌した後、網目6mmのステンレス網を通過させ、平均粒子径が4mmとなるように整粒した後、ポリ袋に入れ、炭酸ガス200gを添加し固化させて粉粒体組成物を得、放射性元素吸着剤とした。
Example 2 Preparation of Radioactive Element Adsorbent Shirasu foam (“Shirasu Balloon”: average particle size = 70 μm, manufactured by Howa Naoshi Co., Ltd.) 1,000 g was charged into a stirrer (Tannaka O & K Co., Ltd.), then An aqueous solution of potassium silicate (manufactured by Nippon Chemical Industry Co., Ltd .: potassium silicate content concentration = 38 wt% to 52 wt%) was gradually dispersed and stirred uniformly, and then passed through a 6 mm mesh stainless steel mesh to obtain average particles. After the particle size was adjusted to 4 mm, it was put in a plastic bag, and 200 g of carbon dioxide gas was added and solidified to obtain a granular composition, which was used as a radioactive element adsorbent.

[実施例3]円柱体状放射性元素吸着装置の作成
シラス発泡体(「シラスバルーン」:平均粒子径=120μm、豊和直株式会社製)1,000gにケイ酸カリウム水溶液(日本化学工業株式会社製:ケイ酸カリウム含有濃度=38重量%〜52重量%)1,000gを混合して攪拌し、円柱体状の塩化ビニル製の型(内径=10cm、高さ=45cm)に均一に投入した後、炭酸ガス200gを添加し、固化させて円柱体状の放射性元素吸着装置(放射性元素吸着剤の内容量=2,170g、直径=10cm、高さ=39cm)を得た。
[Example 3] Preparation of columnar radioactive element adsorption device Shirasu foam ("Shirasu balloon": average particle size = 120 μm, manufactured by Nao Toyowa Co., Ltd.) 1,000 g, potassium silicate aqueous solution (manufactured by Nippon Chemical Industry Co., Ltd.) : Potassium silicate content concentration = 38 wt% to 52 wt%) 1,000 g were mixed and stirred, and then uniformly poured into a cylindrical vinyl chloride mold (inner diameter = 10 cm, height = 45 cm) Then, 200 g of carbon dioxide gas was added and solidified to obtain a columnar radioactive element adsorption device (content of radioactive element adsorbent = 2,170 g, diameter = 10 cm, height = 39 cm).

[試験例1]放射性セシウム吸着除去機能の評価
図1に示すように、実施例1の放射性元素吸着剤(1)120gを、250メッシュのステンレス製フィルター(2)を備えたソケット(3)に、内径30mmの塩化ビニル製の管(4)が挿入されてなるろ過器(イ)に充填し、放射性セシウムを含んだ水を投入し、ろ過した。ろ過前後の放射能量を測定した結果を表1に示した。なお、放射能量の測定は、一般財団法人九州環境管理協会に委託して行った。
[Test Example 1] Evaluation of Radiocesium Adsorption Removal Function As shown in FIG. 1, 120 g of the radioactive element adsorbent (1) of Example 1 was placed in a socket (3) equipped with a 250-mesh stainless steel filter (2). A filter (A) into which a vinyl chloride tube (4) having an inner diameter of 30 mm was inserted was filled, and water containing radioactive cesium was charged and filtered. The results of measuring the amount of radioactivity before and after filtration are shown in Table 1. The measurement of radioactivity was commissioned to the Kyushu Environmental Management Association.

表1より明らかなように、実施例1の放射性元素吸着剤をろ材として用いてろ過することにより、放射性セシウムは、セシウム134(134Cs)、セシウム137(137Cs)ともに良好に吸着除去された。 As is clear from Table 1, by filtering using the radioactive element adsorbent of Example 1 as a filter medium, both radioactive cesium 134 ( 134 Cs) and cesium 137 ( 137 Cs) were favorably adsorbed and removed. .

[試験例2]放射性セシウム吸着除去機能の評価
図2に示すように、実施例2の放射性元素吸着剤(5)170gを上記と同様に、ステンレス製フィルター(2)を備えたソケット(3)に、塩化ビニル製の管(4)が挿入されてなる、ろ過器(ロ)に充填し、放射性セシウムを含んだ水を投入し、ろ過した。ろ過前後の放射能量を測定した結果を表2に示した。なお、放射能量の測定は、一般財団法人九州環境管理協会に委託して行った。
[Test Example 2] Evaluation of Radiocesium Adsorption Removal Function As shown in FIG. 2, 170 g of the radioactive element adsorbent (5) of Example 2 was provided with a socket (3) provided with a stainless steel filter (2) in the same manner as described above. Into a filter (b) into which a pipe (4) made of vinyl chloride was inserted, water containing radioactive cesium was added and filtered. The results of measuring the amount of radioactivity before and after filtration are shown in Table 2. The measurement of radioactivity was commissioned to the Kyushu Environmental Management Association.

表2より明らかなように、実施例2の粉流体組成物を吸着剤として用いてろ過することにより、高放射能の放射性セシウムを含む水を処理した場合においても、セシウム134(134Cs)、セシウム137(137Cs)ともに良好に吸着除去されることが示された。 As is clear from Table 2, cesium 134 ( 134 Cs), even when water containing high-activity radioactive cesium was treated by filtering using the powder fluid composition of Example 2 as an adsorbent, It was shown that both cesium 137 ( 137 Cs) were satisfactorily removed by adsorption.

[実施例4]放射性元素を吸着した吸着剤の処理
実施例3の放射性元素吸着装置を用いて放射性セシウムを含む水をろ過した後、放射性元素を吸着した前記吸着剤を取り出し、乾燥機(ツカサ工業株式会社製)により200℃で2時間乾燥した。乾燥後の重量は2,000gであった。前記吸着剤にホウ砂200gを混合し、次いでケイ酸カリウム600gを混合して攪拌し、ロータリー乾燥機(有限会社梅木製作所製)により950℃で15分間焼成してガラス化させた。前記ガラス化した組成物を、ハンマークラッシャー(有限会社梅木製作所製)により粉砕し、平均粒子径が6mmのガラス材2,400gとした。
[Example 4] Treatment of adsorbent adsorbing radioactive element After filtering the water containing radioactive cesium using the radioactive element adsorbing apparatus of Example 3, the adsorbent adsorbing the radioactive element was taken out and dried. And dried for 2 hours at 200 ° C. The weight after drying was 2,000 g. 200 g of borax was mixed with the adsorbent, then 600 g of potassium silicate was mixed and stirred, and baked at 950 ° C. for 15 minutes with a rotary dryer (manufactured by Umeki Seisakusho) to be vitrified. The vitrified composition was pulverized with a hammer crusher (manufactured by Umeki Seisakusho Co., Ltd.) to obtain 2,400 g of a glass material having an average particle diameter of 6 mm.

[実施例5]放射性元素を吸着した吸着剤の処理
実施例4の処理により得たガラス材2,400gに、ポルトランドセメント(太平洋セメント株式会社製)1,000gおよび水道水1,000gを混合し、ベニヤ板製の型枠(縦15cm、横15cm、高さ20cm)に流し込み、固化させた。
[Example 5] Treatment of adsorbent adsorbing radioactive element To 2,400 g of the glass material obtained by the treatment of Example 4, 1,000 g of Portland cement (manufactured by Taiheiyo Cement Co., Ltd.) and 1,000 g of tap water were mixed. And poured into a plywood formwork (length 15 cm, width 15 cm, height 20 cm) and solidified.

[実施例6]放射性元素を吸着した吸着剤の処理
実施例4の処理により得たガラス材2,000gにアルミナセメント(電気化学工業株式会社製)600gを加えて混合攪拌した後、ケイ酸カリウム1,000gを加えて攪拌機(タニナカO&K株式会社製)により混合攪拌し、鉄製の型枠(縦30cm、横30cm、高さ5cm)に投入して、プレス機(新東工業株式会社製)にて30kg/cmの圧力でプレスした。次いで、炭酸ガス500gを注入して固化した。
[Example 6] Treatment of adsorbent adsorbing radioactive element After adding 600 g of alumina cement (manufactured by Denki Kagaku Kogyo Co., Ltd.) to 2,000 g of the glass material obtained by the treatment of Example 4, potassium silicate is mixed and stirred. Add 1,000 g, mix and stir with a stirrer (Tannaka O & K Co., Ltd.), put into an iron mold (length 30 cm, width 30 cm, height 5 cm), and press into a press machine (Shinto Kogyo Co., Ltd.) And pressed at a pressure of 30 kg / cm 2 . Next, 500 g of carbon dioxide gas was injected and solidified.

[実施例7]放射性元素を吸着した吸着剤の処理
実施例1の放射性元素吸着剤を用いて、放射性セシウムを含む水を試験例1と同様に処理し、処理後の吸着剤を乾燥機(ツカサ工業株式会社製)により200℃で1時間乾燥した後、該吸着剤1,300gにケイ酸カリウム1,000gを加えて混合攪拌し、鉄製の型枠(縦30cm、横30cm、高さ5cm)に投入して、プレス機(新東工業株式会社製)にて30kg/cmの圧力でプレスした。次いで、炭酸ガス500gを注入して固化処理した。
[Example 7] Treatment of adsorbent adsorbing radioactive element Using the radioactive element adsorbent of Example 1, water containing radioactive cesium was treated in the same manner as in Test Example 1, and the adsorbent after treatment was dried ( After drying at 200 ° C. for 1 hour by Tsukasa Kogyo Co., Ltd., 1,000 g of potassium silicate was added to 1,300 g of the adsorbent and mixed and stirred to form an iron mold (length 30 cm, width 30 cm, height 5 cm). ) And pressed with a press (manufactured by Shinto Kogyo Co., Ltd.) at a pressure of 30 kg / cm 2 . Subsequently, carbon dioxide gas 500g was inject | poured and it solidified.

[実施例8]放射性元素を吸着した吸着剤の処理
実施例1の放射性元素吸着剤を用いて、放射性セシウムを含む水を試験例1と同様に処理し、処理後の吸着剤を乾燥機(ツカサ工業株式会社製)により300℃で2時間乾燥した後、該吸着剤1,300gにアルミナセメント(電気化学工業株式会社製)500gを加えて混合攪拌した後、ケイ酸カリウム1,000gを加えて混合攪拌し、鉄製の型枠(縦30cm、横30cm、高さ5cm)に投入して、プレス機(新東工業株式会社製)にて30kg/cmの圧力でプレスした。次いで、炭酸ガス500gを注入して固化処理した。
[Example 8] Treatment of adsorbent adsorbing radioactive element Using the radioactive element adsorbent of Example 1, water containing radioactive cesium was treated in the same manner as in Test Example 1, and the adsorbent after treatment was dried ( After drying at 300 ° C. for 2 hours by Tsukasa Kogyo Co., Ltd., 500 g of alumina cement (made by Denki Kagaku Kogyo Co., Ltd.) is added to 1,300 g of the adsorbent and mixed and stirred, and then 1,000 g of potassium silicate is added. The mixture was stirred and placed in an iron mold (length 30 cm, width 30 cm, height 5 cm), and pressed with a press (manufactured by Shinto Kogyo Co., Ltd.) at a pressure of 30 kg / cm 2 . Subsequently, carbon dioxide gas 500g was inject | poured and it solidified.

[実施例9]放射性元素を吸着した吸着剤の処理
実施例2の吸着剤を用いて、放射性セシウムを含む水を試験例2と同様に処理し、処理後の吸着剤3,000gを、ロータリー乾燥機(有限会社梅木製作所製)により900℃で15分間焼成し、ガラス化させた後、ポルトランドセメント(太平洋セメント株式会社製)1,000gおよび水道水1,500gを加えて混合攪拌し、固化物とした。
[Example 9] Treatment of adsorbent adsorbing radioactive element Using the adsorbent of Example 2, water containing radioactive cesium was treated in the same manner as in Test Example 2, and 3,000 g of the adsorbent after treatment was rotary. After calcination at 900 ° C. for 15 minutes with a dryer (manufactured by Umeki Seisakusho Co., Ltd.) and vitrification, 1,000 g of Portland cement (manufactured by Taiheiyo Cement Co., Ltd.) and 1,500 g of tap water are added, mixed and stirred, and solidified. It was a thing.

[実施例10]放射性元素吸着剤の調製
シラス発泡体(「シラスバルーン」:平均粒子径=95μm、豊和直株式会社製)1,000gを撹拌機(豊和直株式会社製)に投入し、次いでケイ酸カリウム水溶液(日本化学工業株式会社製:ケイ酸カリウム含有濃度=38重量%〜52重量%)800gを徐々に散布し満遍なく攪拌した後、網目6mmのステンレス網を通過させ、平均粒子径が4mmとなるように整粒した後、ポリ袋に入れ、炭酸ガス200gを添加し固化させた。前記の固化させた組成物2,000gを8時間天日乾燥して平均粒子径が4mmの粉粒体組成物1,600gを得、放射性元素吸着剤とした。
Example 10 Preparation of Radioactive Element Adsorbent Shirasu foam (“Shirasu Balloon”: average particle size = 95 μm, manufactured by Towa Naoshi Co., Ltd.) 1,000 g was charged into a stirrer (Toyo Naoshi Co., Ltd.), and then 800 g of an aqueous potassium silicate solution (manufactured by Nippon Kagaku Kogyo Co., Ltd .: potassium silicate concentration = 38 wt% to 52 wt%) is gradually sprayed and uniformly stirred, and then passed through a stainless steel net having a mesh size of 6 mm. After the particle size was adjusted to 4 mm, it was put in a plastic bag and carbon dioxide 200 g was added and solidified. 2,000 g of the solidified composition was sun-dried for 8 hours to obtain 1,600 g of a powder composition having an average particle size of 4 mm, which was used as a radioactive element adsorbent.

以上詳述したように、本発明によれば、放射性セシウム等の放射性元素の吸着除去能に優れる放射性元素吸着剤を簡便かつ安価に提供することができ、かつ、放射性元素の吸着除去後の吸着剤を容易に処理する方法を提供することができる。   As described above in detail, according to the present invention, it is possible to provide a radioactive element adsorbent that is excellent in the ability to absorb and remove radioactive elements such as radioactive cesium in a simple and inexpensive manner, and adsorption after the adsorption and removal of radioactive elements. A method for easily treating the agent can be provided.

1 実施例1の粉粒体組成物
2 250メッシュのステンレス製フィルター
3 ソケット
4 塩化ビニル製の管
5 実施例2の粉粒体組成物
DESCRIPTION OF SYMBOLS 1 Granule composition of Example 1 2 250 mesh stainless steel filter 3 Socket 4 Tube made of vinyl chloride 5 Granule composition of Example 2

Claims (27)

(A)火山噴出物発泡体の1種または2種以上と、(B)アルカリ性を示す無機塩とを、(A)と(B)の重量比[(A):(B)]が1:0.3〜1:1.5となるように含む粉粒体組成物を含有する、放射性元素吸着剤。   (A) One or more types of volcanic ejecta foams and (B) an alkaline salt exhibiting alkalinity, (A) and (B) weight ratio [(A) :( B)] is 1: A radioactive element adsorbent containing a granular composition containing 0.3 to 1: 1.5. 粉粒体組成物に含まれる(A)火山噴出物発泡体の1種または2種以上と、(B)アルカリ性を示す無機塩との重量比[(A):(B)]が1:0.8〜1:1.3である、請求項1に記載の吸着剤。   The weight ratio [(A) :( B)] of (A) one or more of volcanic ejecta foams contained in the powder composition and (B) inorganic salt exhibiting alkalinity is 1: 0 The adsorbent according to claim 1, wherein the adsorbent is from 8 to 1: 1.3. 粉粒体組成物の平均粒子径が0.5mm〜6mmである、請求項1または2に記載の吸着剤。   The adsorbent of Claim 1 or 2 whose average particle diameter of a granular material composition is 0.5 mm-6 mm. 火山噴出物発泡体の1種または2種以上が、シラス発泡体、黒曜石発泡体および真珠岩発泡体からなる群より選択される、請求項1〜3のいずれか1項に記載の吸着剤。   The adsorbent according to any one of claims 1 to 3, wherein one or more of the volcanic ejecta foams are selected from the group consisting of shirasu foams, obsidian foams, and nacreous foams. アルカリ性を示す無機塩が無機弱酸のアルカリ金属塩である、請求項1〜4のいずれか1項に記載の吸着剤。   The adsorbent according to any one of claims 1 to 4, wherein the inorganic salt exhibiting alkalinity is an alkali metal salt of a weak inorganic acid. 無機弱酸のアルカリ金属塩が、オルトケイ酸、メタケイ酸およびメタ二ケイ酸のアルカリ金属塩からなる群より選択される1種または2種以上である、請求項5に記載の吸着剤。   The adsorbent according to claim 5, wherein the alkali metal salt of the weak inorganic acid is one or more selected from the group consisting of alkali metal salts of orthosilicic acid, metasilicic acid and metadisilicic acid. 粉粒体組成物が二酸化炭素により固化されたものである、請求項1〜6のいずれか1項に記載の吸着剤。   The adsorbent according to any one of claims 1 to 6, wherein the powder composition is solidified by carbon dioxide. 粉粒体組成物がパネル状に成形されている、請求項1〜7のいずれか1項に記載の吸着剤。   The adsorbent according to any one of claims 1 to 7, wherein the powder composition is formed into a panel shape. 請求項1〜8のいずれか1項に記載の吸着剤により放射性元素を吸着除去する、放射性元素の除去方法。   The removal method of a radioactive element which adsorbs and removes a radioactive element with the adsorption agent of any one of Claims 1-8. 請求項1〜8のいずれか1項に記載の吸着剤を用いてなる、放射性元素の吸着除去装置。   The adsorption removal apparatus of a radioactive element which uses the adsorbent of any one of Claims 1-8. 請求項1〜8のいずれか1項に記載の吸着剤に放射性元素を吸着させた後、前記吸着剤を焼成してガラス化させる、放射性元素を吸着した吸着剤の処理方法。   The processing method of the adsorbent which adsorb | sucked the radioactive element which makes the adsorbent of any one of Claims 1-8 adsorb | suck a radioactive element, and then calcinates and vitrifies the said adsorbent. 焼成する前に、ホウ酸およびその塩の1種または2種以上を加えて混合し、次いでケイ酸のアルカリ金属塩を加えて混合する、請求項11に記載の処理方法。   The processing method according to claim 11, wherein one or more of boric acid and a salt thereof are added and mixed before firing, and then an alkali metal salt of silicic acid is added and mixed. ホウ酸およびその塩の1種または2種以上が、オルトホウ酸およびホウ酸のナトリウム塩より選択される、請求項12に記載の処理方法。   The processing method according to claim 12, wherein one or more of boric acid and a salt thereof are selected from orthoboric acid and a sodium salt of boric acid. 焼成し、ガラス化させた後にセメントを加えて固化させる、請求項11〜13のいずれか1項に記載の処理方法。   The processing method according to any one of claims 11 to 13, wherein cement is added and solidified after firing and vitrification. 焼成し、ガラス化させた後にケイ酸のアルカリ金属塩を加えて混合し、次いで二酸化炭素により固化させる、請求項11〜13のいずれか1項に記載の処理方法。   The processing method according to any one of claims 11 to 13, wherein the alkali metal salt of silicic acid is added and mixed after firing and vitrification, and then solidified with carbon dioxide. 請求項1〜8のいずれか1項に記載の吸着剤に放射性元素を吸着させた後、前記吸着剤にケイ酸のアルカリ金属塩を加えて混合し、次いで二酸化炭素により固化させる、放射性元素を吸着した吸着剤の処理方法。   After adsorbing a radioactive element to the adsorbent according to any one of claims 1 to 8, an alkali metal salt of silicic acid is added to and mixed with the adsorbent, and then solidified with carbon dioxide. Treatment method of adsorbed adsorbent. ケイ酸のアルカリ金属塩を加えて混合する前にセメントを添加混合する、請求項16に記載の処理方法。   The processing method according to claim 16, wherein the cement is added and mixed before the alkali metal salt of silicic acid is added and mixed. (A)火山噴出物発泡体の1種または2種以上と、(B)アルカリ性を示す無機塩とを、(A)と(B)の重量比[(A):(B)]が1:0.8〜1:1.3となるように含む、粉粒体組成物。   (A) One or more types of volcanic ejecta foams and (B) an alkaline salt exhibiting alkalinity, (A) and (B) weight ratio [(A) :( B)] is 1: A granular composition comprising 0.8 to 1: 1.3. 粉粒体の平均粒子径が0.5mm〜6mmである、請求項18に記載の組成物。   The composition of Claim 18 whose average particle diameter of a granular material is 0.5 mm-6 mm. 火山噴出物発泡体の1種または2種以上が、シラス発泡体、黒曜石発泡体および真珠岩発泡体からなる群より選択される、請求項18または19に記載の組成物。   20. The composition according to claim 18 or 19, wherein one or more of the volcanic ejecta foam is selected from the group consisting of shirasu foam, obsidian foam and nacreous foam. アルカリ性を示す無機塩が無機弱酸のアルカリ金属塩である、請求項18〜20のいずれか1項に記載の組成物。   The composition according to any one of claims 18 to 20, wherein the inorganic salt exhibiting alkalinity is an alkali metal salt of an inorganic weak acid. 無機弱酸のアルカリ金属塩がオルトケイ酸、メタケイ酸およびメタ二ケイ酸のアルカリ金属塩からなる群より選択される1種または2種以上である、請求項21に記載の組成物。   The composition according to claim 21, wherein the alkali metal salt of the weak inorganic acid is one or more selected from the group consisting of alkali metal salts of orthosilicic acid, metasilicic acid and metadisilicic acid. 二酸化炭素により固化された、請求項18〜22のいずれか1項に記載の組成物。   The composition according to any one of claims 18 to 22, which is solidified with carbon dioxide. パネル状に成形されている、請求項18〜23のいずれか1項に記載の組成物。   The composition according to any one of claims 18 to 23, which is formed into a panel shape. (A)火山噴出物発泡体の1種または2種以上と、(B)アルカリ性を示す無機塩とを、(A)と(B)との重量比[(A):(B)]が1:0.8〜1:1.3となるように混合する工程を含む、粉粒体組成物の製造方法。   (A) One or more types of volcanic ejecta foams and (B) an alkaline salt exhibiting alkalinity, and the weight ratio [(A) :( B)] of (A) and (B) is 1. : The manufacturing method of a granular material composition including the process mixed so that it may become 0.8-1: 1.3. さらに、造粒および/または整粒する工程を含む、請求項25に記載の製造方法。   Furthermore, the manufacturing method of Claim 25 including the process of granulating and / or sizing. 火山噴出物発泡体の1種または2種以上が、シラス発泡体、黒曜石発泡体および真珠岩発泡体からなる群より選択される、請求項25または26に記載の製造方法。   27. The production method according to claim 25 or 26, wherein one or more of the volcanic ejecta foam is selected from the group consisting of shirasu foam, obsidian foam, and nacreous foam.
JP2013043483A 2013-03-05 2013-03-05 Radioactive element adsorbent, method for removing radioactive element, and method for treating adsorbent adsorbed with radioactive element Active JP6074802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013043483A JP6074802B2 (en) 2013-03-05 2013-03-05 Radioactive element adsorbent, method for removing radioactive element, and method for treating adsorbent adsorbed with radioactive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013043483A JP6074802B2 (en) 2013-03-05 2013-03-05 Radioactive element adsorbent, method for removing radioactive element, and method for treating adsorbent adsorbed with radioactive element

Publications (2)

Publication Number Publication Date
JP2014173847A true JP2014173847A (en) 2014-09-22
JP6074802B2 JP6074802B2 (en) 2017-02-08

Family

ID=51695230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013043483A Active JP6074802B2 (en) 2013-03-05 2013-03-05 Radioactive element adsorbent, method for removing radioactive element, and method for treating adsorbent adsorbed with radioactive element

Country Status (1)

Country Link
JP (1) JP6074802B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016099264A (en) * 2014-11-25 2016-05-30 有限会社パールハート Radioactive substance adsorption ceramic for disposing of radioactive substance safely

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036968A (en) * 2011-08-08 2013-02-21 Toshikazu Shimodaira Method of removing, shielding (suppressing divergence of) and collecting radioactive substance using foamed ore
JP2013088417A (en) * 2011-10-24 2013-05-13 Hiroshi Yoshizako Treatment method of contaminant by radioactive substances
JP2013113762A (en) * 2011-11-30 2013-06-10 Kanto Kanzai:Kk Treatment method for enclosing soil, sludge or the like contaminated by high concentration radioactive substance
JP2013226494A (en) * 2012-04-25 2013-11-07 Ever Wings:Kk Granular adsorbent
JP2013234925A (en) * 2012-05-09 2013-11-21 Taiheiyo Material Kk Cesium adsorbent
JP2013234926A (en) * 2012-05-09 2013-11-21 Taiheiyo Material Kk Cesium adsorptive material and method for disposing of and storing cesium-containing materials using the same
JP2013234927A (en) * 2012-05-09 2013-11-21 Taiheiyo Material Kk Method for removing cesium ions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036968A (en) * 2011-08-08 2013-02-21 Toshikazu Shimodaira Method of removing, shielding (suppressing divergence of) and collecting radioactive substance using foamed ore
JP2013088417A (en) * 2011-10-24 2013-05-13 Hiroshi Yoshizako Treatment method of contaminant by radioactive substances
JP2013113762A (en) * 2011-11-30 2013-06-10 Kanto Kanzai:Kk Treatment method for enclosing soil, sludge or the like contaminated by high concentration radioactive substance
JP2013226494A (en) * 2012-04-25 2013-11-07 Ever Wings:Kk Granular adsorbent
JP2013234925A (en) * 2012-05-09 2013-11-21 Taiheiyo Material Kk Cesium adsorbent
JP2013234926A (en) * 2012-05-09 2013-11-21 Taiheiyo Material Kk Cesium adsorptive material and method for disposing of and storing cesium-containing materials using the same
JP2013234927A (en) * 2012-05-09 2013-11-21 Taiheiyo Material Kk Method for removing cesium ions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016099264A (en) * 2014-11-25 2016-05-30 有限会社パールハート Radioactive substance adsorption ceramic for disposing of radioactive substance safely

Also Published As

Publication number Publication date
JP6074802B2 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
Kara et al. Metakaolin based geopolymer as an effective adsorbent for adsorption of zinc (II) and nickel (II) ions from aqueous solutions
Tan et al. Current development of geopolymer as alternative adsorbent for heavy metal removal
Goodarzi et al. Stabilization/solidification of zinc-contaminated kaolin clay using ground granulated blast-furnace slag and different types of activators
CN101531364B (en) Spherical formed active carbon and method for preparing same
CN101628222B (en) Filtering medium for removing micro radioactive substances in water and preparation method thereof
JP2960143B2 (en) Activated carbon production method
JP5839459B2 (en) Radioactive material-containing incineration ash and radioactive material-containing soil compression molding and compression molding method thereof
CN104021833B (en) Filter medium and filter element for removing radioactive uranium in drinking water and preparing method of filter medium
CN106824074A (en) A kind of liquid phase preparation technology of rapid dispersion granular activated carbon
Bhuyan et al. Preparation of filter by alkali activation of blast furnace slag and its application for dye removal
CN101898121B (en) Filter medium for removing beryllium in drinking water and preparation method thereof
CN106659138A (en) Low density compositions with synergistic absorbance properties
Du et al. Synthesis of porous bentonite organoclay granule and its adsorption of tributyltin
CN101596447A (en) Be used for filter medium of removing the water N-Nitrosodimethylamine and preparation method thereof
CN101992078B (en) Filter medium for removing estrogen medicine from water and preparation method thereof
JP6074802B2 (en) Radioactive element adsorbent, method for removing radioactive element, and method for treating adsorbent adsorbed with radioactive element
JP2013057575A (en) Method for decontaminating soil contaminated by radioactive material
JP2014224696A (en) Radioactive contamination water decontamination method
Sutthasupa et al. Sugarcane bagasse-derived granular activated carbon hybridized with ash in bio-based alginate/gelatin polymer matrix for methylene blue adsorption
CN101844008A (en) Filter medium and preparation method thereof, filter element and water purification device
CN104998624A (en) Dephosphorization absorbent granulation method
JP2013234926A (en) Cesium adsorptive material and method for disposing of and storing cesium-containing materials using the same
CN102295317A (en) Filtering medium for removing thallium from drinking water and preparation method thereof
CN105498737A (en) Filtering medium for removing radioactive strontium in drinking water, filter element and preparation method
JP5934021B2 (en) Method for producing cesium adsorbent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161221

R150 Certificate of patent or registration of utility model

Ref document number: 6074802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250