JP2013222921A - Heat sink for heat dissipation unit - Google Patents

Heat sink for heat dissipation unit Download PDF

Info

Publication number
JP2013222921A
JP2013222921A JP2012095337A JP2012095337A JP2013222921A JP 2013222921 A JP2013222921 A JP 2013222921A JP 2012095337 A JP2012095337 A JP 2012095337A JP 2012095337 A JP2012095337 A JP 2012095337A JP 2013222921 A JP2013222921 A JP 2013222921A
Authority
JP
Japan
Prior art keywords
heat
metal body
refrigerant
heat sink
circulation path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012095337A
Other languages
Japanese (ja)
Inventor
Yuto Masuda
悠人 増田
Yuji Nakano
裕二 中野
Iku Sato
郁 佐藤
Toyoaki Kurihara
豊明 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012095337A priority Critical patent/JP2013222921A/en
Publication of JP2013222921A publication Critical patent/JP2013222921A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that the number of components and work man-hours are large, and assembly is complicated when a heat sink for a heat dissipation unit is manufactured.SOLUTION: In a heat sink 11 for a heat dissipation unit which is constituted by integrating two rectangular parallelepiped metal bodies A1 and B2, the metal body A1 is in the box shape obtained by putting four side faces on one heat receiving face 5, the heat receiving face 5 is provided with a plurality of grooves 6 for coolant circulation paths in parallel with one of the side faces at equal intervals, the side faces are provided with entrances 7 for coolant circulation paths and exits 8 for coolant circulation paths at positions to be the diagonal vicinity of the heat receiving face 5, the metal body B2 is integrated by being put on the metal body A1 so as to cover the grooves 6 for coolant circulation paths, and the heat sink for a heat dissipation unit with small work man-hours, easy assembly, and high mass productivity is provided.

Description

本発明は、自然対流により電子機器の発熱部からの放熱を行わせる放熱ユニットの構成部品である吸熱器の製造方法に関する。   The present invention relates to a method of manufacturing a heat absorber that is a component part of a heat dissipation unit that dissipates heat from a heat generating portion of an electronic device by natural convection.

近年、電子機器においては半導体等の電子部品の高集積化、動作クロックの高周波数化等に伴う発熱量の増大に対して、電子部品の正常な動作の為に、それぞれの電子部品の接点温度を動作温度範囲内に如何に保つかが大きな問題となってきている。動作の安定性、または動作寿命の確保などの点からも放熱対策が重要になっている。   In recent years, in electronic devices, the contact temperature of each electronic component has increased for the normal operation of the electronic component against the increase in heat generation due to higher integration of electronic components such as semiconductors and higher operating clock frequencies. It has become a big problem how to keep the temperature within the operating temperature range. Measures for heat dissipation are also important from the standpoints of operational stability and ensuring the operational life.

しかし、従来のようにヒートシンクとファンを組み合わせた空冷方式では高発熱量の電子部品に対しては能力不足の場合が多くなりつつある。そこで、例えば(特許文献1)に示すような冷媒を循環させる、より能力の高い高効率の冷却装置が提案されている。   However, the conventional air-cooling method combining a heat sink and a fan is increasingly lacking in capacity for electronic components with high heat generation. In view of this, for example, a highly efficient cooling device with higher capacity that circulates a refrigerant as shown in (Patent Document 1) has been proposed.

一般に、高発熱量の発熱体を冷却するには、受熱部で吸収した熱を広い面積を有する放熱部から空気へ放熱する方法が採られている。   In general, in order to cool a heating element having a high calorific value, a method of radiating heat absorbed by the heat receiving portion from the heat radiating portion having a large area to the air is employed.

このような冷却装置は、発熱体から発熱した熱を受熱する受熱部と受熱部で熱を受け取った冷媒を輸送する流路と冷媒を動かすポンプおよび冷媒から熱を放熱する放熱部から構成されている。その主な冷却原理は、発熱体で発生した熱が、受熱部の内部へ伝わり内部に循環する冷媒と熱交換することにより冷媒の温度が上昇する。次に、その冷媒がポンプにより流路を通って放熱部へ輸送され、放熱部の温度を高める。次に高温となった放熱部の表面へ空気が送られ熱交換されることで空気中へ拡散する方法が採られている。   Such a cooling device includes a heat receiving unit that receives heat generated from the heating element, a channel that transports the refrigerant that has received heat at the heat receiving unit, a pump that moves the refrigerant, and a heat radiating unit that radiates heat from the refrigerant. Yes. The main cooling principle is that the heat generated in the heating element is transferred to the inside of the heat receiving section and exchanges heat with the refrigerant circulating inside, so that the temperature of the refrigerant rises. Next, the refrigerant is transported to the heat radiating part through the flow path by the pump, and the temperature of the heat radiating part is increased. Next, a method is adopted in which air is sent to the surface of the heat dissipating part that has become high temperature and heat exchange is performed to diffuse it into the air.

この冷却装置に用いられる受熱部(本発明では吸熱器と呼ぶ)には、内部に発熱体から発熱した熱を受熱する複数のプレート状のフィンと、このフィンの中央部に冷媒を流入する流入ノズルとを具備している。冷媒は、この流入ノズルを介してフィンの中央部に流入して、フィンの間に入り込む。そして、冷媒は、フィンの間の底部に流れ込んだ後、フィンの熱を吸収して、フィンの両側から流出される構造を持っている。   A heat receiving portion (referred to as a heat absorber in the present invention) used in the cooling device has a plurality of plate-like fins that receive heat generated from the heating element therein, and an inflow through which refrigerant flows into the central portion of the fins. Nozzle. The refrigerant flows into the central portion of the fin through the inflow nozzle and enters between the fins. And after a refrigerant | coolant flows into the bottom part between fins, it absorbs the heat | fever of a fin and has a structure discharged | emitted from the both sides of a fin.

特開2007−180505号公報JP 2007-180505 A

前記従来技術における電子部品の冷却装置の吸熱器を製造する場合、部品点数が多く、製造方法も手間がかかるという課題がある。   When manufacturing the heat absorber of the cooling device for electronic parts in the prior art, there is a problem that the number of parts is large and the manufacturing method is troublesome.

また、流入口または流入ノズルの配置もプレート状フィンに対して、垂直に配置すると、吸熱器自体の形状もシンプルな形にはならず、製造の手間が増すことになる。   In addition, when the inlet or the inlet nozzle is arranged perpendicular to the plate-like fin, the shape of the heat absorber itself is not simple, and the manufacturing labor is increased.

そこで本発明は、作業工数が少なく、組み立てが容易で量産性の高い前記従来技術と同様の構造をもつ放熱ユニット用吸熱器の形成を目的とするものである。   SUMMARY OF THE INVENTION The present invention is directed to the formation of a heat sink for a heat radiating unit having the same structure as the above-described prior art, which requires a small number of work steps, is easy to assemble and has high productivity.

上記目的を達成するために、本発明の放熱ユニット用吸熱器は、
2つの直方体型の金属体A,Bを一体化して構成される放熱ユニット用吸熱器であり、金属体Aは、1つの受熱面に4つの側面を立てた箱型であり、
前記受熱面には、前記側面のひとつに平行な溝を等間隔に複数枚設け、
前記側面には、前記受熱面の対角近傍となる位置に冷媒循環路用入口、冷媒循環路用出口を設け、
金属体Bは、前記溝を覆うように金属体Aにかぶせて一体化することを特徴とするものである。
In order to achieve the above object, the heat sink for a heat dissipating unit of the present invention comprises:
It is a heat sink for a heat radiating unit configured by integrating two rectangular parallelepiped metal bodies A and B, and the metal body A is a box shape with four side surfaces standing on one heat receiving surface,
The heat receiving surface is provided with a plurality of grooves at equal intervals parallel to one of the side surfaces,
The side surface is provided with a refrigerant circulation path inlet and a refrigerant circulation path outlet at a position near the diagonal of the heat receiving surface,
The metal body B is characterized by being integrated by covering the metal body A so as to cover the groove.

本発明によれば、2つの直方体型の金属体A,Bを一体化して構成される放熱ユニット用吸熱器であり、金属体Aは、1つの受熱面に4つの側面を立てた箱型であり、前記受熱面には、前記側面のひとつに平行な溝を等間隔に複数枚設け、前記側面には、前記受熱面の対角近傍となる位置に冷媒循環路用入口、冷媒循環路用出口を設け、金属体Bは、前記溝を覆うように金属体Aにかぶせて一体化することにより、作業工数が少なくなり組立が容易で量産性の高いものとなる。   According to the present invention, the heat sink for a heat radiating unit is configured by integrating two rectangular parallelepiped metal bodies A and B, and the metal body A is a box shape in which four side surfaces are set up on one heat receiving surface. A plurality of grooves parallel to one of the side surfaces are provided at equal intervals on the heat receiving surface, and a refrigerant circulation path inlet and a refrigerant circulation path are provided on the side surface at positions near the diagonal of the heat receiving surface. By providing an outlet and integrating the metal body B by covering the metal body A so as to cover the groove, the number of work steps is reduced, the assembly is easy, and the mass productivity is high.

本発明の第1の実施の形態の放熱ユニット用吸熱器の構成部品を示す斜視図The perspective view which shows the component of the heat sink for heat radiating units of the 1st Embodiment of this invention. 同放熱ユニット用吸熱器の金属体Aの構造を示す斜視図The perspective view which shows the structure of the metal body A of the heat sink for the thermal radiation unit 同放熱ユニット用吸熱器を示す斜視図The perspective view which shows the heat absorber for the heat radiating unit 同放熱ユニット用吸熱器を示す横断面図Cross-sectional view showing the heat sink for the heat dissipation unit 同放熱ユニット用吸熱器を示す正面断面図Front sectional view showing the heat absorber for the heat dissipation unit 同放熱ユニット用吸熱器内部の冷媒循環の様子を示す正面断面図Front sectional view showing the state of refrigerant circulation inside the heat sink for the heat radiating unit 同放熱ユニット用吸熱器を利用した放熱ユニットを示す斜視図The perspective view which shows the thermal radiation unit using the heat sink for the thermal radiation unit

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の放熱ユニット用吸熱器11の構成部品を示した斜視図で、図2は金属体Aを示した斜視図である。放熱ユニット用吸熱器11は、金属体A1と金属体B2と2つの冷媒循環回路パイプのガス管4,液管3により構成される。
(Embodiment 1)
FIG. 1 is a perspective view showing components of a heat sink 11 for heat dissipation unit of the present invention, and FIG. 2 is a perspective view showing a metal body A. FIG. The heat sink 11 for the heat radiating unit is composed of a metal body A1, a metal body B2, and gas pipes 4 and liquid pipes 3 of two refrigerant circulation circuit pipes.

金属体A1は、1つの受熱面5に4つの側面を立てた箱型の金属体である。さらに、金属体A1の内部には、受熱面5側に、一つの側面に平行に冷媒循環路用溝6を等間隔に複数枚設ける。なお、この冷媒循環路用溝6は、金属体A1の側面に接触しないようにようにし、上部空間9と下部空間10を設ける。金属体A1の一つの側面には、下部空間10に近接して冷媒循環路用入口7の穴を設ける。そして、この冷媒循環路用入口7とは対角の位置近傍の側面に冷媒循環路用出口8の穴を設ける。すなわち、冷媒循環路用入口7と冷媒循環路用出口8は、受熱面5の対角となる位置の近傍に設けられる。また、本実施の形態では、冷媒循環路用入口7は、冷媒循環路用溝6に対して直交して冷媒が流入するように設け、冷媒循環路用出口8は、冷媒循環路用溝6に対して平行に冷媒が流出するように設けた。金属体B2には、金属体A1と同様の構造のものもしくは平板を用いる。冷媒循環路パイプである液管3とガス管4には、円筒形のもので、中が空洞になっているパイプを用いる。   The metal body A1 is a box-shaped metal body in which four heat receiving surfaces 5 are provided with four side surfaces. Further, a plurality of coolant circulation path grooves 6 are provided at equal intervals in the metal body A1 on the heat receiving surface 5 side in parallel with one side surface. In addition, this groove | channel 6 for refrigerant | coolant circulation paths is provided so that it may not contact the side surface of the metal body A1, and the upper space 9 and the lower space 10 may be provided. One side surface of the metal body A1 is provided with a hole for the refrigerant circulation path inlet 7 in the vicinity of the lower space 10. And the hole of the refrigerant | coolant circulation path outlet 8 is provided in the side surface near the position opposite to this refrigerant | coolant circulation path inlet 7. As shown in FIG. That is, the refrigerant circulation path inlet 7 and the refrigerant circulation path outlet 8 are provided in the vicinity of the diagonal positions of the heat receiving surface 5. Further, in the present embodiment, the refrigerant circulation path inlet 7 is provided so that the refrigerant flows perpendicularly to the refrigerant circulation path groove 6, and the refrigerant circulation path outlet 8 is provided in the refrigerant circulation path groove 6. The refrigerant was provided so as to flow out in parallel. The metal body B2 has a structure similar to that of the metal body A1 or a flat plate. The liquid pipe 3 and the gas pipe 4 that are refrigerant circulation pipes are cylindrical pipes that are hollow inside.

そして、金属体A1に金属体B2をかぶせるように一体化し、金属が接触した部分をろう付けなどの処理をして密着させる。冷媒循環路用溝6は、金属体B2によって頂部が塞がれるようになる。さらに、金属体A1に設けた冷媒循環路用入口7に液管3を接続し、冷媒循環路用出口8にガス管4を接続する。それぞれ堅密に接着することにより、図3に示すような放熱ユニット用吸熱器11が完成する。   Then, the metal body A1 is integrated so as to cover the metal body B2, and the part in contact with the metal is subjected to a treatment such as brazing and is brought into close contact therewith. The top of the coolant circulation groove 6 is closed by the metal body B2. Further, the liquid pipe 3 is connected to the refrigerant circulation path inlet 7 provided in the metal body A1, and the gas pipe 4 is connected to the refrigerant circulation path outlet 8. By firmly bonding each of them, the heat sink 11 for a heat radiating unit as shown in FIG. 3 is completed.

このような放熱ユニット用吸熱器11によれば、ダイカストなどの方法により金属体A1、金属体B2は簡単に大量生産でき、さらに構成部品も少ないので、作業工数が少なく、組み立てが容易な放熱ユニット用吸熱器11の作製ができる。   According to such a heat sink 11 for a heat radiating unit, the metal body A1 and the metal body B2 can be easily mass-produced by a method such as die casting, and since there are few components, the heat radiating unit can be easily assembled with less work steps. The heat absorber 11 can be manufactured.

さらに、金属体A1の発熱体と接触する面、すなわち受熱面5に発熱体埋め込み用の凹部12を設ける。発熱体となる制御基板20は、この凹部12に埋め込まれることになる。この構成により、スペースを有効に使用することになり軽量化または製品の小型化に繋がる。また、効率よく吸熱することが可能になる。   Further, a recess 12 for embedding the heating element is provided on the surface of the metal body A1 that contacts the heating element, that is, the heat receiving surface 5. The control board 20 serving as a heating element is embedded in the recess 12. With this configuration, space is used effectively, leading to weight reduction or product miniaturization. Moreover, it becomes possible to absorb heat efficiently.

図4に示すように、金属体A1の冷媒循環路用溝6の頂部13を平形状にする。さらに、金属体A1の側面の内周側を外周側よりも低くして、金属体A1と、金属体B2とが当接するための当接段14を設ける。このような構成によれば、金属体B2は、金属体A1と冷媒循環路用溝6の頂部13、当接段14とで接触することになる。このようにして、金属体A1、金属体B2を重ね合わせた際の接触部間の隙間が少なくなる。さらに、冷却循環路用溝6間の冷媒通路の独立性が保たれ、冷媒循環効率が良くなる。   As shown in FIG. 4, the top portion 13 of the coolant circulation groove 6 of the metal body A1 is flat. Further, the inner peripheral side of the side surface of the metal body A1 is made lower than the outer peripheral side, and a contact step 14 for contacting the metal body A1 and the metal body B2 is provided. According to such a configuration, the metal body B <b> 2 comes into contact with the metal body A <b> 1 at the top portion 13 of the coolant circulation path groove 6 and the contact stage 14. In this way, the gap between the contact portions when the metal body A1 and the metal body B2 are overlapped is reduced. Furthermore, the independence of the refrigerant path between the cooling circulation path grooves 6 is maintained, and the refrigerant circulation efficiency is improved.

図5に示すように、金属体A1の側面に設けられた冷媒循環路用入口7の手前円周径より奥側円周径を狭くし、液管3が当接できるような段差(液管用当接段15)をつける。冷媒循環路用出口8にも同じように冷媒循環路用出口8の手前円周径より奥側円周径を狭くし、ガス管4が当接できるような段差(ガス管用当接段16)をつける。液管3、ガス管4を接続する際には、液管用当接段15と液管3の先端とが当接し、ガス管用当接段16とガス管4の先端とが当接する。このようにして、液管3、ガス管4は、金属体A1と密着することができる。また、液管3とガス管4が奥に入りすぎるのを防止することができ、金属体A1の接続具合を均一にすることができる。そして、製造する際の作業性が向上することとなる。   As shown in FIG. 5, a step (liquid pipe use) that allows the liquid pipe 3 to come into contact with the rear circumference diameter narrower than the front circumference diameter of the refrigerant circulation path inlet 7 provided on the side surface of the metal body A1. A contact step 15) is provided. Similarly, the refrigerant circulation path outlet 8 has a step that allows the gas pipe 4 to come into contact by making the inner circumference diameter narrower than the front circumference diameter of the refrigerant circulation path outlet 8 (gas pipe contact stage 16). Turn on. When the liquid pipe 3 and the gas pipe 4 are connected, the liquid pipe contact stage 15 and the tip of the liquid pipe 3 come into contact with each other, and the gas pipe contact stage 16 and the tip of the gas pipe 4 come into contact with each other. In this way, the liquid pipe 3 and the gas pipe 4 can be in close contact with the metal body A1. Moreover, it is possible to prevent the liquid pipe 3 and the gas pipe 4 from entering too far into the back, and the connection state of the metal body A1 can be made uniform. And the workability | operativity at the time of manufacturing will improve.

このような放熱ユニット用吸熱器11の内部には、図6のように冷媒が通る。すなわち、液管3から液体の冷媒が供給され、冷媒循環路用入口7を通り、下部空間10に液体の冷媒が溜まる。そして、放熱ユニット用吸熱器11の受熱面5が発熱体から熱を受け取り、液体冷媒が気化する。気化した冷媒は各冷媒循環路用溝6を上昇して、上部空間9、冷媒循環路用出口8の順で通過して、ガス管4に出て行く。   The refrigerant passes through the heat sink 11 for the heat radiation unit as shown in FIG. That is, liquid refrigerant is supplied from the liquid pipe 3, passes through the refrigerant circulation path inlet 7, and accumulates liquid refrigerant in the lower space 10. And the heat receiving surface 5 of the heat sink 11 for heat radiating units receives heat from a heat generating body, and a liquid refrigerant evaporates. The vaporized refrigerant rises in each refrigerant circuit groove 6, passes through the upper space 9 and the refrigerant circuit outlet 8 in this order, and exits to the gas pipe 4.

この放熱ユニット用吸熱器11を利用した放熱ユニット19は、図7のような構成をしている。図7に示すように、電子機器装置17は、通信機器の基地局となる電子機器18と、この電子機器18の天面の上方に設けた放熱ユニット19とにより構成されている。放熱ユニット19は、放熱器21と、この放熱器21の下方に設けられた放熱ユニット用吸熱器11と、この放熱ユニット用吸熱器11と放熱器21を結合した冷媒循環路と、これらの放熱器21、放熱ユニット用吸熱器11、冷媒循環路を覆った本体ケース26を備えている。冷媒循環路は、液管3とガス管4により循環経路を構成している。冷媒循環路内部には、冷媒が封入され、この冷媒は、液体から気体、気体から液体への相変化可能な良く知られたものを用いる。放熱器21は、冷媒を内部に通す放熱経路24に冷却フィン23を立てて、放熱器21を通過する空気に熱を放出しやすくしている。以上の構成によれば、電子機器18での発熱は、放熱ユニット19を構成する放熱ユニット用吸熱器11で冷媒が気化することで吸熱される。そして、気化した冷媒は、ガス管4を介して放熱器へと上昇し、この放熱器21で通気口25から導入される外気によって冷却され、再び液化し、液管3を介して放熱ユニット用吸熱器11へと循環する。このように、冷媒が循環することにより電子機器18の発熱の冷却を行う。   A heat radiating unit 19 using the heat radiating unit heat absorber 11 has a configuration as shown in FIG. As shown in FIG. 7, the electronic device device 17 includes an electronic device 18 serving as a base station for communication devices, and a heat dissipation unit 19 provided above the top surface of the electronic device 18. The heat dissipating unit 19 includes a heat dissipating member 21, a heat dissipating unit heat absorber 11 provided below the heat dissipating member 21, a refrigerant circulation path connecting the heat dissipating unit heat absorber 11 and the heat dissipating member 21, and heat dissipation of these heat dissipating units. , A heat sink 11 for heat radiation unit, and a main body case 26 covering the refrigerant circulation path. In the refrigerant circulation path, the liquid pipe 3 and the gas pipe 4 constitute a circulation path. A refrigerant is enclosed inside the refrigerant circuit, and a well-known refrigerant capable of phase change from liquid to gas and from gas to liquid is used as the refrigerant. In the radiator 21, cooling fins 23 are erected in the heat dissipation path 24 through which the refrigerant passes, so that heat is easily released to the air passing through the radiator 21. According to the above configuration, the heat generated in the electronic device 18 is absorbed by the refrigerant being vaporized by the heat radiating unit heat absorber 11 that constitutes the heat radiating unit 19. The vaporized refrigerant rises to the radiator via the gas pipe 4, is cooled by the outside air introduced from the vent 25 by the radiator 21, is liquefied again, and is used for the heat radiating unit via the liquid pipe 3. It circulates to the heat absorber 11. In this way, the heat generated in the electronic device 18 is cooled by circulating the refrigerant.

本発明の放熱ユニット用吸熱器は、部品点数と作業工数が少なく、組み立てが容易で量産性が高い放熱ユニット用吸熱器の形成の手段として有用である。放熱ユニットとは、通信機器の基地局となる電子機器装置と一体化して構成されるものである。   The heat sink for a heat radiating unit of the present invention is useful as a means for forming a heat absorber for a heat radiating unit that has a small number of parts and man-hours, is easy to assemble, and has high mass productivity. The heat radiating unit is configured to be integrated with an electronic device device that becomes a base station of a communication device.

1 金属体A
2 金属体B
3 液管
4 ガス管
5 受熱面
6 冷媒循環路用溝
7 冷媒循環路用入口
8 冷媒循環路用出口
9 上部空間
10 下部空間
11 放熱ユニット用吸熱器
12 凹部
13 頂部
14 当接段
15 液管用当接段
16 ガス管用当接段
17 電子機器装置
18 電子機器
19 放熱ユニット
20 制御基板(発熱体)
21 放熱器
23 冷却フィン
24 放熱経路
25 通気口
26 本体ケース
1 Metal body A
2 Metal body B
3 Liquid pipe 4 Gas pipe 5 Heat receiving surface 6 Refrigerant circulation path groove 7 Refrigerant circulation path inlet 8 Refrigerant circulation path outlet 9 Upper space 10 Lower space 11 Heat sink for heat radiation unit 12 Recess 13 Top 14 Contacting stage 15 For liquid pipe Contact stage 16 Gas tube contact stage 17 Electronic device 18 Electronic device 19 Heat radiation unit 20 Control board (heating element)
21 radiator 23 cooling fin 24 heat dissipation path 25 vent 26 body case

Claims (4)

2つの直方体型の金属体A,Bを一体化して構成される放熱ユニット用吸熱器であり、金属体Aは、1つの受熱面に4つの側面を立てた箱型であり、
前記受熱面には、前記側面のひとつに平行な溝を等間隔に複数枚設け、
前記側面には、前記受熱面の対角近傍となる位置に冷媒循環路用入口、冷媒循環路用出口を設け、
金属体Bは、前記溝を覆うように金属体Aにかぶせて一体化することを特徴とする放熱ユニット用吸熱器。
It is a heat sink for a heat radiating unit configured by integrating two rectangular parallelepiped metal bodies A and B, and the metal body A is a box shape with four side surfaces standing on one heat receiving surface,
The heat receiving surface is provided with a plurality of grooves at equal intervals parallel to one of the side surfaces,
The side surface is provided with a refrigerant circulation path inlet and a refrigerant circulation path outlet at a position near the diagonal of the heat receiving surface,
The heat sink for a heat radiating unit, wherein the metal body B is integrated with the metal body A so as to cover the groove.
前記金属体Aの前記溝の頂部部分の形状を平坦にし、
前期金属体Bと前記頂部部分が当接することを特徴とする請求項1に記載の放熱ユニット用吸熱器。
The shape of the top portion of the groove of the metal body A is flattened,
The heat sink for a heat radiating unit according to claim 1, wherein the metal body B is in contact with the top portion.
前記金属体Aの側面の内周側に外周側よりも低い段を設け、
前記金属体Bがこの段に当接して一体化することを特徴とする請求項1に記載の放熱ユニット用吸熱器。
A lower step than the outer peripheral side is provided on the inner peripheral side of the side surface of the metal body A,
The heat sink for a heat radiating unit according to claim 1, wherein the metal body B is in contact with and integrated with the step.
前記冷媒循環路用入口と前記冷媒循環路用出口に、段を設け、
冷媒循環路用パイプを前記冷媒循環路用入口と前記冷媒循環路用出口に接続する際、この段と前記冷媒循環路用パイプの先端が当接して一体化することを特徴とする請求項1に記載の放熱ユニット用吸熱器。
Steps are provided at the refrigerant circuit inlet and the refrigerant circuit outlet,
2. When connecting the refrigerant circuit pipe to the refrigerant circuit inlet and the refrigerant circuit outlet, this stage and the tip of the refrigerant circuit pipe are in contact with each other to be integrated. The heat sink for heat dissipation units described in 1.
JP2012095337A 2012-04-19 2012-04-19 Heat sink for heat dissipation unit Pending JP2013222921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012095337A JP2013222921A (en) 2012-04-19 2012-04-19 Heat sink for heat dissipation unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012095337A JP2013222921A (en) 2012-04-19 2012-04-19 Heat sink for heat dissipation unit

Publications (1)

Publication Number Publication Date
JP2013222921A true JP2013222921A (en) 2013-10-28

Family

ID=49593666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012095337A Pending JP2013222921A (en) 2012-04-19 2012-04-19 Heat sink for heat dissipation unit

Country Status (1)

Country Link
JP (1) JP2013222921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113727589A (en) * 2021-09-10 2021-11-30 常州微焓热控科技有限公司 Water-cooling heat dissipation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113727589A (en) * 2021-09-10 2021-11-30 常州微焓热控科技有限公司 Water-cooling heat dissipation device

Similar Documents

Publication Publication Date Title
US20130206367A1 (en) Heat dissipating module
TWI741592B (en) Heat sink
JPWO2015178064A1 (en) Semiconductor module cooler and manufacturing method thereof
JP2016200316A5 (en)
TW202040775A (en) Heatsink
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
US9772143B2 (en) Thermal module
US20100073879A1 (en) Thermal module
JP2011091384A (en) Heat dissipation device with heat pipeheat pipe heat radiator
JP5334288B2 (en) Heat pipes and electronics
US20110192572A1 (en) Heat exchanger
JP3213430U (en) Graphic card heat dissipation device
JPWO2013005622A1 (en) Cooling device and manufacturing method thereof
TWM609021U (en) Liquid cooling heat dissipation device and liquid cooling heat dissipation system with the same
JP5449801B2 (en) Heat transport unit and electronic equipment
JP2013222921A (en) Heat sink for heat dissipation unit
TWI798015B (en) heat sink
JP2016219560A (en) Heat dissipation structure for circuit board
JP2006012874A (en) Cooling device of semiconductor element
JP2017166710A (en) Cooling device and electronic equipment mounted with the same
JP2016138740A (en) Cooling apparatus and electronic equipment
JP2011187598A (en) Liquid-cooled jacket
JP2011187599A (en) Liquid-cooled jacket
KR102497950B1 (en) System for cooling semiconductor component, method for manufacturing the same, and semiconductor package having the same
CN221175225U (en) Radiating device of projection system and projection system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312