JP2013221125A - Method for producing polymer, method for producing resist composition, and method for producing substrate with pattern formed thereon - Google Patents

Method for producing polymer, method for producing resist composition, and method for producing substrate with pattern formed thereon Download PDF

Info

Publication number
JP2013221125A
JP2013221125A JP2012094906A JP2012094906A JP2013221125A JP 2013221125 A JP2013221125 A JP 2013221125A JP 2012094906 A JP2012094906 A JP 2012094906A JP 2012094906 A JP2012094906 A JP 2012094906A JP 2013221125 A JP2013221125 A JP 2013221125A
Authority
JP
Japan
Prior art keywords
polymerization
polymer
reaction
monomer
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012094906A
Other languages
Japanese (ja)
Other versions
JP5942562B2 (en
Inventor
Tomoya Oshikiri
友也 押切
Atsushi Yasuda
敦 安田
Kazuaki Mukai
一晃 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2012094906A priority Critical patent/JP5942562B2/en
Publication of JP2013221125A publication Critical patent/JP2013221125A/en
Application granted granted Critical
Publication of JP5942562B2 publication Critical patent/JP5942562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a polymer, by which variation among lots of the polymer can be further reduced.SOLUTION: In a method for producing a polymer, a polymerization rate is measured in every hour from a time when the polymerization reaction is started. When a polymerization rate is less than 90 mol% in n hours (n is an integer of 1 or more) and a polymerization rate is equal to or more than 90 mol% in (n+1) hours, the value of a standard deviation Z of the weight average molecular weight xof the polymer which is produced in each period from (t-1) hours to t hours (where t is an integer of 1 to n) after the polymerization reaction is started, is 10% or less of the weight average molecular weight y at the end of the polymerization reaction. Further, the proportion of the total mass of monomers supplied to a reaction vessel with respect to the mass of a reaction liquid in the reaction vessel at the end of the polymerization reaction is 40 mass% or less.

Description

本発明は重合体の製造方法、該製造方法により得られる重合体を用いてレジスト組成物を製造する方法、及び該レジスト組成物を用いて、パターンが形成された基板を製造する方法に関する。   The present invention relates to a method for producing a polymer, a method for producing a resist composition using a polymer obtained by the production method, and a method for producing a substrate on which a pattern is formed using the resist composition.

近年、半導体素子、液晶素子等の製造工程において形成されるレジストパターンは、半導体リソグラフィー技術の進歩により急速に微細化が進んでいる。微細化の手法としては、照射光の短波長化がある。具体的には、従来のg線(波長:438nm)、i線(波長:365nm)に代表される紫外線から、より短波長のDUV(Deep Ultra Violet)へと照射光が短波長化してきている。
最近では、KrFエキシマレーザー(波長:248nm)リソグラフィー技術が導入され、さらなる短波長化を図ったArFエキシマレーザー(波長:193nm)リソグラフィー技術及びEUV(波長:13.5nm)リソグラフィー技術が研究されている。さらに、これらの液浸リソグラフィー技術も研究されている。また、これらとは異なるタイプのリソグラフィー技術として、電子線リソグラフィー技術についても精力的に研究されている。
In recent years, a resist pattern formed in a manufacturing process of a semiconductor element, a liquid crystal element, or the like has been rapidly miniaturized due to advances in semiconductor lithography technology. As a technique for miniaturization, there is a reduction in wavelength of irradiation light. Specifically, the irradiation light has become shorter from conventional ultraviolet rays typified by g-line (wavelength: 438 nm) and i-line (wavelength: 365 nm) to shorter wavelength DUV (Deep Ultra Violet). .
Recently, KrF excimer laser (wavelength: 248 nm) lithography technology has been introduced, and ArF excimer laser (wavelength: 193 nm) lithography technology and EUV (wavelength: 13.5 nm) lithography technology for further shortening the wavelength have been studied. . Furthermore, these immersion lithography techniques are also being studied. Also, as a different type of lithography technology, electron beam lithography technology has been energetically studied.

該短波長の照射光又は電子線を用いたレジストパターンの形成に用いられる高感度のレジスト組成物として、光酸発生剤を含有する「化学増幅型レジスト組成物」が提唱され、現在、該化学増幅型レジスト組成物の改良及び開発が進められている。
例えば、ArFエキシマレーザーリソグラフィーにおいて用いられる化学増幅型レジスト用重合体として、波長193nmの光に対して透明なアクリル系重合体が注目されている。該アクリル系重合体としては、例えば、エステル部にアダマンタン骨格を有する(メタ)アクリル酸エステルとエステル部にラクトン骨格を有する(メタ)アクリル酸エステルとの重合体が提案されている(特許文献1等)。
A “chemically amplified resist composition” containing a photoacid generator has been proposed as a highly sensitive resist composition used for forming a resist pattern using the irradiation light or electron beam of the short wavelength. Improvement and development of the amplified resist composition are underway.
For example, as a chemically amplified resist polymer used in ArF excimer laser lithography, an acrylic polymer that is transparent with respect to light having a wavelength of 193 nm has attracted attention. As the acrylic polymer, for example, a polymer of (meth) acrylic acid ester having an adamantane skeleton in an ester portion and (meth) acrylic acid ester having a lactone skeleton in an ester portion has been proposed (Patent Document 1). etc).

レジストパターンの微細化に伴って、半導体リソグラフィー用重合体の品質への要求も厳しくなっている。例えば、半導体リソグラフィー用重合体の製造上のロットバラツキが現像時に微少な欠陥を発生させ、デバイス設計における欠陥の原因となる場合がある。
下記特許文献2には、ロットの違いによる分子量分布の変動を小さくする方法として、リビングラジカル重合開始剤を用いて、酸解離性基を有する樹脂を合成する方法が記載されている。
With the miniaturization of resist patterns, demands for quality of polymers for semiconductor lithography have become stricter. For example, a lot variation in manufacturing a polymer for semiconductor lithography may cause a minute defect during development, which may cause a defect in device design.
Patent Document 2 listed below describes a method of synthesizing a resin having an acid-dissociable group using a living radical polymerization initiator as a method for reducing fluctuations in molecular weight distribution due to lot differences.

特開平10−319595号公報JP 10-319595 A 特開2009−175746号公報JP 2009-175746 A

しかし、特許文献2に記載の方法では特定の重合開始剤を用いることが必要であり、重合開始剤の変更に伴う製造条件の適正化も必要となる。
また、近年ではレジスト用重合体のロット間バラツキの低減に対する要求は益々厳しくなっており、従来の方法では必ずしも十分とは言えない。
本発明は前記事情に鑑みてなされたもので、重合体のロット間のバラツキをより低減することができる重合体の製造方法、該製造方法を用いたレジスト組成物の製造方法、及び該レジスト組成物の製造方法を用いた、パターンが形成された基板の製造方法を提供することを目的とする。
However, in the method described in Patent Document 2, it is necessary to use a specific polymerization initiator, and it is also necessary to optimize the manufacturing conditions accompanying the change of the polymerization initiator.
In recent years, demands for reducing variations in lots of resist polymers have become increasingly severe, and conventional methods are not necessarily sufficient.
The present invention has been made in view of the above circumstances, and a method for producing a polymer capable of further reducing variation between polymer lots, a method for producing a resist composition using the production method, and the resist composition An object of the present invention is to provide a method for manufacturing a substrate on which a pattern is formed, using the method for manufacturing an object.

本発明者等は、重合反応時の各時間に生成する重合体の分子量の経時的バラツキを抑制することによって、分子量のロット間バラツキを低減できることを見出して、本発明に至った。   The inventors of the present invention have found that the variation in molecular weight between lots over time can be reduced by suppressing the variation in the molecular weight of the polymer produced at each time during the polymerization reaction.

本発明の重合体の製造方法は、反応容器内で、2種以上の単量体を、溶媒の存在下に、重合開始剤を使用してラジカル重合反応させる重合工程と、前記重合反応を停止させる反応停止工程を有し、
重合反応が開始してから1時間ごとに重合率を測定し、n時間後(nは1以上の整数)に重合率が90モル%未満で、(n+1)時間後の重合率が90モル%以上となるとき、
重合反応が開始してから(t−1)時間後〜t時間後(tは1〜nの整数)の間にそれぞれ生成する重合体の重量平均分子量xの標準偏差Zの値が、重合反応終了時の重量平均分子量yの10%以下であり、かつ
重合反応の終了時における、前記反応容器内の反応液の質量に対して、該反応容器に供給された単量体の合計質量の割合が40質量%以下である、重合体の製造方法。
The method for producing a polymer of the present invention comprises a polymerization step in which two or more monomers are subjected to a radical polymerization reaction using a polymerization initiator in the presence of a solvent in a reaction vessel, and the polymerization reaction is stopped. A reaction stopping step
The polymerization rate is measured every hour after the start of the polymerization reaction, the polymerization rate is less than 90 mol% after n hours (n is an integer of 1 or more), and the polymerization rate after (n + 1) hours is 90 mol%. When it becomes more than
The value of the standard deviation Z of the weight-average molecular weight x t of polymer produced respectively between the polymerization reaction started (t-1) times after ~t time after (t is an integer of 1 to n) is polymerized Is 10% or less of the weight average molecular weight y at the end of the reaction, and the total mass of monomers supplied to the reaction vessel with respect to the mass of the reaction liquid in the reaction vessel at the end of the polymerization reaction. The manufacturing method of the polymer whose ratio is 40 mass% or less.

重合反応が開始してから重合反応を停止させる操作が開始されるまでの重合反応期間内に、前記反応容器内に単量体を連続的に又は滴下により供給する単量体供給工程を有し、
前記重合反応期間の70%以上にわたって単量体を供給することが好ましい。
In the polymerization reaction period from the start of the polymerization reaction to the start of the operation for stopping the polymerization reaction, a monomer supply step for supplying the monomer continuously or dropwise into the reaction vessel ,
It is preferable to supply the monomer over 70% or more of the polymerization reaction period.

本発明は、本発明の製造方法でレジスト用重合体を製造する工程と、得られたレジスト用重合体と、活性光線又は放射線の照射により酸を発生する化合物を混合する工程を有する、レジスト組成物の製造方法を提供する。
本発明は、本発明の製造方法でレジスト組成物を製造する工程と、得られたレジスト組成物を、基板の被加工面上に塗布してレジスト膜を形成する工程と、該レジスト膜に対して、露光する工程と、露光されたレジスト膜を現像液を用いて現像する工程を有する、パターンが形成された基板の製造方法を提供する。
The present invention includes a step of producing a resist polymer by the production method of the present invention, and a step of mixing the obtained resist polymer and a compound that generates an acid upon irradiation with actinic rays or radiation. A method for manufacturing a product is provided.
The present invention includes a step of producing a resist composition by the production method of the present invention, a step of coating the obtained resist composition on a work surface of a substrate to form a resist film, and the resist film And a method for producing a substrate on which a pattern is formed, which comprises a step of exposing and a step of developing the exposed resist film using a developer.

本発明によれば、ロット間バラツキが小さい重合体が得られる。
本発明の重合体の製造方法により得られる重合体を用いたレジスト組成物は、重合体のロット間バラツキが小さいため、性能の安定性に優れる。
本発明の基板の製造方法によれば、高精度の微細なパターンを安定して形成できる。
According to the present invention, a polymer having a small lot-to-lot variation can be obtained.
A resist composition using a polymer obtained by the method for producing a polymer of the present invention is excellent in stability of performance because the lot-to-lot variation of the polymer is small.
According to the substrate manufacturing method of the present invention, a highly accurate fine pattern can be stably formed.

本発明に係る重量平均分子量xの求め方の説明図である。It is an explanatory view of a method of obtaining the weight average molecular weight x t according to the present invention. 本発明に係る重量平均分子量xの求め方の説明図である。It is an explanatory view of a method of obtaining the weight average molecular weight x t according to the present invention.

本明細書においては、「(メタ)アクリル酸」は、アクリル酸又はメタクリル酸を意味し、「(メタ)アクリロイルオキシ」は、アクリロイルオキシ又はメタクリロイルオキシを意味する。
<重合体>
本発明の重合体は特に限定されないが、好ましくは、ロット間のバラツキが問題になりやすい半導体リソグラフィー用重合体である。また半導体リソグラフィー用重合体のうちでもロット間バラツキの低減に対する要求が厳しいレジスト用重合体であることが特に好ましい。
半導体リソグラフィー用重合体は、極性基を有する構成単位(a)を有することが好ましく、レジスト用重合体は、該構成単位(a)のほかに、酸脱離性基を有する構成単位(b)を有することが好ましい。
半導体リソグラフィー用重合体の重量平均分子量は、特に限定されないが、一般的には1,000〜100,000が好ましく、3,000〜50,000がより好ましい。
In the present specification, “(meth) acrylic acid” means acrylic acid or methacrylic acid, and “(meth) acryloyloxy” means acryloyloxy or methacryloyloxy.
<Polymer>
The polymer of the present invention is not particularly limited, but is preferably a polymer for semiconductor lithography in which lot-to-lot variation tends to be a problem. Further, among the polymers for semiconductor lithography, it is particularly preferable to be a resist polymer that has a strict demand for reduction in lot-to-lot variation.
The polymer for semiconductor lithography preferably has a structural unit (a) having a polar group, and the resist polymer has a structural unit (b) having an acid leaving group in addition to the structural unit (a). It is preferable to have.
The weight average molecular weight of the polymer for semiconductor lithography is not particularly limited, but generally 1,000 to 100,000 is preferable, and 3,000 to 50,000 is more preferable.

[構成単位(a)]
本発明における重合体は、極性基を有する構成単位(a)を有することが好ましい。
「極性基」とは、極性を持つ官能基又は極性を持つ原子団を有する基であり、具体例としては、ヒドロキシ基、シアノ基、アルコキシ基、カルボキシ基、アミノ基、カルボニル基、フッ素原子を含む基、硫黄原子を含む基、ラクトン骨格を含む基、アセタール構造を含む基、エーテル結合を含む基などが挙げられる。
これらのうちで、波長250nm以下の光で露光するパターン形成方法におけるレジスト組成物に用いられる重合体は、極性基を有する構成単位として、ラクトン骨格を有する構成単位を有することが好ましく、さらに後述の親水性基を有する構成単位を有することが好ましい。
[Structural unit (a)]
The polymer in the present invention preferably has a structural unit (a) having a polar group.
The “polar group” is a group having a polar functional group or a polar atomic group. Specific examples include a hydroxy group, a cyano group, an alkoxy group, a carboxy group, an amino group, a carbonyl group, and a fluorine atom. A group containing a sulfur atom, a group containing a lactone skeleton, a group containing an acetal structure, a group containing an ether bond, and the like.
Among these, the polymer used in the resist composition in the pattern forming method of exposing with light having a wavelength of 250 nm or less preferably has a structural unit having a lactone skeleton as the structural unit having a polar group, and further described below. It is preferable to have a structural unit having a hydrophilic group.

(ラクトン骨格を有する構成単位・単量体)
ラクトン骨格としては、例えば、4〜20員環程度のラクトン骨格が挙げられる。ラクトン骨格は、ラクトン環のみの単環であってもよく、ラクトン環に脂肪族又は芳香族の炭素環又は複素環が縮合していてもよい。
重合体がラクトン骨格を有する構成単位を含む場合、その含有量は、基板等への密着性の点から、全構成単位(100モル%)のうち、20モル%以上が好ましく、25モル%以上がより好ましい。また、感度及び解像度の点から、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下がさらに好ましい。
(Constitutional unit / monomer having a lactone skeleton)
Examples of the lactone skeleton include a lactone skeleton having about 4 to 20 members. The lactone skeleton may be a monocycle having only a lactone ring, or an aliphatic or aromatic carbon ring or a heterocyclic ring may be condensed with the lactone ring.
In the case where the polymer contains a structural unit having a lactone skeleton, the content thereof is preferably 20 mol% or more, more preferably 25 mol% or more of all structural units (100 mol%) from the viewpoint of adhesion to a substrate or the like. Is more preferable. Moreover, from the point of a sensitivity and resolution, 60 mol% or less is preferable, 55 mol% or less is more preferable, and 50 mol% or less is more preferable.

ラクトン骨格を有する単量体としては、基板等への密着性に優れる点から、置換あるいは無置換のδ−バレロラクトン環を有する(メタ)アクリル酸エステル、置換あるいは無置換のγ−ブチロラクトン環を有する単量体からなる群から選ばれる少なくとも1種が好ましく、無置換のγ−ブチロラクトン環を有する単量体が特に好ましい。   As a monomer having a lactone skeleton, a (meth) acrylic acid ester having a substituted or unsubstituted δ-valerolactone ring, a substituted or unsubstituted γ-butyrolactone ring is used because of its excellent adhesion to a substrate or the like. Preferably, at least one selected from the group consisting of monomers having it is preferred, and monomers having an unsubstituted γ-butyrolactone ring are particularly preferred.

ラクトン骨格を有する単量体の具体例としては、β−(メタ)アクリロイルオキシ−β−メチル−δ−バレロラクトン、4,4−ジメチル−2−メチレン−γ−ブチロラクトン、β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、β−(メタ)アクリロイルオキシ−β−メチル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−γ−ブチロラクトン、2−(1−(メタ)アクリロイルオキシ)エチル−4−ブタノリド、(メタ)アクリル酸パントイルラクトン、5−(メタ)アクリロイルオキシ−2,6−ノルボルナンカルボラクトン、8−メタクリロキシ−4−オキサトリシクロ[5.2.1.02,6 ]デカン−3−オン、9−メタクリロキシ−4−オキサトリシクロ[5.2.1.02,6 ]デカン−3−オン等が挙げられる。また、類似構造を持つ単量体として、メタクリロイルオキシこはく酸無水物等も挙げられる。
ラクトン骨格を有する単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specific examples of the monomer having a lactone skeleton include β- (meth) acryloyloxy-β-methyl-δ-valerolactone, 4,4-dimethyl-2-methylene-γ-butyrolactone, β- (meth) acryloyl. Oxy-γ-butyrolactone, β- (meth) acryloyloxy-β-methyl-γ-butyrolactone, α- (meth) acryloyloxy-γ-butyrolactone, 2- (1- (meth) acryloyloxy) ethyl-4-butanolide , (Meth) acrylic acid pantoyl lactone, 5- (meth) acryloyloxy-2,6-norbornanecarbolactone, 8-methacryloxy-4-oxatricyclo [5.2.1.0 2,6 ] decane-3 - one, 9-methacryloxy-4-oxatricyclo [5.2.1.0 2, 6] cited decan-3-one and the like . Examples of the monomer having a similar structure include methacryloyloxysuccinic anhydride.
Monomers having a lactone skeleton may be used alone or in combination of two or more.

(親水性基を有する構成単位・単量体)
本明細書における「親水性基」とは、−C(CF−OH、ヒドロキシ基、シアノ基、メトキシ基、カルボキシ基及びアミノ基の少なくとも1種である。
これらのうちで、波長250nm以下の光で露光するパターン形成方法におけるレジスト組成物に用いられる重合体は、親水性基としてヒドロキシ基又はシアノ基を有することが好ましい。
重合体における親水性基を有する構成単位の含有量は、レジストパターン矩形性の点から、全構成単位(100モル%)のうち、5〜30モル%が好ましく、10〜25モル%がより好ましい。
(Structural unit / monomer having a hydrophilic group)
The “hydrophilic group” in the present specification is at least one of —C (CF 3 ) 2 —OH, hydroxy group, cyano group, methoxy group, carboxy group, and amino group.
Among these, it is preferable that the polymer used for the resist composition in the pattern formation method exposed with light having a wavelength of 250 nm or less has a hydroxy group or a cyano group as a hydrophilic group.
The content of the structural unit having a hydrophilic group in the polymer is preferably from 5 to 30 mol%, more preferably from 10 to 25 mol%, of the total structural units (100 mol%) from the viewpoint of the resist pattern rectangularity. .

親水性基を有する単量体としては、例えば、末端ヒドロキシ基を有する(メタ)アクリ酸エステル;単量体の親水性基上にアルキル基、ヒドロキシ基、カルボキシ基等の置換基を有する誘導体;環式炭化水素基を有する単量体(例えば(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸1−イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸トリシクロデカニル、(メタ)アクリル酸ジシクロペンチル、(メタ)アクリル酸2−メチル−2−アダマンチル、(メタ)アクリル酸2−エチル−2−アダマンチル等。)が置換基としてヒドロキシ基、カルボキシ基等の親水性基を有するもの;が挙げられる。   Examples of the monomer having a hydrophilic group include a (meth) acrylic acid ester having a terminal hydroxy group; a derivative having a substituent such as an alkyl group, a hydroxy group, or a carboxy group on the hydrophilic group of the monomer; Monomers having a cyclic hydrocarbon group (for example, cyclohexyl (meth) acrylate, 1-isobornyl (meth) acrylate, adamantyl (meth) acrylate, tricyclodecanyl (meth) acrylate, (meth) acrylic acid) Dicyclopentyl, 2-methyl-2-adamantyl (meth) acrylate, 2-ethyl-2-adamantyl (meth) acrylate, etc.) having a hydrophilic group such as a hydroxy group or a carboxy group as a substituent; Can be mentioned.

親水性基を有する単量体の具体例としては、(メタ)アクリル酸、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸2−ヒドロキシ−n−プロピル、(メタ)アクリル酸4−ヒドロキシブチル、(メタ)アクリル酸3−ヒドロキシアダマンチル、2−又は3−シアノ−5−ノルボルニル(メタ)アクリレート、2−シアノメチル−2−アダマンチル(メタ)アクリレート等が挙げられる。基板等に対する密着性の点から、(メタ)アクリル酸3−ヒドロキシアダマンチル、2−又は3−シアノ−5−ノルボルニル(メタ)アクリレート、2−シアノメチル−2−アダマンチル(メタ)アクリレート等が好ましい。
親水性基を有する単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specific examples of the monomer having a hydrophilic group include (meth) acrylic acid, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxy- (meth) acrylate. -Propyl, 4-hydroxybutyl (meth) acrylate, 3-hydroxyadamantyl (meth) acrylate, 2- or 3-cyano-5-norbornyl (meth) acrylate, 2-cyanomethyl-2-adamantyl (meth) acrylate, etc. Is mentioned. From the viewpoint of adhesiveness to a substrate or the like, 3-hydroxyadamantyl (meth) acrylate, 2- or 3-cyano-5-norbornyl (meth) acrylate, 2-cyanomethyl-2-adamantyl (meth) acrylate, and the like are preferable.
The monomer which has a hydrophilic group may be used individually by 1 type, and may be used in combination of 2 or more type.

[構成単位(b)]
重合体は、レジスト用途に用いる場合は上述した極性基を有する構成単位(a)以外に酸脱離性基を有する構成単位(b)を有することが好ましく、この他に、必要に応じて公知の構成単位を有していてもよい。
「酸脱離性基」とは、酸により開裂する結合を有する基であり、該結合の開裂により酸脱離性基の一部又は全部が重合体の主鎖から脱離する基である。
レジスト組成物において、酸脱離性基を有する構成単位を有する重合体は、酸成分と反応してアルカリ性溶液に可溶となり、レジストパターン形成を可能とする作用を奏する。
酸脱離性基を有する構成単位の割合は、感度及び解像度の点から、重合体を構成する全構成単位(100モル%)のうち、20モル%以上が好ましく、25モル%以上がより好ましい。また、基板等への密着性の点から、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下がさらに好ましい。
[Structural unit (b)]
The polymer preferably has a structural unit (b) having an acid-eliminable group in addition to the above-mentioned structural unit (a) having a polar group when used for resist applications. You may have the structural unit.
The “acid leaving group” is a group having a bond that is cleaved by an acid, and a part or all of the acid leaving group is removed from the main chain of the polymer by cleavage of the bond.
In the resist composition, a polymer having a structural unit having an acid-eliminable group reacts with an acid component to become soluble in an alkaline solution, and has an effect of enabling formation of a resist pattern.
The proportion of the structural unit having an acid leaving group is preferably 20 mol% or more, more preferably 25 mol% or more, of all the structural units (100 mol%) constituting the polymer from the viewpoint of sensitivity and resolution. . Moreover, 60 mol% or less is preferable from the point of the adhesiveness to a board | substrate etc., 55 mol% or less is more preferable, and 50 mol% or less is further more preferable.

酸脱離性基を有する単量体は、酸脱離性基及び重合性多重結合を有する化合物であればよく、公知のものを使用できる。重合性多重結合とは重合反応時に開裂して共重合鎖を形成する多重結合であり、エチレン性二重結合が好ましい。
酸脱離性基を有する単量体の具体例として、炭素数6〜20の脂環式炭化水素基を有し、かつ酸脱離性基を有している(メタ)アクリル酸エステルが挙げられる。該脂環式炭化水素基は、(メタ)アクリル酸エステルのエステル結合を構成する酸素原子と直接結合していてもよく、アルキレン基等の連結基を介して結合していてもよい。
該(メタ)アクリル酸エステルには、炭素数6〜20の脂環式炭化水素基を有するとともに、(メタ)アクリル酸エステルのエステル結合を構成する酸素原子との結合部位に第3級炭素原子を有する(メタ)アクリル酸エステル、又は、炭素数6〜20の脂環式炭化水素基を有するとともに、該脂環式炭化水素基に−COOR基(Rは置換基を有していてもよい第3級炭化水素基、テトラヒドロフラニル基、テトラヒドロピラニル基、又はオキセパニル基を表す。)が直接又は連結基を介して結合している(メタ)アクリル酸エステルが含まれる。
The monomer having an acid leaving group may be a compound having an acid leaving group and a polymerizable multiple bond, and known ones can be used. The polymerizable multiple bond is a multiple bond that is cleaved during the polymerization reaction to form a copolymer chain, and an ethylenic double bond is preferable.
Specific examples of the monomer having an acid leaving group include (meth) acrylic acid esters having an alicyclic hydrocarbon group having 6 to 20 carbon atoms and having an acid leaving group. It is done. The alicyclic hydrocarbon group may be directly bonded to an oxygen atom constituting an ester bond of (meth) acrylic acid ester, or may be bonded via a linking group such as an alkylene group.
The (meth) acrylic acid ester has an alicyclic hydrocarbon group having 6 to 20 carbon atoms, and a tertiary carbon atom at the bonding site with the oxygen atom constituting the ester bond of the (meth) acrylic acid ester. A (meth) acrylic acid ester having an alicyclic hydrocarbon group or an alicyclic hydrocarbon group having 6 to 20 carbon atoms and a -COOR group (R may have a substituent) on the alicyclic hydrocarbon group. (Represents a tertiary hydrocarbon group, a tetrahydrofuranyl group, a tetrahydropyranyl group, or an oxepanyl group.) (Meth) acrylic acid ester bonded directly or through a linking group.

特に、波長250nm以下の光で露光するパターン形成方法に適用されるレジスト組成物を製造する場合には、酸脱離性基を有する単量体の好ましい例として、例えば、2−メチル−2−アダマンチル(メタ)アクリレート、2−エチル−2−アダマンチル(メタ)アクリレート、1−(1’−アダマンチル)−1−メチルエチル(メタ)アクリレート、1−メチルシクロヘキシル(メタ)アクリレート、1−エチルシクロヘキシル(メタ)アクリレート、1−メチルシクロペンチル(メタ)アクリレート、1−エチルシクロペンチル(メタ)アクリレート、イソプロピルアダマンチル(メタ)アクリレート、1−エチルシクロオクチル(メタ)アクリレート等が挙げられる。
酸脱離性基を有する単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
In particular, in the case of producing a resist composition that is applied to a pattern forming method that is exposed to light having a wavelength of 250 nm or less, as a preferred example of a monomer having an acid leaving group, for example, 2-methyl-2- Adamantyl (meth) acrylate, 2-ethyl-2-adamantyl (meth) acrylate, 1- (1′-adamantyl) -1-methylethyl (meth) acrylate, 1-methylcyclohexyl (meth) acrylate, 1-ethylcyclohexyl ( Examples include meth) acrylate, 1-methylcyclopentyl (meth) acrylate, 1-ethylcyclopentyl (meth) acrylate, isopropyl adamantyl (meth) acrylate, 1-ethylcyclooctyl (meth) acrylate, and the like.
As the monomer having an acid leaving group, one type may be used alone, or two or more types may be used in combination.

<重合体の製造方法>
本発明の重合体の製造方法の好ましい実施形態を説明する。
本実施形態の重合体の製造方法は、反応容器内に溶媒(以下、重合溶媒ともいう。)、単量体及び重合開始剤を供給して、該反応容器内の液(反応液)中で単量体を重合反応させる重合工程と、前記重合反応を停止させる反応停止工程を有する。
本発明において、重合反応が開始してから重合反応を停止させる操作(停止操作)が開始されるまでの期間を重合反応期間という。
本実施形態における重合工程は、重合溶媒の存在下に重合開始剤を使用して、単量体をラジカル重合させる溶液重合法である。
<Method for producing polymer>
A preferred embodiment of the method for producing a polymer of the present invention will be described.
In the method for producing a polymer of the present embodiment, a solvent (hereinafter also referred to as a polymerization solvent), a monomer, and a polymerization initiator are supplied into a reaction vessel, and the solution (reaction solution) in the reaction vessel is supplied. A polymerization step of polymerizing the monomer, and a reaction stopping step of stopping the polymerization reaction.
In the present invention, the period from the start of the polymerization reaction to the start of the operation for stopping the polymerization reaction (stopping operation) is referred to as the polymerization reaction period.
The polymerization step in the present embodiment is a solution polymerization method in which a monomer is radically polymerized using a polymerization initiator in the presence of a polymerization solvent.

溶液重合法において、単量体及び重合開始剤の反応容器への供給は、連続供給であってもよく、滴下供給であってもよい。製造ロットの違いによる平均分子量、分子量分布等のばらつきが小さく、再現性の良い重合体が得られやすい点から、単量体及び重合開始剤を含む滴下溶液を反応容器内に滴下する、滴下重合法が好ましい。   In the solution polymerization method, the monomer and the polymerization initiator may be supplied to the reaction vessel either continuously or dropwise. From the point that dispersion of average molecular weight, molecular weight distribution, etc. due to differences in production lots is small and a polymer having good reproducibility is easily obtained, a dropping solution containing a monomer and a polymerization initiator is dropped into a reaction vessel. Legal is preferred.

重合溶媒としては、例えば、下記のものが挙げられる。
エーテル類:鎖状エーテル(ジエチルエーテル、プロピレングリコールモノメチルエーテル(以下、「PGME」と記す。)等。)、環状エーテル(テトラヒドロフラン(以下、「THF」と記す。)、1,4−ジオキサン等。)等。
エステル類:酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、プロピレングリコールモノメチルエーテルアセテート(以下、「PGMEA」と記す。)、γ−ブチロラクトン等。
ケトン類:アセトン、メチルエチルケトン(以下、「MEK」と記す。)、メチルイソブチルケトン(以下、「MIBK」と記す。)等。
アミド類:N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等。
スルホキシド類:ジメチルスルホキシド等。
芳香族炭化水素:ベンゼン、トルエン、キシレン等。
脂肪族炭化水素:ヘキサン等。
脂環式炭化水素:シクロヘキサン等。
重合溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the polymerization solvent include the following.
Ethers: chain ether (diethyl ether, propylene glycol monomethyl ether (hereinafter referred to as “PGME”), etc.), cyclic ether (tetrahydrofuran (hereinafter referred to as “THF”), 1,4-dioxane, etc. )etc.
Esters: methyl acetate, ethyl acetate, butyl acetate, ethyl lactate, butyl lactate, propylene glycol monomethyl ether acetate (hereinafter referred to as “PGMEA”), γ-butyrolactone, and the like.
Ketones: acetone, methyl ethyl ketone (hereinafter referred to as “MEK”), methyl isobutyl ketone (hereinafter referred to as “MIBK”), and the like.
Amides: N, N-dimethylacetamide, N, N-dimethylformamide and the like.
Sulfoxides: dimethyl sulfoxide and the like.
Aromatic hydrocarbons: benzene, toluene, xylene and the like.
Aliphatic hydrocarbon: hexane and the like.
Alicyclic hydrocarbons: cyclohexane and the like.
A polymerization solvent may be used individually by 1 type, and may use 2 or more types together.

重合開始剤としては、熱により効率的にラジカルを発生するものが好ましい。該重合開始剤としては、例えば、アゾ化合物(2,2’−アゾビスイソブチロニトリル、ジメチル−2,2’−アゾビスイソブチレート、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]等。)、有機過酸化物(2,5−ジメチル−2,5−ビス(tert−ブチルパーオキシ)ヘキサン、ジ(4−tert−ブチルシクロヘキシル)パーオキシジカーボネート等。)等が挙げられる。   As the polymerization initiator, those that generate radicals efficiently by heat are preferable. Examples of the polymerization initiator include azo compounds (2,2′-azobisisobutyronitrile, dimethyl-2,2′-azobisisobutyrate, 2,2′-azobis [2- (2-imidazoline). -2-yl) propane], etc.), organic peroxides (2,5-dimethyl-2,5-bis (tert-butylperoxy) hexane, di (4-tert-butylcyclohexyl) peroxydicarbonate, etc. Etc.).

本実施形態の製造方法においては、予め、反応容器内に、重合溶媒の少なくとも一部及び/又は単量体の少なくとも一部を仕込んでおくことができる。
重合溶媒は、その一部を予め反応容器内に入れ、残りは滴下溶液の溶媒として反応容器内に供給することが好ましい。
単量体を予め反応容器内に仕込む場合は、重合反応に用いる全単量体のうちの一部を反応容器内に入れ、残りは滴下溶液に含有させて反応容器内に供給することが好ましい。
予め反応容器内に、重合溶媒のみを入れておいてもよく、単量体のみを入れておいてもよく、これらの混合物を入れておいてもよい。
In the production method of the present embodiment, at least a part of the polymerization solvent and / or at least a part of the monomer can be charged in the reaction vessel in advance.
It is preferable that a part of the polymerization solvent is put in the reaction vessel in advance, and the rest is supplied into the reaction vessel as a solvent for the dropping solution.
When the monomers are charged in the reaction vessel in advance, it is preferable that a part of the total monomers used for the polymerization reaction is put in the reaction vessel, and the rest is added to the dropping solution and supplied into the reaction vessel. .
In the reaction vessel, only the polymerization solvent may be placed in advance, or only the monomer may be placed, or a mixture thereof may be placed.

重合反応は、反応容器内に予め仕込んだ液(重合溶媒及び/又は単量体)を所定の重合温度まで加熱し、単量体の存在下に、重合開始剤を供給することにより、重合反応が開始される。
反応容器内に重合開始剤が供給された時点から重合反応の終了操作が開始された時点までが重合反応期間となる。重合反応の終了操作とは、ラジカル重合反応の停止、又は成長反応速度の低下を引き起こす操作を意味し、具体的には反応容器内の温度を低下させる操作、重合禁止剤や酸素といったラジカル反応の阻害剤を反応容器内へ供給する操作を挙げることができる。
The polymerization reaction is performed by heating a liquid (polymerization solvent and / or monomer) previously charged in a reaction vessel to a predetermined polymerization temperature and supplying a polymerization initiator in the presence of the monomer. Is started.
The polymerization reaction period is from the time when the polymerization initiator is supplied into the reaction vessel to the time when the end operation of the polymerization reaction is started. The completion of the polymerization reaction means an operation that stops the radical polymerization reaction or causes a decrease in the growth reaction rate, specifically, an operation that lowers the temperature in the reaction vessel, or a radical reaction such as a polymerization inhibitor or oxygen. An operation for supplying the inhibitor into the reaction vessel can be mentioned.

滴下重合法において、単量体を滴下する方法は、単量体のみで滴下してもよく、単量体を重合溶媒に溶解させた単量体溶液として滴下してもよい。
重合開始剤は、単量体に直接に溶解させたて滴下してもよく、単量体溶液に溶解させて滴下してもよく、重合溶媒のみに溶解させて滴下してもよい。
単量体及び重合開始剤を、同じ貯槽内で混合した後、反応容器中に滴下してもよく;それぞれ独立した貯槽から反応容器中に滴下してもよく;それぞれ独立した貯槽から反応容器に供給する直前で混合し、反応容器中に滴下してもよい。
単量体及び重合開始剤は、一方を先に滴下した後、遅れて他方を滴下してもよく、両方を同じタイミングで滴下してもよい。
滴下速度は、滴下終了まで一定であってもよく、単量体又は重合開始剤の消費速度に応じて、多段階に変化させてもよい。
滴下は、連続的に行ってもよく、間欠的に行ってもよい。
In the dropping polymerization method, the monomer may be dropped only with the monomer or may be dropped as a monomer solution in which the monomer is dissolved in the polymerization solvent.
The polymerization initiator may be dropped directly after being dissolved in the monomer, may be dropped after being dissolved in the monomer solution, or may be dropped after being dissolved only in the polymerization solvent.
After the monomer and the polymerization initiator are mixed in the same storage tank, they may be dropped into the reaction vessel; they may be dropped from the independent storage tank into the reaction vessel; respectively, from the independent storage tank to the reaction vessel. They may be mixed immediately before feeding and dropped into the reaction vessel.
One of the monomer and the polymerization initiator may be dropped first, and then the other may be dropped with a delay, or both may be dropped at the same timing.
The dropping speed may be constant until the dropping is completed, or may be changed in multiple stages according to the consumption speed of the monomer or the polymerization initiator.
The dripping may be performed continuously or intermittently.

[単量体供給工程]
単量体供給工程の開始時点は、重合反応期間の開始時点以降に、最初に反応容器内に単量体が供給された時点である。単量体供給工程の終了時点は、重合反応に用いられる全単量体を反応容器内に供給し終えた時点である。
重合反応期間において、反応容器内への重合開始剤の供給を開始すると同時に単量体の供給を開始することが好ましい。
反応容器内に全単量体を供給し終えた直後に重合反応を停止させてもよいが、反応容器内に全単量体を供給した後、反応容器内の反応液を予め設定された重合温度に保って重合反応を進行させる熟成工程を行うことが好ましい。
[Monomer supply process]
The start time of the monomer supply step is the time when the monomer is first supplied into the reaction vessel after the start time of the polymerization reaction period. The end point of the monomer supply step is the time point when all the monomers used for the polymerization reaction have been supplied into the reaction vessel.
In the polymerization reaction period, it is preferable to start the monomer supply at the same time as the supply of the polymerization initiator into the reaction vessel is started.
The polymerization reaction may be stopped immediately after supplying all the monomers in the reaction vessel, but after supplying all the monomers in the reaction vessel, the reaction solution in the reaction vessel is set in advance by polymerization. It is preferable to carry out an aging step in which the polymerization reaction proceeds while maintaining the temperature.

反応容器への単量体の供給は、下記(i)又は(ii)の方法で行うことが好ましい。
(i)予め反応容器内に、単量体を第1の組成で含有する第1の溶液を仕込んでおき、反応容器内を所定の重合温度まで加熱した後、反応容器内に、単量体を目標組成で含有する第2の溶液を滴下する方法。
目標組成とは、得ようとする重合体における単量体単位の組成(単位:モル%)を意味する。
予め反応容器内に仕込んでおく第1の溶液の第1の組成においては、各単量体の重合反応による消費速度に応じて、消費速度が相対的に遅い単量体の組成比(モル分率)を目標組成におけるモル分率よりも大きくすることが好ましい。本方法によれば、特に重合初期に生成される重合体における単量体組成及び連鎖構造のバラツキが低減されやすい。
本明細書において、単量体を目標組成で含有する第2の溶液を滴下する工程を主工程という。
The monomer is preferably supplied to the reaction vessel by the following method (i) or (ii).
(I) A first solution containing a monomer in a first composition is charged in a reaction vessel in advance, the reaction vessel is heated to a predetermined polymerization temperature, and then the monomer is placed in the reaction vessel. A method in which a second solution containing a target composition is added dropwise.
The target composition means the composition of monomer units (unit: mol%) in the polymer to be obtained.
In the first composition of the first solution charged in the reaction vessel in advance, the composition ratio (molar component) of the monomer having a relatively slow consumption rate is determined according to the consumption rate of each monomer by the polymerization reaction. Ratio) is preferably larger than the molar fraction in the target composition. According to this method, variations in the monomer composition and chain structure in the polymer produced particularly in the early stage of polymerization are likely to be reduced.
In this specification, the process of dripping the 2nd solution containing a monomer with a target composition is called a main process.

(ii)予め反応容器内に、単量体を上記第1の組成で含有する第1の溶液を仕込んでおき、反応容器内を所定の重合温度まで加熱した後、反応容器内に、単量体を目標組成で含有する第2の溶液を滴下し(主工程)、第2の溶液の滴下が終了した後に、単量体を第3の組成で含有する第3の溶液の1種以上を滴下する(後工程という)方法。
主工程の後に滴下する第3の溶液の第3の組成においては、各単量体の重合反応による消費速度に応じて、消費速度が相対的に遅い単量体の組成比(モル分率)を目標組成におけるモル分率よりも小さくする(ゼロでもよい)ことが好ましい。
本方法において、反応容器内に第3の溶液を滴下したときに、該反応容器内に重合開始剤が存在していることが必要である。したがって、後工程においても反応容器内に重合開始剤を供給することが好ましい。
本方法によれば、特に重合初期及び後期に生成される重合体における単量体組成及び連鎖構造のばらつきが低減されやすい。
(Ii) The first solution containing the monomer in the first composition is charged in the reaction vessel in advance, the reaction vessel is heated to a predetermined polymerization temperature, The second solution containing the body in the target composition is dropped (main process), and after the dropping of the second solution is completed, one or more of the third solutions containing the monomer in the third composition are added. A method of dropping (referred to as post-process).
In the third composition of the third solution dropped after the main step, the composition ratio (molar fraction) of the monomers having a relatively slow consumption rate according to the consumption rate by the polymerization reaction of each monomer. Is preferably smaller than the molar fraction in the target composition (may be zero).
In this method, it is necessary that the polymerization initiator is present in the reaction vessel when the third solution is dropped into the reaction vessel. Accordingly, it is preferable to supply the polymerization initiator into the reaction vessel also in the subsequent step.
According to this method, the dispersion | variation in the monomer composition and chain structure in the polymer produced | generated especially at the early stage of polymerization and a late stage is easy to be reduced.

本発明において、単量体供給工程の開始から終了までの単量体供給期間は、重合反応期間の70%以上であることが好ましい。重合反応期間の70%以上にわたって単量体を供給することにより、得られる重合体の分子量のロット間バラツキを効果的に抑制することができる。該ロット間における分子量のバラツキがより抑制されやすい点で、単量体供給期間は、重合反応期間の75%以上がより好ましく、80%以上がさらに好ましい。該単量体供給期間の重合反応期間に対する割合は100%でもよいが、単量体の反応率が高くなり、良好な生産性が得られやすい点で95%以下が好ましく、90%以下がより好ましい。   In the present invention, the monomer supply period from the start to the end of the monomer supply step is preferably 70% or more of the polymerization reaction period. By supplying the monomer over 70% or more of the polymerization reaction period, the lot-to-lot variation in the molecular weight of the resulting polymer can be effectively suppressed. The monomer supply period is more preferably 75% or more, and more preferably 80% or more of the polymerization reaction period, in that molecular weight variation among the lots is more easily suppressed. The ratio of the monomer supply period to the polymerization reaction period may be 100%, but is preferably 95% or less, more preferably 90% or less in that the monomer reaction rate increases and good productivity is easily obtained. preferable.

本発明において、重合反応期間の終了時における反応容器内の反応液の質量に対して、該反応容器内に供給された単量体の合計質量が40質量%以下である。具体的には、反応容器に供給される全原料(少なくとも重合溶媒、単量体、重合開始剤を含む)のうち、単量体の合計量が40質量%以下となるように、重合溶媒の使用量を設定する。
重合反応期間の終了時の反応液に対する、該反応液に供給された単量体の合計の割合が40質量%以下であると、重合系の急激な変化が抑制され、分子量が一定である重合体が長期間にわたって安定的に生成されやすいため、分子量のロット間バラツキが小さくなりやすい。該単量体の合計の割合は30質量%以下であることが好ましく、25質量%以下がより好ましい。該単量体の合計の割合の下限値は特に限定されないが、製造効率の点では5質量%以上が好ましく、10質量%以上がより好ましい。
また、重合反応期間中は、反応容器内の反応液の質量に対して、それまでに反応容器内に供給された単量体の合計質量が40質量%を超えない(40質量%以下である)ことが好ましい。
前記(ii)の方法において、単量体を目標組成で含有する第2の溶液を滴下する主工程は、単量体供給期間の40〜100%が好ましく、50〜90%がより好ましい。
In the present invention, the total mass of monomers supplied into the reaction vessel is 40% by mass or less with respect to the mass of the reaction solution in the reaction vessel at the end of the polymerization reaction period. Specifically, of all the raw materials (including at least the polymerization solvent, the monomer, and the polymerization initiator) supplied to the reaction vessel, the polymerization solvent is adjusted so that the total amount of monomers is 40% by mass or less. Set usage.
When the ratio of the total amount of monomers supplied to the reaction liquid with respect to the reaction liquid at the end of the polymerization reaction period is 40% by mass or less, a rapid change in the polymerization system is suppressed and the molecular weight is constant. Since coalescence is easily generated stably over a long period of time, variation in molecular weight between lots tends to be small. The total proportion of the monomers is preferably 30% by mass or less, and more preferably 25% by mass or less. The lower limit of the total ratio of the monomers is not particularly limited, but is preferably 5% by mass or more, and more preferably 10% by mass or more in terms of production efficiency.
In addition, during the polymerization reaction period, the total mass of the monomers supplied to the reaction vessel up to that time does not exceed 40% by mass (40% by mass or less) with respect to the mass of the reaction solution in the reaction vessel. Is preferred.
In the method (ii), the main step of dropping the second solution containing the monomer in the target composition is preferably 40 to 100%, more preferably 50 to 90% of the monomer supply period.

前記(i)又は(ii)の方法において、重合反応開始前に予め反応容器内に供給される液における単量体含有量は、2〜16質量%が好ましく、3〜15.5質量%がより好ましく、4〜15質量%がさらに好ましい。この範囲であると、重合初期の重合発熱が大きくなく、かつ重合初期に生成する重合体の分子量と重合反応終了時の重量平均分子量との差を小さくしやすい。
重合反応開始以降に反応容器に供給される液の合計における単量体含有量は15〜50質量%が好ましく、20〜45質量%がより好ましく、25〜40質量%がさらに好ましい。この範囲であると、単量体溶液供給中の重合発熱と単量体溶液供給による冷却とのバランスが良好で、温度制御が容易である。
In the method (i) or (ii), the monomer content in the liquid supplied in advance into the reaction vessel before the start of the polymerization reaction is preferably 2 to 16% by mass, and 3 to 15.5% by mass. More preferably, 4-15 mass% is further more preferable. Within this range, the polymerization heat generation at the initial stage of polymerization is not large, and the difference between the molecular weight of the polymer produced at the initial stage of polymerization and the weight average molecular weight at the end of the polymerization reaction can be reduced.
15-50 mass% is preferable, as for the monomer content in the sum total of the liquid supplied to reaction container after a polymerization reaction start, 20-45 mass% is more preferable, and 25-40 mass% is more preferable. Within this range, the balance between the polymerization heat generated during the supply of the monomer solution and the cooling due to the supply of the monomer solution is good, and the temperature control is easy.

[重合開始剤の供給速度]
重合開始剤を反応容器内に供給する期間は、重合反応の開始から単量体供給期間の終了まででもよく、単量体供給期間の終了前に重合開始剤の供給を終了してもよい。単量体供給期間の終了時まで重合開始剤の供給を行うことが好ましい。
[Polymerization initiator supply rate]
The period for supplying the polymerization initiator into the reaction vessel may be from the start of the polymerization reaction to the end of the monomer supply period, or the supply of the polymerization initiator may be ended before the end of the monomer supply period. It is preferable to supply the polymerization initiator until the end of the monomer supply period.

重合開始剤の供給速度は一定でもよく、経時的に変化してもよい。反応容器内のモノマーモル濃度に対する、反応容器内で開始剤から発生するラジカルのモル濃度の割合の経時変化が、重合初期から後期にかけて小さくなるように開始剤の供給速度を制御すると、該重合初期から後期にかけて、各瞬間に生成する重合体の分子量の経時的バラツキが小さくなり、好ましい。
例えば、反応容器への単量体の供給を上記(i)又は(ii)の方法で行う場合、重合開始剤の滴下開始から前記主工程の終了までの期間(基準時間ということもある。)の3〜20%が経過する以前の初期段階において、主工程で使用される重合開始剤の全供給量の15〜90%を供給し、その後は該初期段階よりも低速で重合開始剤を供給することが好ましい。
該初期段階は、前記基準時間の4〜17.5%が好ましく、5〜15%がより好ましい。該初期段階における重合開始剤の供給量は、主工程で使用される重合開始剤の全供給量の17.5〜70質量%がより好ましく、20〜65質量%がさらに好ましい。
The supply rate of the polymerization initiator may be constant or may change over time. When the initiator supply rate is controlled so that the change with time of the molar concentration ratio of radicals generated from the initiator in the reaction vessel to the monomer molar concentration in the reaction vessel becomes smaller from the initial stage of polymerization to the latter stage, From the latter stage, the variation with time of the molecular weight of the polymer produced at each moment becomes smaller, which is preferable.
For example, when the monomer is supplied to the reaction vessel by the above method (i) or (ii), the period from the start of dropping of the polymerization initiator to the end of the main step (sometimes referred to as a reference time). 15 to 90% of the total amount of polymerization initiator used in the main process is supplied in the initial stage before 3 to 20% elapses, and then the polymerization initiator is supplied at a lower speed than the initial stage. It is preferable to do.
The initial stage is preferably 4 to 17.5% of the reference time, and more preferably 5 to 15%. The supply amount of the polymerization initiator in the initial stage is more preferably 17.5 to 70% by mass, and further preferably 20 to 65% by mass, based on the total supply amount of the polymerization initiator used in the main process.

[重量平均分子量の偏差値Z]
本発明において、重合反応が開始してから(t−1)時間後〜t時間後(tは1〜nの整数)の間にそれぞれ生成する重合体の重量平均分子量xの標準偏差Zが、重合反応終了時の重量平均分子量yの10%以下である。
重量平均分子量yは、反応停止後の反応容器内の反応液をサンプリングし、サンプル中の重合体の分子量をゲル・パーミエイション・クロマトグラフィー(GPC)により測定し、ポリスチレン換算により求める。
標準偏差Zは、下記式(1)で求められる値である。
[Deviation value Z of weight average molecular weight]
In the present invention, the standard deviation Z of the weight-average molecular weight x t of polymer produced respectively between the polymerization reaction started (t-1) times after ~t time after (t is an integer of 1 to n) is The weight average molecular weight y at the end of the polymerization reaction is 10% or less.
The weight average molecular weight y is obtained by sampling the reaction solution in the reaction vessel after stopping the reaction, measuring the molecular weight of the polymer in the sample by gel permeation chromatography (GPC), and converting it to polystyrene.
The standard deviation Z is a value obtained by the following formula (1).

Figure 2013221125
Figure 2013221125

本発明において、重合率(単位:モル%)とは、重合反応に用いられる単量体の合計に対する、重合によって消費された単量体のモル分率をいう。
重合によって消費された単量体の量は、測定時までに反応容器内に供給した単量体量と、測定時に反応液中に残存する未反応の単量体との差を測定することによって得られる。
すなわち、反応容器内から反応液をサンプリングし、高速液体クロマトグラフィーにより未反応の単量体の含有量を単量体ごとに測定し、これらの合計値を求める。測定時までに供給された単量体の合計量から、残存している単量体の合計量を引くことで、該測定時までに重合によって消費された単量体量が得られる。この値を用いて、重合反応に用いられる単量体の合計、すなわち重合反応の終了までに反応容器に供給される全単量体量に対する、測定時までに重合によって消費された単量体量割合(モル%)を、該測定時における重合率として求める。
In the present invention, the polymerization rate (unit: mol%) refers to the molar fraction of monomers consumed by polymerization relative to the total amount of monomers used in the polymerization reaction.
The amount of monomer consumed by polymerization is determined by measuring the difference between the amount of monomer supplied into the reaction vessel by the time of measurement and the unreacted monomer remaining in the reaction solution at the time of measurement. can get.
That is, the reaction solution is sampled from the reaction vessel, the content of unreacted monomer is measured for each monomer by high performance liquid chromatography, and the total value of these is obtained. By subtracting the total amount of remaining monomers from the total amount of monomers supplied up to the time of measurement, the amount of monomer consumed by polymerization up to the time of measurement can be obtained. Using this value, the total amount of monomers used in the polymerization reaction, that is, the amount of monomers consumed by the polymerization by the time of measurement relative to the total amount of monomers supplied to the reaction vessel by the end of the polymerization reaction The ratio (mol%) is determined as the polymerization rate at the time of the measurement.

式(1)において、nは、重合反応の開始時から、重合率(モル%)が90モル%に至るまでの時間であり、1以上の整数である。すなわち、重合反応が開始してから1時間ごとに重合率を測定し、n時間後(nは1以上の整数)に重合率が90モル%未満で、(n+1)時間後の重合率が90モル%以上となるときのnを求める。nは重合反応期間の時間数より大きくなることはない。例えば、重合反応期間が7時間であるとき、nは7以下である。
具体的には、重合反応の開始直後を0時間とし、その後1時間ごとに反応液をサンプリングして測定を行う。本明細書において重合反応の開始直後とは、重合開始剤の供給を開始してから0〜60秒後を意味する。
In the formula (1), n is the time from the start of the polymerization reaction until the polymerization rate (mol%) reaches 90 mol%, and is an integer of 1 or more. That is, the polymerization rate is measured every hour after the start of the polymerization reaction, the polymerization rate is less than 90 mol% after n hours (n is an integer of 1 or more), and the polymerization rate after (n + 1) hours is 90%. Find n when it is at least mol%. n is not greater than the number of hours of the polymerization reaction period. For example, when the polymerization reaction period is 7 hours, n is 7 or less.
Specifically, immediately after the start of the polymerization reaction is set to 0 hour, and thereafter, the reaction solution is sampled and measured every hour. In this specification, the term “immediately after the start of the polymerization reaction” means 0 to 60 seconds after the start of the supply of the polymerization initiator.

式(1)において、重量平均分子量xは、重合反応が開始してから(t−1)時間後〜t時間後(tは1〜nの整数)の1時間の間にそれぞれ生成する重合体の重量平均分子量(x、x、x…x)である。式(1)においてxは、x〜xの平均値である。重量平均分子量xは、以下の方法で求める。 In the formula (1), the weight average molecular weight x t is the weight generated in 1 hour from (t-1) hours to t hours (t is an integer of 1 to n) after the polymerization reaction starts. It is the weight average molecular weight (x 1 , x 2 , x 3 ... X n ) of the coalescence. In the formula (1), x a is an average value of x 1 to x n . The weight average molecular weight xt is determined by the following method.

(重量平均分子量xの求め方)
反応容器内の反応液を、重合反応の開始から1時間毎にサンプリングし、サンプル中の重合体の分子量をゲル・パーミエイション・クロマトグラフィー(GPC)により測定する。これにより、各測定時におけるGPCによる溶出曲線を得る。該溶出曲線は、溶出時間と信号強度(重量基準の存在量と相関する)の関数として得られるので、標準ポリスチレンによる検量線Iを用いて、分子量と、重合体の重量基準の存在量(信号強度)との関係を表す曲線(重合体重量の分子量に対する関数F)に変換する。また、このとき関数Fを表す曲線とベースラインBで囲まれた範囲の面積が1となるように規格化する。
図1は関数Fの例である。関数Fは図1中の、ピークスタート(図中符号Psで示す。)からピークエンド(図中符号Peで示す。)までの間の範囲で表される曲線を意味する。すなわち、検量線Iによって変換された溶出曲線(例えば図1)にベースラインBを引き、分子量の小さい側での関数Fを表す曲線とベースラインBとの交点をPs、分子量の大きい側での関数Fを表す曲線とベースラインとの交点をPeとする。
重合開始からt時間後における関数F及び重合率Cをそれぞれ関数F、重合率Cとすると、(t−1)時間後からt時間後までの1時間の間に生成した重合体についての関数Fは、F×C−Ft−1×Ct−1で与えられる。こうして得られる、各測定時から次の測定時までの1時間の間に生成した重合体についての関数Fを用いて、該1時間の間に生成した重合体の重量平均分子量xを求める。
例えば、重合開始から1時間後、2時間後における関数F及び重合率Cを、それぞれ関数F、F、重合率Cと、Cとする。例えば図2に示すように、C=20モル%、C=40モル%であるとき、1時間後から2時間後までの1時間の間に生成した重合体の、重合体重量の分子量に対する関数Fは、F×C(図中符号f1で表す)とF×C(図中符号f2で表す)の差分(F=f2−f1)として得られる。この関数F(=f2−f1)より、1時間後から2時間後までの1時間の間に生成した重合体の重量平均分子量xが得られる。
(Determination of weight average molecular weight x t)
The reaction solution in the reaction vessel is sampled every hour from the start of the polymerization reaction, and the molecular weight of the polymer in the sample is measured by gel permeation chromatography (GPC). Thereby, the elution curve by GPC at the time of each measurement is obtained. Since the elution curve is obtained as a function of elution time and signal intensity (correlates with the weight-based abundance), a standard polystyrene calibration curve I is used to determine the molecular weight and the weight-based abundance (signal) of the polymer. It is converted into a curve (function F with respect to the molecular weight of polymer weight) representing the relationship with (strength). At this time, normalization is performed so that the area surrounded by the curve representing the function F and the base line B is 1.
FIG. 1 is an example of the function F. The function F means a curve represented in a range from a peak start (indicated by a symbol Ps in the figure) to a peak end (indicated by a symbol Pe in the figure) in FIG. That is, the base line B is drawn on the elution curve converted by the calibration curve I (for example, FIG. 1), the intersection point between the curve B representing the function F on the low molecular weight side and the base line B is Ps, and the high molecular weight side Let Pe be the intersection of the curve representing the function F and the baseline.
Functions F and polymerization rate C of each function F t after t time from the initiation of polymerization, when the polymerization rate C t, for the polymer formed during the 1 hour until after t time later (t-1) time The function F is given by F t × C t −F t−1 × C t−1 . Thus obtained, using a function F of the formed polymer during one hour from the time of each measurement until the next measurement to determine the weight average molecular weight x t of polymer produced during the 1 hour.
For example, the function F and the polymerization rate C after 1 hour and 2 hours from the start of polymerization are defined as functions F 1 , F 2 , polymerization rate C 1 , and C 2 , respectively. For example, as shown in FIG. 2, when C 1 = 20 mol% and C 2 = 40 mol%, the molecular weight of the polymer weight of the polymer produced during 1 hour from 1 hour to 2 hours later Is obtained as a difference (F = f2−f1) between F 1 × C 1 (represented by the symbol f1 in the figure) and F 2 × C 2 (represented by the symbol f2 in the diagram). The more function F (= f2-f1), the weight average molecular weight x 2 of formed polymer during one hour after 1 hour to 2 hours after is obtained.

このようにして、重合率(モル%)が90モル%に達する直前のn時間後までの、1時間毎の重量平均分子量x、x、…xを求め、上記式(1)により、これらの標準偏差Zの値を求める。
該標準偏差Zは、重合反応が開始してから、重合率が90%に達する直前の測定時間(n)までの平均分子量のばらつきの大きさを反映する値である。
該標準偏差Zの値が、重合反応終了時の重量平均分子量yの10%以下であると、重合反応中の各瞬間に生成する重合体の分子量の経時的バラツキが良好に低減される。
また該標準偏差Zの値が、重合反応終了時の重量平均分子量yの10%以下であると、同じ製造条件で目的の重合体を繰り返し製造する際の、ロット間における分子量のばらつきが良好に低減される。
In this way, the weight average molecular weights x 1 , x 2 ,..., X n for each hour until n hours immediately before the polymerization rate (mol%) reaches 90 mol% are obtained, and the above formula (1) is obtained. The value of these standard deviations Z is obtained.
The standard deviation Z is a value reflecting the degree of variation in average molecular weight from the start of the polymerization reaction to the measurement time (n) immediately before the polymerization rate reaches 90%.
When the value of the standard deviation Z is 10% or less of the weight average molecular weight y at the end of the polymerization reaction, the variation over time in the molecular weight of the polymer produced at each moment during the polymerization reaction is favorably reduced.
In addition, when the value of the standard deviation Z is 10% or less of the weight average molecular weight y at the end of the polymerization reaction, the variation in molecular weight between lots when a desired polymer is repeatedly produced under the same production conditions is good. Reduced.

したがって、同じ製造条件で目的の重合体を繰り返し製造する重合体の製造方法において、製造条件を決定するに当たり、重合体を製造条件Wで製造して、上記式(1)で表される標準偏差Z及び重合反応終了時の重量平均分子量yを測定し、標準偏差Zの値が重量平均分子量yの10%以下であるか否かで、該製造条件Wの適否を評価することができる。標準偏差Zの値が重量平均分子量yの10%以下であれば、製造条件Wは、同じ製造条件で目的の重合体を繰り返し製造するときの、ロット間における分子量のばらつきが良好に抑えられた重合体を得るのに、適切な製造条件として採用できる。
該標準偏差Zが重量平均分子量yの10%を超える場合は、製造条件を変更して、再度重合体の製造を行い、標準偏差Zの値が重量平均分子量yの10%以下であるか否かで、該製造条件の適否を評価する。このとき変更する製造条件は、開始剤の供給方法、単量体の供給方法、重合反応期間の終了時の反応液に対する該反応液に供給された単量体の合計の割合、又はこれらの組み合わせが好ましい。
例えば、単量体供給時間を長くする、重合開始剤の供給方法を、重合の初期段階において主工程で使用される重合開始剤の全供給量の一部を供給し、その後は該初期段階よりも低速で重合開始剤を供給する方法に変更する、重合反応期間の終了時の反応液に対する該反応液に供給された単量体の合計の割合を減少させる、又はこれらを組み合わせることによって、該yに対するZの割合を低下させることができる。
Therefore, in the method for producing a polymer in which a target polymer is repeatedly produced under the same production conditions, in determining the production conditions, the polymer is produced under the production conditions W, and the standard deviation represented by the above formula (1) The suitability of the production condition W can be evaluated by measuring Z and the weight average molecular weight y at the end of the polymerization reaction, and whether the value of the standard deviation Z is 10% or less of the weight average molecular weight y. When the value of the standard deviation Z is 10% or less of the weight average molecular weight y, the production condition W was able to satisfactorily suppress the variation in molecular weight between lots when the desired polymer was repeatedly produced under the same production conditions. In order to obtain a polymer, it can employ | adopt as an appropriate manufacturing condition.
When the standard deviation Z exceeds 10% of the weight average molecular weight y, the production conditions are changed and the polymer is produced again. Whether the value of the standard deviation Z is 10% or less of the weight average molecular weight y. The suitability of the manufacturing conditions is evaluated. The production conditions to be changed at this time are an initiator supply method, a monomer supply method, a ratio of the total amount of monomers supplied to the reaction liquid with respect to the reaction liquid at the end of the polymerization reaction period, or a combination thereof. Is preferred.
For example, a method for supplying a polymerization initiator, in which the monomer supply time is lengthened, is to supply a part of the total supply amount of the polymerization initiator used in the main process in the initial stage of polymerization, and then from the initial stage. By changing the method to supply the polymerization initiator at a low speed, reducing the total ratio of the monomers supplied to the reaction solution relative to the reaction solution at the end of the polymerization reaction period, or combining them, The ratio of Z to y can be reduced.

このようにして「標準偏差Zが重量平均分子量yの10%以下」を満たす製造条件を予め決定し、これと同じ製造条件で目的の重合体を繰り返し製造することが好ましい。予め決定された製造条件と同じ条件で重合体を製造する際は、標準偏差Zを求めるための操作は行わなくてよい。かかる製造条件を用いることにより、後述の実施例に示されるように、製造再現性が向上し、平均分子量のロット間差が非常に小さい重合体を繰り返し製造することができる。   Thus, it is preferable to predetermine production conditions satisfying “standard deviation Z is 10% or less of weight average molecular weight y”, and to repeatedly produce the desired polymer under the same production conditions. When the polymer is produced under the same conditions as the production conditions determined in advance, the operation for obtaining the standard deviation Z need not be performed. By using such production conditions, as shown in Examples described later, production reproducibility is improved, and a polymer having a very small difference in average molecular weight between lots can be produced repeatedly.

重合工程において、所定量の単量体及び重合開始剤を供給し、所定の時間、重合反応させた後、反応停止操作を行い、重合反応を停止させ、重合体溶液を得る。
得られた重合体溶液は、必要に応じて精製を行う。例えば、1,4−ジオキサン、アセトン、THF、MEK、MIBK、γ−ブチロラクトン、PGMEA、PGME、乳酸エチル等の希釈溶媒で適当な溶液粘度に希釈した後、メタノール、エタノール、イソプロピルアルコール、水、ヘキサン、ヘプタン、ジイソプロピルエーテル、又はそれらの混合溶媒等の貧溶媒中に滴下し、重合体を析出させる。この工程は再沈殿工程と呼ばれ、重合体溶液中に残存する未反応の単量体、重合開始剤等を取り除くために非常に有効である。未反応単量体は、そのまま残存しているとレジスト組成物として用いた場合に感度が低下するため、できるだけ取り除くことが好ましい。重合体中の不純物としての単量体含有量は2.0質量%以下がより好ましく、1.0質量%以下がさらに好ましく、0.29質量%以下が特に好ましく、0.25質量%以下が最も好ましい。
In the polymerization step, a predetermined amount of a monomer and a polymerization initiator are supplied, and after a polymerization reaction is performed for a predetermined time, a reaction stopping operation is performed to stop the polymerization reaction to obtain a polymer solution.
The obtained polymer solution is purified as necessary. For example, after diluting to a suitable solution viscosity with a diluting solvent such as 1,4-dioxane, acetone, THF, MEK, MIBK, γ-butyrolactone, PGMEA, PGME, ethyl lactate, etc., methanol, ethanol, isopropyl alcohol, water, hexane In a poor solvent such as heptane, diisopropyl ether, or a mixed solvent thereof, the polymer is precipitated. This process is called a reprecipitation process, and is very effective for removing unreacted monomers, polymerization initiators and the like remaining in the polymer solution. If the unreacted monomer remains as it is, the sensitivity decreases when used as a resist composition, so it is preferable to remove it as much as possible. The monomer content as an impurity in the polymer is more preferably 2.0% by mass or less, further preferably 1.0% by mass or less, particularly preferably 0.29% by mass or less, and 0.25% by mass or less. Most preferred.

貧溶媒としては、製造する重合体が溶解せずに析出する溶媒であればよく、公知のものを使用できるが、半導体リソグラフィー用重合体に用いられる未反応の単量体、重合開始剤等を効率的に取り除くことができる点で、メタノール、イソプロピルアルコール、ジイソプロピルエーテル、ヘプタン、水、又はそれらの混合溶媒が好ましい。
使用する貧溶媒の量は残存する未反応単量体をより低減できるため、重合体溶液と同質量以上用いることができ、3倍以上が好ましく、4倍以上がより好ましく、5倍以上がさらに好ましく、6倍以上が特に好ましい。
As the poor solvent, any solvent may be used as long as the polymer to be produced is not dissolved, and any known solvent can be used, but unreacted monomers, polymerization initiators and the like used in the polymer for semiconductor lithography can be used. In view of efficient removal, methanol, isopropyl alcohol, diisopropyl ether, heptane, water, or a mixed solvent thereof is preferable.
Since the amount of the poor solvent used can further reduce the remaining unreacted monomer, it can be used in the same mass or more as the polymer solution, preferably 3 times or more, more preferably 4 times or more, and further more preferably 5 times or more. Preferably, 6 times or more is particularly preferable.

その後、析出物をろ別し、湿粉を得る。
また、湿粉を再び貧溶媒に分散させて重合体分散液を得た後、重合体をろ別する操作を繰り返すこともできる。この工程は、リスラリ工程と呼ばれ、重合体湿粉中に残存する未反応の単量体、重合開始剤等をより低減させるために非常に有効である。
重合体を高い生産性を維持したまま取得できる点ではリスラリ工程を行わず、再沈殿工程のみで重合体を精製することが好ましい。
Thereafter, the precipitate is filtered off to obtain a wet powder.
Further, after the wet powder is dispersed again in a poor solvent to obtain a polymer dispersion, an operation of filtering the polymer can be repeated. This step is called a restructuring step and is very effective for further reducing unreacted monomers, polymerization initiators and the like remaining in the polymer wet powder.
It is preferable to purify the polymer only by the reprecipitation step without performing the restructuring step in that the polymer can be obtained while maintaining high productivity.

得られた湿粉は、十分に乾燥して、乾燥粉末状の重合体を得ることができる。
また、ろ別した後、乾燥せずに湿粉のまま適当な溶媒に溶解させてリソグラフィー用組成物として用いてもよく、濃縮して低沸点化合物を除去してからリソグラフィー用組成物として用いてもよい。その際、保存安定剤等の添加剤を適宜添加してもよい。
また、乾燥させた後に適当な溶媒に溶解させ、さらに濃縮して低沸点化合物を除去してからリソグラフィー用組成物として用いてもよい。その際、保存安定剤等の添加剤を適宜添加してもよい。
The obtained wet powder can be sufficiently dried to obtain a dry powder polymer.
In addition, after filtering off, it may be used as a lithographic composition by dissolving it in a suitable solvent without drying and using it as a lithographic composition. Also good. At that time, additives such as a storage stabilizer may be appropriately added.
Further, after drying, it may be dissolved in a suitable solvent and further concentrated to remove the low boiling point compound, and then used as a composition for lithography. At that time, additives such as a storage stabilizer may be appropriately added.

<レジスト組成物の製造方法>
本発明のレジスト組成物の製造方法は、本発明の製造方法でレジスト用重合体を製造し、得られたレジスト用重合体と、活性光線又は放射線の照射により酸を発生する化合物(以下、「光酸発生剤」ということもある。)を混合する工程を有するレジスト組成物の製造方法である。好ましくは該重合体と、光酸発生剤とをレジスト溶媒に溶解させてレジスト組成物を製造する。
レジスト用重合体を製造する際は、単量体として、上述した構成単位(a)を導く単量体(極性基を有する単量体)及び上述した構成単位(b)を導く単量体(酸脱離性基を有する単量体)を用いることが好ましい
得られるレジスト組成物は、本発明の製造方法で得られるレジスト用重合体と、活性光線又は放射線の照射により酸を発生する化合物とを含有する、化学増幅型レジスト組成物である。
<Method for producing resist composition>
The method for producing a resist composition of the present invention comprises producing a resist polymer by the production method of the present invention, and the resulting resist polymer and a compound that generates an acid upon irradiation with actinic rays or radiation (hereinafter referred to as “ This is a method for producing a resist composition having a step of mixing a photoacid generator ”. Preferably, the polymer and the photoacid generator are dissolved in a resist solvent to produce a resist composition.
When the resist polymer is produced, as the monomer, the monomer that leads the structural unit (a) described above (monomer having a polar group) and the monomer that leads the structural unit (b) described above ( It is preferable to use a monomer having an acid leaving group. The obtained resist composition includes a resist polymer obtained by the production method of the present invention, and a compound that generates an acid upon irradiation with actinic rays or radiation. Is a chemically amplified resist composition.

[レジスト溶媒]
レジスト溶媒としては、前記重合溶媒と同様の溶媒が挙げられる。
[活性光線又は放射線の照射により酸を発生する化合物(光酸発生剤)]
光酸発生剤は、化学増幅型レジスト組成物の光酸発生剤として公知のものを適宜選択して用いることができる。光酸発生剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
光酸発生剤としては、例えば、オニウム塩化合物、スルホンイミド化合物、スルホン化合物、スルホン酸エステル化合物、キノンジアジド化合物、ジアゾメタン化合物等が挙げられる。
レジスト組成物における光酸発生剤の含有量は、重合体100質量部に対して、0.1〜20質量部が好ましく、0.5〜10質量部がより好ましい。
[Resist solvent]
Examples of the resist solvent include the same solvents as the polymerization solvent.
[Compound that generates acid upon irradiation with actinic ray or radiation (photoacid generator)]
As the photoacid generator, known photoacid generators for the chemically amplified resist composition can be appropriately selected and used. A photo-acid generator may be used individually by 1 type, and may use 2 or more types together.
Examples of the photoacid generator include onium salt compounds, sulfonimide compounds, sulfone compounds, sulfonic acid ester compounds, quinone diazide compounds, diazomethane compounds, and the like.
0.1-20 mass parts is preferable with respect to 100 mass parts of polymers, and, as for content of the photo-acid generator in a resist composition, 0.5-10 mass parts is more preferable.

[含窒素化合物]
化学増幅型レジスト組成物は、含窒素化合物を含んでいてもよい。含窒素化合物を含むことにより、レジストパターン形状、引き置き経時安定性等がさらに向上する。つまり、レジストパターンの断面形状が矩形により近くなり、また、レジスト膜に光を照射し、ついでベーク(PEB)した後、次の現像処理までの間に数時間放置されることが半導体素子の量産ラインではあるが、そのような放置(経時)したときにレジストパターンの断面形状の劣化の発生がより抑制される。
[Nitrogen-containing compounds]
The chemically amplified resist composition may contain a nitrogen-containing compound. By including the nitrogen-containing compound, the resist pattern shape, the stability over time, and the like are further improved. That is, the cross-sectional shape of the resist pattern becomes closer to a rectangle, and the resist film is irradiated with light, then baked (PEB), and then left for several hours before the next development process. Although it is a line, the occurrence of the deterioration of the cross-sectional shape of the resist pattern is further suppressed when left as such (timed).

含窒素化合物としては、アミンが好ましく、第2級低級脂肪族アミン、第3級低級脂肪族アミンがより好ましい。
含窒素化合物の量は、重合体100質量部に対して、0.01〜2質量部が好ましい。
The nitrogen-containing compound is preferably an amine, more preferably a secondary lower aliphatic amine or a tertiary lower aliphatic amine.
As for the quantity of a nitrogen-containing compound, 0.01-2 mass parts is preferable with respect to 100 mass parts of polymers.

[有機カルボン酸、リンのオキソ酸又はその誘導体]
化学増幅型レジスト組成物は、有機カルボン酸、リンのオキソ酸又はその誘導体(以下、これらをまとめて酸化合物と記す。)を含んでいてもよい。酸化合物を含むことにより、含窒素化合物の配合による感度劣化を抑えることができ、また、レジストパターン形状、引き置き経時安定性等がさらに向上する。
[Organic carboxylic acid, phosphorus oxo acid or derivative thereof]
The chemically amplified resist composition may contain an organic carboxylic acid, an oxo acid of phosphorus, or a derivative thereof (hereinafter collectively referred to as an acid compound). By including an acid compound, it is possible to suppress deterioration in sensitivity due to the blending of the nitrogen-containing compound, and further improve the resist pattern shape, stability with time of leaving, and the like.

有機カルボン酸としては、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸等が挙げられる。
リンのオキソ酸又はその誘導体としては、リン酸又はその誘導体、ホスホン酸又はその誘導体、ホスフィン酸又はその誘導体等が挙げられる。
酸化合物の量は、重合体100質量部に対して、0.01〜5質量部が好ましい。
Examples of the organic carboxylic acid include malonic acid, citric acid, malic acid, succinic acid, benzoic acid, and salicylic acid.
Examples of phosphorus oxo acids or derivatives thereof include phosphoric acid or derivatives thereof, phosphonic acid or derivatives thereof, phosphinic acid or derivatives thereof, and the like.
The amount of the acid compound is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the polymer.

[添加剤]
レジスト組成物は、必要に応じて、界面活性剤、その他のクエンチャー、増感剤、ハレーション防止剤、保存安定剤、消泡剤等の各種添加剤を含んでいてもよい。該添加剤は、当該分野で公知のものであればいずれも使用可能である。また、これら添加剤の量は、特に限定されず、適宜決めればよい。
[Additive]
The resist composition may contain various additives such as a surfactant, other quenchers, sensitizers, antihalation agents, storage stabilizers, and antifoaming agents as necessary. Any additive can be used as long as it is known in the art. Further, the amount of these additives is not particularly limited, and may be determined as appropriate.

<微細パターンが形成された基板の製造方法>
本発明の、微細パターンが形成された基板の製造方法は、本発明の製造方法でレジスト組成物を製造する工程と、得られたレジスト組成物を、基板の被加工面上に塗布してレジスト膜を形成する工程と、該レジスト膜に対して露光する工程と、露光されたレジスト膜を現像液を用いて現像する工程を有する。
以下、該基板の製造方法の一例について説明する。
<Manufacturing method of substrate on which fine pattern is formed>
The method for producing a substrate on which a fine pattern is formed according to the present invention comprises a step of producing a resist composition by the production method of the present invention, and applying the obtained resist composition onto a work surface of the substrate to form a resist. A step of forming a film, a step of exposing the resist film, and a step of developing the exposed resist film using a developer.
Hereinafter, an example of the manufacturing method of the substrate will be described.

まず、所望の微細パターンを形成しようとするシリコンウエハー等の被加工基板の表面(被加工面)に、レジスト組成物をスピンコート等により塗布する。そして、該レジスト組成物が塗布された被加工基板を、ベーキング処理(プリベーク)等で乾燥することにより、基板上にレジスト膜を形成する。   First, a resist composition is applied by spin coating or the like to the surface (processed surface) of a substrate to be processed such as a silicon wafer on which a desired fine pattern is to be formed. And the resist film is formed on a board | substrate by drying the to-be-processed board | substrate with which this resist composition was apply | coated by baking process (prebaking) etc.

次いで、レジスト膜に、フォトマスクを介して、250nm以下の波長の光を照射して潜像を形成する(露光)。照射光としては、KrFエキシマレーザー、ArFエキシマレーザー、Fエキシマレーザー、EUVエキシマレーザーが好ましく、ArFエキシマレーザーが特に好ましい。また、電子線を照射してもよい。
また、該レジスト膜と露光装置の最終レンズとの間に、純水、パーフルオロ−2−ブチルテトラヒドロフラン、パーフルオロトリアルキルアミン等の高屈折率液体を介在させた状態で光を照射する液浸露光を行ってもよい。
Next, the resist film is irradiated with light having a wavelength of 250 nm or less through a photomask to form a latent image (exposure). As irradiation light, a KrF excimer laser, an ArF excimer laser, an F 2 excimer laser, and an EUV excimer laser are preferable, and an ArF excimer laser is particularly preferable. Moreover, you may irradiate an electron beam.
In addition, immersion in which light is irradiated with a high refractive index liquid such as pure water, perfluoro-2-butyltetrahydrofuran, or perfluorotrialkylamine interposed between the resist film and the final lens of the exposure apparatus. Exposure may be performed.

露光後、適宜熱処理(露光後ベーク、PEB)し、レジスト膜にアルカリ現像液を接触させ、露光部分を現像液に溶解させ、除去する(現像)。アルカリ現像液としては、公知のものを用いることができる。
現像後、基板を純水等で適宜リンス処理する。このようにして被加工基板上にレジストパターンが形成される。
After the exposure, heat treatment is appropriately performed (post-exposure baking, PEB), an alkali developer is brought into contact with the resist film, and the exposed portion is dissolved in the developer and removed (development). A well-known thing can be used as an alkali developing solution.
After development, the substrate is appropriately rinsed with pure water or the like. In this way, a resist pattern is formed on the substrate to be processed.

レジストパターンが形成された基板は、適宜熱処理(ポストベーク)してレジストを強化し、レジストのない部分を選択的にエッチングする。
エッチング後、レジストを剥離剤によって除去することによって、パターンが形成された基板が得られる。
The substrate on which the resist pattern is formed is appropriately heat-treated (post-baked) to strengthen the resist and selectively etch the portion without the resist.
After the etching, the resist is removed with a release agent to obtain a substrate on which a pattern is formed.

本発明の製造方法によれば、重合体重合工程において経時的に生成する重合体の平均分子量のばらつきが低減される。また同条件で重合体を繰り返し製造する際の製造再現性が向上し、ロット間における分子量のばらつきが、従来には無い高度なレベルで小さく抑えられた重合体が得られる。
本発明により得られるレジスト組成物は、該レジスト組成物に含まれる半導体リソグラフィー用重合体の分子量バラツキが小さいため、感度及び現像コントラスト等のレジスト性能の安定性に優れる。
したがって本発明の基板の製造方法によれば、本発明にかかるレジスト組成物を用いることによって、高精度の微細なレジストパターンを安定して形成できる。また、高感度のレジスト組成物の使用が要求される、波長250nm以下の露光光を用いるフォトリソグラフィー又は電子線リソグラフィー、例えばArFエキシマレーザー(193nm)を使用するリソグラフィーによる、パターン形成にも好適に用いることができる。
According to the production method of the present invention, variations in the average molecular weight of the polymer produced over time in the polymer polymerization step are reduced. In addition, production reproducibility when a polymer is repeatedly produced under the same conditions is improved, and a polymer in which variation in molecular weight among lots is suppressed to a small level at a high level that has not been conventionally obtained can be obtained.
The resist composition obtained by the present invention is excellent in stability of resist performance such as sensitivity and development contrast since the molecular weight variation of the polymer for semiconductor lithography contained in the resist composition is small.
Therefore, according to the manufacturing method of the board | substrate of this invention, a highly accurate fine resist pattern can be formed stably by using the resist composition concerning this invention. In addition, it is also suitable for pattern formation by photolithography using exposure light having a wavelength of 250 nm or less or lithography using electron beam lithography, for example, ArF excimer laser (193 nm), which requires use of a highly sensitive resist composition. be able to.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
また、以下において「部」とあるのは、特に断りのない限り「質量部」を示す。測定方法及び評価方法は以下の方法を用いた。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
In the following, “part” means “part by mass” unless otherwise specified. The measuring method and the evaluation method used the following methods.

<分子量の測定方法>
重合体の重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、下記の条件(GPC条件)でゲル・パーミエーション・クロマトグラフィーにより、ポリスチレン換算で求めた。
[GPC条件]
装置:東ソー社製、東ソー高速GPC装置 HLC−8220GPC(商品名)、
分離カラム:昭和電工社製、Shodex GPC K−805L(商品名)を3本直列に連結したもの、
測定温度:40℃、
溶離液:テトラヒドロフラン(THF)、
試料(重合体の場合):重合体の約20mgを5mLのTHFに溶解し、0.5μmメンブレンフィルターで濾過した溶液、
試料(反応液の場合):サンプリングした反応液の約30mgを5mLのTHFに溶解し、0.5μmメンブレンフィルターで濾過した溶液、
流量:1mL/分、
注入量:0.1mL、
検出器:示差屈折計。
<Measurement method of molecular weight>
The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the polymer were determined in terms of polystyrene by gel permeation chromatography under the following conditions (GPC conditions).
[GPC conditions]
Equipment: Tosoh Corporation, Tosoh High Speed GPC Equipment HLC-8220GPC (trade name),
Separation column: manufactured by Showa Denko, Shodex GPC K-805L (trade name) connected in series,
Measurement temperature: 40 ° C.
Eluent: Tetrahydrofuran (THF)
Sample (in the case of a polymer): a solution in which about 20 mg of a polymer is dissolved in 5 mL of THF and filtered through a 0.5 μm membrane filter,
Sample (in the case of a reaction solution): a solution obtained by dissolving about 30 mg of a sampled reaction solution in 5 mL of THF and filtering through a 0.5 μm membrane filter,
Flow rate: 1 mL / min,
Injection volume: 0.1 mL,
Detector: differential refractometer.

検量線I:標準ポリスチレンの約20mgを5mLのTHFに溶解し、0.5μmメンブレンフィルターで濾過した溶液を用いて、上記の条件で分離カラムに注入し、溶出時間と分子量の関係を求めた。標準ポリスチレンは、下記の東ソー社製の標準ポリスチレン(いずれも商品名)を用いた。
F−80(Mw=706,000)、
F−20(Mw=190,000)、
F−4(Mw=37,900)、
F−1(Mw=10,200)、
A−2500(Mw=2,630)、
A−500(Mw=682、578、474、370、260の混合物)。
Calibration curve I: About 20 mg of standard polystyrene was dissolved in 5 mL of THF, and the solution was filtered through a 0.5 μm membrane filter and injected into a separation column under the above conditions, and the relationship between elution time and molecular weight was determined. As the standard polystyrene, the following standard polystyrene manufactured by Tosoh Corporation (both trade names) were used.
F-80 (Mw = 706,000),
F-20 (Mw = 190,000),
F-4 (Mw = 37,900),
F-1 (Mw = 10,200),
A-2500 (Mw = 2,630),
A-500 (mixture of Mw = 682, 578, 474, 370, 260).

<単量体の定量方法>
反応液中に残存する未反応の単量体量は次の方法で求めた。
反応容器内の反応液を0.5g採取し、これをアセトニトリルで希釈し、メスフラスコを用いて全量を50mLとした。この希釈液を0.2μmのメンブレンフィルターで濾過し、東ソー社製、高速液体クロマトグラフHPLC−8020(製品名)を用いて、該希釈液中の未反応の単量体量を、単量体ごとに求めた。
<Monomer determination method>
The amount of unreacted monomer remaining in the reaction solution was determined by the following method.
0.5 g of the reaction solution in the reaction vessel was collected, diluted with acetonitrile, and the total volume was adjusted to 50 mL using a volumetric flask. This diluted solution was filtered through a 0.2 μm membrane filter, and the amount of unreacted monomer in the diluted solution was determined using a high performance liquid chromatograph HPLC-8020 (product name) manufactured by Tosoh Corporation. Asked for every.

この測定において、分離カラムはジーエルサイエンス社製、Inertsil ODS−2(商品名)を1本使用し、移動相は水/アセトニトリルのグラジエント系、流量0.8mL/min、検出器は東ソー社製、紫外・可視吸光光度計UV−8020(商品名)、検出波長220nm、測定温度40℃、注入量4μLで測定した。なお、分離カラムであるInertsil ODS−2(商品名)は、シリカゲル粒径5μm、カラム内径4.6mm×カラム長さ450mmのものを使用した。移動相のグラジエント条件は、A液を水、B液をアセトニトリルとし、下記の通りとした。また、未反応単量体量を定量するために、濃度の異なる3種類の各単量体溶液を標準液として用いた。   In this measurement, a separation column is manufactured by GL Sciences, and one Inertsil ODS-2 (trade name) is used. The mobile phase is a water / acetonitrile gradient system, the flow rate is 0.8 mL / min, and the detector is manufactured by Tosoh Corporation. Ultraviolet / visible absorptiometer UV-8020 (trade name), detection wavelength 220 nm, measurement temperature 40 ° C., injection amount 4 μL. The separation column Inertsil ODS-2 (trade name) used was a silica gel particle diameter of 5 μm, a column inner diameter of 4.6 mm × column length of 450 mm. The gradient conditions of the mobile phase were as follows, with the liquid A being water and the liquid B being acetonitrile. In order to quantify the amount of unreacted monomer, three types of monomer solutions having different concentrations were used as standard solutions.

測定時間0〜3分:A液/B液=90体積%/10体積%。
測定時間3〜24分:A液/B液=90体積%/10体積%から、50体積%/50体積%まで。
測定時間24〜36.5分:A液/B液=50体積%/50体積%から、0体積%/1
00体積%まで。
測定時間36.5〜44分:A液/B液=0体積%/100体積%。
Measurement time 0 to 3 minutes: A liquid / B liquid = 90 vol% / 10 vol%.
Measurement time: 3 to 24 minutes: A liquid / B liquid = 90 volume% / 10 volume% to 50 volume% / 50 volume%.
Measurement time: 24 to 36.5 minutes: A liquid / B liquid = 50 volume% / 50 volume% to 0 volume% / 1
Up to 00% by volume.
Measurement time: 36.5 to 44 minutes: Liquid A / liquid B = 0 volume% / 100 volume%.

<レジスト組成物の感度の評価>
レジスト組成物を6インチシリコンウエハー上に回転塗布し、ホットプレート上で120℃、60秒間のプリベーク(PAB)を行い、厚さ300nmのレジスト膜を形成した。ArFエキシマレーザー露光装置(リソテックジャパン社製、製品名:VUVES−4500)を用い、露光量を変えながら10mm×10mmの面積の18ショットを露光した。次いで110℃、60秒間のポストベーク(PEB)を行った後、レジスト現像アナライザー(リソテックジャパン社製、製品名:RDA−806)を用い、23.5℃にて2.38%水酸化テトラメチルアンモニウム水溶液で65秒間現像した。各露光量のレジスト膜それぞれについて、現像中のレジスト膜厚の経時変化を測定した。
得られたデータを基に、露光量(mJ/cm)の対数と、初期膜厚に対する60秒間現像した時点での残存膜厚率(以下、残膜率という)(%)をプロットした曲線(以下、露光量−残膜率曲線という)を作成し、Eth感度(残膜率0%とするための必要露光量であり、感度を表す。)を以下の通り求めた。
Eth感度:露光量−残膜率曲線が残膜率0%と交わる露光量(mJ/cm
このEthの値は感度を表し、この値が小さいほど、感度が高いことを示す。
<Evaluation of sensitivity of resist composition>
The resist composition was spin-coated on a 6-inch silicon wafer and pre-baked (PAB) at 120 ° C. for 60 seconds on a hot plate to form a resist film having a thickness of 300 nm. Using an ArF excimer laser exposure apparatus (product name: VUVES-4500, manufactured by RISOTEC JAPAN), 18 shots having an area of 10 mm × 10 mm were exposed while changing the exposure amount. Next, after post-baking (PEB) at 110 ° C. for 60 seconds, 2.38% tetrahydroxide at 23.5 ° C. using a resist development analyzer (product name: RDA-806, manufactured by RISOTEC JAPAN). Developed with aqueous methylammonium solution for 65 seconds. For each exposure amount of the resist film, the change with time in the resist film thickness during development was measured.
A curve plotting the logarithm of the exposure amount (mJ / cm 2 ) and the residual film thickness ratio (hereinafter referred to as the residual film ratio) (%) when developed for 60 seconds with respect to the initial film thickness, based on the obtained data. (Hereinafter, exposure amount-residual film rate curve) was prepared, and Eth sensitivity (required exposure amount for setting the residual film rate to 0%, which represents sensitivity) was determined as follows.
Eth sensitivity: exposure amount (mJ / cm 2 ) at which the exposure amount-residual film rate curve intersects with a residual film rate of 0%
The value of Eth represents sensitivity, and the smaller the value, the higher the sensitivity.

<重量平均分子量のロット間差>
各例において、同一の条件で重合体を5回合成し、それぞれ得られた重合体の重量平均分子量を測定した。測定数5の標準偏差を求め、重量平均分子量のロット間差とした。該ロット間差の値が小さいほど、重合反応の再現性に優れ、重量平均分子量のロット間バラツキが小さいことを示す。
<Lot difference in weight average molecular weight>
In each example, the polymer was synthesized five times under the same conditions, and the weight average molecular weight of each polymer obtained was measured. The standard deviation of the number of measurements 5 was determined and used as the difference between the lots in the weight average molecular weight. The smaller the difference between lots, the better the reproducibility of the polymerization reaction, and the smaller the lot-to-lot variation in the weight average molecular weight.

以下の例で用いた単量体は下記式(m−1)で表される単量体(m−1)、下記式(m−2)で表される単量体(m−2)、及び下記式(m−3)で表される単量体(m−3)である。   The monomer used in the following examples is a monomer (m-1) represented by the following formula (m-1), a monomer (m-2) represented by the following formula (m-2), And a monomer (m-3) represented by the following formula (m-3).

Figure 2013221125
Figure 2013221125

<実施例1>
窒素導入口、撹拌機、コンデンサー、滴下漏斗2個、及び温度計を備えたフラスコに、窒素雰囲気下で、下記の混合物S1を入れた。フラスコを湯浴に入れ、フラスコ内を撹拌しながら湯浴の温度を80℃に上げた。
その後、別個の滴下漏斗より下記の混合物T1と重合開始剤溶液の供給を同時に開始し、T1を4時間かけて、重合開始剤溶液を20分かけてフラスコ内に滴下した。さらにT1の供給終了直後より、下記混合物Uのうちの80質量%(U1)を1時間かけて滴下し、残りの20質量%(U2)を1時間かけて滴下し、さらに80℃の温度を1時間保持した(熟成工程)。T1の滴下開始から1時間毎に反応液をサンプリングし、7時間後に室温まで冷却して反応を停止させた。
サンプリングした反応液から、上述の方法で、重合反応工程における(t−1)時間後〜t時間後の1時間の間に生成する重合体のMw(x)、重合反応終了時のMw(y)、重合率、重合率が90%に達する直前の測定時間(n)、及び上記式(1)で表される標準偏差(Z)、及びyに対するZの割合を求めたところ、表1に示す値となった(以下、同様)。
滴下時間と熟成工程の時間の合計が重合反応期間であり、滴下時間が単量体供給期間である。これらの値から重合反応期間中の単量体供給期間の割合を求めた。結果を表1に示す(以下、同様)。
重合反応期間の終了時における反応液の質量は、予め反応容器に仕込んだ液(本例では重合溶媒及び単量体)の質量、ならびに滴下により供給した単量体、重合開始剤、及び重合溶媒の質量を合計した値として求め、該反応液の質量に対する供給された単量体の合計量の割合を算出した。結果を表1に示す(以下、同様)。
<Example 1>
The following mixture S1 was placed in a flask equipped with a nitrogen inlet, a stirrer, a condenser, two dropping funnels, and a thermometer under a nitrogen atmosphere. The flask was placed in a hot water bath, and the temperature of the hot water bath was raised to 80 ° C. while stirring the flask.
Thereafter, the following mixture T1 and the polymerization initiator solution were simultaneously fed from separate dropping funnels, and T1 was dropped into the flask over 4 hours and the polymerization initiator solution over 20 minutes. Furthermore, 80% by mass (U1) of the following mixture U is added dropwise over 1 hour from the end of the supply of T1, and the remaining 20% by mass (U2) is added dropwise over 1 hour. Hold for 1 hour (aging process). The reaction solution was sampled every hour from the start of dropping of T1, and cooled to room temperature after 7 hours to stop the reaction.
From the sampled reaction solution, the Mw (x t ) of the polymer produced during 1 hour after (t-1) time to t time in the polymerization reaction step, and Mw ( y), the polymerization rate, the measurement time (n) immediately before the polymerization rate reaches 90%, the standard deviation (Z) represented by the above formula (1), and the ratio of Z to y were determined. (The same applies hereinafter).
The total of the dropping time and the aging time is the polymerization reaction period, and the dropping time is the monomer supply period. From these values, the ratio of the monomer supply period during the polymerization reaction period was determined. The results are shown in Table 1 (hereinafter the same).
The mass of the reaction liquid at the end of the polymerization reaction period is the mass of the liquid (polymerization solvent and monomer in this example) charged in advance in the reaction vessel, and the monomer, polymerization initiator, and polymerization solvent supplied dropwise. Was calculated as a total value, and the ratio of the total amount of monomers supplied to the mass of the reaction solution was calculated. The results are shown in Table 1 (hereinafter the same).

(S1)
単量体m−1を3.99部(31.3モル%)、
単量体m−2を7.68部(52.4モル%)、
単量体m−3を2.88部(16.3モル%)、
乳酸エチルを99.3部。
(T1)
単量体m−1を24.03部(40モル%)、
単量体m−2を27.71部(40モル%)、
単量体m−3を16.68部(20モル%)、
乳酸エチルを101.8部、
ジメチル−2,2’−アゾビスイソブチレートを0.690部(S1及びT1における単量体の合計量に対して0.7モル%)。
(重合開始剤溶液)
乳酸エチルを2.0部、
ジメチル−2,2’−アゾビスイソブチレートを1.280部(S1及びT1における単量体の合計量に対して1.3モル%)。
(U)
単量体m−1を1.09部(67.6モル%)、
単量体m−3を0.73部(32.4モル%)、
乳酸エチルを34.5部、
ジメチル−2,2’−アゾビスイソブチレートを0.054部(Uにおける単量体の合計量に対して2.5モル%)。
(S1)
3.99 parts (31.3 mol%) of monomer m-1
7.68 parts (52.4 mol%) of monomer m-2,
2.88 parts (16.3 mol%) of monomer m-3,
99.3 parts ethyl lactate.
(T1)
24.03 parts (40 mol%) of monomer m-1;
27.71 parts (40 mol%) of monomer m-2,
16.68 parts (20 mol%) of monomer m-3,
101.8 parts ethyl lactate,
0.690 parts of dimethyl-2,2′-azobisisobutyrate (0.7 mol% based on the total amount of monomers in S1 and T1).
(Polymerization initiator solution)
2.0 parts ethyl lactate,
1.280 parts of dimethyl-2,2′-azobisisobutyrate (1.3 mol% based on the total amount of monomers in S1 and T1).
(U)
1.09 parts (67.6 mol%) of monomer m-1;
0.73 part (32.4 mol%) of monomer m-3,
34.5 parts ethyl lactate,
0.054 parts dimethyl-2,2′-azobisisobutyrate (2.5 mol% with respect to the total amount of monomers in U).

[重合体の精製]
反応時間7時間が経過した後に、室温まで冷却して反応を停止させ、フラスコ内の重合体溶液を、約10倍量のメタノール及び水の混合溶媒(メタノール/水=80/20容量比)に撹拌しながら滴下し、白色の析出物(重合体P1)の沈殿を得た。沈殿を濾別し、再度、前記と同じ量のメタノール及び水の混合溶媒(メタノール/水=90/10容量比)へ投入し、撹拌しながら沈殿の洗浄を行った。そして、洗浄後の沈殿を濾別し、重合体湿粉160gを得た。この重合体湿粉のうち10gを減圧下40℃で約40時間乾燥した。得られた重合体P1についてMwを求めた。結果を表2に示す(以下、同様)。
[レジスト組成物の製造]
上記重合体湿粉の残りを、PGMEAの880gへ投入し、完全に溶解させて重合体溶液とした後、孔径0.04μmのナイロン製フィルター(日本ポール社製、P−NYLON N66FILTER0.04M(商品名))へ通液して、重合体溶液を濾過した。
得られた重合体溶液を減圧下で加熱してメタノール及び水を留去し、さらにPGMEAを留去し、重合体の濃度が25質量%の重合体P1溶液を得た。この際、最高到達真空度は0.7kPa、最高溶液温度は65℃、留去時間は8時間であった。
[Purification of polymer]
After 7 hours of reaction time, the reaction was stopped by cooling to room temperature, and the polymer solution in the flask was mixed with about 10 times the amount of methanol and water mixed solvent (methanol / water = 80/20 volume ratio). The solution was added dropwise with stirring to obtain a white precipitate (polymer P1). The precipitate was separated by filtration and again poured into a mixed solvent of methanol and water in the same amount as above (methanol / water = 90/10 volume ratio), and the precipitate was washed with stirring. And the precipitate after washing | cleaning was separated by filtration, and 160 g of polymer wet powder was obtained. 10 g of the polymer wet powder was dried at 40 ° C. under reduced pressure for about 40 hours. Mw was calculated | required about the obtained polymer P1. The results are shown in Table 2 (hereinafter the same).
[Production of resist composition]
The rest of the polymer wet powder is put into 880 g of PGMEA and completely dissolved to obtain a polymer solution, and then a nylon filter having a pore size of 0.04 μm (P-NYLON N66FILTER 0.04M manufactured by Nippon Pole Co., Ltd. (product) The polymer solution was filtered.
The obtained polymer solution was heated under reduced pressure to distill off methanol and water, and further PGMEA was distilled off to obtain a polymer P1 solution having a polymer concentration of 25% by mass. At this time, the maximum ultimate vacuum was 0.7 kPa, the maximum solution temperature was 65 ° C., and the distillation time was 8 hours.

得られた重合体P1溶液の400部と、光酸発生剤であるトリフェニルスルホニウムトリフレートの2部と、溶媒であるPGMEAとを、重合体濃度が12.5質量%になるように混合して均一溶液とした後、孔径0.1μmのメンブレンフィルターで濾過し、レジスト組成物を得た。得られたレジスト組成物について上記の方法で感度を評価した。結果を表2に示す(以下、同様)。   400 parts of the obtained polymer P1 solution, 2 parts of triphenylsulfonium triflate as a photoacid generator, and PGMEA as a solvent were mixed so that the polymer concentration was 12.5% by mass. After preparing a uniform solution, the solution was filtered through a membrane filter having a pore size of 0.1 μm to obtain a resist composition. The sensitivity of the obtained resist composition was evaluated by the above method. The results are shown in Table 2 (hereinafter the same).

[重量平均分子量のロット間差]
本例(製造1−1)と同一の条件でさらに重合体を4回合成した(製造1−2〜1−5)。ただし表1に示す各項目の測定は行わなかった。各回で得られた重合体の重量平均分子量(Mw)を測定した。測定数5の標準偏差を求め、重量平均分子量のロット間差とした。結果を表2に示す(以下、同様)。該ロット間差の値が小さいほど、重合反応の再現性に優れ、重量平均分子量のロット間バラツキが小さいことを示す。
各回で得られた重合体をそれぞれ用い、同一の条件でレジスト組成物を調製し、感度(Eth)を評価した。結果を表2に示す(以下、同様)。
[Difference in weight average molecular weight between lots]
A polymer was further synthesized four times under the same conditions as in this example (Production 1-1) (Production 1-2 to 1-5). However, the measurement of each item shown in Table 1 was not performed. The weight average molecular weight (Mw) of the polymer obtained each time was measured. The standard deviation of the number of measurements 5 was determined and used as the difference between the lots in the weight average molecular weight. The results are shown in Table 2 (hereinafter the same). The smaller the difference between lots, the better the reproducibility of the polymerization reaction, and the smaller the lot-to-lot variation in the weight average molecular weight.
A resist composition was prepared under the same conditions using the polymers obtained each time, and the sensitivity (Eth) was evaluated. The results are shown in Table 2 (hereinafter the same).

<実施例2>
窒素導入口、撹拌機、コンデンサー、滴下漏斗2個、及び温度計を備えたフラスコに、窒素雰囲気下で、下記の混合物S1を入れた。フラスコを湯浴に入れ、フラスコ内を撹拌しながら湯浴の温度を80℃に上げた。
その後、別個の滴下漏斗より下記の混合物T1と重合開始剤溶液の供給を同時に開始し、T1を6時間かけて、重合開始剤溶液を20分かけてフラスコ内に滴下した。さらにT1の供給終了直後より80℃の温度を1時間保持した(熟成工程)。T1の滴下開始から1時間毎に重合反応液をサンプリングし、7時間後に室温まで冷却して反応を停止させた。サンプリングした反応液から、表1に示す項目の値を求めた。
<Example 2>
The following mixture S1 was placed in a flask equipped with a nitrogen inlet, a stirrer, a condenser, two dropping funnels, and a thermometer under a nitrogen atmosphere. The flask was placed in a hot water bath, and the temperature of the hot water bath was raised to 80 ° C. while stirring the flask.
Thereafter, the following mixture T1 and the polymerization initiator solution were simultaneously fed from separate dropping funnels, and T1 was dropped into the flask over 6 hours and the polymerization initiator solution over 20 minutes. Further, the temperature of 80 ° C. was maintained for 1 hour immediately after the end of the supply of T1 (aging process). The polymerization reaction solution was sampled every hour from the start of dropping of T1, and after 7 hours, the reaction was stopped by cooling to room temperature. The value of the item shown in Table 1 was calculated | required from the sampled reaction liquid.

(S1)
単量体m−1を6.53部(31.3モル%)、
単量体m−2を11.76部(52.4モル%)、
単量体m−3を4.84部(16.3モル%)、
乳酸エチルを170.4部、
PGMEAを139.4部。
(T1)
単量体m−1を73.44部(40モル%)、
単量体m−2を84.67部(40モル%)、
単量体m−3を50.98部(20モル%)、
乳酸エチルを232.4部、
PGMEAを199.7部、
ジメチル−2,2’−アゾビスイソブチレートを4.633部(S1及びT1における単量体の合計量に対して0.7モル%)。
(重合開始剤溶液)
乳酸エチルを11.7部、
ジメチル−2,2’−アゾビスイソブチレートを1.158部(S1及びT1における単量体の合計量に対して1.3モル%)。
[重合体の精製]
実施例1と同様にして、重合体を精製し、評価した評価結果を表2に示す。
(S1)
6.53 parts (31.3 mol%) of monomer m-1;
11.76 parts (52.4 mol%) of monomer m-2,
4.84 parts (16.3 mol%) of monomer m-3,
170.4 parts of ethyl lactate,
139.4 parts of PGMEA.
(T1)
Monomer m-1 73.44 parts (40 mol%),
84.67 parts (40 mol%) of monomer m-2,
50.98 parts (20 mol%) of monomer m-3,
232.4 parts of ethyl lactate,
199.7 parts of PGMEA,
4.633 parts of dimethyl-2,2′-azobisisobutyrate (0.7 mol% based on the total amount of monomers in S1 and T1).
(Polymerization initiator solution)
11.7 parts ethyl lactate,
1.158 parts of dimethyl-2,2′-azobisisobutyrate (1.3 mol% based on the total amount of monomers in S1 and T1).
[Purification of polymer]
The evaluation results obtained by purifying and evaluating the polymer in the same manner as in Example 1 are shown in Table 2.

<実施例3>
窒素導入口、撹拌機、コンデンサー、滴下漏斗2個、及び温度計を備えたフラスコに、窒素雰囲気下で、下記の混合物S1を入れた。フラスコを湯浴に入れ、フラスコ内を撹拌しながら湯浴の温度を80℃に上げた。
その後、別個の滴下漏斗より下記の混合物T1と重合開始剤溶液の供給を同時に開始し、T1を5時間かけて、重合開始剤溶液を20分かけてフラスコ内に滴下した。さらにT1の供給終了直後より、下記混合物Uを30分かけて滴下し、さらに80℃の温度を1時間30分保持した(熟成工程)。T1の滴下開始から1時間毎に重合反応液をサンプリングし、7時間後に室温まで冷却して反応を停止させた。サンプリングした反応液から、表1に示す項目の値を求めた。
<Example 3>
The following mixture S1 was placed in a flask equipped with a nitrogen inlet, a stirrer, a condenser, two dropping funnels, and a thermometer under a nitrogen atmosphere. The flask was placed in a hot water bath, and the temperature of the hot water bath was raised to 80 ° C. while stirring the flask.
Thereafter, the following mixture T1 and the polymerization initiator solution were simultaneously fed from a separate dropping funnel, and T1 was dropped into the flask over 5 hours and the polymerization initiator solution over 20 minutes. Further, immediately after the end of the supply of T1, the following mixture U was dropped over 30 minutes, and the temperature of 80 ° C. was further maintained for 1 hour 30 minutes (aging process). The polymerization reaction solution was sampled every hour from the start of dropping of T1, and after 7 hours, the reaction was stopped by cooling to room temperature. The value of the item shown in Table 1 was calculated | required from the sampled reaction liquid.

(S1)
単量体m−1を2.07部(18.8モル%)、
単量体m−2を9.15部(71.9モル%)、
単量体m−3を1.44部(9.4モル%)、
乳酸エチルを92.7部、
PGMEAを39.7部。
(T1)
単量体m−1を42.84部(40モル%)、
単量体m−2を49.39部(40モル%)、
単量体m−3を29.74部(20モル%)、
乳酸エチルを100.9部、
PGMEAを49.5部、
ジメチル−2,2’−アゾビスイソブチレートを3.069部(S1及びT1における単量体の合計量に対して1.92モル%)。
(重合開始剤溶液)
乳酸エチルを14.6部、
ジメチル−2,2’−アゾビスイソブチレートを0.767部(S1及びT1における単量体の合計量に対して0.48モル%)。
(U)
単量体m−1を0.33部(66.7モル%)、
単量体m−3を0.23部(33.3モル%)、
乳酸エチルを12.6部、
PMGEAを5.4部
ジメチル−2,2’−アゾビスイソブチレートを0.016部(Uにおける単量体の計量に対して2.4モル%)。
[重合体の精製]
実施例1と同様にして、重合体を精製し、評価した。評価結果を表2に示す。
(S1)
2.07 parts (18.8 mol%) of monomer m-1;
9.15 parts (71.9 mol%) of monomer m-2,
1.44 parts (9.4 mol%) of monomer m-3,
92.7 parts ethyl lactate,
39.7 parts of PGMEA.
(T1)
42.84 parts (40 mol%) of monomer m-1
49.39 parts (40 mol%) of monomer m-2,
29.74 parts (20 mol%) of monomer m-3,
100.9 parts ethyl lactate,
49.5 parts of PGMEA,
3.069 parts dimethyl-2,2′-azobisisobutyrate (1.92 mol% relative to the total amount of monomers in S1 and T1).
(Polymerization initiator solution)
14.6 parts ethyl lactate,
0.767 parts of dimethyl-2,2′-azobisisobutyrate (0.48 mol% based on the total amount of monomers in S1 and T1).
(U)
0.33 part (66.7 mol%) of monomer m-1;
0.23 part (33.3 mol%) of monomer m-3,
12.6 parts of ethyl lactate,
5.4 parts of PMGEA 0.016 parts of dimethyl-2,2′-azobisisobutyrate (2.4 mol% relative to the amount of monomer in U).
[Purification of polymer]
In the same manner as in Example 1, the polymer was purified and evaluated. The evaluation results are shown in Table 2.

<比較例4>
窒素導入口、撹拌機、コンデンサー、滴下漏斗1個、及び温度計を備えたフラスコに、窒素雰囲気下で、乳酸エチル193.6部を入れた。フラスコを湯浴に入れ、フラスコ内を撹拌しながら湯浴の温度を80℃に上げた。
その後、滴下漏斗より下記の混合物T1の滴下を開始し、4時間かけてフラスコ内に滴下した。さらにT1の供給終了直後より80℃の温度を3時間保持した(熟成工程)。T1の滴下開始から1時間毎に重合反応液をサンプリングし、7時間後に室温まで冷却して反応を停止させた。サンプリングした反応液から、表1に示す項目の値を求めた。
<Comparative example 4>
In a flask equipped with a nitrogen inlet, a stirrer, a condenser, one dropping funnel, and a thermometer, 193.6 parts of ethyl lactate was placed under a nitrogen atmosphere. The flask was placed in a hot water bath, and the temperature of the hot water bath was raised to 80 ° C. while stirring the flask.
Thereafter, the dropping of the following mixture T1 was started from the dropping funnel and dropped into the flask over 4 hours. Furthermore, the temperature of 80 ° C. was maintained for 3 hours from the end of the supply of T1 (aging process). The polymerization reaction solution was sampled every hour from the start of dropping of T1, and after 7 hours, the reaction was stopped by cooling to room temperature. The value of the item shown in Table 1 was calculated | required from the sampled reaction liquid.

(T1)
単量体m−1を81.60部(40モル%)、
単量体m−2を94.08部(40モル%)、
単量体m−3を56.64部(20モル%)、
乳酸エチルを348.5部、
ジメチル−2,2’−アゾビスイソブチレートを6.900部(S1及びT1における単量体の合計量に対して2.5モル%)。
乳酸エチルを12.6部、
PMGEAを5.4部
ジメチル−2,2’−アゾビスイソブチレートを0.016部(Uにおける単量体の合計量に対して2.4モル%)。
[重合体の精製]
実施例1と同様にして、重合体を精製し、評価した。評価結果を表2に示す。
(T1)
81.60 parts (40 mol%) of monomer m-1
94.08 parts (40 mol%) of monomer m-2,
56.64 parts (20 mol%) of monomer m-3,
348.5 parts ethyl lactate,
6.900 parts of dimethyl-2,2′-azobisisobutyrate (2.5 mol% based on the total amount of monomers in S1 and T1).
12.6 parts of ethyl lactate,
5.4 parts of PMGEA 0.016 parts of dimethyl-2,2′-azobisisobutyrate (2.4 mol% relative to the total amount of monomers in U).
[Purification of polymer]
In the same manner as in Example 1, the polymer was purified and evaluated. The evaluation results are shown in Table 2.

<比較例5>
窒素導入口、撹拌機、コンデンサー、滴下漏斗2個、及び温度計を備えたフラスコに、窒素雰囲気下で、下記の混合物S1を入れた。フラスコを湯浴に入れ、フラスコ内を撹拌しながら湯浴の温度を80℃に上げた。
その後、別個の滴下漏斗より下記の混合物T1と重合開始剤溶液の供給を同時に開始し、T1を4時間かけて、重合開始剤溶液を20分かけてフラスコ内に滴下した。さらにT1の供給終了直後より80℃の温度を3時間保持した(熟成工程)。T1の滴下開始から1時間毎に重合反応液をサンプリングし、7時間後に室温まで冷却して反応を停止させた。サンプリングした反応液から、表1に示す項目の値を求めた。
<Comparative Example 5>
The following mixture S1 was placed in a flask equipped with a nitrogen inlet, a stirrer, a condenser, two dropping funnels, and a thermometer under a nitrogen atmosphere. The flask was placed in a hot water bath, and the temperature of the hot water bath was raised to 80 ° C. while stirring the flask.
Thereafter, the following mixture T1 and the polymerization initiator solution were simultaneously fed from separate dropping funnels, and T1 was dropped into the flask over 4 hours and the polymerization initiator solution over 20 minutes. Furthermore, the temperature of 80 ° C. was maintained for 3 hours from the end of the supply of T1 (aging process). The polymerization reaction solution was sampled every hour from the start of dropping of T1, and after 7 hours, the reaction was stopped by cooling to room temperature. The value of the item shown in Table 1 was calculated | required from the sampled reaction liquid.

(S1)
単量体m−1を2.72部(39.0モル%)、
単量体m−2を4.90部(41.3モル%)、
単量体m−3を2.02部(19.7モル%)、
乳酸エチルを79.0部
(T1)
単量体m−1を23.80部(40モル%)、
単量体m−2を27.44部(40モル%)、
単量体m−3を16.52部(20モル%)、
乳酸エチルを101.6部、
ジメチル−2,2’−アゾビスイソブチレートを0.643部(S1及びT1における単量体の合計量に対して0.7モル%)。
(重合開始剤溶液)
乳酸エチルを3.6部、
ジメチル−2,2’−アゾビスイソブチレートを1.196部(S1及びT1における単量体の合計量に対して1.3モル%)。
[重合体の精製]
実施例1と同様にして、重合体を精製し、評価した。評価結果を表2に示す。
(S1)
2.72 parts (39.0 mol%) of monomer m-1
4.90 parts (41.3 mol%) of monomer m-2,
2.02 parts (19.7 mol%) of monomer m-3,
79.0 parts of ethyl lactate
(T1)
23.80 parts (40 mol%) of monomer m-1;
27.44 parts (40 mol%) of monomer m-2,
16.52 parts (20 mol%) of monomer m-3,
101.6 parts ethyl lactate,
0.643 parts of dimethyl-2,2′-azobisisobutyrate (0.7 mol% based on the total amount of monomers in S1 and T1).
(Polymerization initiator solution)
3.6 parts of ethyl lactate,
1.196 parts of dimethyl-2,2′-azobisisobutyrate (1.3 mol% based on the total amount of monomers in S1 and T1).
[Purification of polymer]
In the same manner as in Example 1, the polymer was purified and evaluated. The evaluation results are shown in Table 2.

<比較例6>
窒素導入口、撹拌機、コンデンサー、滴下漏斗2個、及び温度計を備えたフラスコに、窒素雰囲気下で、下記の混合物S1を入れた。フラスコを湯浴に入れ、フラスコ内を撹拌しながら湯浴の温度を80℃に上げた。
その後、別個の滴下漏斗より下記のT1と重合開始剤溶液の供給を同時に開始し、混合物T1を3時間かけて、重合開始剤溶液を20分かけてフラスコ内に滴下した。さらにT1の供給終了直後より80℃の温度を4時間保持した(熟成工程)。T1の滴下開始から1時間毎に重合反応液をサンプリングし、7時間後に室温まで冷却して反応を停止させた。サンプリングした反応液から、表1に示す項目の値を求めた。
<Comparative Example 6>
The following mixture S1 was placed in a flask equipped with a nitrogen inlet, a stirrer, a condenser, two dropping funnels, and a thermometer under a nitrogen atmosphere. The flask was placed in a hot water bath, and the temperature of the hot water bath was raised to 80 ° C. while stirring the flask.
Thereafter, the following T1 and the polymerization initiator solution were simultaneously fed from separate dropping funnels, and the mixture T1 was dropped into the flask over 3 hours and the polymerization initiator solution over 20 minutes. Further, a temperature of 80 ° C. was maintained for 4 hours immediately after the end of the supply of T1 (aging process). The polymerization reaction solution was sampled every hour from the start of dropping of T1, and after 7 hours, the reaction was stopped by cooling to room temperature. The value of the item shown in Table 1 was calculated | required from the sampled reaction liquid.

(S1)
単量体m−1を6.97部(34.2モル%)、
単量体m−2を11.47部(48.8モル%)、
単量体m−3を4.80部(17.0モル%)、
PGMEAを149.8部。
(T1)
単量体m−1を73.44部(40モル%)、
単量体m−2を84.67部(40モル%)、
単量体m−3を50.98部(20モル%)、
PGMEAを149.5部、
ジメチル−2,2’−アゾビスイソブチレートを3.864部(S1及びT1における単量体の合計量に対して1.4モル%)。
(重合開始剤溶液)
PGMEAを21.5部、
ジメチル−2,2’−アゾビスイソブチレートを7.175部(S1及びT1における単量体の合計量に対して2.6モル%)。
[重合体の精製]
実施例1と同様にして、重合体を精製し、評価した。評価結果を表2に示す。
(S1)
6.97 parts (34.2 mol%) of monomer m-1;
11.47 parts (48.8 mol%) of monomer m-2,
4.80 parts (17.0 mol%) of monomer m-3,
149.8 parts of PGMEA.
(T1)
Monomer m-1 73.44 parts (40 mol%),
84.67 parts (40 mol%) of monomer m-2,
50.98 parts (20 mol%) of monomer m-3,
149.5 parts of PGMEA,
3.864 parts of dimethyl-2,2′-azobisisobutyrate (1.4 mol% based on the total amount of monomers in S1 and T1).
(Polymerization initiator solution)
21.5 parts PGMEA,
7.175 parts of dimethyl-2,2′-azobisisobutyrate (2.6 mol% based on the total amount of monomers in S1 and T1).
[Purification of polymer]
In the same manner as in Example 1, the polymer was purified and evaluated. The evaluation results are shown in Table 2.

Figure 2013221125
Figure 2013221125

Figure 2013221125
Figure 2013221125

表1、2の結果に示されるように、実施例1〜3は、重合反応期間中の1時間の間に生成される重合体のMwのばらつきが小さく、重合反応終了時の重量平均分子量yに対する標準偏差Zの割合が10%以下であった。該実施例1〜3は、同条件で繰り返し重合体を製造したときの、ロット間の重合平均分子量(Mw)のバラツキが小さく、製造再現性に優れていた。
これに対して比較例4〜6は、重合反応期間中の1時間の間に生成される重合体のMwのばらつきが大きく、重合反応終了時の重量平均分子量yに対する標準偏差Zの割合が10%を超え、重合平均分子量(Mw)のロット間差が大きい。特に、重合反応終了時の反応液に対して供給された単量体の質量割合が40質量%を超える比較例6においては、重合反応期間中のMwのばらつきが特に大きく、ロット間のバラツキも大きかった。
As shown in the results of Tables 1 and 2, Examples 1 to 3 have small variations in Mw of the polymer produced during 1 hour during the polymerization reaction period, and the weight average molecular weight y at the end of the polymerization reaction. The ratio of the standard deviation Z with respect to was 10% or less. In Examples 1 to 3, when a polymer was repeatedly produced under the same conditions, the variation in the average molecular weight (Mw) between lots was small, and the production reproducibility was excellent.
On the other hand, Comparative Examples 4 to 6 have a large variation in Mw of the polymer produced during one hour during the polymerization reaction period, and the ratio of the standard deviation Z to the weight average molecular weight y at the end of the polymerization reaction is 10 %, And the lot-to-lot difference in polymerization average molecular weight (Mw) is large. In particular, in Comparative Example 6 in which the mass ratio of the monomer supplied to the reaction liquid at the end of the polymerization reaction exceeds 40% by mass, the variation in Mw during the polymerization reaction period is particularly large, and there is also lot-to-lot variation. It was big.

Claims (4)

反応容器内で、2種以上の単量体を、溶媒の存在下に、重合開始剤を使用してラジカル重合反応させる重合工程と、前記重合反応を停止させる反応停止工程を有し、
重合反応が開始してから1時間ごとに重合率を測定し、n時間後(nは1以上の整数)に重合率が90モル%未満で、(n+1)時間後の重合率が90モル%以上となるとき、
重合反応が開始してから(t−1)時間後〜t時間後(tは1〜nの整数)の間にそれぞれ生成する重合体の重量平均分子量xの標準偏差Zの値が、重合反応終了時の重量平均分子量yの10%以下であり、かつ
重合反応の終了時の前記反応容器内の反応液の質量に対して、該反応容器に供給された単量体の合計質量の割合が40質量%以下である、重合体の製造方法。
In the reaction vessel, two or more monomers, in the presence of a solvent, using a polymerization initiator, a polymerization step of performing a radical polymerization reaction, and a reaction termination step of stopping the polymerization reaction,
The polymerization rate is measured every hour after the start of the polymerization reaction, the polymerization rate is less than 90 mol% after n hours (n is an integer of 1 or more), and the polymerization rate after (n + 1) hours is 90 mol%. When it becomes more than
The value of the standard deviation Z of the weight-average molecular weight x t of polymer produced respectively between the polymerization reaction started (t-1) times after ~t time after (t is an integer of 1 to n) is polymerized The ratio of the total mass of monomers supplied to the reaction vessel with respect to the mass of the reaction solution in the reaction vessel at the end of the polymerization reaction, which is 10% or less of the weight average molecular weight y at the end of the reaction. The manufacturing method of the polymer whose is 40 mass% or less.
重合反応が開始してから重合反応を停止させる操作が開始されるまでの重合反応期間内に、前記反応容器内に単量体を連続的に又は滴下により供給する単量体供給工程を有し、
前記重合反応期間の70%以上にわたって単量体を供給する、請求項1記載の重合体の製造方法。
In the polymerization reaction period from the start of the polymerization reaction to the start of the operation for stopping the polymerization reaction, a monomer supply step for supplying the monomer continuously or dropwise into the reaction vessel ,
The method for producing a polymer according to claim 1, wherein the monomer is supplied over 70% or more of the polymerization reaction period.
請求項1又は2記載の製造方法でレジスト用重合体を製造する工程と、
得られたレジスト用重合体と、活性光線又は放射線の照射により酸を発生する化合物を混合する工程を有する、レジスト組成物の製造方法。
A step of producing a resist polymer by the production method according to claim 1 or 2,
A method for producing a resist composition, comprising a step of mixing the obtained resist polymer and a compound that generates an acid upon irradiation with actinic rays or radiation.
請求項3に記載の製造方法でレジスト組成物を製造する工程と、
得られたレジスト組成物を、基板の被加工面上に塗布してレジスト膜を形成する工程と、
該レジスト膜に対して、露光する工程と、露光されたレジスト膜を現像液を用いて現像する工程を有する、パターンが形成された基板の製造方法。
A step of producing a resist composition by the production method according to claim 3;
Applying the obtained resist composition onto a work surface of a substrate to form a resist film;
A method for producing a substrate on which a pattern is formed, comprising a step of exposing the resist film and a step of developing the exposed resist film using a developer.
JP2012094906A 2012-04-18 2012-04-18 Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed Active JP5942562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012094906A JP5942562B2 (en) 2012-04-18 2012-04-18 Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012094906A JP5942562B2 (en) 2012-04-18 2012-04-18 Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed

Publications (2)

Publication Number Publication Date
JP2013221125A true JP2013221125A (en) 2013-10-28
JP5942562B2 JP5942562B2 (en) 2016-06-29

Family

ID=49592344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012094906A Active JP5942562B2 (en) 2012-04-18 2012-04-18 Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed

Country Status (1)

Country Link
JP (1) JP5942562B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033960A1 (en) * 2013-09-03 2015-03-12 三菱レイヨン株式会社 Copolymer for semiconductor lithography, resist composition, and substrate production method
JP2015048444A (en) * 2013-09-03 2015-03-16 三菱レイヨン株式会社 Production method of copolymer for lithography, production method of resist composition, and production method of substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169366A (en) * 2004-12-15 2006-06-29 Mitsubishi Rayon Co Ltd Method for producing polymer for resist, polymer for resist, resist composition and method for producing pattern
JP2008248244A (en) * 2007-03-08 2008-10-16 Fujifilm Corp Resin, method for producing the same, positive type photosensitive composition using the same and method for forming pattern
JP2010202699A (en) * 2009-02-27 2010-09-16 Maruzen Petrochem Co Ltd Method for producing copolymer for photoresist
JP2010254810A (en) * 2009-04-24 2010-11-11 Mitsubishi Rayon Co Ltd Process for producing polymer, polymer for resist, resist composition and method for manufacturing substrate
WO2011004840A1 (en) * 2009-07-07 2011-01-13 三菱レイヨン株式会社 Polymer production method, polymer for use in lithography, resist composition and substrate production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169366A (en) * 2004-12-15 2006-06-29 Mitsubishi Rayon Co Ltd Method for producing polymer for resist, polymer for resist, resist composition and method for producing pattern
JP2008248244A (en) * 2007-03-08 2008-10-16 Fujifilm Corp Resin, method for producing the same, positive type photosensitive composition using the same and method for forming pattern
JP2010202699A (en) * 2009-02-27 2010-09-16 Maruzen Petrochem Co Ltd Method for producing copolymer for photoresist
JP2010254810A (en) * 2009-04-24 2010-11-11 Mitsubishi Rayon Co Ltd Process for producing polymer, polymer for resist, resist composition and method for manufacturing substrate
WO2011004840A1 (en) * 2009-07-07 2011-01-13 三菱レイヨン株式会社 Polymer production method, polymer for use in lithography, resist composition and substrate production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033960A1 (en) * 2013-09-03 2015-03-12 三菱レイヨン株式会社 Copolymer for semiconductor lithography, resist composition, and substrate production method
JP2015048444A (en) * 2013-09-03 2015-03-16 三菱レイヨン株式会社 Production method of copolymer for lithography, production method of resist composition, and production method of substrate
US10336851B2 (en) 2013-09-03 2019-07-02 Mitsubishi Chemical Corporation Copolymer for semiconductor lithography, resist composition, and method for manufacturing substrate

Also Published As

Publication number Publication date
JP5942562B2 (en) 2016-06-29

Similar Documents

Publication Publication Date Title
JP5394119B2 (en) Method for producing polymer, method for producing resist composition, and method for producing substrate
TWI534533B (en) Copolymer for lithography and method for manufacturing the same, resist composition, and method for manufacturing substrate
JP5942562B2 (en) Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed
JP5771942B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and substrate manufacturing method
JP5741814B2 (en) Polymer for semiconductor lithography and method for producing the same, resist composition, and method for producing substrate
JP6244756B2 (en) Lithographic copolymer production method, resist composition production method, and substrate production method
JP2015143363A (en) Production method of polymer for semiconductor lithography, production method of resist composition, and production method of substrate
JP5707699B2 (en) Method for producing polymer, method for producing resist composition, and method for producing substrate
JP5942563B2 (en) Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed
JP2016089064A (en) Purification method and production method of polymer for semiconductor lithography, production method of resist composition, and manufacturing method of patterned substrate
JP2019059957A (en) Production method of copolymer for lithography, production method of resist composition, and method for manufacturing patterned substrate
JP6439278B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP5716943B2 (en) Polymer, resist composition, and method of manufacturing substrate on which pattern is formed
JP5821317B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP6299076B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP6369103B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP5751487B2 (en) Method for producing resist polymer, method for producing resist composition, and method for producing substrate on which pattern is formed
JP5942564B2 (en) Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed
JP5793825B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and substrate manufacturing method
JP5659570B2 (en) Method for producing polymer, polymer for semiconductor lithography, resist composition, and method for producing substrate on which pattern is formed
JP6439270B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP6657846B2 (en) Method for producing polymer for semiconductor lithography, method for producing resist composition, and method for producing substrate on which pattern is formed
JP6481334B2 (en) Purification method and manufacturing method of polymer for semiconductor lithography, manufacturing method of resist composition, and manufacturing method of substrate on which pattern is formed
JP6074834B2 (en) Evaluation method of resist material
JP2017119881A (en) Production method of polymer for lithography, production method of resist composition, and method for manufacturing patterned substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160509

R151 Written notification of patent or utility model registration

Ref document number: 5942562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250