JP2013216520A - Method for manufacturing glass substrate - Google Patents

Method for manufacturing glass substrate Download PDF

Info

Publication number
JP2013216520A
JP2013216520A JP2012086911A JP2012086911A JP2013216520A JP 2013216520 A JP2013216520 A JP 2013216520A JP 2012086911 A JP2012086911 A JP 2012086911A JP 2012086911 A JP2012086911 A JP 2012086911A JP 2013216520 A JP2013216520 A JP 2013216520A
Authority
JP
Japan
Prior art keywords
glass
molten glass
clarification tank
glass substrate
transfer pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012086911A
Other languages
Japanese (ja)
Other versions
JP5730806B2 (en
Inventor
Jishin Murakami
次伸 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avanstrate Inc
Original Assignee
Avanstrate Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avanstrate Inc filed Critical Avanstrate Inc
Priority to JP2012086911A priority Critical patent/JP5730806B2/en
Priority to CN201310032914.1A priority patent/CN103359911B/en
Publication of JP2013216520A publication Critical patent/JP2013216520A/en
Application granted granted Critical
Publication of JP5730806B2 publication Critical patent/JP5730806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a glass substrate, which can improve quality of glass articles by eliminating causes of striae and devitrification.SOLUTION: In a method for manufacturing a glass substrate including a defoaming step, a transfer pipe 40 for sending molten glass from a clarifying vessel 30 to a next step is connected to an exit side from which molten glass is flowed out from the clarifying vessel 30. In addition, the method includes a liquid level adjusting step of adjusting a flow rate of the molten glass so that the molten glass is at a predetermined liquid level when the molten glass containing a clarifying agent is passed through the clarifying vessel 30. Further, the transfer pipe 40 is provided to such a position that the molten glass in the vicinity of its upper surface of the molten glass flowing in the clarifying vessel 30 is flowed into the transfer pipe 40 without stagnation in the vicinity of the exit when the molten glass at a predetermined liquid level is passed.

Description

本発明は、ガラス原料を溶融して生成させた溶融ガラスを成形することによりガラス基板を製造する、ガラス基板の製造方法に関する。   The present invention relates to a method for manufacturing a glass substrate, in which a glass substrate is manufactured by molding a molten glass produced by melting a glass raw material.

ガラス基板は、一般的に、ガラス原料から溶融ガラスを生成させた後、溶融ガラスをガラス基板へと成形する工程を経て製造される。上記それぞれの工程は、例えばガラス材料を溶融させる溶解装置、溶融ガラスが内包する微小な気泡を除去する清澄槽、ガラス成分を均質化させる攪拌槽、ガラス基板の成形を行う成形装置等において適切な処理を施すことで行われている。ガラス基板製造用の装置はガラス原料を移送する移送管で接続されている。
上記の工程中、必要に応じて溶融ガラスが内包する微小な気泡を除去する工程を特に清澄といい、管状の清澄槽の本体を加熱しながら、この清澄槽本体(以下、単に本体ともいう)にAs等の清澄剤を配合させた溶融ガラスを通過させ、清澄剤の酸化還元反応により溶融ガラス中の泡が取り除かれることで行われる。より具体的には、粗溶解した溶融ガラスの温度をさらに上げて清澄剤を機能させ泡を浮上脱泡させた後、温度を下げることにより、脱泡しきれずに残った比較的小さな泡を溶融ガラスに吸収させるようにしている。すなわち、清澄は、泡を浮上脱泡させる処理(以下、脱泡処理または脱泡工程ともいう)および小泡を溶融ガラスへ吸収させる処理(以下、吸収処理または吸収工程ともいう)を含む。
清澄剤は従来Asが一般的であったが、近年の環境負荷の観点から、SnOやFe等が用いられるようになってきている。
A glass substrate is generally manufactured through a process of forming molten glass from a glass raw material and then forming the molten glass into a glass substrate. Each of the above steps is appropriate in, for example, a melting apparatus for melting glass material, a clarification tank for removing minute bubbles contained in molten glass, a stirring tank for homogenizing glass components, a molding apparatus for forming a glass substrate, and the like. It is done by processing. The apparatus for manufacturing the glass substrate is connected by a transfer pipe for transferring the glass raw material.
During the above steps, the step of removing minute bubbles contained in the molten glass as necessary is called clarification, and this clarification tank main body (hereinafter also simply referred to as the main body) while heating the main body of the tubular clarification tank. This is carried out by passing a molten glass containing a clarifying agent such as As 2 O 3 and removing bubbles in the molten glass by an oxidation-reduction reaction of the clarifying agent. More specifically, the temperature of the molten glass that has been melted further is raised to allow the fining agent to function and the bubbles to float and defoam, and then the temperature is lowered to melt relatively small bubbles that remain without being defoamed. The glass is made to absorb. That is, clarification includes a process for floating and defoaming bubbles (hereinafter also referred to as a defoaming process or a defoaming process) and a process for absorbing small bubbles into molten glass (hereinafter also referred to as an absorption process or an absorption process).
Conventionally, As 2 O 3 has been commonly used as a fining agent, but SnO 2 , Fe 2 O 3 and the like have come to be used from the viewpoint of environmental load in recent years.

高温の溶融ガラスから品位の高いガラス基板を量産するためには、ガラス基板の欠陥の要因となる異物等が、ガラス基板を製造するいずれの装置からも溶融ガラスへ混入しないよう考慮することが望まれる。このため、ガラス基板の製造過程において溶融ガラスに接する部材の内壁は、その部材に接する溶融ガラスの温度、要求されるガラス基板の品質等に応じ、適切な材料により構成する必要がある。たとえば、上述の清澄槽本体を構成する材料は、通常白金または白金合金等の白金族金属が用いられていることが知られている(特許文献1)。白金または白金合金等は、高価ではあるが融点が高く、溶融ガラスに対する耐食性にも優れている。
脱泡工程時に清澄槽本体を加熱する温度は、成形するべきガラス基板の組成によって相違するが、1000〜1650℃程度である。
また、ガラス原料は、製造するべきガラス基板の組成に応じて適宜調製されるが、たとえばLCD用基板として用いるガラス基板を製造する場合、ガラス組成物は、SiO、B、Al、MgO、CaO、SrO、BaO、RO等により構成される。
なお、本明細書においては「溶融」の表記について常用漢字の「溶融」を用いているが、「熔融」と表記されるものと同様の意味を含んでいる。
In order to mass-produce high-quality glass substrates from high-temperature molten glass, it is desirable to consider that foreign substances that cause defects in the glass substrate are not mixed into the molten glass from any apparatus that manufactures the glass substrate. It is. For this reason, in the process of manufacturing the glass substrate, the inner wall of the member in contact with the molten glass needs to be made of an appropriate material according to the temperature of the molten glass in contact with the member, the required quality of the glass substrate, and the like. For example, it is known that a platinum group metal such as platinum or a platinum alloy is usually used as the material constituting the clarification tank body (Patent Document 1). Platinum or a platinum alloy is expensive but has a high melting point and excellent corrosion resistance against molten glass.
Although the temperature which heats a clarification tank main body at the time of a defoaming process changes with compositions of the glass substrate which should be shape | molded, it is about 1000-1650 degreeC.
The glass raw material, if it is appropriately adjusted according to the composition of the glass substrate to be produced, to produce a glass substrate used as the LCD substrate for example, the glass composition, SiO 2, B 2 O 3 , Al 2 O 3, composed MgO, CaO, SrO, BaO, a RO or the like.
In the present specification, the notation “melting” uses the common kanji character “melting”, but it has the same meaning as that described as “melting”.

特表2006−522001号公報JP 2006-522001 Gazette

上述の清澄槽の出口近傍において溶融ガラスの滞留が起こると、溶融ガラスが清澄槽内で高温に保持される時間が長くなるため、溶融ガラス成分のうちのホウ酸が揮発し、溶融ガラスの液面付近に比較的比重の小さいシリカ(SiO)リッチの異質素地が生成されてしまう。シリカリッチの異質素地が溶融ガラスの一部に生成されると、ガラス製品において脈理や失透等の欠陥が生じる原因となるという課題があった。
また、溶融ガラスにガラス材料以外の異物が混入した場合もまた、上述の脈理や失透の原因となり得る。たとえば高ジルコニア系耐火物を用いた溶融窯を用いてガラス原料を高温で溶融させると、溶融窯からジルコニアの一部が溶融ガラスに混入して、比較的比重の大きいガラスが生成される場合がある。
本発明は以上の点を鑑み、ガラス基板の製造過程において脈理や失透の原因の一つとなる上記課題を解消し、ガラス製品の品質を向上させることが可能なガラス基板の製造方法を提供しようとするものである。
When the molten glass stays in the vicinity of the outlet of the clarification tank described above, the molten glass is kept at a high temperature in the clarification tank for a long time. A silica (SiO 2 ) -rich heterogeneous substrate having a relatively small specific gravity is generated in the vicinity of the surface. When the silica-rich heterogeneous substrate is generated in a part of the molten glass, there is a problem in that defects such as striae and devitrification occur in the glass product.
Moreover, when foreign materials other than the glass material are mixed in the molten glass, it can cause the above-mentioned striae and devitrification. For example, when a glass raw material is melted at a high temperature using a melting furnace using a high zirconia refractory, a part of zirconia is mixed into the molten glass from the melting furnace, and a glass having a relatively large specific gravity may be generated. is there.
In view of the above points, the present invention provides a glass substrate manufacturing method capable of solving the above-mentioned problems that are one of the causes of striae and devitrification in the glass substrate manufacturing process and improving the quality of glass products. It is something to try.

上述した目的を達成するために、本発明は、清澄槽本体を加熱しながら、清澄槽本体に清澄剤を配合させた溶融ガラスを通過させて脱泡処理を行う脱泡工程を含むガラス基板の製造方法であって、以下のように構成されている。
清澄槽は、白金族金属で構成され、この清澄槽から次の工程に溶融ガラスを送り込むための移送管を、清澄槽から溶融ガラスが流れ出る出口側に接続して備えている。
また、上述の清澄槽に清澄剤を配合させた溶融ガラスを通過させる際に、溶融ガラスの液位が所定の液位となるように溶融ガラスの流量を調整する液位調整工程を有する。
また、所定の液位の溶融ガラスを通過させる際に、清澄槽内を流れる溶融ガラスの上部表面付近の溶融ガラスが、上述の出口付近において滞留することなく移送管に流れていくような位置に、移送管を設置する。
また、移送管の下部が、清澄槽の底部に対し、少なくとも30mm以上上部側に位置するようにすると良い。
In order to achieve the above-described object, the present invention provides a glass substrate including a defoaming step of performing a defoaming process by passing a molten glass in which a fining agent is blended in a clarification tank body while heating the clarification tank body. A manufacturing method, which is configured as follows.
The clarification tank is made of a platinum group metal, and is provided with a transfer pipe for feeding molten glass from the clarification tank to the next step on the outlet side where the molten glass flows from the clarification tank.
Moreover, when passing the molten glass which mix | blended the clarifying agent with the above-mentioned clarification tank, it has the liquid level adjustment process which adjusts the flow volume of a molten glass so that the liquid level of a molten glass may become a predetermined liquid level.
In addition, when passing the molten glass of a predetermined liquid level, the molten glass near the upper surface of the molten glass flowing in the clarification tank flows to the transfer pipe without staying in the vicinity of the outlet. Install a transfer pipe.
Moreover, it is preferable that the lower part of the transfer pipe is positioned at least 30 mm or more on the upper side with respect to the bottom part of the clarification tank.

本発明のガラス基板の製造方法によれば、清澄槽に接続される移送管の位置を、清澄槽内で溶融ガラスの滞留が起こらないような位置に設置するため、脈理や失透の原因となり得るシリカリッチの異質素地が生成されることがない。また、移送管の下部が、清澄槽の底部に対し、少なくとも30mm以上上部側に位置するようにすれば、異物が溶け込み比較的比重の大きくなった溶融ガラスが生成しても、清澄槽より後の装置に流れていくのを防ぐことができるため、溶融ガラスに混入した異物がガラス製品の欠陥の原因となるのを防ぐことができる。したがって、ガラス製品の品質を向上させることができる。   According to the method for producing a glass substrate of the present invention, the position of the transfer pipe connected to the clarification tank is set at a position where the molten glass does not stay in the clarification tank. Silica-rich heterogeneous substrate that cannot be produced is not generated. Further, if the lower part of the transfer pipe is positioned at least 30 mm or more above the bottom of the clarification tank, even if a foreign glass is melted and a molten glass having a relatively high specific gravity is generated, it is behind the clarification tank. Therefore, it is possible to prevent foreign matter mixed in the molten glass from causing defects in the glass product. Therefore, the quality of the glass product can be improved.

実施の形態のガラス基板の製造方法を説明するための、ガラス基板製造装置の概略的な構成図である。It is a schematic block diagram of the glass substrate manufacturing apparatus for demonstrating the manufacturing method of the glass substrate of embodiment. 清澄槽の基本的な構成を示す概略図である。It is the schematic which shows the basic composition of a clarification tank. 清澄槽30及びこれに接続される移送管40の概略図である。It is the schematic of the clarification tank 30 and the transfer pipe 40 connected to this. 移送管40の位置が本発明のものと異なる場合に生じる課題の説明図である。It is explanatory drawing of the subject which arises when the position of the transfer pipe | tube 40 differs from the thing of this invention.

以下、図面を参照しながら、本発明のガラス基板の製造方法の実施の形態について説明する。   Hereinafter, embodiments of the method for producing a glass substrate of the present invention will be described with reference to the drawings.

図1は、実施の形態のガラス基板の製造方法を説明するための概略図であり、ガラス基板の製造における基本的な流れを簡略的に示したものである。
ガラス基板製造装置100は、ガラス原料を加熱して溶融ガラスを生成する溶融窯10と、溶融ガラスを清澄する清澄槽30と、溶融ガラスを成形する成形装置(図示せず)と、これらの間を接続する移送管20、40とを備えている。移送管20は、溶融窯10と清澄槽30とを接続し、溶融窯10から導出された溶融ガラスを清澄槽30に供給する。移送管40は、清澄槽30と成形装置(図示せず)を接続し、清澄槽30から導出された溶融ガラスを成形装置(図示せず)に供給する。なお、清澄槽30と成形装置との間には溶融ガラスを撹拌して均質化するための撹拌槽が配置されることがある。矢印は溶融ガラスが流れる方向を示す。
FIG. 1 is a schematic diagram for explaining a glass substrate manufacturing method according to an embodiment, and shows a basic flow in manufacturing a glass substrate in a simplified manner.
The glass substrate manufacturing apparatus 100 includes a melting furnace 10 that heats a glass raw material to produce molten glass, a clarification tank 30 that clarifies molten glass, a molding apparatus (not shown) that molds molten glass, and a space between them. The transfer pipes 20 and 40 are connected to each other. The transfer pipe 20 connects the melting furnace 10 and the clarification tank 30, and supplies the molten glass derived from the melting furnace 10 to the clarification tank 30. The transfer pipe 40 connects the clarification tank 30 and a molding apparatus (not shown), and supplies the molten glass derived from the clarification tank 30 to the molding apparatus (not shown). In addition, between the clarification tank 30 and a shaping | molding apparatus, the stirring tank for stirring and homogenizing a molten glass may be arrange | positioned. The arrow indicates the direction in which the molten glass flows.

溶融窯10に投入されるガラス原料は、製造するべきガラス基板の組成に応じて適宜調製される。一例として、TFT型LCD用基板として用いるガラス基板を製造する場合を挙げると、ガラス基板を構成するガラス組成物を質量%で表示して、
SiO:50〜70%、
Al:0〜25%、
:1〜15%、
MgO:0〜10%、
CaO:0〜20%、
SrO:0〜20%、
BaO:0〜10%、
RO:5〜30%(ただし、RはMg、Ca、Sr及びBaの合量)、
を含有する無アルカリガラスであることが、好ましい。
なお、本実施形態では無アルカリガラスとしたが、ガラス基板はアルカリ金属を微量含んだアルカリ微量含有ガラスであってもよい。アルカリ金属を含有させる場合、R’Oの合計が0.10%以上0.5%以下、好ましくは0.20%以上0.5%以下(ただし、R’はLi、Na及びKから選ばれる少なくとも1種であり、ガラス基板が含有するものである)含むことが好ましい。勿論、R’Oの合計が0.10%未満でもよい。
また、本発明のガラス基板の製造方法を適用する場合は、ガラス組成物が、上記各成分に加えて、質量%で表示して、SnO:0.01〜1%(好ましくは0.01〜0.5%)、Fe:0〜0.2%(好ましくは0.01〜0.08%)を含有し、環境負荷を考慮して、As、Sb及びPbOを実質的に含有しないようにガラス原料を調製しても良い。
The glass raw material thrown into the melting furnace 10 is appropriately prepared according to the composition of the glass substrate to be manufactured. As an example, when producing a glass substrate used as a TFT type LCD substrate, the glass composition constituting the glass substrate is displayed in mass%,
SiO 2: 50~70%,
Al 2 O 3: 0~25%,
B 2 O 3 : 1 to 15%,
MgO: 0 to 10%,
CaO: 0 to 20%,
SrO: 0 to 20%,
BaO: 0 to 10%,
RO: 5 to 30% (where R is the total amount of Mg, Ca, Sr and Ba),
It is preferable that it is an alkali free glass containing.
Although the alkali-free glass is used in this embodiment, the glass substrate may be a glass containing a trace amount of alkali containing a trace amount of alkali metal. When an alkali metal is contained, the total of R ′ 2 O is 0.10% or more and 0.5% or less, preferably 0.20% or more and 0.5% or less (where R ′ is selected from Li, Na, and K) It is preferable that the glass substrate contains at least one kind. Of course, the total of R ′ 2 O may be less than 0.10%.
Also, when applying the method of manufacturing a glass substrate of the present invention, the glass composition, in addition to the above components, and in wt%, SnO 2: 0.01~1% (preferably 0.01 ~0.5%), Fe 2 O 3 : 0~0.2% ( preferably containing from 0.01 to 0.08 percent), taking into account the environmental impact, As 2 O 3, Sb 2 O 3 And you may prepare a glass raw material so that PbO may not be included substantially.

溶融窯10で生成した溶融ガラスは、移送管20を介して清澄槽30に送られる。清澄槽30では、溶融ガラスが所定温度(上記組成のガラスの場合は例えば1500℃以上)に保たれて、溶融ガラスに含まれる気泡の除去を行う脱泡工程を含む清澄が行われる。
さらに、清澄槽30で清澄された溶融ガラスは、移送管40を介して成形装置へと送られる。溶融ガラスは、清澄槽30から成形装置に送られる際の移送管40において、成形に適した温度(上記組成のガラスの場合は例えば1200℃程度)となるように冷却される。成形装置では、溶融ガラスがガラス基板へと成形される。
The molten glass generated in the melting furnace 10 is sent to the clarification tank 30 through the transfer pipe 20. In the clarification tank 30, the molten glass is kept at a predetermined temperature (in the case of glass having the above composition, for example, 1500 ° C. or higher), and clarification including a defoaming step for removing bubbles contained in the molten glass is performed.
Further, the molten glass clarified in the clarification tank 30 is sent to the molding apparatus via the transfer pipe 40. The molten glass is cooled in the transfer pipe 40 when it is sent from the clarification tank 30 to the molding apparatus so as to have a temperature suitable for molding (for example, about 1200 ° C. in the case of glass having the above composition). In the forming apparatus, molten glass is formed into a glass substrate.

次に、脱泡工程を含む清澄について図2を用いて説明する。図2は清澄槽30の基本的な構成を示す概略図であり、内部を透視して示してある。
清澄槽30は、主に清澄槽本体(以下、本体ともいう)1、及び本体1に接続されたヒータ電極1a及び1bにより構成されている。本体1は白金あるいは白金ロジウム合金等の白金合金の金属管であり、一般的に円筒状のものが採用されている。清澄槽本体1は円筒状であり、通常その内径は移送管20及び40の内径よりも30%―40%以上大きく設定されている。このようにして本体1内を流れる溶融ガラスMGの流速が低下して溶融ガラスMGが本体1に滞在する時間を長くすることにより、溶融ガラスMGの清澄を効率良く行っている。本体1の管路を流路として、溶融ガラスMGは本体1の内部を流れる。ヒータ電極1a及び1bは、本体1の外周壁面から本体1に電流を流し、本体1の抵抗によって生じるジュール熱を用いて本体1の外周壁を加熱して溶融ガラスMGの温度を所定の温度に上げ、溶融ガラスMGに配合させた清澄剤を用いて溶融ガラスMGの脱泡を行う。
Next, clarification including a defoaming step will be described with reference to FIG. FIG. 2 is a schematic view showing the basic configuration of the clarification tank 30, and shows the inside transparently.
The clarification tank 30 is mainly composed of a clarification tank main body (hereinafter also referred to as a main body) 1 and heater electrodes 1 a and 1 b connected to the main body 1. The main body 1 is a metal tube of platinum alloy such as platinum or platinum rhodium alloy, and generally has a cylindrical shape. The clarification tank body 1 has a cylindrical shape, and its inner diameter is usually set to be 30% -40% or more larger than the inner diameters of the transfer pipes 20 and 40. In this way, the flow rate of the molten glass MG flowing in the main body 1 is lowered and the time during which the molten glass MG stays in the main body 1 is lengthened, whereby the molten glass MG is efficiently clarified. The molten glass MG flows through the inside of the main body 1 using the pipe line of the main body 1 as a flow path. The heater electrodes 1a and 1b flow current from the outer peripheral wall surface of the main body 1 to the main body 1 and heat the outer peripheral wall of the main body 1 using Joule heat generated by the resistance of the main body 1 to bring the temperature of the molten glass MG to a predetermined temperature. The defoaming of the molten glass MG is performed by using a fining agent mixed with the molten glass MG.

本体1の内部を流れる溶融ガラスMGは、本体1の流路断面全体を流れるのではなく、通常、本体1内部の上方には、溶融ガラスMGの脱泡処理により脱泡した泡を放出させるための気相空間aが存在する。また、本体1上部には、気相空間aから放出した泡中のガス成分を大気に放出させるための図示しないガス排出口が設けられている。
気相空間aは、清澄槽30の本体1を流れる溶融ガラスMGの液位の調整をすることにより所定の広さを得ることが可能である。また、一定の広さの気相空間aを保持することもできる。
The molten glass MG flowing through the inside of the main body 1 does not flow through the entire flow path cross section of the main body 1, but normally, the bubbles degassed by the defoaming process of the molten glass MG are released above the inside of the main body 1. The gas phase space a exists. In addition, a gas discharge port (not shown) is provided in the upper part of the main body 1 for releasing the gas component in the bubbles released from the gas phase space a to the atmosphere.
The gas phase space a can have a predetermined size by adjusting the liquid level of the molten glass MG flowing through the main body 1 of the clarification tank 30. It is also possible to hold a gas space a having a certain size.

次に、本発明のガラス基板の製造方法につき、図3を用いて詳細に説明する。
本発明においては、上述の脱泡工程を含むガラス基板の製造方法において、清澄槽30から次の工程に溶融ガラスを送り込むための移送管40を、清澄槽30から溶融ガラスが流れ出る出口側に接続して備えている。また、清澄槽30に清澄剤を配合させた溶融ガラスを通過させる際に、溶融ガラスの液位が所定の液位となるように溶融ガラスの流量を調整する液位調整工程を有する。
また、所定の液位の溶融ガラスを通過させる際に、清澄槽30内を流れる溶融ガラスの上部表面付近の溶融ガラスが、上述の出口付近において滞留することなく移送管40に流れていくような位置に、移送管40を設置する。
Next, the manufacturing method of the glass substrate of this invention is demonstrated in detail using FIG.
In this invention, in the manufacturing method of the glass substrate including the above-mentioned defoaming process, the transfer pipe 40 for sending molten glass from the clarification tank 30 to the next process is connected to the outlet side from which the molten glass flows out of the clarification tank 30. It is prepared. Moreover, when passing the molten glass which mix | blended the clarifier in the clarification tank 30, it has the liquid level adjustment process which adjusts the flow volume of a molten glass so that the liquid level of a molten glass may become a predetermined liquid level.
Moreover, when passing the molten glass of a predetermined liquid level, the molten glass near the upper surface of the molten glass flowing in the clarification tank 30 flows into the transfer pipe 40 without staying in the vicinity of the outlet. The transfer pipe 40 is installed at the position.

具体的には、本実施形態においては清澄槽30内における所定の液位の溶融ガラスの液位hと移送管の上部40aの位置とを一致させるように移送管40を設ける。
移送管40を設ける位置を以上のように設定すれば、溶融ガラスが清澄槽30の出口付近で滞留することなく移送管40に流れていくため、溶融ガラス表面にシリカリッチの異質素地が生成されることがない。
溶融ガラスの液位hと移送管の上部40aの位置とを一致させなくとも、移送管40を流れる溶融ガラスが液位hよりも下方になるように移送管を40設置すれば上述の滞留は起こらないが、別の問題が生じる恐れがある。
Specifically, in this embodiment, the transfer pipe 40 is provided so that the liquid level h of the molten glass at a predetermined liquid level in the clarification tank 30 matches the position of the upper part 40a of the transfer pipe.
If the position where the transfer pipe 40 is provided is set as described above, the molten glass flows to the transfer pipe 40 without staying in the vicinity of the outlet of the clarification tank 30, so that a silica-rich heterogeneous substrate is generated on the surface of the molten glass. There is nothing to do.
Even if the liquid level h of the molten glass does not coincide with the position of the upper portion 40a of the transfer pipe, the above-described staying can be achieved by installing the transfer pipe 40 so that the molten glass flowing through the transfer pipe 40 is below the liquid level h. It doesn't happen, but it can cause another problem.

上記の別の問題について図4(a)を用いて説明する。移送管の上部40aが液位hよりも上方となるように設置すると、溶融ガラスMGの上部表面が空気と接触する。したがって、空気に触れた溶融ガラス成分が揮発してしまう。
これに対し、本発明のように溶融ガラスの液位hと移送管の上部40aの位置とを一致させると、清澄槽30から流れ込んだ溶融ガラスが移送管40内の流路断面全体を流れることになるため、溶融ガラスが空気と接触することがない。したがって、溶融ガラス成分が空気に触れて揮発するのを防ぐことができる。
The other problem will be described with reference to FIG. When the transfer tube is installed so that the upper part 40a is above the liquid level h, the upper surface of the molten glass MG comes into contact with air. Therefore, the molten glass component that has come into contact with air volatilizes.
On the other hand, when the liquid level h of the molten glass and the position of the upper portion 40a of the transfer pipe are matched as in the present invention, the molten glass flowing from the clarification tank 30 flows through the entire flow path cross section in the transfer pipe 40. Therefore, the molten glass does not come into contact with air. Therefore, it can prevent that a molten glass component touches air and volatilizes.

上述の清澄槽30内における溶融ガラスの液位及び移送管上部40aの位置は一致させることが望ましいが、清澄槽30内の溶融ガラスMGの液面と移送管の上部40aの差が20mm以内であれば好ましい範囲内であるといえる。また、上述の差が15mm以内であればより好ましく、5mm以内であれば最も好ましい。
上述の差がこれらの範囲内であれば溶融ガラスMGが滞留することなく移送管40に流れていき、その上溶融ガラスMGの上部表面が空気に触れるおそれも少ない。このため、上述の差が、これらの効果が期待できる上述の範囲内であれば溶融ガラスの液位及び移送管40の上部の位置が一致しているという本発明の表現に含まれるものとする。
Although it is desirable that the liquid level of the molten glass in the clarification tank 30 and the position of the transfer pipe upper part 40a coincide with each other, the difference between the liquid level of the molten glass MG in the clarification tank 30 and the upper part 40a of the transfer pipe is within 20 mm. If it exists, it can be said that it is in a preferable range. Further, the above difference is more preferably within 15 mm, and most preferably within 5 mm.
If the above-mentioned difference is within these ranges, the molten glass MG flows into the transfer pipe 40 without staying, and the upper surface of the molten glass MG is less likely to come into contact with air. For this reason, if the above-mentioned difference is in the above-mentioned range where these effects can be expected, it is included in the expression of the present invention that the liquid level of the molten glass coincides with the position of the upper portion of the transfer tube 40. .

液位hと移送管の上部40aの位置が、上述の差の範囲内に常時収まるようにするためには、ガラス基板の製造工程において、溶融ガラスMGの液位が所定の液位(本実施形態においてはh)となるように溶融ガラスの流量を調整する、液位調整工程を有することが必要である。
液位の調整には、種々の好適な方法が考えられるが、たとえばレーザ変位計を用いて必要に応じて計測し、溶融窯10に投入するガラス材料の量を増減する等の方法により調整することが考えられる。
In order to always keep the liquid level h and the position of the upper portion 40a of the transfer pipe within the above-mentioned difference, the liquid level of the molten glass MG is set to a predetermined liquid level (this embodiment) in the glass substrate manufacturing process. In the embodiment, it is necessary to have a liquid level adjusting step of adjusting the flow rate of the molten glass so as to be h).
Various suitable methods are conceivable for adjusting the liquid level. For example, the liquid level is measured by using a laser displacement meter, and adjusted by a method such as increasing or decreasing the amount of the glass material to be introduced into the melting furnace 10. It is possible.

また、本実施形態では、移送管40の下部40bが、清澄槽30の底部30bに対し、少なくとも30mm以上上部側に位置するようにした(図3)。移送管40の下部40bの位置を上記のようにすれば、仮に溶融ガラスに異物が混入して清澄槽30内に入り込んだとしても、異物が移送管40に流れ込み、その後の工程に運ばれるのを防ぐことができる。特に、ガラス材料を溶融する溶融窯10が、高ジルコニア系耐火物により構成されている場合、溶融ガラスにジルコニアが混入しやすい。このため、ジルコニアが混入した溶融ガラスが清澄槽30に流れ込んでくることになる。しかし、ジルコニアは溶融ガラスの成分に対し比重が高いため、溶融ガラスに混入したジルコニアは流れ込んだ清澄槽30の底部30bに沈殿していく。図3にジルコニアの沈殿物Zを模式的に示す。本実施形態においては、移送管40の下部40bは清澄槽30の底部30bに対し、少なくとも30mm以上上部側に位置しているため、ジルコニアの沈殿物Zが移送管40に流れていくおそれは少ない。
さらに、本実施形態においては、清澄槽30の出口近傍の底部30bに、ジルコニア排出用の排出口30cを設け、ジルコニアの沈殿物Zを必要に応じて排出できるようにしている。排出口30cは、たとえばドレンパイプ等を用いて構成すると良い。
Moreover, in this embodiment, the lower part 40b of the transfer pipe 40 was located at least 30 mm or more upper part side with respect to the bottom part 30b of the clarification tank 30 (FIG. 3). If the position of the lower part 40b of the transfer pipe 40 is as described above, even if foreign matter enters the molten glass and enters the clarification tank 30, the foreign substance flows into the transfer pipe 40 and is carried to the subsequent process. Can be prevented. In particular, when the melting furnace 10 for melting the glass material is composed of a high zirconia refractory, zirconia is likely to be mixed into the molten glass. For this reason, the molten glass mixed with zirconia flows into the clarification tank 30. However, since zirconia has high specific gravity with respect to the component of molten glass, the zirconia mixed in the molten glass precipitates in the bottom part 30b of the clarification tank 30 which flowed in. FIG. 3 schematically shows a zirconia precipitate Z. In this embodiment, since the lower part 40b of the transfer pipe 40 is located at least 30 mm or more on the upper side with respect to the bottom part 30b of the clarification tank 30, there is little possibility that the zirconia precipitate Z flows into the transfer pipe 40. .
Further, in the present embodiment, a zirconia discharge outlet 30c is provided in the bottom 30b near the outlet of the clarification tank 30, so that the zirconia precipitate Z can be discharged as necessary. The discharge port 30c may be configured using, for example, a drain pipe.

以上の説明からも理解できるように、本発明のガラス基板の製造方法によれば、清澄槽本体を通過する溶融ガラスは滞留することなく移送管40へと流れていく。このため、溶融ガラスの滞留に起因するシリカリッチの異質素地の生成を生じされることがない。また、溶融窯10から溶け出したジルコニア等の異物が溶融ガラスに混入して清澄槽に流れてきた場合でも、移送管40の下部40bの位置が清澄槽30の底部30bよりも高い位置に設置されているため、混入した異物がその後の工程に流れていくおそれも少ない。
したがって、ガラス製品の品質を向上させることができる。
As can be understood from the above description, according to the glass substrate manufacturing method of the present invention, the molten glass passing through the clarification tank body flows to the transfer pipe 40 without staying. For this reason, generation | occurrence | production of the silica rich heterogeneous base resulting from retention of a molten glass is not produced. Further, even when foreign matter such as zirconia melted from the melting furnace 10 is mixed into the molten glass and flows into the clarification tank, the position of the lower portion 40b of the transfer pipe 40 is set higher than the bottom 30b of the clarification tank 30. Therefore, there is little possibility that the mixed foreign matter will flow to the subsequent process.
Therefore, the quality of the glass product can be improved.

ところで、ガラス基板は、用いる清澄剤によって清澄作用が効果的に発揮される温度が異なることが知られている。例えば、As(亜ヒ酸)は、気泡を除去する能力に優れており、清澄温度も1500℃程度以上の範囲で足りる。しかし、亜ヒ酸は、環境負荷が高いため、既に述べたように近年は環境負荷が高くない清澄剤としてSnO(酸化錫)等が用いられるようになってきている。しかし、酸化錫は亜ヒ酸と比較して脱泡工程時に泡を放出する力が弱いため、ガラスの粘性を低くして脱泡効果を上げる必要があり、したがって高い温度で清澄を行う必要がある。例えば、酸化錫を清澄剤として使用した場合、1600℃〜1700℃、好ましくは1630℃〜1710℃、さらに好ましくは1630℃〜1720℃近傍まで昇温される。つまり、清澄槽30の温度を、清澄槽30を構成する本体1の白金または白金合金の耐熱温度近傍まで上げる必要がある。清澄温度として上記のような高温を要する場合、溶融ガラスからホウ酸(B)が揮発しやすいため、シリカリッチの異質素地も生じやすくなる。
したがって本発明は、酸化錫を清澄剤として使用するガラス基板の製造に特に適している。
By the way, it is known that the glass substrate has different temperatures at which the clarification action is effectively exhibited depending on the clarifier used. For example, As 2 O 3 (arsenous acid) is excellent in the ability to remove bubbles, and the refining temperature is sufficient in the range of about 1500 ° C. or more. However, since arsenous acid has a high environmental load, SnO 2 (tin oxide) or the like has recently been used as a refining agent that does not have a high environmental load as described above. However, tin oxide has a weaker ability to release bubbles during the defoaming process than arsenous acid, so it is necessary to lower the viscosity of the glass to increase the defoaming effect, and therefore it is necessary to clarify at a high temperature. is there. For example, when tin oxide is used as a fining agent, the temperature is raised to 1600 ° C. to 1700 ° C., preferably 1630 ° C. to 1710 ° C., more preferably 1630 ° C. to 1720 ° C. That is, it is necessary to raise the temperature of the clarification tank 30 to near the heat resistance temperature of platinum or platinum alloy of the main body 1 constituting the clarification tank 30. When the above-mentioned high temperature is required as the refining temperature, since the boric acid (B 2 O 3 ) is easily volatilized from the molten glass, a silica-rich heterogeneous substrate is likely to be generated.
The present invention is therefore particularly suitable for the production of glass substrates using tin oxide as a fining agent.

また、清澄槽30内において、溶融ガラスは清澄剤の酸素の放出反応が促進されるように、泡が浮上しやすい粘度、好ましくは、120poise(ポアズ)~400ポアズとなるように、清澄槽30に供給される前、および清澄槽30において加熱される。たとえば、無アルカリガラスやアルカリを微量しか含まないアルカリ微量含有ガラス(高温粘性ガラス)、たとえば102.5ポアズとする場合に1300℃以上、好ましくは1400℃以上、さらに好ましくは1500℃以上の溶融温度を要するガラス材料の場合、1700℃、好ましくは1710℃、さらに好ましくは1720℃近傍まで昇温される。
つまり、清澄槽30の温度を、清澄槽30を構成する本体1の白金または白金合金の耐熱温度近傍まで上げる必要がある。
Also, in the clarification tank 30, the clarification tank 30 has a viscosity at which bubbles are likely to rise, preferably 120 poise to 400 poise, so that the release reaction of oxygen in the clarifier is promoted. And heated in the clarification tank 30. For example, when alkali-free glass or alkali-containing glass (high-temperature viscous glass) containing only a small amount of alkali, for example, 10 2.5 poise, melting at 1300 ° C. or higher, preferably 1400 ° C. or higher, more preferably 1500 ° C. or higher In the case of a glass material that requires temperature, the temperature is raised to 1700 ° C., preferably 1710 ° C., and more preferably close to 1720 ° C.
That is, it is necessary to raise the temperature of the clarification tank 30 to near the heat resistance temperature of platinum or platinum alloy of the main body 1 constituting the clarification tank 30.

清澄温度として上記のような高温を要する場合、溶融ガラスからホウ酸(B)が揮発しやすいため、シリカリッチの異質素地も生じやすくなる。したがって、本発明は高温粘性の高いガラス材料を用いてガラス基板を製造する場合にも特に適している。具体的には、溶融ガラスを102.5ポアズとする場合に1300℃以上の溶融温度を要するガラス材料で構成する場合に適しているといえる。上記の溶融温度は1400℃以上、さらに1500℃以上の溶融温度を要するガラス材料により好適である。 When the above-mentioned high temperature is required as the refining temperature, since the boric acid (B 2 O 3 ) is easily volatilized from the molten glass, a silica-rich heterogeneous substrate is likely to be generated. Therefore, the present invention is particularly suitable for manufacturing a glass substrate using a glass material having a high temperature viscosity. Specifically, it can be said that it is suitable for a case where the molten glass is made of a glass material requiring a melting temperature of 1300 ° C. or higher when the molten glass is 10 2.5 poise. The melting temperature is preferably 1400 ° C. or higher, more preferably a glass material that requires a melting temperature of 1500 ° C. or higher.

また、ガラス材料を無アルカリガラスやアルカリ微量含有ガラスとした場合、難溶性のシリカが溶けずに残りやすく、シリカリッチの異質素地が生じやすいため、無アルカリガラスまたはアルカリ微量含有ガラスによりガラス材料を構成した場合にも本発明は適しているといえる。   In addition, when the glass material is made of alkali-free glass or glass containing a trace amount of alkali, hardly soluble silica is likely to remain without melting, and a silica-rich heterogeneous substrate is likely to be formed. Even when configured, the present invention is suitable.

さらに、溶融ガラスが以下の1、2の材料で構成された場合のガラス基板の製造においても、本発明は適している。
1)SiO、Al、B、アルカリ土類金属のそれぞれを含む材料で構成され、SiOの含有量は50%‐70%である。
2)SiO、Al、B、アルカリ土類金属のそれぞれを含む材料で構成され、前記B含有量は5%以上である。
Furthermore, the present invention is also suitable for manufacturing a glass substrate when the molten glass is composed of the following materials 1 and 2.
1) It is made of a material containing each of SiO 2 , Al 2 O 3 , B 2 O 3 , and alkaline earth metal, and the content of SiO 2 is 50% to 70%.
2) SiO 2, Al 2 O 3, B 2 O 3, is composed of a material containing the respective alkaline earth metals, the content of B 2 O 3 is 5% or more.

上記の1のように構成されたガラス材料の場合、SiO含有量が高いため、シリカリッチの異質素地が生じやすい傾向があるためである。したがって、SiO含有量が55%以上、また、60%以上であるガラス材料の場合は、本発明にさらに適しているといえる。
また、上記の2のように構成されたガラス材料の場合、B含有量が上比較的高いということができ、低温で溶解しやすいBの性質が起因でシリカリッチの異質素地が生じやすい傾向があるためである。したがって、SiO含有量が8%以上、また、10%以上であるガラス材料の場合は、本発明にさらに適している。
This is because, in the case of the glass material configured as described in 1 above, since the SiO 2 content is high, a silica-rich heterogeneous base tends to occur. Therefore, it can be said that the glass material having a SiO 2 content of 55% or more and 60% or more is more suitable for the present invention.
Further, in the case of the glass material configured as described in 2 above, it can be said that the B 2 O 3 content is relatively high, and due to the property of B 2 O 3 that is easily dissolved at a low temperature, the silica-rich heterogeneity This is because the substrate tends to occur. Therefore, a glass material having a SiO 2 content of 8% or more and 10% or more is further suitable for the present invention.

また、本発明は、高温粘性の高い溶融ガラスを用いてガラス基板を製造する場合にも特に適している。具体的には、溶融ガラスを102.5ポアズとする場合に1300℃以上の溶融温度を要するガラス材料で構成する。上記の溶融温度は1400℃以上、さらに1500℃以上の溶融温度を要するガラス材料により好適である。
また、無アルカリガラスまたはアルカリ微量含有ガラスなどの高温粘性の高い溶融ガラスを用いてガラス基板を製造する場合に特に適している。
いずれの場合も本発明を適用することにより、脈理や失透の一因を解消し、ガラス製品の品質を向上させることができる。
The present invention is also particularly suitable when a glass substrate is manufactured using a molten glass having a high temperature viscosity. Specifically, it is made of a glass material that requires a melting temperature of 1300 ° C. or higher when the molten glass is 10 2.5 poise. The melting temperature is preferably 1400 ° C. or higher, more preferably a glass material that requires a melting temperature of 1500 ° C. or higher.
Moreover, it is particularly suitable when a glass substrate is produced using a molten glass having a high temperature viscosity such as an alkali-free glass or a glass containing a trace amount of alkali.
In any case, by applying the present invention, one cause of striae and devitrification can be eliminated and the quality of the glass product can be improved.

本発明のガラス基板の製造方法の実施に際し、実施の形態の製造方法に限定されるものではないことは明らかである。たとえば、実施の形態で例示したガラス原料以外のガラス原料についても、従来から用いられてきた汎用の原料を使用すれば本発明のガラス基板の製造方法を適用することができる。
その他、発明の主旨を逸脱しない範囲で種々好適な他の形態への変更が可能である。
なお、本明細書において、「白金族金属」は、白金族元素からなる金族を意味し、単一の白金族元素からなる金属のみならず白金族元素の合金を含む用語として使用する。ここで、白金族元素とは、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、オスミウム(Os)、イリジウム(Ir)の6元素を指す。白金族金属は高価ではあるが、融点が高く、溶融ガラスに対する耐食性にも優れている。
また、清澄槽は、図示したように円筒形であることが好ましいが、溶融ガラスMGをその内部に収容する空間が確保されていればその形状に制限はなく、例えばその外形が直方体などであってもよい。
本発明は、オーバーフロー・ダウンロード法でガラスを成形するガラス基板の製造に適する。オーバーフロー・ダウンロード法は、溶融ガラスを楔状成形体の両側面に沿って流下させて、前述の楔状成形体の下端部で合流させることにより板状ガラスに成形し、成形された板状ガラスを徐冷し、切断する。オーバーフロー・ダウンロード法は、溶解したガラスを何物にも触れることなく垂直方向に引き伸ばして冷却することで、滑らかな表面を実現することができる。その後、切断された板状ガラスは、さらに、顧客の仕様に合わせて所定にサイズに切断され、端面研磨、洗浄などが行われ、出荷される。
本発明は、液晶ディスプレイ、プラズマディスプレイ、有機Eディスプレイなどのフラットパネルディスプレイ(FPD)用のガラス基板の製造に特に適している。
本発明は、例えば、厚さが0.5〜0.7mmで、サイズが300×400mm〜2850×3050mmのFPD用ガラス基板の製造に適する。
なお、液晶表示装置用ガラス基板等は、その表面に半導体素子が形成されるため、アルカリ金属成分を全く含有しないか、または含まれていても半導体素子に影響を及ぼさない程度の微量であることが好ましい。また、液晶表示装置用ガラス基板等は、ガラス基板中に泡が存在すると表示欠陥の原因となるため、泡を極力低減することが好ましい。これらにことから、液晶表示装置用ガラス基板等では、上述したように、ガラス組成、溶融ガラスの温度、清澄剤等が選択されるので、本発明は、液晶表示装置用ガラス基板等の製造に適する。
Obviously, the method for manufacturing a glass substrate of the present invention is not limited to the manufacturing method of the embodiment. For example, the glass substrate production method of the present invention can be applied to glass raw materials other than the glass raw materials exemplified in the embodiment by using conventional raw materials.
In addition, various suitable modifications can be made without departing from the spirit of the invention.
In the present specification, the “platinum group metal” means a gold group composed of a platinum group element, and is used as a term including not only a metal composed of a single platinum group element but also an alloy of the platinum group element. Here, the platinum group element refers to six elements of platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), osmium (Os), and iridium (Ir). Platinum group metals are expensive, but have a high melting point and excellent corrosion resistance to molten glass.
In addition, the clarification tank is preferably cylindrical as shown in the figure, but there is no limitation on its shape as long as a space for accommodating the molten glass MG is secured therein. For example, its outer shape is a rectangular parallelepiped. May be.
The present invention is suitable for manufacturing a glass substrate on which glass is formed by the overflow download method. In the overflow download method, molten glass is made to flow down along both side surfaces of the wedge-shaped molded body and is merged at the lower end of the wedge-shaped molded body to form the sheet glass, and the formed plate glass is gradually added. Cool and cut. The overflow download method can achieve a smooth surface by stretching and cooling the molten glass vertically without touching anything. After that, the cut glass sheet is further cut into a predetermined size according to the customer's specifications, subjected to end face polishing, cleaning, etc., and shipped.
The present invention is particularly suitable for manufacturing glass substrates for flat panel displays (FPD) such as liquid crystal displays, plasma displays, and organic E displays.
The present invention is suitable for manufacturing a glass substrate for FPD having a thickness of 0.5 to 0.7 mm and a size of 300 × 400 mm to 2850 × 3050 mm, for example.
In addition, since a semiconductor element is formed on the surface of a glass substrate for a liquid crystal display device, the alkali metal component is not included at all, or even if it is included, it is a trace amount that does not affect the semiconductor element. Is preferred. Moreover, since the glass substrate for liquid crystal display devices etc. will cause a display defect when a bubble exists in a glass substrate, it is preferable to reduce a bubble as much as possible. From these, in the glass substrate for liquid crystal display devices and the like, as described above, the glass composition, the temperature of the molten glass, the fining agent, and the like are selected. Suitable.

1 本体(清澄槽本体)
10 溶融窯
20、40 移送管
40a 移送管上部
40b 移送管下部
30 清澄槽
30b 清澄槽底部
30c 排出口
100 ガラス基板製造装置
MG 溶融ガラス
a 気相空間
Z 沈殿物(ジルコニアの沈殿物)
1 Body (Clarification tank body)
DESCRIPTION OF SYMBOLS 10 Melting furnaces 20 and 40 Transfer pipe 40a Transfer pipe upper part 40b Transfer pipe lower part 30 Clarification tank 30b Clarification tank bottom part 30c Outlet 100 Glass substrate manufacturing apparatus MG Molten glass a Gas phase space Z Precipitate (precipitate of zirconia)

Claims (11)

清澄槽本体を加熱しながら、前記清澄槽に清澄剤を配合させた溶融ガラスを通過させて脱泡処理を行う脱泡工程を含むガラス基板の製造方法であって、
前記清澄槽は、
白金族金属で構成され、
該清澄槽から次の工程に前記溶融ガラスを送り込むための移送管を、前記清澄槽から溶融ガラスが流れ出る出口側に接続して備えており、
前記清澄槽に清澄剤を配合させた溶融ガラスを通過させる際に、前記溶融ガラスの液位が所定の液位となるように前記溶融ガラスの流量を調整する液位調整工程を有し、
前記所定の液位の溶融ガラスを通過させる際に、清澄槽内を流れる前記溶融ガラスの上部表面付近の当該溶融ガラスが、前記出口付近において滞留することなく前記移送管に流れていくような位置に、前記移送管を設置する
ことを特徴とするガラス基板の製造方法。
A method for producing a glass substrate comprising a defoaming step of performing a defoaming process by passing a molten glass containing a fining agent in the clarification tank while heating the clarification tank body,
The clarification tank is
Composed of platinum group metals,
A transfer pipe for sending the molten glass from the clarification tank to the next step is connected to the outlet side from which the molten glass flows out of the clarification tank,
A liquid level adjusting step of adjusting the flow rate of the molten glass so that the liquid level of the molten glass becomes a predetermined liquid level when passing the molten glass mixed with a clarifier in the clarification tank;
Position where the molten glass near the upper surface of the molten glass flowing in the clarification tank flows to the transfer pipe without staying near the outlet when passing the molten glass of the predetermined liquid level A method for producing a glass substrate, wherein the transfer pipe is installed.
前記清澄槽内における前記所定の液位の溶融ガラスの前記液位と前記移送管の上部の位置とを一致させるように前記移送管を設ける
ことを特徴とする請求項1に記載のガラス基板の製造方法。
2. The glass substrate according to claim 1, wherein the transfer pipe is provided so that the liquid level of the molten glass at the predetermined liquid level in the clarification tank matches the position of the upper part of the transfer pipe. Production method.
前記移送管は、該移送管の下部が、前記清澄槽の底部に対し、少なくとも30mm以上上部側に位置することを特徴とする請求項2に記載のガラス基板の製造方法。   3. The method for producing a glass substrate according to claim 2, wherein the transfer pipe has a lower part of the transfer pipe positioned at an upper side of at least 30 mm or more with respect to a bottom part of the clarification tank. 前記清澄槽の前工程でガラスの材料を溶融するために用いられる溶融窯が、高ジルコニア系耐火物により構成されている
ことを特徴とする請求項3に記載のガラス基板の製造方法。
The method for producing a glass substrate according to claim 3, wherein a melting kiln used for melting a glass material in a pre-process of the clarification tank is made of a high zirconia refractory.
前記清澄槽は、
前記清澄槽の前記出口近傍の底部に、ジルコニア排出用の排出口を設けたことを特徴とする請求項4に記載のガラス基板の製造方法。
The clarification tank is
The manufacturing method of the glass substrate of Claim 4 which provided the discharge port for zirconia discharge | emission in the bottom part of the said exit vicinity of the said clarification tank.
前記溶融ガラスは、SiO、Al、B、アルカリ土類金属のそれぞれを含む材料で構成され、前記SiOの含有量は50%‐70%であることを特徴とする請求項1から請求項5のいずれか1項に記載のガラス基板の製造方法。 The molten glass is made of a material containing each of SiO 2 , Al 2 O 3 , B 2 O 3 , and alkaline earth metal, and the content of the SiO 2 is 50% to 70%. The manufacturing method of the glass substrate of any one of Claims 1-5. 前記溶融ガラスは、SiO、Al、B、アルカリ土類金属のそれぞれを含む材料で構成され、前記B含有量は5%以上であることを特徴とする請求項1から請求項5のいずれか1項に記載のガラス基板の製造方法。 The molten glass is made of a material containing each of SiO 2 , Al 2 O 3 , B 2 O 3 , and alkaline earth metal, and the B 2 O 3 content is 5% or more. The manufacturing method of the glass substrate of any one of Claims 1-5. 前記溶融ガラスは、無アルカリガラスまたはアルカリ微量含有ガラスで構成したことを特徴とする請求項1から請求項5のいずれか1項に記載のガラス基板の製造方法。   The said molten glass was comprised with the alkali free glass or the alkali trace amount containing glass, The manufacturing method of the glass substrate of any one of Claims 1-5 characterized by the above-mentioned. 前記清澄槽内を流れる前記溶融ガラスの少なくとも一部の温度は、1630度以上1720度以下であることを特徴とする請求項1から請求項5のいずれか1項に記載のガラス基板の製造方法。   The method for producing a glass substrate according to any one of claims 1 to 5, wherein the temperature of at least a part of the molten glass flowing in the clarification tank is 1630 degrees or more and 1720 degrees or less. . 前記溶融ガラスは、粘度を102.5ポアズとする場合に1300度以上の溶融温度を要する材料で構成したことを特徴とする請求項6または請求項7に記載のガラス基板の製造方法。 The method for producing a glass substrate according to claim 6 or 7, wherein the molten glass is made of a material that requires a melting temperature of 1300 degrees or more when the viscosity is 10 2.5 poise. 前記清澄剤は、酸化錫であることを特徴とする請求項6または請求項7に記載のガラス基板の製造方法。   The said fining agent is a tin oxide, The manufacturing method of the glass substrate of Claim 6 or Claim 7 characterized by the above-mentioned.
JP2012086911A 2012-04-05 2012-04-05 Manufacturing method of glass substrate Active JP5730806B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012086911A JP5730806B2 (en) 2012-04-05 2012-04-05 Manufacturing method of glass substrate
CN201310032914.1A CN103359911B (en) 2012-04-05 2013-01-28 The manufacture method of glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012086911A JP5730806B2 (en) 2012-04-05 2012-04-05 Manufacturing method of glass substrate

Publications (2)

Publication Number Publication Date
JP2013216520A true JP2013216520A (en) 2013-10-24
JP5730806B2 JP5730806B2 (en) 2015-06-10

Family

ID=49362288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012086911A Active JP5730806B2 (en) 2012-04-05 2012-04-05 Manufacturing method of glass substrate

Country Status (2)

Country Link
JP (1) JP5730806B2 (en)
CN (1) CN103359911B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017178714A (en) * 2016-03-31 2017-10-05 AvanStrate株式会社 Method and apparatus for manufacturing glass substrate
KR20170118789A (en) * 2015-02-26 2017-10-25 코닝 인코포레이티드 Glass manufacturing apparatus and method
JP2017226551A (en) * 2016-06-20 2017-12-28 日本電気硝子株式会社 Glass material melting apparatus and method of producing molten glass

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6792821B2 (en) * 2016-12-14 2020-12-02 日本電気硝子株式会社 Support structure of glass supply pipe, flat glass manufacturing equipment, flat glass manufacturing method, and preheating method of glass supply pipe
JP2021109824A (en) * 2020-01-14 2021-08-02 Agc株式会社 Cover glass for display, on-vehicle display device, and production method of cover glass for display

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022868A (en) * 2005-07-19 2007-02-01 Nippon Electric Glass Co Ltd Method of producing glass

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8913539D0 (en) * 1989-06-13 1989-08-02 Pilkington Plc Glass melting
JP3986070B2 (en) * 2003-08-08 2007-10-03 Hoya株式会社 Method for producing molten glass and method for producing glass molded body
WO2005037721A1 (en) * 2003-10-20 2005-04-28 Nippon Electric Glass Co., Ltd. Glass composition and method for producing glass article
DE102006003521B4 (en) * 2006-01-24 2012-11-29 Schott Ag Apparatus and method for the continuous refining of glasses with high purity requirements

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022868A (en) * 2005-07-19 2007-02-01 Nippon Electric Glass Co Ltd Method of producing glass

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170118789A (en) * 2015-02-26 2017-10-25 코닝 인코포레이티드 Glass manufacturing apparatus and method
JP2018509364A (en) * 2015-02-26 2018-04-05 コーニング インコーポレイテッド Glass manufacturing apparatus and method
US10611659B2 (en) 2015-02-26 2020-04-07 Corning Incorporated Glass manufacturing apparatus and methods
KR102528554B1 (en) * 2015-02-26 2023-05-04 코닝 인코포레이티드 Glass manufacturing apparatus and method
JP2017178714A (en) * 2016-03-31 2017-10-05 AvanStrate株式会社 Method and apparatus for manufacturing glass substrate
JP2017226551A (en) * 2016-06-20 2017-12-28 日本電気硝子株式会社 Glass material melting apparatus and method of producing molten glass
WO2017221617A1 (en) * 2016-06-20 2017-12-28 日本電気硝子株式会社 Glass starting material melting apparatus and method for producing molten glass

Also Published As

Publication number Publication date
JP5730806B2 (en) 2015-06-10
CN103359911B (en) 2015-12-23
CN103359911A (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP5752648B2 (en) Glass substrate manufacturing method and manufacturing apparatus
JP5730806B2 (en) Manufacturing method of glass substrate
JP5956009B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP5890559B2 (en) Manufacturing method of glass substrate
WO2012133467A1 (en) Method for producing glass plate
KR101627484B1 (en) Method for manufacturing glass substrate and apparatus for manufacturing glass substrate
JP5752811B2 (en) Glass substrate manufacturing apparatus and glass substrate manufacturing method
JP2017178714A (en) Method and apparatus for manufacturing glass substrate
JP6563230B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP6665435B2 (en) Method for manufacturing glass articles
KR101798288B1 (en) Method and apparatus for making glass substrate
JP5731437B2 (en) Manufacturing method of glass plate
JP2014047124A (en) Glass substrate manufacturing method, and glass substrate manufacturing device
JP2018052792A (en) Production method of glass substrate, and production apparatus of glass substrate
JP2017065973A (en) Production method of glass substrate and production apparatus of glass substrate
JP2013216519A (en) Method for manufacturing glass substrate and device for manufacturing glass substrate
JP6616183B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2014069980A (en) Method for producing glass substrate and glass substrate producing apparatus
JP6630215B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2012111667A (en) Apparatus for manufacturing glass, and method for manufacturing glass using the same
JP2013063881A (en) Glass manufacturing apparatus and glass manufacturing method using the same
KR20160001275A (en) Apparatus for manufacturing glass and method for manufacturing glass using the same
JP6043550B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2013035726A (en) Glass production apparatus and glass production method using the same
JP2013216522A (en) Glass production apparatus and glass production method using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150408

R150 Certificate of patent or registration of utility model

Ref document number: 5730806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250