JP2013214783A - Semiconductor device and manufacturing method of member for electrode - Google Patents

Semiconductor device and manufacturing method of member for electrode Download PDF

Info

Publication number
JP2013214783A
JP2013214783A JP2013154081A JP2013154081A JP2013214783A JP 2013214783 A JP2013214783 A JP 2013214783A JP 2013154081 A JP2013154081 A JP 2013154081A JP 2013154081 A JP2013154081 A JP 2013154081A JP 2013214783 A JP2013214783 A JP 2013214783A
Authority
JP
Japan
Prior art keywords
electrode
support
semiconductor device
copper
metal post
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013154081A
Other languages
Japanese (ja)
Other versions
JP5619232B2 (en
Inventor
Katsuya Okumura
勝弥 奥村
Yoshikazu Takahashi
良和 高橋
Kazunori Takenouchi
一憲 竹之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Fuji Electric Co Ltd
Octec Inc
Original Assignee
Kyocera Corp
Fuji Electric Co Ltd
Octec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Fuji Electric Co Ltd, Octec Inc filed Critical Kyocera Corp
Priority to JP2013154081A priority Critical patent/JP5619232B2/en
Publication of JP2013214783A publication Critical patent/JP2013214783A/en
Application granted granted Critical
Publication of JP5619232B2 publication Critical patent/JP5619232B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Abstract

PROBLEM TO BE SOLVED: To improve the heat cycle tolerance and the power cycle tolerance of a power module.SOLUTION: An member 30 for an electrode, where copper posts 32 are formed in multiple through holes 31a provided in a supporting body 31 of a ceramic material, is joined to a surface of an IGBT 10, where an emitter electrode is formed, by solder. Joining the multiple copper posts 32 to the electrode by the solder causes heat generated in the IGBT 10 to transfer to the member 30 for the electrode to be radiated therefrom and reduces stress applied to a solder junction interface thereby suppressing the strain and reducing the occurence of cracks even if there is a thermal expansion coefficient difference between a component material of the IGBT 10 and copper. Thus, the structure improves the heat cycle tolerance and the power cycle tolerance of a power module.

Description

本発明は半導体装置および電極用部材の製造方法に関し、特に大電流・高電圧の動作環境下で用いられる半導体装置および電極用部材の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device and an electrode member, and more particularly, to a method for manufacturing a semiconductor device and an electrode member used in a large current / high voltage operating environment.

近年、ロボット、工作機、電気自動車等には、そのモーター駆動用のインバータ/コンバータ等の電力変換装置に、大電流・高電圧の動作環境にも耐性を有するパワーモジュールが用いられるようになってきている。現在、このようなパワーモジュールは、主に、絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor,IGBT)やフリーホイーリングダイオード(Free Wheeling Diode,FWD)等のパワー半導体素子を用いて構成されている(例えば特許文献1参照。)。   In recent years, robots, machine tools, electric vehicles, and the like have come to use power modules that are resistant to high-current / high-voltage operating environments for power converters such as inverters / converters for driving motors. ing. Currently, such power modules are mainly configured using power semiconductor elements such as insulated gate bipolar transistors (IGBTs) and free wheeling diodes (FWDs) (for example, (See Patent Document 1).

図17は従来のパワーモジュールの要部断面模式図である。
この図17には、パワーモジュール内のIGBT100の実装状態を示している。IGBT100は、通常、その一方の面側にエミッタ電極とゲート電極(「エミッタ電極等」という。)が形成され、反対の面側にコレクタ電極が形成されている。図17では、エミッタ電極等を図中上方に向け、コレクタ電極を図中下方に向けて、実装されているものとする。その場合、上面側のエミッタ電極等は、例えば図17に示したように、それぞれの対応する外部接続用端子(図示せず。)にアルミワイヤ101で接続される。
FIG. 17 is a schematic cross-sectional view of a main part of a conventional power module.
FIG. 17 shows a mounted state of the IGBT 100 in the power module. The IGBT 100 normally has an emitter electrode and a gate electrode (referred to as “emitter electrode”) formed on one surface side and a collector electrode formed on the opposite surface side. In FIG. 17, it is assumed that the emitter electrode and the like are mounted upward and the collector electrode is mounted downward in the figure. In that case, the emitter electrode and the like on the upper surface side are connected to the corresponding external connection terminals (not shown) by aluminum wires 101 as shown in FIG.

一方、下面側のコレクタ電極は、図示しない銅(Cu)の放熱ベース(「銅ベース」という。)上に設けられた絶縁基板102の上に配置される。絶縁基板102は、例えば、伝熱性の良いアルミナ等のセラミックス板からなり、その両面には銅箔102a,102bが貼り付けられている。そして、上面側の銅箔102aとコレクタ電極の間、および下面側の銅箔102bと銅ベースとの間が、それぞれ半田接合されている。このような構造とすることにより、IGBT100とその外部との電気的な接続を確保しつつ、IGBT100と放熱系との間の絶縁を確保し、動作時に発生した熱を絶縁基板102、銅ベースへと伝熱することが可能になっている。   On the other hand, the lower collector electrode is disposed on an insulating substrate 102 provided on a copper (Cu) heat dissipation base (referred to as “copper base”) (not shown). The insulating substrate 102 is made of, for example, a ceramic plate made of alumina or the like having good heat conductivity, and copper foils 102a and 102b are attached to both surfaces thereof. The upper surface copper foil 102a and the collector electrode, and the lower surface copper foil 102b and the copper base are soldered. With such a structure, the insulation between the IGBT 100 and the heat dissipation system is ensured while ensuring the electrical connection between the IGBT 100 and the outside, and the heat generated during operation is transferred to the insulating substrate 102 and the copper base. It is possible to transfer heat.

ところが、このような従来の実装形態では、IGBT100の下面側からは絶縁基板102や銅ベースを介して放熱が可能であるものの、その上面側には例えば線径が300μm〜400μm程度の細いアルミワイヤ101が接続されているのみであり、加えてアルミワイヤ101の通電に伴う発熱もあって、上面側からの放熱効果はほとんど期待できない。また、アルミワイヤ101の発熱で素子の特性が損なわれてしまう場合もある。アルミワイヤ101を、熱伝導率の高い銅ワイヤに代えることも考えられるが、通常ワイヤは電流容量に合った本数をIGBT100表面に超音波接合するため、素子表面を傷つけないよう、アルミワイヤ101に比べて硬度の高い銅ワイヤは用いない方が好ましい。   However, in such a conventional mounting form, heat can be radiated from the lower surface side of the IGBT 100 via the insulating substrate 102 or the copper base, but on the upper surface side, for example, a thin aluminum wire having a wire diameter of about 300 μm to 400 μm. 101 is only connected, and there is also heat generation due to the energization of the aluminum wire 101, so that the heat radiation effect from the upper surface side can hardly be expected. In addition, the element characteristics may be impaired by the heat generated by the aluminum wire 101. Although it is conceivable to replace the aluminum wire 101 with a copper wire having a high thermal conductivity, the number of wires matching the current capacity is ultrasonically bonded to the surface of the IGBT 100, so that the aluminum wire 101 is not damaged. It is preferable not to use a copper wire having a higher hardness.

図18は従来の別のパワーモジュールの要部断面模式図である。なお、図18では、図17に示した要素と同一の要素には同一の符号を付し、その説明の詳細は省略する。
アルミワイヤを用いるために生じる問題を回避するため、従来、この図18に示すようにしてIGBT100のエミッタ電極等が形成されている上面側に銅電極103を半田接合し、この銅電極103にパワーモジュール外部に引き出される外部接続用端子104を接合して外部との電気的な接続を確保するとともに、この銅電極103を利用して上面側からも放熱が行えるようにする試みもなされている。
FIG. 18 is a schematic cross-sectional view of an essential part of another conventional power module. In FIG. 18, the same elements as those shown in FIG. 17 are denoted by the same reference numerals, and detailed description thereof is omitted.
In order to avoid the problems caused by using the aluminum wire, the copper electrode 103 is conventionally solder-bonded to the upper surface side where the emitter electrode and the like of the IGBT 100 are formed as shown in FIG. Attempts have been made to secure the electrical connection to the outside by joining the external connection terminals 104 drawn out of the module, and to allow heat dissipation from the upper surface side using the copper electrode 103.

なお、パワーモジュール内にFWDが実装される場合も同様であり、例えば、そのアノード電極を上面側に、カソード電極を下面側にして、上面側にアルミワイヤが超音波接合され、あるいは銅電極が半田接合されて、下面側が銅ベース上の絶縁基板に貼り付けられた銅箔に半田接合される。   The same applies when the FWD is mounted in the power module. For example, the anode electrode is on the upper surface side, the cathode electrode is on the lower surface side, and the aluminum wire is ultrasonically bonded on the upper surface side, or the copper electrode is After being soldered, the lower surface side is soldered to a copper foil attached to an insulating substrate on a copper base.

特開2004−6603号公報JP 2004-6603 A

しかし、上記のように放熱性を考慮してIGBTやFWDの上面側にアルミワイヤに代えて銅電極を半田接合した場合には、IGBTやFWDの主要構成材料であるシリコン(Si)の熱膨張率が約2.6ppm/℃であるのに対し、銅の熱膨張率が約17ppm/℃と大きく、それらの熱膨張率の差からヒートサイクル時やパワーサイクル時に半田接合界面に熱応力が加わり、それによって生じる歪でクラックが発生してしまい、パワーモジュールとしての目標寿命を満たせない場合があった。   However, when a copper electrode is soldered to the upper surface of the IGBT or FWD instead of the aluminum wire in consideration of heat dissipation as described above, the thermal expansion of silicon (Si), which is the main constituent material of the IGBT or FWD, The coefficient of thermal expansion is about 2.6 ppm / ° C, whereas the coefficient of thermal expansion of copper is as large as about 17 ppm / ° C. Due to the difference in coefficient of thermal expansion, thermal stress is applied to the solder joint interface during heat cycle and power cycle. In some cases, cracks are generated due to the strain generated thereby, and the target life of the power module cannot be satisfied.

また、このような半田接合界面のクラック発生の問題は、IGBTやFWDの下面側でも同様に起こる場合がある。すなわち、アルミナ表面に銅箔を貼り付けた絶縁基板では、その熱膨張率が約7ppm/℃であり、これが熱膨張率の高い銅ベースに半田接合されるため、それらの熱膨張率の差から半田接合界面に熱応力が加わり、歪が生じてクラックが発生してしまう場合がある。例えば、−40℃〜+125℃のヒートサイクルがかかった場合、絶縁基板と銅ベースとの間の半田接合界面には、そのとき生じる歪によって500サイクル程度でクラックが発生し始めることがわかっている。   Such a problem of occurrence of cracks at the solder joint interface may also occur on the lower surface side of the IGBT or FWD. That is, in an insulating substrate with a copper foil attached to the alumina surface, the coefficient of thermal expansion is about 7 ppm / ° C., and this is solder-bonded to a copper base having a high coefficient of thermal expansion. In some cases, thermal stress is applied to the solder joint interface, resulting in distortion and cracking. For example, when a heat cycle of −40 ° C. to + 125 ° C. is applied, it is known that cracks begin to occur in about 500 cycles due to strain generated at the solder joint interface between the insulating substrate and the copper base. .

パワーモジュールの放熱ベース材料に銅を用いるのは、約350W/(m・K)というその熱伝導率の良さからであるが、このようなクラック発生を回避するため、銅ベースに代えて銅モリブデン(CuMo)複合材料やアルミニウムシリコンカーバイト(AlSiC)等の熱膨張率が7ppm/℃に近い材料を用いることも行われている。しかし、これらの材料は、銅に比べ、熱膨張率は小さいものの熱伝導率は約150W/(m・K)と低く、最近のIGBTやFWDの低損失化には不利な特性である。また、これらの材料を用いて形成される放熱ベースのコストも、銅ベースに比べて約20倍と非常に高くなってしまう。   Copper is used for the heat dissipation base material of the power module because of its good thermal conductivity of about 350 W / (m · K), but in order to avoid such cracking, copper molybdenum is used instead of copper base. A material having a coefficient of thermal expansion close to 7 ppm / ° C. such as (CuMo) composite material or aluminum silicon carbide (AlSiC) is also used. However, although these materials have a smaller coefficient of thermal expansion than copper, their thermal conductivity is as low as about 150 W / (m · K), which is a disadvantageous characteristic for reducing the loss of recent IGBTs and FWDs. In addition, the cost of the heat dissipation base formed using these materials is very high, approximately 20 times that of the copper base.

本発明はこのような点に鑑みてなされたものであり、内部に発生する熱を効率的に放熱するとともに、内部に存在する接合界面に加わる熱応力を小さく抑えた、信頼性の高い半導体装置を提供することを目的とする。   The present invention has been made in view of the above points, and efficiently dissipates heat generated in the interior, and suppresses thermal stress applied to a joint interface existing in the interior to be small, and has high reliability. The purpose is to provide.

また、本発明は、半導体装置内部に発生する熱を効率的に放熱するとともに、内部に存在する接合界面に加わる熱応力を小さく抑えることのできる電極用部材の製造方法を提供することを目的とする。   Another object of the present invention is to provide a method for manufacturing an electrode member that can efficiently dissipate heat generated inside a semiconductor device and suppress thermal stress applied to a bonding interface existing inside. To do.

本発明では上記問題を解決するために、表面に電極を備えた半導体素子を有する半導体装置において、主面間を貫通する複数の貫通孔を有するセラミックス材を材料とする絶縁性の支持体と、複数の前記貫通孔それぞれに配置された金属ポストと、複数の各前記金属ポストと前記半導体素子の前記電極とを電気的に接続する接合層と、を備え、前記支持体の主面上に前記金属ポストと接続された導体層が形成されており、複数の各前記金属ポストは、前記支持体を介して互いに分離していることを特徴とする半導体装置が提供される。   In the present invention, in order to solve the above problem, in a semiconductor device having a semiconductor element having an electrode on its surface, an insulating support made of a ceramic material having a plurality of through holes penetrating between main surfaces; A plurality of metal posts disposed in each of the through holes, and a bonding layer that electrically connects each of the plurality of metal posts and the electrode of the semiconductor element, and is provided on the main surface of the support. A semiconductor device is provided in which a conductor layer connected to a metal post is formed, and the plurality of metal posts are separated from each other via the support.

本発明では上記問題を解決するために、表面に電極を備えた半導体素子を有する半導体装置において、主面間を貫通する複数の貫通孔を有するセラミックス材を材料とする絶縁性の支持体と前記各貫通孔に配置されて前記貫通孔の内面と接合された金属ポストとからなる電極用部材と、前記電極用部材と前記半導体素子の前記電極とを電気的に接続する接合層と、を備え、前記金属ポストが銅を材料とし、前記支持体の主面上に前記金属ポストと接続された導体層が形成されていることを特徴とする半導体装置が提供される。   In the present invention, in order to solve the above problem, in a semiconductor device having a semiconductor element having an electrode on its surface, an insulating support made of a ceramic material having a plurality of through holes penetrating between main surfaces, and the above-mentioned An electrode member including a metal post disposed in each through hole and bonded to the inner surface of the through hole; and a bonding layer that electrically connects the electrode member and the electrode of the semiconductor element. The semiconductor device is characterized in that the metal post is made of copper and a conductor layer connected to the metal post is formed on the main surface of the support.

本発明では上記問題を解決するために、半導体装置の電極に接合される電極用部材の製造方法において、主面間を貫通する複数の貫通孔を有するセラミックス材を材料とする絶縁性の支持体の前記各貫通孔に金属ポストを挿入し、前記支持体と前記金属ポストとを接着、嵌合により一体的に形成し、前記電極と接合される前記支持体の主面上に導体層を形成することを特徴とする電極用部材の製造方法が提供される。   In the present invention, in order to solve the above problem, in a method for manufacturing an electrode member to be bonded to an electrode of a semiconductor device, an insulating support made of a ceramic material having a plurality of through holes penetrating between main surfaces A metal post is inserted into each of the through-holes, and the support and the metal post are integrally formed by bonding and fitting, and a conductor layer is formed on the main surface of the support to be joined to the electrode The manufacturing method of the member for electrodes characterized by doing is provided.

本発明では上記問題を解決するために、半導体装置の電極に接合される電極用部材の製造方法において、主面間を貫通する複数の貫通孔を有するセラミックス材を材料とする絶縁性の支持体の一方の主面に銅層を形成し、前記銅層をシードにして電解メッキにより前記各貫通孔の貫通孔内を銅で充填することによって、前記各貫通孔に金属ポストを形成し、前記電極と接合される前記支持体の主面上に導体層を形成することを特徴とする電極用部材の製造方法が提供される。   In the present invention, in order to solve the above problem, in a method for manufacturing an electrode member to be bonded to an electrode of a semiconductor device, an insulating support made of a ceramic material having a plurality of through holes penetrating between main surfaces Forming a copper layer on one of the main surfaces, filling the through hole of each through hole with copper by electrolytic plating using the copper layer as a seed, forming a metal post in each through hole, There is provided a method for producing an electrode member, wherein a conductor layer is formed on a main surface of the support to be joined to an electrode.

本発明では上記問題を解決するために、表面に電極を備えた半導体素子を有する半導体装置において、主面間を貫通する複数の貫通孔を有するセラミックス材を材料とする絶縁性の支持体と、複数の前記貫通孔それぞれに配置された金属ポストと、複数の各前記金属ポストと前記半導体素子の前記電極とを接合する半田層と、を備え、複数の各前記金属ポストは、前記支持体を介して互いに分離しており、前記金属ポストの端部が、前記支持体の少なくとも一方の主面より突出し、前記支持体から突出する前記金属ポストと接合面との間に冷媒を介在させることを特徴とする半導体装置が提供される。   In the present invention, in order to solve the above problem, in a semiconductor device having a semiconductor element having an electrode on its surface, an insulating support made of a ceramic material having a plurality of through holes penetrating between main surfaces; A plurality of metal posts disposed in each of the through holes, and a solder layer that joins each of the plurality of metal posts and the electrode of the semiconductor element, and each of the plurality of metal posts includes the support. The end of the metal post protrudes from at least one main surface of the support, and a coolant is interposed between the metal post protruding from the support and the joint surface. A semiconductor device is provided.

本発明では上記問題を解決するために、表面に電極を備えた半導体素子を有する半導体装置において、主面間を貫通する複数の貫通孔を有するセラミックス材を材料とする絶縁性の支持体と前記各貫通孔に配置されて前記貫通孔の内面と接合された金属ポストとからなる電極用部材と、前記電極用部材と前記半導体素子の前記電極とを接合する半田層と、を備え、前記金属ポストが銅を材料とし、前記金属ポストの端部が、前記支持体の少なくとも一方の主面より突出し、前記支持体から突出する前記金属ポストと接合面との間に冷媒を介在させることを特徴とする半導体装置が提供される。   In the present invention, in order to solve the above problem, in a semiconductor device having a semiconductor element having an electrode on its surface, an insulating support made of a ceramic material having a plurality of through holes penetrating between main surfaces, and the above-mentioned An electrode member comprising a metal post disposed in each through hole and bonded to the inner surface of the through hole; and a solder layer for bonding the electrode member and the electrode of the semiconductor element. The post is made of copper, the end of the metal post protrudes from at least one main surface of the support, and a refrigerant is interposed between the metal post protruding from the support and the joint surface. A semiconductor device is provided.

本発明では上記問題を解決するために、半導体装置の電極に接合される電極用部材の製造方法において、主面間を貫通する複数の貫通孔を有するセラミックス材を材料とする絶縁性の支持体の前記各貫通孔に金属ポストを挿入し、前記支持体と前記金属ポストとを接着、嵌合により一体的に形成し、前記金属ポストの端部が、前記支持体の少なくとも一方の主面より突出し、前記支持体から突出する前記金属ポストと接合面との間に冷媒を介在させることを特徴とする電極用部材の製造方法が提供される。   In the present invention, in order to solve the above problem, in a method for manufacturing an electrode member to be bonded to an electrode of a semiconductor device, an insulating support made of a ceramic material having a plurality of through holes penetrating between main surfaces A metal post is inserted into each of the through holes, and the support and the metal post are integrally formed by bonding and fitting, and an end of the metal post is formed from at least one main surface of the support. A method for producing an electrode member is provided, characterized in that a coolant is interposed between the metal post projecting from the support and the joining surface.

本発明では上記問題を解決するために、半導体装置の電極に接合される電極用部材の製造方法において、主面間を貫通する複数の貫通孔を有するセラミックス材を材料とする絶縁性の支持体の一方の主面に銅層を形成し、前記銅層をシードにして電解メッキにより前記各貫通孔の貫通孔内を銅で充填することによって、前記各貫通孔に金属ポストを形成し、前記金属ポストの端部が、前記支持体の少なくとも一方の主面より突出し、前記支持体から突出する前記金属ポストと接合面との間に冷媒を介在させることを特徴とする電極用部材の製造方法が提供される。   In the present invention, in order to solve the above problem, in a method for manufacturing an electrode member to be bonded to an electrode of a semiconductor device, an insulating support made of a ceramic material having a plurality of through holes penetrating between main surfaces Forming a copper layer on one of the main surfaces, filling the through hole of each through hole with copper by electrolytic plating using the copper layer as a seed, forming a metal post in each through hole, An end of a metal post protrudes from at least one main surface of the support, and a coolant is interposed between the metal post protruding from the support and a joining surface, and a method for producing an electrode member Is provided.

本発明では、半導体素子の電極に、複数の金属ポストを形成した電極用部材を接合するようにした。これにより、半導体素子に発生した熱を効率的に放熱することができるとともに、材料の熱膨張率の影響を抑えて接合界面の歪を小さく抑えることができる。その結果、接合界面におけるクラックの発生を大幅に減らすことができるようになり、信頼性の高い半導体装置を実現することが可能になる。   In the present invention, an electrode member in which a plurality of metal posts are formed is joined to an electrode of a semiconductor element. Thereby, the heat generated in the semiconductor element can be efficiently radiated, and the influence of the coefficient of thermal expansion of the material can be suppressed to suppress the distortion at the bonding interface. As a result, generation of cracks at the bonding interface can be greatly reduced, and a highly reliable semiconductor device can be realized.

第1の実施の形態のパワーモジュールの要部断面模式図である。It is a principal part cross-sectional schematic diagram of the power module of 1st Embodiment. 第1の実施の形態のパワーモジュールに用いられるIGBTの一例の要部平面模式図である。It is a principal part plane schematic diagram of an example of IGBT used for the power module of 1st Embodiment. 第1の実施の形態の電極用部材の模式図であって、(A)は平面図、(B)は(A)のa−a断面図である。It is a schematic diagram of the member for electrodes of a 1st embodiment, and (A) is a top view and (B) is an aa sectional view of (A). 第1の実施の形態のパワーモジュールの別の例を示した要部断面模式図である。It is the principal part cross-sectional schematic diagram which showed another example of the power module of 1st Embodiment. 放熱効果の説明図である。It is explanatory drawing of the heat dissipation effect. 第1の実施の形態の電極用部材を用いたパワーモジュールの模式図であって、(A)は平面図、(B)は(A)のb−b断面図である。It is a schematic diagram of the power module using the member for electrodes of a 1st embodiment, (A) is a top view and (B) is a bb sectional view of (A). 第2の実施の形態の電極用部材の模式図であって、(A)は平面図、(B)は(A)のc−c断面図である。It is a schematic diagram of the member for electrodes of 2nd Embodiment, Comprising: (A) is a top view, (B) is cc sectional drawing of (A). 第3の実施の形態の電極用部材の模式図であって、(A)は平面図、(B)は(A)のd−d断面図である。It is a schematic diagram of the member for electrodes of 3rd Embodiment, Comprising: (A) is a top view, (B) is dd sectional drawing of (A). 第4の実施の形態の電極用部材の模式図であって、(A)は平面図、(B)は(A)のe−e断面図である。It is a schematic diagram of the member for electrodes of 4th Embodiment, Comprising: (A) is a top view, (B) is ee sectional drawing of (A). 第5の実施の形態の電極用部材の模式図であって、(A)は平面図、(B)は(A)のf−f断面図である。It is a schematic diagram of the member for electrodes of 5th Embodiment, Comprising: (A) is a top view, (B) is ff sectional drawing of (A). 第5の実施の形態の電極用部材を用いた素子実装状態の一例を示す図である。It is a figure which shows an example of the element mounting state using the member for electrodes of 5th Embodiment. 第6の実施の形態の電極用部材の模式図であって、(A)は平面図、(B)は(A)のg−g断面図である。It is a schematic diagram of the member for electrodes of 6th Embodiment, (A) is a top view, (B) is gg sectional drawing of (A). 第6の実施の形態の電極用部材を用いた素子実装状態の一例を示す図である。It is a figure which shows an example of the element mounting state using the member for electrodes of 6th Embodiment. 第7の実施の形態の電極用部材の模式図であって、(A)は平面図、(B)は(A)のh−h断面図である。It is a schematic diagram of the member for electrodes of 7th Embodiment, (A) is a top view, (B) is hh sectional drawing of (A). 第7の実施の形態の電極用部材を用いた素子実装状態の一例を示す図である。It is a figure which shows an example of the element mounting state using the member for electrodes of 7th Embodiment. 冷却機構を備えた電極用部材の模式図であって、(A)は平面図、(B)は(A)のi−i断面図である。It is a schematic diagram of the member for electrodes provided with the cooling mechanism, Comprising: (A) is a top view, (B) is ii sectional drawing of (A). 従来のパワーモジュールの要部断面模式図である。It is a principal part cross-sectional schematic diagram of the conventional power module. 従来の別のパワーモジュールの要部断面模式図である。It is a principal part cross-sectional schematic diagram of another conventional power module.

以下、本発明の実施の形態を、IGBTやFWDを備えたパワーモジュールに適用した場合を例に、図面を参照して詳細に説明する。
まず、第1の実施の形態について説明する。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings, taking as an example a case where the present invention is applied to a power module including an IGBT or FWD.
First, the first embodiment will be described.

図1は第1の実施の形態のパワーモジュールの要部断面模式図であり、図2は第1の実施の形態のパワーモジュールに用いられるIGBTの一例の要部平面模式図である。また、図3は第1の実施の形態の電極用部材の模式図であって、(A)は平面図、(B)は(A)のa−a断面図である。   FIG. 1 is a schematic cross-sectional view of a main part of a power module according to the first embodiment, and FIG. 2 is a schematic plan view of the main part of an example of an IGBT used in the power module according to the first embodiment. 3A and 3B are schematic views of the electrode member according to the first embodiment, in which FIG. 3A is a plan view and FIG. 3B is a cross-sectional view along line aa in FIG.

図2に示すIGBT10は、一方の面側にエミッタ電極10aとゲート電極10bが形成されており、図示しない他方の面側にはコレクタ電極が形成されている。例えばこのようなIGBT10を用いたパワーモジュールは、図1に示すように、IGBT10が、コレクタ電極を絶縁基板20側に半田接合され、一方、エミッタ電極10aを電極用部材30に半田接合されている。   The IGBT 10 shown in FIG. 2 has an emitter electrode 10a and a gate electrode 10b formed on one surface side, and a collector electrode formed on the other surface side (not shown). For example, in a power module using such an IGBT 10, as shown in FIG. 1, the IGBT 10 has the collector electrode soldered to the insulating substrate 20 side, and the emitter electrode 10 a soldered to the electrode member 30. .

絶縁基板20は、伝熱性の良いアルミナ等のセラミックスで構成され、その表面には導体パターン等を構成する銅箔21,22が貼り付けられている。これらの銅箔21,22のうち、上面側の銅箔21はIGBT10のコレクタ電極と半田接合されており、下面側の銅箔22はその下に設けられる放熱ベースとしての銅ベース(図示せず。)と半田接合される。パワーモジュールを構成する場合、このような絶縁基板20によって、IGBT10が実装される側と銅ベース側とで5000V以上の絶縁耐圧が得られるようにする。   The insulating substrate 20 is made of ceramics such as alumina having good heat conductivity, and copper foils 21 and 22 constituting a conductor pattern and the like are attached to the surface thereof. Of these copper foils 21 and 22, the copper foil 21 on the upper surface side is soldered to the collector electrode of the IGBT 10, and the copper foil 22 on the lower surface side is a copper base (not shown) as a heat dissipation base provided thereunder. And soldered together. When configuring a power module, such an insulating substrate 20 can obtain a dielectric breakdown voltage of 5000 V or more on the side on which the IGBT 10 is mounted and the copper base side.

電極用部材30は、図3に示すように、アルミナ,コージェライト等のセラミックス材に主面間を貫通する複数の貫通孔31aが列状に形成された支持体31と、その各貫通孔31aに銅が埋め込まれた銅ポスト32で構成されている。そして、図1に示したように、この電極用部材30の銅ポスト32の一端はIGBT10のエミッタ電極10aに半田接合されており、その他端は外部接続用端子兼銅電極(以下、単に「銅電極」という。)40に半田接合されている。   As shown in FIG. 3, the electrode member 30 includes a support 31 in which a plurality of through holes 31a penetrating between main surfaces are formed in a ceramic material such as alumina and cordierite, and the through holes 31a. The copper post 32 is embedded with copper. As shown in FIG. 1, one end of the copper post 32 of the electrode member 30 is soldered to the emitter electrode 10a of the IGBT 10, and the other end is an external connection terminal / copper electrode (hereinafter simply referred to as "copper electrode"). It is referred to as an “electrode”) 40 and soldered.

IGBT10の電極、例えばエミッタ電極10aに電極部材30を接合することにより、IGBT10に発生した熱を効率的に放熱することができると共に、電極用部材30とIGBT10との熱膨張の相違により発生する、IGBT10と電極用部材30との接合界面の歪を小さく抑えることができる。この理由は次の通りである。   By joining the electrode member 30 to the electrode of the IGBT 10, for example, the emitter electrode 10a, the heat generated in the IGBT 10 can be efficiently radiated and generated due to the difference in thermal expansion between the electrode member 30 and the IGBT 10. The strain at the joint interface between the IGBT 10 and the electrode member 30 can be kept small. The reason is as follows.

IGBT10に発生した熱を効率的に放熱することができるのは、IGBT10のエミッタ電極10aに電極用部材30の熱伝導率が高い銅(銅ポスト32)が接合されているので、この銅ポスト32を通じて放熱が促進されるためである。また、接合界面の歪を小さく抑えることができる理由は次のように考えられる。セラミックスの熱膨張率は、例えばアルミナでは7〜8ppm/℃程度、特にコージェライトでは0.5〜3ppm/℃程度であるので、支持体31を構成するセラミックスの熱膨張率は銅ポスト32を構成する銅の熱膨張率(16.5〜18ppm/℃程度)に比べて小さい。このため、電極用部材30がIGBT10から発生する熱によって熱膨張する際、支持体31が銅ポスト32の熱膨張を拘束するので電極用部材30の熱膨張が抑制され、その結果、IGBT10と電極用部材30の接合面で両者の熱膨張の差を小さくすることができるからである。   The heat generated in the IGBT 10 can be efficiently radiated because the copper (copper post 32) having a high thermal conductivity of the electrode member 30 is joined to the emitter electrode 10a of the IGBT 10. This is because heat dissipation is promoted. Further, the reason why the distortion at the bonding interface can be suppressed is considered as follows. The thermal expansion coefficient of the ceramic is, for example, about 7 to 8 ppm / ° C. for alumina, and particularly about 0.5 to 3 ppm / ° C. for cordierite. Therefore, the thermal expansion coefficient of the ceramic constituting the support 31 constitutes the copper post 32. This is smaller than the thermal expansion coefficient of copper (about 16.5 to 18 ppm / ° C.). For this reason, when the electrode member 30 is thermally expanded by the heat generated from the IGBT 10, the support 31 restrains the thermal expansion of the copper post 32, so that the thermal expansion of the electrode member 30 is suppressed. As a result, the IGBT 10 and the electrode This is because the difference in thermal expansion between them can be reduced at the joint surface of the working member 30.

このような電極用部材30は、例えば、次のようにして形成される。第1の方法として、まず、セラミックス粉末をプレス成型して所定位置に所定数の貫通孔31aを有する成型体を形成し、その成型体を高温で焼成することにより、支持体31を形成する。次いで、この支持体31を溶融した銅に含浸して貫通孔31a内に銅を侵入させ、その後、銅を固化し、必要に応じて表面に残る銅を研磨等して除去し、銅ポスト32を有する電極用部材30を形成する。第2の方法として、同様にして貫通孔31aを有する支持体31を形成し、さらに貫通孔31aに挿入可能な銅からなる金属ポストを準備し、その金属ポストを支持体31の貫通孔31aに挿入し、支持体31と金属ポストを接着、嵌合等により一体的に形成して銅ポスト32を有する電極用部材30を形成する。   Such an electrode member 30 is formed as follows, for example. As a first method, first, a ceramic powder is press-molded to form a molded body having a predetermined number of through holes 31a at predetermined positions, and the molded body is fired at a high temperature to form the support body 31. Next, the support 31 is impregnated with molten copper to infiltrate the copper into the through hole 31a. Thereafter, the copper is solidified, and the copper remaining on the surface is removed by polishing or the like as necessary, and the copper post 32 is removed. The electrode member 30 having the structure is formed. As a second method, a support body 31 having a through hole 31a is formed in the same manner, a metal post made of copper that can be inserted into the through hole 31a is prepared, and the metal post is formed in the through hole 31a of the support body 31. The electrode member 30 having the copper post 32 is formed by inserting and integrally forming the support 31 and the metal post by bonding, fitting or the like.

IGBT10と銅電極40の間にこのような電極用部材30を設けることにより、IGBT10と銅電極40が伝熱的に接続されるとともに、複数の銅ポスト32および各部材(エミッタ電極10a,銅電極40)の接合界面の半田層(図示せず。)によって電気的に接続される。   By providing such an electrode member 30 between the IGBT 10 and the copper electrode 40, the IGBT 10 and the copper electrode 40 are connected in heat transfer, and a plurality of copper posts 32 and each member (emitter electrode 10a, copper electrode). 40) and a solder layer (not shown) at the joint interface.

そして、このように複数の銅ポスト32が形成された電極用部材30とIGBT10とを接合した場合の方が、全面に銅が露出する銅電極40とIGBT10とを接合する場合に比べ、熱膨張率の異なるもの同士の接合面積が減るため、熱が発生したときにその熱膨張率差に起因して接合界面の半田層に加わる熱応力は小さくなる。さらに、IGBT10と電極用部材30との接合界面の半田層は、双方を電気的・伝熱的に接続する役割とともに、そのような熱応力を緩和する役割も果たす。また、この電極用部材30は、銅電極40とともにヒートシンクとして機能するため、IGBT10の上面側から効率的に放熱を行うことができるようになる。結果、半田接合界面には歪が生じ難くなり、ヒートサイクル耐量やパワーサイクル耐量を向上させることができるようになる。   And, when the electrode member 30 formed with a plurality of copper posts 32 and the IGBT 10 are joined in this way, the thermal expansion is greater than the case where the copper electrode 40 and the IGBT 10 in which copper is exposed on the entire surface are joined. Since the joint areas of the different rates are reduced, the thermal stress applied to the solder layer at the joint interface due to the difference in thermal expansion coefficient when heat is generated is reduced. Furthermore, the solder layer at the joint interface between the IGBT 10 and the electrode member 30 serves to connect both of them electrically and thermally and to alleviate such thermal stress. Moreover, since this electrode member 30 functions as a heat sink together with the copper electrode 40, heat can be efficiently radiated from the upper surface side of the IGBT 10. As a result, distortion hardly occurs at the solder joint interface, and the heat cycle resistance and power cycle resistance can be improved.

このように、IGBT10と銅電極40との間に電極用部材30を半田接合することにより、IGBT10と電極用部材30との半田接合界面の歪を小さくすることができるとともに、IGBT10で発生した熱を効率的に放熱することができる。それにより、半田接合界面におけるクラックの発生が大幅に抑えられるようになる。   In this way, by soldering the electrode member 30 between the IGBT 10 and the copper electrode 40, the distortion at the solder joint interface between the IGBT 10 and the electrode member 30 can be reduced, and the heat generated in the IGBT 10 can be reduced. Can be efficiently dissipated. As a result, the occurrence of cracks at the solder joint interface is greatly suppressed.

また、図4は第1の実施の形態のパワーモジュールの別の例を示した要部断面模式図である。
この第1の実施の形態では、銅電極40を電極用部材30上に接合するようにしているが、銅電極40は上記図1に示したように外部接続用端子として構成するほか、この図4に示すように、絶縁基板20上の他の銅箔21への接続導体として構成してもよい。
FIG. 4 is a schematic cross-sectional view of the relevant part showing another example of the power module according to the first embodiment.
In the first embodiment, the copper electrode 40 is joined to the electrode member 30. The copper electrode 40 is configured as an external connection terminal as shown in FIG. 4, it may be configured as a connection conductor to another copper foil 21 on the insulating substrate 20.

なお、IGBT10のゲート電極10bは、ワイヤボンディング等で配線されるが、ここでは図示を省略している。図1から図4の例では、電極用部材30を略エミッタ電極10aの大きさとしているが、IGBT10のチップサイズと同等の大きさとしてゲート電極10bも同時に半田接合してもよい。このとき、ゲート電極10bに接続された銅ポスト32をゲート電極10bの接続部とし、銅ポスト32にワイヤボンディングや銅電極40等で配線すればよい。   The gate electrode 10b of the IGBT 10 is wired by wire bonding or the like, but is not shown here. In the example of FIGS. 1 to 4, the electrode member 30 is approximately the size of the emitter electrode 10 a, but the gate electrode 10 b may be soldered at the same time as the size equivalent to the chip size of the IGBT 10. At this time, the copper post 32 connected to the gate electrode 10b may be used as a connection portion of the gate electrode 10b, and the copper post 32 may be wired by wire bonding, the copper electrode 40, or the like.

図5は放熱効果の説明図である。
図5は、IGBT10のエミッタ電極10aをワイヤボンディングによって外部接続した場合と、電極用部材30および銅電極40によるリードフレーム構造によって外部接続した場合とで、DC50Aの定常通電を行った際の温度分布を示している。この図5において、横軸は各場合の温度測定の基準点からのパワーモジュール深さ方向(IGBT10から絶縁基板20に向かう方向)の距離(mm)を表し、縦軸は温度(℃)を表している。なお、TWBはワイヤボンディングの場合の温度、TLFはリードフレーム構造の場合の温度、Tjはワイヤまたは電極用部材30のIGBT10への接合温度である。
FIG. 5 is an explanatory view of the heat dissipation effect.
FIG. 5 shows the temperature distribution when the DC50A is normally energized when the emitter electrode 10a of the IGBT 10 is externally connected by wire bonding and when it is externally connected by the lead frame structure using the electrode member 30 and the copper electrode 40. Is shown. In FIG. 5, the horizontal axis represents the distance (mm) in the power module depth direction (the direction from the IGBT 10 toward the insulating substrate 20) from the temperature measurement reference point in each case, and the vertical axis represents the temperature (° C.). ing. T WB is a temperature in the case of wire bonding, T LF is a temperature in the case of a lead frame structure, and T j is a bonding temperature of the wire or electrode member 30 to the IGBT 10.

図5より、ワイヤボンディングの場合には、ワイヤ表面を温度測定の基準点(0mm)として、Tjが177.5℃であるのに対し、TWBの最大値は210.0℃であり、Tjの値を上回る。さらに、基準点からパワーモジュール深さ方向に一旦温度が上昇し、その後深くなるに従って温度が低下していく挙動を示し、内部からの放熱が良好に行われていないことがわかる。また、ワイヤ自体が熱の供給体にもなってしまっていることが示唆される。 From FIG. 5, in the case of wire bonding, the maximum value of T WB is 210.0 ° C. while T j is 177.5 ° C. with the wire surface as the reference point (0 mm) for temperature measurement. Exceeds the value of Tj. Furthermore, the temperature once rises from the reference point in the depth direction of the power module, and then the temperature decreases as it becomes deeper. It can be seen that heat radiation from the inside is not performed well. It is also suggested that the wire itself has become a heat supply.

一方、リードフレーム構造とした場合には、電極用部材30直近の銅電極40部分の表面を温度測定の基準点(0mm)として、Tjが155.0℃であるのに対し、TLFの最大値は152.4℃であり、電極用部材30の領域を含むどの深さでもTjの値を上回ることがない。さらに、ワイヤボンディングの場合に比べて全体的に大幅な温度低下を実現することができ、電極用部材30および銅電極40は内部に発生する熱の良好な熱伝導体として機能するということができる。 On the other hand, in the case of the lead frame structure, the surface of the copper electrode 40 portion closest to the electrode member 30 is the temperature measurement reference point (0 mm), while T j is 155.0 ° C., whereas T LF The maximum value is 152.4 ° C., and any depth including the region of the electrode member 30 does not exceed the value of T j . Furthermore, it is possible to achieve a significant temperature decrease as a whole as compared with the case of wire bonding, and it can be said that the electrode member 30 and the copper electrode 40 function as a heat conductor having good heat generated inside. .

なお、以上の説明ではIGBT10を例にして述べたが、FWDの場合も、例えばカソード電極を絶縁基板20表面の銅箔21に半田接合し、アノード電極を電極用部材30に半田接合することで、上記同様の構成が得られ、上記同様の効果を得ることが可能である。   In the above description, the IGBT 10 has been described as an example. In the case of FWD, for example, the cathode electrode is soldered to the copper foil 21 on the surface of the insulating substrate 20 and the anode electrode is soldered to the electrode member 30. The same configuration as above can be obtained, and the same effect as described above can be obtained.

また、ここでは、上面側のエミッタ電極10aあるいはアノード電極にのみ電極用部材30を設けることとしたが、このような電極用部材30は、下面側のコレクタ電極あるいはカソード電極と絶縁基板20表面の銅箔21との間や、絶縁基板20下面の銅箔22と銅ベースとの間に設けるようにしてもよい。   Here, the electrode member 30 is provided only on the emitter electrode 10a or the anode electrode on the upper surface side. However, such an electrode member 30 is provided on the surface of the collector or cathode electrode on the lower surface side and the surface of the insulating substrate 20. It may be provided between the copper foil 21 or between the copper foil 22 on the lower surface of the insulating substrate 20 and the copper base.

図6は第1の実施の形態の電極用部材を用いたパワーモジュールの模式図であって、(A)は平面図、(B)は(A)のb−b断面図である。
図6に示すパワーモジュールは、上記のようにIGBT10と銅電極40の間およびFWD50と銅電極40の間が電極用部材30で接続されているほか、IGBT10,FWD50,銅電極40,41,42と銅箔21との各間、銅箔22と銅ベース60との間も電極用部材30で接続されている。このような構成により、上記同様の効果を得ることができる。すなわち、IGBT10,FWD50で発生した熱を銅ベース60側にも効率的に伝熱することができるようになるとともに、電極用部材30なしで接合した場合に比べて各半田接合界面に加わる熱応力を緩和して歪を小さくし、クラックの発生を抑えることができるようになる。
6A and 6B are schematic views of a power module using the electrode member according to the first embodiment, in which FIG. 6A is a plan view and FIG. 6B is a cross-sectional view taken along line bb in FIG.
In the power module shown in FIG. 6, the IGBT 10 and the copper electrode 40 and the FWD 50 and the copper electrode 40 are connected by the electrode member 30 as described above, and the IGBT 10, the FWD 50, the copper electrodes 40, 41, and 42 are connected. And the copper foil 21 and the copper foil 22 and the copper base 60 are also connected by the electrode member 30. With such a configuration, the same effect as described above can be obtained. That is, the heat generated in the IGBT 10 and the FWD 50 can be efficiently transferred also to the copper base 60 side, and the thermal stress applied to each solder joint interface as compared with the case of joining without the electrode member 30. Can be relaxed to reduce the strain and suppress the occurrence of cracks.

次に、第2の実施の形態について説明する。
図7は第2の実施の形態の電極用部材の模式図であって、(A)は平面図、(B)は(A)のc−c断面図である。なお、図7では、図3に示した要素と同一の要素については同一の符号を付し、その説明の詳細は省略する。
Next, a second embodiment will be described.
7A and 7B are schematic views of the electrode member according to the second embodiment, in which FIG. 7A is a plan view and FIG. 7B is a cc cross-sectional view of FIG. In FIG. 7, the same elements as those shown in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted.

第2の実施の形態の電極用部材30aは、図7に示すように、支持体31の一方の面に導体層である銅層33が形成されている点で、第1の実施の形態の電極用部材30と相違する。   As shown in FIG. 7, the electrode member 30 a of the second embodiment is the same as that of the first embodiment in that a copper layer 33 that is a conductor layer is formed on one surface of a support 31. It is different from the electrode member 30.

このような電極用部材30aは、例えば、貫通孔31aを形成した支持体31の一方の面に銅層33を形成した後、その銅層33をシードにして電解メッキにより貫通孔31a内を銅で充填して形成することができる。シードとなる銅層33は、例えば、支持体31の一方の面に銅箔を貼り付けたり無電解メッキを行ったりして形成することが可能である。あるいは、この電極用部材30aは、例えば、上記第1の実施の形態の電極用部材30の形成と同様にして、支持体31を溶融状態の銅に含浸した後に、銅層33を残す面と反対の他方の面のみ支持体31が露出するまで銅を研磨等で除去して形成するようにしてもよい。   In such an electrode member 30a, for example, a copper layer 33 is formed on one surface of a support 31 in which a through hole 31a is formed, and then the inside of the through hole 31a is formed by electrolytic plating using the copper layer 33 as a seed. It can be formed by filling with. The seed copper layer 33 can be formed, for example, by attaching a copper foil to one surface of the support 31 or performing electroless plating. Alternatively, the electrode member 30a has a surface on which the copper layer 33 is left after the support 31 is impregnated with molten copper, for example, in the same manner as the formation of the electrode member 30 of the first embodiment. Copper may be removed by polishing or the like until the support 31 is exposed only on the other opposite surface.

この第2の実施の形態の電極用部材30aをパワーモジュールに用いることにより、第1の実施の形態と同様、IGBT,FWDといった素子と銅電極あるいは絶縁基板表面の銅箔との間、絶縁基板表面の銅箔と銅ベースとの間を電気的・伝熱的に接続することが可能になるとともに、各部材の半田接合界面の歪を小さくしてクラックの発生を抑えることが可能になる。また、このような電極用部材30aは、例えば、IGBTやFWDと銅電極との間に銅層33を銅電極側に向けて配置したり、IGBTやFWDと絶縁基板との間に銅層33を絶縁基板側に向けて配置したりすることにより、上記第1の実施の形態と同様の効果が得られるとともに、この銅層33によって電極用部材30a平面方向の電気的な接続を確保することが可能になる。このように、第2の実施の形態の電極用部材30aは、上下方向の導通とともに横方向の導通が必要になるような場所に好適である。   By using the electrode member 30a of the second embodiment for a power module, an insulating substrate is provided between an element such as IGBT and FWD and a copper electrode or a copper foil on the surface of the insulating substrate, as in the first embodiment. It is possible to electrically and thermally transfer between the copper foil on the surface and the copper base, and it is possible to reduce the distortion at the solder joint interface of each member and suppress the occurrence of cracks. In addition, such an electrode member 30a is, for example, arranged with the copper layer 33 facing the copper electrode side between the IGBT or FWD and the copper electrode, or between the IGBT or FWD and the insulating substrate. The same effect as that of the first embodiment can be obtained by arranging the electrodes toward the insulating substrate side, and the electrical connection in the planar direction of the electrode member 30a can be ensured by the copper layer 33. Is possible. As described above, the electrode member 30a according to the second embodiment is suitable for a place where conduction in the horizontal direction is required in addition to conduction in the vertical direction.

次に、第3の実施の形態について説明する。
図8は第3の実施の形態の電極用部材の模式図であって、(A)は平面図、(B)は(A)のd−d断面図である。なお、図8では、図3に示した要素と同一の要素については同一の符号を付し、その説明の詳細は省略する。
Next, a third embodiment will be described.
8A and 8B are schematic views of the electrode member according to the third embodiment, in which FIG. 8A is a plan view and FIG. 8B is a dd cross-sectional view of FIG. In FIG. 8, the same elements as those shown in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted.

第3の実施の形態の電極用部材30bは、図8に示すように、支持体31の両面に銅ポスト32の端部が突出している点で、第1の実施の形態の電極用部材30と相違する。
このような電極用部材30bは、例えば、セラミックス材の支持体31に形成した貫通孔31a内に銅ポスト32を形成した後、ケミカルエッチング技術を用いてその支持体31を表面からエッチングしていくことにより形成することができる。このようなケミカルエッチングに用いるエッチング液としては、例えば、金属に対してセラミックスを選択的にエッチングすることのできるフッ酸等を用いることが可能である。
As shown in FIG. 8, the electrode member 30 b according to the third embodiment is such that the ends of the copper posts 32 protrude from both surfaces of the support 31. Is different.
Such an electrode member 30b is formed, for example, by forming a copper post 32 in a through hole 31a formed in a ceramic support 31 and then etching the support 31 from the surface using a chemical etching technique. Can be formed. As an etchant used for such chemical etching, for example, hydrofluoric acid capable of selectively etching ceramics with respect to metal can be used.

この第3の実施の形態の電極用部材30bをパワーモジュールに用いることにより、第1の実施の形態と同様、これを挟んで設けられる各部材間を電気的・伝熱的に接続することが可能になるとともに、各部材の半田接合界面の歪を小さくしてクラックの発生を抑えることが可能になる。さらに、素子の発熱時に加わる熱応力を緩和することのできる半田層を、最大で銅ポスト32の端部が支持体31から突出する分だけ厚くすることができるため、半田接合界面のクラックの発生をいっそう抑えることが可能になる。   By using the electrode member 30b of the third embodiment for a power module, as in the first embodiment, it is possible to electrically and thermally transfer the members provided across the member. In addition, it becomes possible to reduce the strain at the solder joint interface of each member and suppress the occurrence of cracks. Furthermore, since the solder layer that can relieve the thermal stress applied during the heat generation of the element can be made as thick as the end of the copper post 32 protrudes from the support 31, the occurrence of cracks at the solder joint interface Can be further suppressed.

なお、ここでは電極用部材30bの両面側に銅ポスト32の端部が突出する構成としたが、いずれか一方の面側にのみ銅ポスト32の端部が突出する構成とすることも可能である。   Here, the end of the copper post 32 protrudes on both sides of the electrode member 30b. However, the end of the copper post 32 protrudes only on either side. is there.

次に、第4の実施の形態について説明する。
図9は第4の実施の形態の電極用部材の模式図であって、(A)は平面図、(B)は(A)のe−e断面図である。なお、図9では、図3に示した要素と同一の要素については同一の符号を付し、その説明の詳細は省略する。
Next, a fourth embodiment will be described.
9A and 9B are schematic views of the electrode member according to the fourth embodiment, in which FIG. 9A is a plan view and FIG. 9B is an ee cross-sectional view of FIG. In FIG. 9, the same elements as those shown in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted.

第4の実施の形態の電極用部材30cは、図9に示すように、その両面側で銅ポスト32の端部が支持体31から突出しており、さらに、その両面側の銅ポスト32の間が内部で絶縁されている点で、第1の実施の形態の電極用部材30と相違する。   As shown in FIG. 9, in the electrode member 30c of the fourth embodiment, the ends of the copper posts 32 protrude from the support 31 on both sides, and further, between the copper posts 32 on both sides. Is different from the electrode member 30 of the first embodiment in that it is insulated inside.

このような電極用部材30cは、例えば、次のようにして形成される。まず、支持体31の貫通孔31a内に銅ポスト32を形成した後、フッ酸等を用い、支持体31を一方の面側から選択的にエッチングし、その一方の面に銅ポスト32の端部を突出させる。そして、このように支持体31の一方の面にのみ銅ポスト32の端部を突出させたものを2つ用意し、それらの銅ポスト32の端部が突出してない他方の面間に絶縁板34を挟んで接着等する。これにより、図9に示した電極用部材30cを形成することができる。   Such an electrode member 30c is formed as follows, for example. First, after forming the copper post 32 in the through hole 31a of the support 31, the support 31 is selectively etched from one surface side using hydrofluoric acid or the like, and the end of the copper post 32 is formed on the one surface. Project the part. And two things which made the edge part of the copper post 32 protrude only on one surface of the support body 31 in this way are prepared, and an insulating plate is provided between the other surfaces where the edge part of those copper posts 32 does not protrude Adhesion or the like with 34 being sandwiched. Thereby, the electrode member 30c shown in FIG. 9 can be formed.

あるいは、支持体31の両主面から互いに貫通しない孔を形成し、該孔内に銅ポスト32を形成する。電極用部材30cをこのように形成することで、銅ポスト32を内部で1つの支持体31で絶縁した電極用部材30cを一体に形成することができ、上記のように絶縁板34を介して接着する等の手間が不要となる。なお、図9に示したように銅ポスト32の端部を支持体31から突出させる場合には、支持体31に銅ポスト32を形成した後、それをフッ酸等を用いて選択的にエッチングすればよい。   Or the hole which does not mutually penetrate from both the main surfaces of the support body 31 is formed, and the copper post 32 is formed in this hole. By forming the electrode member 30c in this manner, the electrode member 30c in which the copper post 32 is insulated by the single support 31 can be integrally formed, and the insulating plate 34 is interposed as described above. Eliminates the need for bonding. As shown in FIG. 9, when the end of the copper post 32 protrudes from the support 31, the copper post 32 is formed on the support 31 and then selectively etched using hydrofluoric acid or the like. do it.

この第4の実施の形態の電極用部材30cは、銅ポスト32が電極用部材30c内部で絶縁されているため、一方の主面にIGBT,FWDといった素子を配置し、他方の主面に放熱ベースとしての銅ベースを接合すれば、素子実装側と銅ベース側とを絶縁する絶縁基板として用いることが可能である。また、複数の銅ポスト32で接合を行い、さらに、銅ポスト32の端部が支持体31から突出する分だけ半田層を厚くすることができることから、各部材の半田接合界面の歪を小さくしてクラックの発生を抑えることが可能になる。   In the electrode member 30c of the fourth embodiment, since the copper post 32 is insulated inside the electrode member 30c, elements such as IGBT and FWD are arranged on one main surface, and heat is radiated on the other main surface. If a copper base as a base is joined, it can be used as an insulating substrate for insulating the element mounting side and the copper base side. In addition, since the solder layer can be thickened by joining the plurality of copper posts 32 and the end of the copper posts 32 projecting from the support 31, the distortion at the solder joint interface of each member can be reduced. It is possible to suppress the occurrence of cracks.

なお、ここでは電極用部材30cの両面側に銅ポスト32の端部が突出する構成としたが、いずれか一方の面側にのみ銅ポスト32の端部が突出する構成とすることも可能である。また、半田層は薄くなるが、いずれの面側にも銅ポスト32の端部が突出しない構成とすることも可能である。   Here, the end of the copper post 32 protrudes on both sides of the electrode member 30c. However, the end of the copper post 32 protrudes only on either side. is there. Further, although the solder layer is thinned, it is possible to adopt a configuration in which the end portion of the copper post 32 does not protrude on either side.

次に、第5の実施の形態について説明する。
図10は第5の実施の形態の電極用部材の模式図であって、(A)は平面図、(B)は(A)のf−f断面図である。なお、図10では、図3に示した要素と同一の要素については同一の符号を付し、その説明の詳細は省略する。
Next, a fifth embodiment will be described.
10A and 10B are schematic views of the electrode member according to the fifth embodiment, in which FIG. 10A is a plan view and FIG. 10B is an ff cross-sectional view of FIG. In FIG. 10, the same elements as those shown in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted.

第5の実施の形態の電極用部材30dは、図10に示すように、支持体31の両面に銅ポスト32の端部が突出しており、さらに、銅ポスト32が、中央部にあるものほどその断面積(径)が大きく、縁部に向かって断面積が次第に小さくなり、かつ、縁部ほどその数が密になるように形成されている点で、第1の実施の形態の電極用部材30と相違する。   In the electrode member 30d of the fifth embodiment, as shown in FIG. 10, the end of the copper post 32 protrudes on both surfaces of the support 31, and the copper post 32 is at the center. For the electrode of the first embodiment, the cross-sectional area (diameter) is large, the cross-sectional area is gradually reduced toward the edge, and the number of the edges is closer to the edge. It is different from the member 30.

このような電極用部材30dは、例えば、次のようにして形成される。まず、支持体31に、その中央部で径が大きく、縁部に向かうに従って径が小さくかつ数が密になるように貫通孔31aを形成し、その貫通孔31a内に銅ポスト32を形成する。そして、ケミカルエッチング技術を用いて支持体31を表面から選択的にエッチングしていく。これにより、図10に示した電極用部材30dを形成することができる。   Such an electrode member 30d is formed as follows, for example. First, a through hole 31a is formed in the support 31 so that the diameter is large at the center, the diameter is small and the number becomes dense toward the edge, and the copper post 32 is formed in the through hole 31a. . Then, the support 31 is selectively etched from the surface using a chemical etching technique. Thereby, the electrode member 30d shown in FIG. 10 can be formed.

図11は第5の実施の形態の電極用部材を用いた素子実装状態の一例を示す図である。
通常、部材間の半田接合界面に加わる熱応力は、その中央部よりも縁部の方が大きくなる。そのため、この第5の実施の形態の電極用部材30dのように、熱応力の小さい中央部に断面積の大きな銅ポスト32を形成するとともに、熱応力の大きい縁部に断面積の小さな銅ポスト32を数多く形成するようにすれば、これに部材70が半田接合された場合にも、半田層(図示せず。)を銅ポスト32の突出分だけ厚くすることができる効果と相俟って、半田接合界面でのクラックの発生を抑えることが可能になる。
FIG. 11 is a diagram illustrating an example of an element mounting state using the electrode member according to the fifth embodiment.
Usually, the thermal stress applied to the solder joint interface between members is larger at the edge than at the center. Therefore, as in the electrode member 30d of the fifth embodiment, the copper post 32 having a large cross-sectional area is formed at the central portion where the thermal stress is small, and the copper post having a small cross-sectional area is formed at the edge portion where the thermal stress is large. If many members 32 are formed, even when the member 70 is solder-bonded thereto, the solder layer (not shown) can be thickened by the protrusion of the copper post 32 in combination with the effect. It is possible to suppress the occurrence of cracks at the solder joint interface.

なお、この電極用部材30dをそのいずれか一方の面側にのみ銅ポスト32の端部が突出する構成とすることも可能である。また、いずれの面側にも銅ポスト32の端部が突出しない構成とすることも可能である。   The electrode member 30d may be configured such that the end of the copper post 32 protrudes only on one of the surfaces. It is also possible to adopt a configuration in which the end of the copper post 32 does not protrude on either side.

次に、第6の実施の形態について説明する。
図12は第6の実施の形態の電極用部材の模式図であって、(A)は平面図、(B)は(A)のg−g断面図である。なお、図12では、図3および図9に示した要素と同一の要素については同一の符号を付し、その説明の詳細は省略する。
Next, a sixth embodiment will be described.
12A and 12B are schematic views of the electrode member according to the sixth embodiment, in which FIG. 12A is a plan view and FIG. 12B is a gg cross-sectional view of FIG. In FIG. 12, the same elements as those shown in FIGS. 3 and 9 are denoted by the same reference numerals, and detailed description thereof is omitted.

第6の実施の形態の電極用部材30eは、図12に示すように、その一方の面側と他方の面側で支持体31から突出して形成されている銅ポスト32が、絶縁板34の表面に設けた銅層35a,35bによってそれぞれ絶縁板34の平面方向に電気的に接続されている点で、第4の実施の形態の電極用部材30cと相違する。   As shown in FIG. 12, the electrode member 30 e of the sixth embodiment has a copper post 32 formed so as to protrude from the support 31 on one surface side and the other surface side of the insulating plate 34. It differs from the electrode member 30c of the fourth embodiment in that the copper layers 35a and 35b provided on the surface are electrically connected in the plane direction of the insulating plate 34, respectively.

このような電極用部材30eは、例えば、第4の実施の形態の場合と同様にして、支持体31の一方の面にのみ銅ポスト32の端部を突出させたものを2つ用意した後、それらの銅ポスト32の端部が突出してない他方の面間に、表面に銅層35a,35bを形成した絶縁板34を挟むことで形成することができる。   For example, two electrode members 30e having two copper posts 32 projecting from only one surface of the support 31 are prepared in the same manner as in the fourth embodiment. The insulating plate 34 having the copper layers 35a and 35b formed on the surface is sandwiched between the other surfaces where the end portions of the copper posts 32 do not protrude.

図13は第6の実施の形態の電極用部材を用いた素子実装状態の一例を示す図である。なお、図13では、図6に示した要素と同一の要素については同一の符号を付し、その説明の詳細は省略する。   FIG. 13 is a diagram illustrating an example of an element mounting state using the electrode member according to the sixth embodiment. In FIG. 13, the same elements as those shown in FIG. 6 are denoted by the same reference numerals, and detailed description thereof is omitted.

このように第6の実施の形態の電極用部材30eは、一方の面側に存在する銅ポスト32間、他方の面側に存在する銅ポスト32間がそれぞれ銅層35a,35bで電気的に接続されている。そのため、これに直接IGBT10およびFWD50を半田接合して素子実装側において電気的な接続を確保することができるとともに、素子実装側と放熱ベース側とを絶縁する絶縁基板としてそのまま用いることができる。それにより、電極用部材30eの各面側の平面方向の電気的な接続を確保しつつ、これを挟んで半田接合される各部材間を伝熱的に接続し、各部材の半田接合界面の歪を小さくしてクラックの発生を抑えることが可能になる。   Thus, in the electrode member 30e of the sixth embodiment, the copper layers 35a and 35b are electrically connected between the copper posts 32 existing on one surface side and between the copper posts 32 existing on the other surface side, respectively. It is connected. Therefore, the IGBT 10 and the FWD 50 can be directly soldered to this to ensure electrical connection on the element mounting side, and can be used as it is as an insulating substrate for insulating the element mounting side and the heat dissipation base side. Thereby, while ensuring electrical connection in the planar direction on each surface side of the electrode member 30e, the members that are solder-bonded across this are thermally connected, and the solder-bonding interface of each member It is possible to reduce the strain and suppress the occurrence of cracks.

なお、ここでは電極用部材30eの両面側に銅ポスト32の端部が突出する構成としたが、いずれか一方の面側にのみ銅ポスト32が突出する構成とすることも可能である。また、いずれの面側にも銅ポスト32の端部が突出しない構成とすることも可能である。さらに、ここでは絶縁板34の両面に銅層35a,35bを形成する構成としたが、いずれか一方の面にのみ銅層35aまたは銅層35bを形成する構成とすることも可能である。   Here, the end of the copper post 32 protrudes on both sides of the electrode member 30e. However, the copper post 32 may protrude only on either side. It is also possible to adopt a configuration in which the end of the copper post 32 does not protrude on either side. Furthermore, although it was set as the structure which forms the copper layers 35a and 35b on both surfaces of the insulating board 34 here, it is also possible to set it as the structure which forms the copper layer 35a or the copper layer 35b only in any one surface.

次に、第7の実施の形態について説明する。
図14は第7の実施の形態の電極用部材の模式図であって、(A)は平面図、(B)は(A)のh−h断面図である。なお、図14では、図3および図9に示した要素と同一の要素については同一の符号を付し、その説明の詳細は省略する。
Next, a seventh embodiment will be described.
14A and 14B are schematic views of the electrode member according to the seventh embodiment, in which FIG. 14A is a plan view and FIG. 14B is a cross-sectional view taken along line hh of FIG. In FIG. 14, the same elements as those shown in FIGS. 3 and 9 are denoted by the same reference numerals, and detailed description thereof is omitted.

第7の実施の形態の電極用部材30fは、図14に示すように、その一方の面側では支持体31から銅ポスト32の端部が突出し、他方の面側では支持体31から銅ポスト32の端部が突出せずにそれらが銅層36によって絶縁板34の平面方向に電気的に接続されている点で、第4の実施の形態の電極用部材30cと相違する。   As shown in FIG. 14, in the electrode member 30f of the seventh embodiment, the end of the copper post 32 protrudes from the support 31 on one surface side, and the copper post from the support 31 on the other surface side. 32 is different from the electrode member 30c of the fourth embodiment in that the end portions of 32 are not projected and are electrically connected by the copper layer 36 in the plane direction of the insulating plate 34.

このような電極用部材30fは、例えば、次のようにして形成される。まず、支持体31の貫通孔31a内に銅ポスト32を形成する。その際は、例えば第2の実施の形態でも述べたように、貫通孔31aの形成後、支持体31の一方の面側に銅箔を貼り付けたり無電解メッキを行ったりすることで銅層36を形成し、それをシードにして電解メッキにより貫通孔31a内を銅で充填して銅ポスト32を形成する。また、支持体31を溶融状態の銅に含浸する方法を用いてもよい。そして、支持体31の一方の面に銅層36を形成したものと、一方の面にのみ銅ポスト32の端部を突出させたものとを用意し、それらの銅ポスト32の端部が突出してない面間に絶縁板34を挟む。これにより、図14に示した電極用部材30fを形成することができる。   Such an electrode member 30f is formed as follows, for example. First, the copper post 32 is formed in the through hole 31 a of the support 31. In that case, as described in the second embodiment, for example, after forming the through hole 31a, a copper layer is attached to one surface side of the support 31 by performing electroless plating. 36 is used as a seed, and the copper post 32 is formed by filling the inside of the through hole 31a with copper by electrolytic plating. Alternatively, a method of impregnating the support 31 with molten copper may be used. And what prepared the copper layer 36 in one side of the support body 31, and what made the edge part of the copper post 32 protrude only in one surface, and the edge part of those copper posts 32 protruded. An insulating plate 34 is sandwiched between the surfaces that are not. Thereby, the electrode member 30f shown in FIG. 14 can be formed.

図15は第7の実施の形態の電極用部材を用いた素子実装状態の一例を示す図である。なお、図15では、図6に示した要素と同一の要素については同一の符号を付し、その説明の詳細は省略する。   FIG. 15 is a diagram illustrating an example of an element mounting state using the electrode member according to the seventh embodiment. In FIG. 15, the same elements as those shown in FIG. 6 are denoted by the same reference numerals, and detailed description thereof is omitted.

この第7の実施の形態の電極用部材30fは、IGBT10,FWD50と銅ベース60との間に設け、素子実装側で電気的な接続を確保するとともに、素子実装側と放熱ベース側とを絶縁する絶縁基板としてそのまま用いることができる。銅層36を回路パターンとして形成してもよい。   The electrode member 30f according to the seventh embodiment is provided between the IGBT 10 and the FWD 50 and the copper base 60 to ensure electrical connection on the element mounting side and to insulate the element mounting side from the heat dissipation base side. It can be used as it is as an insulating substrate. The copper layer 36 may be formed as a circuit pattern.

さらに、この電極用部材30fのように銅ポスト32を突出させた構造とした場合には、これと銅ベース60との間に冷媒を通す冷却機構を設けることも可能である。
図16は冷却機構を備えた電極用部材の模式図であって、(A)は平面図、(B)は(A)のi−i断面図である。なお、図16では、図3,図6および図9に示した要素と同一の要素については同一の符号を付し、その説明の詳細は省略する。
Further, when the copper post 32 is protruded like the electrode member 30f, it is possible to provide a cooling mechanism for passing a refrigerant between the copper post 32 and the copper post 60.
16A and 16B are schematic views of an electrode member provided with a cooling mechanism, in which FIG. 16A is a plan view and FIG. 16B is a cross-sectional view taken along line ii of FIG. In FIG. 16, the same elements as those shown in FIGS. 3, 6, and 9 are denoted by the same reference numerals, and detailed description thereof is omitted.

例えば、第7の実施の形態の電極用部材30fをパワーモジュールに用いた場合、この図16に示すように、電極用部材30fと銅ベース60の間の銅ポスト32の突出部分に残る空間に冷媒80を通して除熱する冷却機構を設けるようにする。冷却機構は、例えば、冷媒80として水等を用い、そのような冷媒80がパワーモジュール外部から導入されて銅ポスト32の突出部分を経て再びパワーモジュール外部へと排出されるような構成とすることができる。これにより、パワーモジュール内の熱を冷媒80の利用により直接的に取り除くことができるようになるため、放熱をより効果的に行い、半田接合界面の歪を小さくしてクラックの発生を抑えることが可能になる。   For example, when the electrode member 30f of the seventh embodiment is used in a power module, as shown in FIG. 16, in the space remaining in the protruding portion of the copper post 32 between the electrode member 30f and the copper base 60 A cooling mechanism for removing heat through the refrigerant 80 is provided. The cooling mechanism is configured to use, for example, water or the like as the refrigerant 80, such that the refrigerant 80 is introduced from the outside of the power module and discharged again through the protruding portion of the copper post 32. Can do. As a result, the heat in the power module can be directly removed by using the refrigerant 80, so that heat can be radiated more effectively, and the distortion at the solder joint interface can be reduced to suppress the occurrence of cracks. It becomes possible.

ここでは第7の実施の形態の電極用部材30fをパワーモジュールに用いた場合を例にして述べたが、上記の冷却機構は、一方の面側に銅ポスト32の端部が突出する構造を有する電極用部材30b,30c,30d,30eをパワーモジュールに用いた場合にも同様に適用可能である。   Although the case where the electrode member 30f of the seventh embodiment is used for a power module is described as an example here, the cooling mechanism described above has a structure in which the end of the copper post 32 protrudes on one surface side. The same can be applied to the case where the electrode members 30b, 30c, 30d, and 30e are used in a power module.

このように、上記電極用部材30,30a〜30fによれば、必要に応じて冷却機構を適用し、効率的に放熱を行いつつ半田接合界面における熱応力を緩和することができ、歪の発生を抑えてヒートサイクル耐量やパワーサイクル耐量の向上を図ることができる。さらに、エミッタ電極等の側に電極用部材30,30a〜30fを設けることで、アルミワイヤボンディングの場合に比べて導電部分の表面積および体積を増すことができ、放熱効果を高めるとともに、電気抵抗を小さくすることができる。それにより、発熱や素子の特性低下を抑えることができるようになる。また、電極用部材30,30a〜30fは、必要に応じてその支持体31部分を厚くしてもよく、例えばそれによって従来の銅ベースと置き換えることも可能である。   As described above, according to the electrode members 30 and 30a to 30f, a cooling mechanism can be applied as necessary, and the thermal stress at the solder joint interface can be relaxed while efficiently radiating heat, and distortion is generated. It is possible to improve heat cycle resistance and power cycle resistance by suppressing. Furthermore, by providing the electrode members 30, 30a to 30f on the emitter electrode side, the surface area and volume of the conductive portion can be increased as compared with the case of aluminum wire bonding, and the heat dissipation effect is enhanced and the electric resistance is reduced. Can be small. As a result, it is possible to suppress heat generation and deterioration of element characteristics. Further, the electrode members 30 and 30a to 30f may be thickened on the support 31 as necessary, and for example, can be replaced with a conventional copper base.

なお、以上の説明では、各部材間の接合に半田を用いた場合について述べたが、半田のほか、熱や光によって硬化する導電性ペースト等を用いることも可能であり、この場合も上記各電極用部材30,30a〜30fを用いることにより、放熱とともに、導電性ペースト接合界面の歪を小さくしてクラックの発生を抑えることが可能である。   In the above description, the case where solder is used for bonding between the members has been described. However, in addition to the solder, a conductive paste that is cured by heat or light can also be used. By using the electrode members 30 and 30a to 30f, it is possible to reduce the strain at the conductive paste bonding interface and suppress the generation of cracks as well as heat dissipation.

また、以上の説明では、各電極用部材30,30a〜30fを構成するための金属材料として銅を用いるようにしたが、比較的熱伝導率が高いその他の導電性の金属、例えばアルミニウムを用いるようにしてもよい。   In the above description, copper is used as the metal material for constituting each of the electrode members 30, 30a to 30f. However, other conductive metals having relatively high thermal conductivity, such as aluminum, are used. You may do it.

また、以上の説明では、ひとつのパワーモジュールに1種類の電極用部材を用いたが、勿論、ひとつのパワーモジュールに複数種の電極用部材を用いるようにしてもよい。   In the above description, one type of electrode member is used for one power module. Of course, a plurality of types of electrode members may be used for one power module.

10 IGBT
10a エミッタ電極
10b ゲート電極
20 絶縁基板
21,22 銅箔
30,30a,30b,30c,30d,30e,30f 電極用部材
31 支持体
31a 貫通孔
32 銅ポスト
33,35a,35b,36 銅層
34 絶縁板
40 銅電極
50 FWD
60 銅ベース
70 部材
80 冷媒
10 IGBT
10a emitter electrode 10b gate electrode 20 insulating substrate 21, 22 copper foil 30, 30a, 30b, 30c, 30d, 30e, 30f electrode member 31 support 31a through hole 32 copper post 33, 35a, 35b, 36 copper layer 34 insulation Plate 40 Copper electrode 50 FWD
60 Copper base 70 Member 80 Refrigerant

Claims (20)

表面に電極を備えた半導体素子を有する半導体装置において、
主面間を貫通する複数の貫通孔を有するセラミックス材を材料とする絶縁性の支持体と、
複数の前記貫通孔それぞれに配置された金属ポストと、
複数の各前記金属ポストと前記半導体素子の前記電極とを電気的に接続する接合層と、を備え、
前記支持体の主面上に前記金属ポストと接続された導体層が形成されており、複数の各前記金属ポストは、前記支持体を介して互いに分離していることを特徴とする半導体装置。
In a semiconductor device having a semiconductor element with an electrode on the surface,
An insulating support made of a ceramic material having a plurality of through holes penetrating between main surfaces;
A metal post disposed in each of the plurality of through holes;
A plurality of the metal posts and a bonding layer that electrically connects the electrodes of the semiconductor element,
A semiconductor device, wherein a conductor layer connected to the metal post is formed on a main surface of the support, and the plurality of metal posts are separated from each other via the support.
表面に電極を備えた半導体素子を有する半導体装置において、
主面間を貫通する複数の貫通孔を有するセラミックス材を材料とする絶縁性の支持体と前記各貫通孔に配置されて前記貫通孔の内面と接合された金属ポストとからなる電極用部材と、
前記電極用部材と前記半導体素子の前記電極とを電気的に接続する接合層と、を備え、
前記金属ポストが銅を材料とし、前記支持体の主面上に前記金属ポストと接続された導体層が形成されていることを特徴とする半導体装置。
In a semiconductor device having a semiconductor element with an electrode on the surface,
An electrode member comprising an insulating support made of a ceramic material having a plurality of through holes penetrating between main surfaces, and a metal post disposed in each through hole and joined to the inner surface of the through hole; ,
A bonding layer that electrically connects the electrode member and the electrode of the semiconductor element,
A semiconductor device, wherein the metal post is made of copper, and a conductor layer connected to the metal post is formed on a main surface of the support.
前記導体層が、前記支持体の前記半導体素子側の主面に形成されていることを特徴とする請求項1または2に記載の半導体装置。   The semiconductor device according to claim 1, wherein the conductor layer is formed on a main surface of the support on the semiconductor element side. 前記電極が前記導体層に接合されていることを特徴とする請求項3記載の半導体装置。   The semiconductor device according to claim 3, wherein the electrode is bonded to the conductor layer. 前記導体層が、前記支持体の前記半導体素子の反対側の主面に形成されていることを特徴とする請求項1または2に記載の半導体装置。   The semiconductor device according to claim 1, wherein the conductor layer is formed on a main surface of the support opposite to the semiconductor element. 前記導体層に接合されている接続導体を有することを特徴とする請求項5記載の半導体装置。   6. The semiconductor device according to claim 5, further comprising a connection conductor joined to the conductor layer. 前記接合層が半田層であることを特徴とする請求項1または2に記載の半導体装置。   The semiconductor device according to claim 1, wherein the bonding layer is a solder layer. 前記金属ポストの端部が、前記支持体の少なくとも一方の主面より突出していることを特徴とする請求項1または2に記載の半導体装置。   The semiconductor device according to claim 1, wherein an end of the metal post protrudes from at least one main surface of the support. 前記支持体から突出する前記金属ポストと接合面との間に冷媒を介在させることを特徴とする請求項8記載の半導体装置。   9. The semiconductor device according to claim 8, wherein a coolant is interposed between the metal post projecting from the support and the joint surface. 前記金属ポストの端部が、前記支持体の主面より突出していないことを特徴とする請求項1または2に記載の半導体装置。   The semiconductor device according to claim 1, wherein an end of the metal post does not protrude from a main surface of the support. 少なくとも一方の主面に、前記半導体素子の他方の主面の電極が接続される導体パターンを有する絶縁基板を備え、
前記半導体素子の他方の主面の電極と前記導体パターンとの間に前記電極用部材が接合されていることを特徴とする請求項1または2に記載の半導体装置。
An insulating substrate having a conductor pattern to which an electrode of the other main surface of the semiconductor element is connected to at least one main surface;
The semiconductor device according to claim 1, wherein the electrode member is bonded between the electrode on the other main surface of the semiconductor element and the conductor pattern.
前記絶縁基板の他方の主面に形成された前記導体パターンと、前記半導体素子に生じる熱を放熱する放熱ベースとの間に前記電極用部材が接合されていることを特徴とする請求項11記載の半導体装置。   12. The electrode member is joined between the conductor pattern formed on the other main surface of the insulating substrate and a heat dissipation base that dissipates heat generated in the semiconductor element. Semiconductor device. 前記半導体素子は、絶縁ゲートバイポーラトランジスタであって、前記電極は、前記絶縁ゲートバイポーラトランジスタのエミッタ電極、コレクタ電極のうち少なくとも1つであることを特徴とする請求項1乃至12のいずれかに記載の半導体装置。   13. The semiconductor device according to claim 1, wherein the semiconductor element is an insulated gate bipolar transistor, and the electrode is at least one of an emitter electrode and a collector electrode of the insulated gate bipolar transistor. Semiconductor device. 前記半導体素子は、ダイオードであって、前記電極は、前記ダイオードのアノード電極、カソード電極のうち少なくとも1つであることを特徴とする請求項1乃至12のいずれかに記載の半導体装置。   The semiconductor device according to claim 1, wherein the semiconductor element is a diode, and the electrode is at least one of an anode electrode and a cathode electrode of the diode. 半導体装置の電極に接合される電極用部材の製造方法において、
主面間を貫通する複数の貫通孔を有するセラミックス材を材料とする絶縁性の支持体の前記各貫通孔に金属ポストを挿入し、前記支持体と前記金属ポストとを接着、嵌合により一体的に形成し、前記電極と接合される前記支持体の主面上に導体層を形成することを特徴とする電極用部材の製造方法。
In a method for manufacturing an electrode member to be bonded to an electrode of a semiconductor device,
A metal post is inserted into each through-hole of an insulating support made of a ceramic material having a plurality of through-holes penetrating between main surfaces, and the support and the metal post are bonded and fitted together. And forming a conductor layer on the main surface of the support to be joined to the electrode.
半導体装置の電極に接合される電極用部材の製造方法において、
主面間を貫通する複数の貫通孔を有するセラミックス材を材料とする絶縁性の支持体の一方の主面に銅層を形成し、前記銅層をシードにして電解メッキにより前記各貫通孔の貫通孔内を銅で充填することによって、前記各貫通孔に金属ポストを形成し、前記電極と接合される前記支持体の主面上に導体層を形成することを特徴とする電極用部材の製造方法。
In a method for manufacturing an electrode member to be bonded to an electrode of a semiconductor device,
A copper layer is formed on one main surface of an insulating support made of a ceramic material having a plurality of through holes penetrating between the main surfaces, and each of the through holes is electroplated using the copper layer as a seed. A metal post is formed in each through hole by filling the inside of the through hole with copper, and a conductor layer is formed on the main surface of the support to be joined to the electrode. Production method.
表面に電極を備えた半導体素子を有する半導体装置において、
主面間を貫通する複数の貫通孔を有するセラミックス材を材料とする絶縁性の支持体と、
複数の前記貫通孔それぞれに配置された金属ポストと、
複数の各前記金属ポストと前記半導体素子の前記電極とを接合する半田層と、を備え、
複数の各前記金属ポストは、前記支持体を介して互いに分離しており、前記金属ポストの端部が、前記支持体の少なくとも一方の主面より突出し、前記支持体から突出する前記金属ポストと接合面との間に冷媒を介在させることを特徴とする半導体装置。
In a semiconductor device having a semiconductor element with an electrode on the surface,
An insulating support made of a ceramic material having a plurality of through holes penetrating between main surfaces;
A metal post disposed in each of the plurality of through holes;
A solder layer that joins each of the plurality of metal posts and the electrode of the semiconductor element,
Each of the plurality of metal posts is separated from each other via the support, and an end of the metal post protrudes from at least one main surface of the support, and the metal post protrudes from the support A semiconductor device, wherein a refrigerant is interposed between the bonding surface and the semiconductor device.
表面に電極を備えた半導体素子を有する半導体装置において、
主面間を貫通する複数の貫通孔を有するセラミックス材を材料とする絶縁性の支持体と前記各貫通孔に配置されて前記貫通孔の内面と接合された金属ポストとからなる電極用部材と、
前記電極用部材と前記半導体素子の前記電極とを接合する半田層と、を備え、
前記金属ポストが銅を材料とし、前記金属ポストの端部が、前記支持体の少なくとも一方の主面より突出し、前記支持体から突出する前記金属ポストと接合面との間に冷媒を介在させることを特徴とする半導体装置。
In a semiconductor device having a semiconductor element with an electrode on the surface,
An electrode member comprising an insulating support made of a ceramic material having a plurality of through holes penetrating between main surfaces, and a metal post disposed in each through hole and joined to the inner surface of the through hole; ,
A solder layer for joining the electrode member and the electrode of the semiconductor element,
The metal post is made of copper, the end of the metal post protrudes from at least one main surface of the support, and a coolant is interposed between the metal post protruding from the support and the joint surface. A semiconductor device characterized by the above.
半導体装置の電極に接合される電極用部材の製造方法において、
主面間を貫通する複数の貫通孔を有するセラミックス材を材料とする絶縁性の支持体の前記各貫通孔に金属ポストを挿入し、前記支持体と前記金属ポストとを接着、嵌合により一体的に形成し、前記金属ポストの端部が、前記支持体の少なくとも一方の主面より突出し、前記支持体から突出する前記金属ポストと接合面との間に冷媒を介在させることを特徴とする電極用部材の製造方法。
In a method for manufacturing an electrode member to be bonded to an electrode of a semiconductor device,
A metal post is inserted into each through-hole of an insulating support made of a ceramic material having a plurality of through-holes penetrating between main surfaces, and the support and the metal post are bonded and fitted together. The end of the metal post protrudes from at least one main surface of the support, and a coolant is interposed between the metal post protruding from the support and the joint surface. Manufacturing method of member for electrodes.
半導体装置の電極に接合される電極用部材の製造方法において、
主面間を貫通する複数の貫通孔を有するセラミックス材を材料とする絶縁性の支持体の一方の主面に銅層を形成し、前記銅層をシードにして電解メッキにより前記各貫通孔の貫通孔内を銅で充填することによって、前記各貫通孔に金属ポストを形成し、前記金属ポストの端部が、前記支持体の少なくとも一方の主面より突出し、前記支持体から突出する前記金属ポストと接合面との間に冷媒を介在させることを特徴とする電極用部材の製造方法。
In a method for manufacturing an electrode member to be bonded to an electrode of a semiconductor device,
A copper layer is formed on one main surface of an insulating support made of a ceramic material having a plurality of through holes penetrating between the main surfaces, and each of the through holes is electroplated using the copper layer as a seed. By filling the inside of the through hole with copper, a metal post is formed in each through hole, and the end of the metal post protrudes from at least one main surface of the support and protrudes from the support A method for producing an electrode member, wherein a refrigerant is interposed between a post and a joint surface.
JP2013154081A 2013-07-25 2013-07-25 Semiconductor device and method for manufacturing electrode member Expired - Fee Related JP5619232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013154081A JP5619232B2 (en) 2013-07-25 2013-07-25 Semiconductor device and method for manufacturing electrode member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013154081A JP5619232B2 (en) 2013-07-25 2013-07-25 Semiconductor device and method for manufacturing electrode member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010195522A Division JP5485833B2 (en) 2010-09-01 2010-09-01 Semiconductor device, electrode member, and method for manufacturing electrode member

Publications (2)

Publication Number Publication Date
JP2013214783A true JP2013214783A (en) 2013-10-17
JP5619232B2 JP5619232B2 (en) 2014-11-05

Family

ID=49587858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013154081A Expired - Fee Related JP5619232B2 (en) 2013-07-25 2013-07-25 Semiconductor device and method for manufacturing electrode member

Country Status (1)

Country Link
JP (1) JP5619232B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180066133A (en) * 2015-10-07 2018-06-18 세람테크 게엠베하 Circuits cooled on both sides
CN109976423A (en) * 2017-12-28 2019-07-05 清华大学 A kind of interface resistance regulation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11101193B2 (en) 2018-11-13 2021-08-24 Toyota Motor Engineering & Manufacturing North America, Inc. Power electronics modules including integrated jet cooling

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419971A (en) * 1990-05-11 1992-01-23 Canon Inc Electrically connecting member and electric circuit member
JP2003109689A (en) * 2001-09-30 2003-04-11 Kenichiro Miyahara Conductive complex
JP2003234447A (en) * 2002-02-08 2003-08-22 Toyota Central Res & Dev Lab Inc Circuit and method for mounting semiconductor element
JP2003303930A (en) * 2002-04-10 2003-10-24 Toyota Motor Corp Semiconductor device
US20040038496A1 (en) * 2000-07-26 2004-02-26 Sangmin Lee Method and system for bonding a semiconductor chip onto a carrier using micro-pins
JP2004160549A (en) * 2002-10-24 2004-06-10 Kyocera Corp Ceramic-metal complex and high heat-conductive substrate for heat radiation using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419971A (en) * 1990-05-11 1992-01-23 Canon Inc Electrically connecting member and electric circuit member
US20040038496A1 (en) * 2000-07-26 2004-02-26 Sangmin Lee Method and system for bonding a semiconductor chip onto a carrier using micro-pins
JP2003109689A (en) * 2001-09-30 2003-04-11 Kenichiro Miyahara Conductive complex
JP2003234447A (en) * 2002-02-08 2003-08-22 Toyota Central Res & Dev Lab Inc Circuit and method for mounting semiconductor element
JP2003303930A (en) * 2002-04-10 2003-10-24 Toyota Motor Corp Semiconductor device
JP2004160549A (en) * 2002-10-24 2004-06-10 Kyocera Corp Ceramic-metal complex and high heat-conductive substrate for heat radiation using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180066133A (en) * 2015-10-07 2018-06-18 세람테크 게엠베하 Circuits cooled on both sides
JP2018531516A (en) * 2015-10-07 2018-10-25 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツングCeramTec GmbH Two-sided cooling circuit
KR102541854B1 (en) * 2015-10-07 2023-06-08 세람테크 게엠베하 Circuit cooled on both sides
CN109976423A (en) * 2017-12-28 2019-07-05 清华大学 A kind of interface resistance regulation method
CN109976423B (en) * 2017-12-28 2020-09-08 清华大学 Interface thermal resistance regulation and control method

Also Published As

Publication number Publication date
JP5619232B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP4613077B2 (en) Semiconductor device, electrode member, and method for manufacturing electrode member
EP3107120B1 (en) Power semiconductor module
CN108133915B (en) Power module with built-in power device and double-sided heat dissipation function and manufacturing method thereof
JP4438489B2 (en) Semiconductor device
US8569890B2 (en) Power semiconductor device module
JP4973059B2 (en) Semiconductor device and power conversion device
EP3104412B1 (en) Power semiconductor module
JP5678884B2 (en) Power converter
US9159715B2 (en) Miniaturized semiconductor device
EP3157053A1 (en) Power module
CN110637366B (en) Semiconductor device and method for manufacturing the same
US9524929B2 (en) Semiconductor module package and method of manufacturing the same
JP6149932B2 (en) Semiconductor device
JP2021521628A (en) Power modules and how to manufacture power modules
US20150270201A1 (en) Semiconductor module package and method of manufacturing the same
JP5619232B2 (en) Semiconductor device and method for manufacturing electrode member
JP2017174951A (en) Semiconductor device
JP2017112131A (en) Semiconductor module and semiconductor device
JP5485833B2 (en) Semiconductor device, electrode member, and method for manufacturing electrode member
JP2006190728A (en) Electric power semiconductor device
KR20180087330A (en) Metal slug for double sided cooling of power module
JP5682511B2 (en) Semiconductor module
JP2015149363A (en) semiconductor module
JP2019067950A (en) Semiconductor device manufacturing method
JP2009206347A (en) Power module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140916

R150 Certificate of patent or registration of utility model

Ref document number: 5619232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees