JP2013214707A - 透過型光学素子、レーザチャンバ、増幅段レーザ、発振段レーザ、およびレーザ装置 - Google Patents

透過型光学素子、レーザチャンバ、増幅段レーザ、発振段レーザ、およびレーザ装置 Download PDF

Info

Publication number
JP2013214707A
JP2013214707A JP2012270932A JP2012270932A JP2013214707A JP 2013214707 A JP2013214707 A JP 2013214707A JP 2012270932 A JP2012270932 A JP 2012270932A JP 2012270932 A JP2012270932 A JP 2012270932A JP 2013214707 A JP2013214707 A JP 2013214707A
Authority
JP
Japan
Prior art keywords
laser
optical element
window
axis
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012270932A
Other languages
English (en)
Inventor
Takahito Kumazaki
貴仁 熊崎
Osamu Wakabayashi
理 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gigaphoton Inc
Original Assignee
Gigaphoton Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gigaphoton Inc filed Critical Gigaphoton Inc
Priority to JP2012270932A priority Critical patent/JP2013214707A/ja
Priority to US13/772,551 priority patent/US20130235893A1/en
Publication of JP2013214707A publication Critical patent/JP2013214707A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/034Optical devices within, or forming part of, the tube, e.g. windows, mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3066Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state involving the reflection of light at a particular angle of incidence, e.g. Brewster's angle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • H01S3/08009Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2325Multi-pass amplifiers, e.g. regenerative amplifiers
    • H01S3/2333Double-pass amplifiers

Abstract

【課題】光学素子の高出力レーザ光に対する耐性を改善する。
【解決手段】透過型光学素子は、結晶構造上のc軸を備え、レーザ光が入射する面を備えた透過型光学素子であって、前記レーザ光の入射面内において前記c軸が前記レーザ光の入射方向に対して傾くように配置されてもよい。もしくは、前記c軸が、前記面と実質的に平行であって、前記レーザ光の入射面に対して実質的に垂直であるように配置されてもよい。
【選択図】図11

Description

本開示は、透過型光学素子、レーザチャンバ、増幅段レーザ、発振段レーザ、およびレーザ装置に関する。
半導体集積回路の微細化、高集積化につれて、半導体露光装置(以下、「露光装置」という)においては解像力の向上が要請されている。このため露光用光源から放出される光の短波長化が進められている。露光用光源には、従来の水銀ランプに代わってガスレーザ装置が用いられている。現在、露光用のガスレーザ装置としては、波長248nmの紫外線を放出するKrFエキシマレーザ装置ならびに、波長193nmの紫外線を放出するArFエキシマレーザ装置が用いられている。
次世代の露光技術としては、露光装置側の露光用レンズとウエハ間を液体で満たして、屈折率を変えることによって、露光用光源の見かけの波長を短波長化する液浸露光が研究されている。ArFエキシマレーザ装置を露光用光源として液侵露光が行われた場合は、ウエハには水中における波長134nmの紫外光が照射される。この技術をArF液浸露光(又はArF液浸リソグラフィー)という。
KrFエキシマレーザ装置やArFエキシマレーザ装置の自然発振幅は約350〜400pmと広い。そのため、これらの投影レンズが使用されると色収差が発生して解像力が低下する。そこで、色収差が無視できる程度となるまでガスレーザ装置から放出されるレーザビームのスペクトル線幅(スペクトル幅)を狭帯域化する必要がある。このためガスレーザ装置のレーザ共振器内には狭帯域化素子(エタロンやグレーティング等)を有する狭帯域化モジュール(Line Narrow Module)が設けられ、スペクトル幅の狭帯域化が実現されている。このようにスペクトル幅が狭帯域化されるレーザ装置を狭帯域化レーザ装置という。
米国特許第6868106号明細書 米国特許出願公開第2011/0158281号明細書
概要
本開示の一態様による透過型光学素子は、結晶構造上のc軸を備え、レーザ光が入射する面を備えた透過型光学素子であって、前記レーザ光の入射面内において前記c軸が前記レーザ光の入射方向に対して傾くように配置されてもよい。
また、本開示の他の態様による透過型光学素子は、結晶構造上のc軸を備え、レーザ光が入射する面を備えた透過型光学素子であって、前記c軸が、前記面と実質的に平行であって、前記レーザ光の入射面に対して実質的に垂直であるように配置されてもよい。
本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、MgF結晶の単結晶構造を模式的に示す。 図2は、MgF結晶が用いられたウィンドウ一例を模式的に示す。 図3は、図2に示されるウィンドウの偏光特性を評価する評価装置の一例を示す。 図4は、図3に示される評価装置におけるウィンドウの配置例を示す。 図5は、図4に示されるウィンドウをレーザ光の入射面で切断した際の構成を概略的に示す。 図6は、図3に示される評価装置におけるローションプリズムおよびエネルギーセンサの配置例を示す。 図7は、図6に示されるローションプリズムを回転した際にエネルギーセンサで計測されるレーザ光のパルスエネルギー値を示す。 図8は、図3に示されるウィンドウを法線上から見た際の構成を概略的に示す。 図9は、図3に示される評価装置においてウィンドウを回転方向に360°回転させた過程に得られた偏光度特性を示す。 図10は、実施の形態1にかかるウィンドウをレーザ光の入射面を含む面で切断した際の断面構造を示す。 図11は、図10に示されるウィンドウを法線上から見た際の構成を示す。 図12は、実施の形態2にかかるウィンドウをレーザ光の入射面を含む面で切断した際の断面構造を示す。 図13は、図12に示されるウィンドウを法線上から見た際の構成を示す。 図14は、実施の形態3にかかる安定共振器を備えた増幅段レーザの構成を概略的に示す。 図15は、実施の形態4にかかるリング共振器を備えた増幅段レーザの構成を概略的に示す。 図16は、実施の形態4にかかる2ステージ型のレーザ装置の構成を概略的に示す。 図17は、実施の形態6にかかる検出器とパルスストレッチャとを含むレーザ装置の構成を概略的に示す。
実施の形態
以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示の一例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
以下の説明では、下記目次の流れに沿って説明する。
目次
1.概要
2.用語の説明
3.MgF結晶を用いた透過型光学素子
3.1 MgF結晶の構造と物性値
3.2 MgF結晶が用いられた透過型光学素子の例(光学ウィンドウ)
3.3 MgFウィンドウの偏光特性評価
3.3.1 評価装置
3.3.2 偏光度の計測方法
3.3.3 偏光特性評価結果
4.MgFウィンドウの第1例(実施の形態1)
5.MgFウィンドウの第2例(実施の形態2)
6.MgF結晶による透過型光学素子を備えた増幅段レーザの第1例(実施の形態3)
7.MgF結晶による透過型光学素子を備えた増幅段レーザの第2例(実施の形態4)
8.MgF結晶による透過型光学素子を備えたレーザ装置の第1例(実施の形態5)
9.MgF結晶による透過型光学素子を備えたレーザ装置の第2例(実施の形態6)
1.概要
実施の形態の概要について、以下に説明する。
従来のエキシマレーザでは、レーザチャンバに取り付ける光学ウィンドウの材料にCaF結晶のウィンドウ(以下、CaFウィンドウという)が使用されていた。しかしながら、CaFウィンドウは、高出力の紫外線レーザ光によって劣化し易い。劣化したCaFウィンドウは、熱を吸収して複屈折を生じさせる。そのため、CaFウィンドウを用いたエキシマレーザでは、出力レーザ光の偏光度変化や出力の低下などが生じる場合があった。
一方、MgF結晶は、CaF結晶に比べ、原理的にバンドギャップが大きい。そのため、MgF結晶が用いられた光学ウィンドウ(以下、MgFウィンドウという)の方がCaFウィンドウに比べて、ArFレーザに対する耐性が高い。また、MgF結晶は、a軸とc軸の結晶格子の長さが異なる正方晶系の結晶構造を有しているため、複屈折性を備えている。以下の実施の形態では、このようなMgF結晶が、レーザチャンバの光学ウィンドウやその他の透過型光学素子に用いられる。
2.用語の説明
つぎに、本開示において使用される用語を、以下のように定義する。
「光路」とは、レーザ光が通過する経路である。「光路長」とは、実際に光が通過する距離と、光が通過した媒質の屈折率の積であってよい。「ビーム断面」とは、レーザ光の進行方向に対して垂直な面で一定以上の光強度となる領域であってよい。「光軸」とは、レーザ光の進行方向に沿ってレーザ光のビーム断面の略中心を通る軸であってもよい。
レーザ光の光路において、レーザ光の生成源側を「上流」とし、レーザ光の到達目標側を「下流」とする。「ビーム拡大」とは、レーザ光が光路に沿って下流へ向かうに連れてビーム断面が徐々に広がることをいう。このようにビーム拡大するレーザ光は、拡大ビームとも称される。「ビーム縮小」とは、レーザ光が光路に沿って下流へ向かうに連れてビーム断面が徐々に狭まることをいう。このようにビーム縮小するレーザ光は、縮小ビームとも称される。
「所定繰返し周波数」とは、略所定の繰返し周波数であればよく、必ずしも一定の繰返し周波数でなくてもよい。「バースト運転」とは、所定繰返し周波数でパルス状のレーザ光を出力させる期間と、レーザ光を出力させない期間とを交互に繰り返す運転であってよい。
エキシマレーザガスとは、励起された際にエキシマレーザの媒質となる混合ガスで、例えばKrガス、Arガスのいずれか一方、及びFガス、Neガスを含み、更に必要に応じてXeガスを含んでいてもよい。
「プリズム」とは、プリズムとは、三角柱またはそれに類似した形状を有し、レーザ光を含む光を透過し得るものをいう。プリズムの底面および上面は、三角形またはそれに類似した形状であってもよい。プリズムの底面および上面に対して略90°に交わる3つの面を側面という。直角プリズムの場合、これらの側面のうち他の2面と90°に交わらない面を斜面という。なお、プリズムの頂辺を削るなどして形状を変形したものについても、本説明におけるプリズムに含まれ得る。
反射型の光学素子に対する「入射面」とは、光学素子に入射するレーザ光の光軸と該光学素子によって反射したレーザ光の光軸との双方を含む面と定義される。透過型の光学素子に対する「入射面」とは、光学素子に入射するレーザ光の光軸と該光学素子を透過したレーザ光の光軸との双方を含む面と定義される。「S偏光」とは、上記のように定義される入射面に対して垂直な方向の直線偏光状態であるとする。一方、「P偏光」とは、光軸に直交し、且つ入射面に対して平行な方向の直線偏光状態であるとする。
3.MgF結晶を用いた透過型光学素子
MgF結晶が用いられた透過型光学素子について説明するにあたり、MgF結晶について説明する。
3.1 MgF結晶の構造と物性値
ここで、MgF結晶の結晶構造と物性値とについて説明する。図1は、MgF結晶の結晶構造を模式的に示す。表1は、MgF結晶の物性値を示す。図1および表1に示されるように、MgF結晶は、格子定数の等しい2つの辺(格子定数a=4.60オングストローム)が正方形を形成し、格子定数の異なる辺(格子定数c=3.06オングストローム)がこれらと垂直に交わる、正方晶系の結晶構造を備えてもよい。本説明では、格子定数c=3.06オングストロームの辺の延在方向をc軸としている。そこで、MgF結晶が用いられた透過型光学素子のc軸を光の入射軸に対して傾けて配置した場合、このような透過型光学結晶は偏光方向に依存した複屈折性を有する光学素子として振る舞うことができる。
Figure 2013214707
また、表1に示されるように、MgF結晶は、11.8eV(エレクトロンボルト)と、たとえばCaF結晶のバンドギャップ(10.0eV)と比較して大きいバンドギャップを備えている。
以上のような結晶構造および物性値を有するMgF結晶を用いることで、高出力および高繰返し周波数のレーザ光に対して比較的耐性の高い透過型光学素子を実現することができてもよい。
3.2 MgF結晶が用いられた透過型光学素子の例(光学ウィンドウ)
つぎに、MgF結晶が用いられた透過型光学素子を、例を挙げて説明する。以下では、レーザチャンバなどに取り付けられる光学ウィンドウ(以下、単にウィンドウという)を例に挙げて説明する。
図2は、MgF結晶が用いられたウィンドウ100の一例を模式的に示す。図2に示されるように、ウィンドウ100は、レーザ光が入出射する第1主面100aおよび第2主面100bを備えてもよい。第1主面100aおよび第2主面100bは、互いに平行であってもよい。ただし、これに限られず、たとえばウェッジ基板やプリズムなどのように、互いに傾いていてもよい。
第1主面100aおよび第2主面100bが平行である場合、それらの法線は共通の法線N1であってよい。ウィンドウ100を構成するMgF結晶のc軸C1は、この法線N1に対して傾いていてもよい。以下では、法線N1とc軸C1との傾き角度を角度βとする。
3.3 MgFウィンドウの偏光特性評価
つづいて、図2に示されるウィンドウ100の偏光特性について評価した結果を説明する。
3.3.1 評価装置
図3は、ウィンドウ100の偏光特性を評価する評価装置200の一例を示す。図4は、図3に示される評価装置200におけるウィンドウ100の配置例を示す。図5は、図4に示されるウィンドウ100をレーザ光L11の入射面で切断した際の構成を概略的に示す。図6は、図3に示される評価装置200におけるローションプリズム233およびエネルギーセンサ234の配置例を示す。
図3に示されるように、評価装置200は、ArFエキシマレーザ装置210と、光導波管211と、計測用チャンバ220と、光導波管221と、偏光度計測系230とを備えてもよい。
ArFエキシマレーザ装置210は、たとえばパルスエネルギーが10mJ(ミリジュール)のパルス状のレーザ光L11を出力してもよい。レーザ光L11は、図3の紙面と平行な直線偏光の光であってもよい。レーザ光L11は、光導波管211を介して計測用チャンバ220内へ入射してもよい。計測用チャンバ220の内部は、窒素(N)ガスで満たされていてもよい。光導波管211は、レーザ光L11の光路を大気から遮蔽しつつArFエキシマレーザ装置210と計測用チャンバ220内部とを接続してもよい。
ウィンドウ100は、(111)面でカットされたMgF結晶基板であってもよい。ウィンドウ100は、Nガスが充填された計測用チャンバ220内に配置されてもよい。この際、図4および図5に示されるように、ウィンドウ100は、レーザ光L11の入射方向(以下、光路ともいう)に対して実際にレーザチャンバに設置する際に傾ける設置角度で傾いて配置されてもよい。このとき設置角度は、たとえばブリュースター角度であってもよい。法線N1に対してレーザ光L11の光軸の傾く角度を入射角度α1とする。また、ウィンドウ100は、法線N1を中心軸とした回転方向R1に回転可能に保持されてもよい。
図3に示されるように、ウィンドウ100を透過したレーザ光L12は、光導波管221を介して偏光度計測系230に入射してもよい。光導波管221は、レーザ光L12の光路を大気から遮蔽しつつ計測用チャンバ220内部と偏光度計測系230内部とを接続してもよい。
偏光度計測系230は、ローションプリズム233とエネルギーセンサ234とを含んでもよい。偏光度計測系230は、ウィンドウ100を透過したレーザ光L12の光路を折り曲げる光学系を含んでもよい。この光学系は、通過する前後のレーザ光L12の偏光度を変化させないように構成されているとよい。本例では、光学系は2つの折返しミラー231および232を含んでいる。その場合、たとえば一方の折返しミラー231にP偏光で入射したレーザ光L12が他方の折返しミラー232にS偏光で入射するというように、レーザ光L12の光軸に対してそれぞれの傾く方向が90°異なっているとよい。
折返しミラー231および232で構成された光学系を通過したレーザ光L12は、ローションプリズム233に入射してもよい。図6に示されるように、ローションプリズム233は、2つのプリズム233aおよび233bが接合された構成を備えてもよい。これらの接合面は、オプティカルコンタクト面233cであってもよい。ローションプリズム233は、入射するレーザ光L12の光軸を回転軸として回転可能であってもよい。
オプティカルコンタクト面233cに入射したレーザ光L12のうちP偏光のレーザ光L12aは、入射側のレーザ光L12の光路の延長線上へ出射され得る。そこで、エネルギーセンサ234は、入射側のレーザ光L12の光路の延長線上に配置されるとよい。一方、オプティカルコンタクト面233cに入射したレーザ光L12のうちS偏光のレーザ光L12bは、入射側のレーザ光L12の光路の延長線に対して角度を持って出射され得る。そこで、レーザ光L12bの光路上には、これを吸収するためのリング状のビームダンパ235が配置されてもよい。
3.3.2 偏光度の計測方法
図7は、図6に示されるローションプリズム233の回転角度δに対する、エネルギーセンサ234で計測されるレーザ光L12aのパルスエネルギー値を示す。図8は、図3に示されるウィンドウ100を法線N1上から見た際の構成を概略的に示す。
図6に示される構成において、ローションプリズム233は、これに入射するレーザ光L12の偏光状態を変化させないようにしつつ、レーザ光L12の光軸を回転軸として回転させられてもよい。その場合、図7に示されるように、エネルギーセンサ234で検出されるパルスエネルギーは、回転角度δについて180°の周期を持って変化する。この際、レーザ光L12の偏光状態が完全な直線偏光である場合、エネルギーセンサ234で検出されるパルスエネルギーの最小値Iminは、ほぼゼロとなってもよい。なお、図7には、図8におけるウィンドウ100においてレーザ光L11の光軸に対するc軸C1の角度が基準角度である場合にレーザ光L12がオプティカルコンタクト面233cに対して完全なS偏光で入射する場合が例示されている。また、本説明において、ウィンドウ100の第1主面100aを法線N1上から見た際に第1主面100aに投影されるレーザ光L11の光軸と、第1主面100aに投影されるc軸C1とのなす角度を角度θとする。角度θの定義は、レーザ光L11の光軸とc軸C1とのウィンドウ100の第2主面100bにに関しても同様であってよい。角度θが0°である場合を、c軸C1の基準角度とする(図8参照)。
そこで、図4および図5に示されるウィンドウ100を、図8に示されるように、基準角度から回転方向R1にある角度回転させる。その際のレーザ光L12の偏光度Pは、ウィンドウ100をこの回転角度で維持しつつ、図6に示されるローションプリズム233を0°から180°(または360°)まで回転させる過程で計測される。偏光度Pは、その過程で検出されるパルスエネルギー値の最大値Imaxと最小値Iminとから、以下の式(1)を用いて算出することができる。なお、本説明において、回転方向R1は、第1主面100aおよび第2主面100bと平行な平面内での回転方向であってよい。
Figure 2013214707
3.3.3 偏光特性評価結果
図9は、図3に示される評価装置200においてウィンドウ100を回転方向R1に360°回転させた過程に得られた偏光度特性を示す。なお、図9では、ウィンドウ100の回転角度θを10°刻みとした場合に各回転角度θで得られた偏光度を示す。また、図9を測定するにあたり、図5に示される入射角度α1をブリュースター角度に近い60.5とし、角度βを37.38°とした。その場合、ウィンドウ100内を進行するレーザ光L11の光軸と法線N1とがなす角度α2は、以下の式(2)に示されるスネルの式から、37.38°となる(図5参照)。したがって、ウィンドウ100内を進行するレーザ光L11の光軸とc軸C1とがなす角度γ(=α2+β)は、74.76°となる(図5参照)。なお、ウィンドウ100のある空間の屈折率を1としている。
sinα1=n×sinα2 ・・・(2)
n:レーザ光L11の波長に対するMgF結晶の屈折率
図9において、白丸‘○’および実線P1は、ArFエキシマレーザ装置210から出力されるレーザ光L11の照射パワーを2W(ワット)(パルスエネルギー10mJ、繰返し周波数200Hz)とした場合の偏光度特性を示す。また、黒丸および破線P2はレーザ光L11の照射パワーを10W(パルスエネルギー10mJ、繰返し周波数1000Hz)とした場合の偏光度特性を示す。黒四角はレーザ光L11の照射パワーを30W(パルスエネルギー10mJ、繰返し周波数3000Hz)とした場合の偏光度特性を示す。黒三角はレーザ光L11の照射パワーを60W(パルスエネルギー10mJ、繰返し周波数6000Hz)とした場合の偏光度特性を示す。
図9に示されるように、回転角度θが0°(および0°と同じ360°)付近では、レーザ光L11の照射パワーを2W(ワット)の場合に偏光度Pが、90%以上であるが、レーザ光L11の照射パワーが増加するにしたがって偏光度Pが低下している。
また、回転角度θが170°以上190°以下の範囲では、レーザ光L11の照射パワーが2Wから60Wまで95%以上の偏光度Pが維持されている。特に、回転角度θが180°付近では、偏光度Pが98%以上となっている。これは、レーザ光L11の照射パワーを増加させた場合でも、維持されている。
以上のことから、回転角度θは、180°程度であることが好ましいことが分かる。特に、回転角度θを170°以上190°以下とすることで、実質的に95%以上の偏光度Pが得られ得る。また、回転角度θを175°以上185°以下とすることで、実質的に97.5%以上の偏光度Pが得られ得る。さらに、回転角度θを179°以上181°以下とすることで、実質的に98%以上の偏光度Pが得られ得る。
なお、図5に示される角度βを37.38°とし、入射角度α1を60.5°とし、回転角度θを180°とし、レーザL11の照射パワーを60W(パルスエネルギー15mJ、繰返し周波数4000Hz)とした場合、98.6%の偏光度Pが得られた。この偏光度は、一般的な半導体露光に用いられる露光装置に対して使用できる値である。以上の結果から、高出力および高繰返し周波数のレーザ光に対して比較的耐性の高いMgF結晶を所定の構成・配置で利用する場合、良好な偏光度を得られるという新たな知見を得たといってよい。
4.MgFウィンドウの第1例(実施の形態1)
以上の知見に基づいて、本開示の実施の形態1にかかる透過型光学素子を以下に説明する。以下の説明では、ウィンドウ100Aを例に挙げる。なお、本開示では、たとえば部分反射ミラーなどの半透過型光学素子も、透過型光学素子に含まれるものとする。
図10および図11は、実施の形態1にかかるウィンドウ100Aの構成を概略的に示す。なお、図10は、ウィンドウ100Aをレーザ光L11の入射面を含む面で切断した際の断面構造を示す。図11は、ウィンドウ100Aを法線N1上から見た際の構成を示す。
図10および図11に示されるように、ウィンドウ100Aの配置は、上述したウィンドウ100と同様の配置であってよい。したがって、ウィンドウ100Aを構成するMgF結晶のc軸C1は、MgF結晶の第1主面100aおよび/または第2主面100bの法線N1に対して傾いている。この傾きの角度が角度βである。
図11における回転角度θは、180°であるとよい。ただし、これに限定されず、上述において図9を用いて説明したように、回転角度θが以下の式(3)の範囲に含まれることで、95%以上の偏光度を得ることができる。
170°≦θ≦190° ・・・(3)
より好ましくは、回転角度θが以下の式(4)の範囲に含まれることで、97%以上の偏光度を得ることができる。
175°≦θ≦185° ・・・(4)
さらに好ましくは、回転角度θが以下の式(5)の範囲に含まれることで、98%以上の偏光度を得ることができる。
179°≦θ≦181° ・・・(5)
ところで、上述したように、法線N1に対して入射するレーザ光L11の光軸が傾く角度が入射角度α1である。
そして、MgF結晶の屈折率は、上述した表1の通り、屈折率no=1.43、屈折率ne=1.45である。したがって、ブリュースター角度θbは、以下の式(6)および式(7)のようになる。
θb=tan−1(no)=55.0°(no=1.43の場合) ・・・(6)
θb=tan−1(ne)=55.4°(ne=1.45の場合) ・・・(7)
角度α1は、ブリュースター角度θbに近いとよい。そのため、ウィンドウ100Aに入射するレーザ光L11の入射角度α1は、以下の式(8)の範囲に含まれることが好ましい。
45°≦α1≦70° ・・・(8)
より好ましくは、入射角度α1は、以下の式(9)の範囲に含まれる。
50°≦α1≦65° ・・・(9)
さらに好ましくは、入射角度α1は、以下の式(10)の範囲に含まれる。
54°≦α1≦56.4° ・・・(10)
また、ウィンドウ100A内でのレーザ光L11の光軸とc軸C1とがなす角度γは、90°に近いとよい。そのため、角度γが以下の式(11)の範囲に含まれるとよい。
60°≦γ≦110° ・・・(11)
より好ましくは、角度γが以下の式(12)の範囲に含まれる。
70°≦γ≦100° ・・・(12)
さらに好ましくは、角度γが以下の式(13)の範囲に含まれる。
85°≦γ≦95° ・・・(13)
以上のようなMgF結晶で構成されたウィンドウ100Aを、上記条件を満たすようにレーザ光L11の光軸に対して配置することで、高出力および高繰返し周波数のレーザ光に対して比較的耐性の高いウィンドウ100Aが実現され得る。また、透過させるレーザ光の偏光度を高めることが可能となってよい。ただし、上記の条件のうち回転角度θ以外の条件は、より良い光学特性を得るための条件であって、必須の条件ではなくともよい。
5.MgFウィンドウの第2例(実施の形態2)
また、MgF結晶を用いた透過型光学素子は、以下で実施の形態2として例示するようにも構成されてよい。なお、以下の説明では、ウィンドウ100Bを例に挙げる。
図12および図13は、実施の形態2にかかるウィンドウ100Bの構成を概略的に示す。なお、図12は、ウィンドウ100Bをレーザ光L11の入射面を含む面で切断した際の断面構造を示す。図13は、ウィンドウ100Bを法線N1上から見た際の構成を示す。
図12および図13に示されるように、ウィンドウ100Bにおいては、c軸C1の向きが第1主面100aおよび/または第2主面100bと平行な方向であってもよい。c軸C1の向きが第1主面100aおよび/または第2主面100bと平行であれば、レーザ光L11の光軸とc軸C1とがなす角度γは、90°となってよく、これは上述の知見から導かれ得る。
レーザ光L11の入射面を基準としたc軸C1の向き、すなわち図11における回転角度θは、90°であるとよい。ただし、これに限定されず、回転角度θが以下の式(14)の範囲に含まれることが好ましい。
80°≦θ≦100° ・・・(14)
より好ましくは、回転角度θは、以下の式(15)の範囲に含まれる。
85°≦θ≦95° ・・・(15)
さらに好ましくは、回転角度θは、以下の式(16)の範囲に含まれる。
89°≦θ≦91° ・・・(16)
また、ウィンドウ100Bに入射するレーザ光L11の入射角度α1は、ブリュースター角度θbとの関係から、以下の式(17)の範囲に含まれることが好ましい。
45°≦α1≦70° ・・・(17)
より好ましくは、入射角度α1は、以下の式(18)の範囲に含まれる。
50°≦α1≦65° ・・・(18)
さらに好ましくは、入射角度α1は、以下の式(19)の範囲に含まれる。
54°≦α1≦56.4° ・・・(19)
以上のようなMgF結晶で構成されたウィンドウ100Bを、上記条件を満たすようにレーザ光L11の光軸に対して配置することで、実施の形態1と同様に、高出力および高繰返し周波数のレーザ光に対して比較的耐性の高いウィンドウ100Bを実現できる。また、透過させるレーザ光の偏光度を高めることが可能となる。ただし、上記の条件のうち回転角度θ以外の条件は、より良い光学特性を得るための条件であって、必須の条件ではない。
6.MgF結晶による透過型光学素子を備えた増幅段レーザの第1例(実施の形態3)
つづいて、上記で説明した透過型光学素子を備えた増幅段レーザの例を、図面を用いて詳細に説明する。図14は、実施の形態3にかかる安定共振器を備えた増幅段レーザ300の構成を概略的に示す。図14に示されるように、増幅段レーザ300は、2つの部分反射ミラー111および112と、レーザチャンバ310とを備えてもよい。2つの部分反射ミラー111および112は、光共振器を構成してもよい。その際、下流側の部分反射ミラー112は、出力結合ミラーとして機能してもよい。
レーザチャンバ310には、光共振器内を伝播するレーザ光L1が入出射するウィンドウ101および102が設けられてもよい。ウィンドウ101および102のレーザ光L1の光軸に対する設置角度は、上述した入射角度α1であってよい。レーザ光L1は、それぞれのウィンドウ101および102に対して、たとえばP偏光で入射してもよい。
レーザチャンバ310の内部は、エキシマレーザガスで満たされていてもよい。レーザチャンバ310の内部には、不図示の電源に接続された一対の放電電極311が配置されてもよい。放電電極311による放電方向は、たとえばレーザ光L1の光軸および偏光成分の両方を含む面に対して垂直な方向であってよい。
以上のような構成のうち、ウィンドウ101および102と、部分反射ミラー111および112とは、それぞれ上述した実施の形態1または2によるMgF結晶が用いられた透過型光学素子であってもよい。たとえばウィンドウ101および102は、それぞれ実施の形態1によるウィンドウ100Aまたは実施の形態2によるウィンドウ100Bであってよい。また、部分反射ミラー111および112は、それぞれ実施の形態1または2によるウィンドウ100Aまたは100Bが基板として用いられた構成を備えてもよい。この基板の第1主面100aには、レーザ光L1を高透過させる高透過膜が形成され、第2主面100bには、レーザ光L1を部分反射する部分反射膜が形成されてもよい。
なお、安定共振器を構成する部分反射ミラー111および112は、たとえばレーザ光L1の入出射面(第1主面100aおよび/または第2主面100bに相当)の法線N1がレーザ光L1の光軸に平行となるように配置される。その場合、部分反射ミラー111および112それぞれのc軸C1は、ウィンドウ101のc軸C1またはウィンドウ102のc軸C1とレーザ光L1の光軸とを含む面に対して平行となるように配置されてもよい。
以上のように、実施の形態1および2にかかるMgF結晶を用いた透過型光学素子は、ウィンドウ101および102に限らず、部分反射ミラー111および112などの透過型光学素子に適用されてもよい。
7.MgF結晶による透過型光学素子を備えた増幅段レーザの第2例(実施の形態4)
また、上述した透過型光学素子は、リング共振器を備えた増幅段レーザに用いられてもよい。図15は、実施の形態4にかかるリング共振器を備えた増幅段レーザ400の構成を概略的に示す。図15に示されるように、増幅段レーザ400は、部分反射ミラー113と、3つの高反射ミラー401〜403と、レーザチャンバ310とを備えてもよい。レーザチャンバ310は、図14に示されたレーザチャンバ310と同様であってよい。
部分反射ミラー113は、レーザ光L1の入射光学素子および増幅後のレーザ光L2の出射光学素子として機能してもよい。部分反射ミラー113および高反射ミラー401〜403を共振器ミラーは、リング共振器を構成してもよい。レーザチャンバ310は、このリング共振器の光路上に配置されてもよい。このような構成では、リング共振器内を伝播するレーザ光L1は、異なる2つの光路でレーザチャンバ310のウィンドウ101および102にそれぞれまたはいずれかに対して、上述の実施の形態1または2で例示された条件を満足するように構成・配置されるとよい。
以上のような構成のうち、レーザチャンバ310のウィンドウ101および102と、部分反射ミラー113とは、それぞれ上述した実施の形態1または2によるMgF結晶が用いられた透過型光学素子であってもよい。また、部分反射ミラー113は、レーザ光L1の光軸に対する回転角度θが上述した実施の形態1または2で例示された条件を満足するように構成・配置されるとよい。その際、部分反射ミラー113を透過する増幅後のレーザ光L2の光軸は、部分反射ミラー113に入射するレーザ光L1の光軸と部分反射ミラー113のc軸C1との両方を含む面に含まれるとよい。また、この面には、ウィンドウ101および102のc軸C1も含まれてよい。なお、レーザ光L1およびL2の偏光成分は、この面に平行であってよい。
以上のように、実施の形態1および2にかかるMgF結晶を用いた透過型光学素子は、ウィンドウ101および102に限らず、部分反射ミラー113などの透過型光学素子に適用されてもよい。
8.MgF結晶による透過型光学素子を備えたレーザ装置の第1例(実施の形態5)
つづいて、上記で説明した透過型光学素子を備えたレーザ装置の例を、図面を用いて詳細に説明する。図16は、実施の形態4にかかる2ステージ型のレーザ装置1000の構成を概略的に示す。
図16に示されるように、レーザ装置1000は、発振段レーザ1と、増幅段レーザ2とを備えてもよい。このうち、増幅段レーザ2は、たとえば図14に示された増幅段レーザ300と同様であってよい。ただし、これに限らず、図15に示された増幅段レーザ400が用いられてもよい。
発振段レーザ1は、たとえば狭帯域化モジュール10と、レーザチャンバ310と、出力結合ミラー133とを備えてもよい。レーザチャンバ310は、図14に示されたレーザチャンバ310と同様であってよい。また、出力結合ミラー133の配置は、図14に示された部分反射ミラー112の配置と同様であってよい。
狭帯域化モジュール10は、グレーティング11と、複数のプリズム131および132とを含んでもよい。グレーティング11は、出力結合ミラー133とともに光共振器を構成してもよい。また、グレーティング11は、光共振器内に存在するレーザ光L21の波長を選択する波長選択部としても機能してよい。プリズム131および132は、グレーティング11に入射するレーザ光L21のビーム幅と光路を調整する目的で設けられてもよい。なお、プリズムの数は、2つに限られるものではない。
発振段レーザ1から出射したレーザ光L22は、高反射ミラー31および32を含む光学系を経由して、増幅段レーザ2に入射してよい。増幅段レーザ2は、入射したレーザ光L22を増幅し、レーザ光L23として出射してもよい。
発振段レーザ1および増幅段レーザ2それぞれのレーザチャンバ310のウィンドウ101および102と、部分反射ミラー111、112および133の各配置は、それぞれ上述した実施の形態1または2の透過型光学素子と同様の配置であってもよい。プリズム131および132の配置は、それぞれ実施の形態1によるウィンドウ100Aと同様の配置または実施の形態2によるウィンドウ100Bと同様の配置であってよい。ただし、いずれの実施の形態にかかるウィンドウが用いられた場合であっても、第1主面100aおよび第2主面100bに相当するプリズム131および132それぞれの2つの入出射面は、互いに平行ではない。そのような場合、上述した各実施の形態における条件は、たとえば入出射面のいずれか一方を基準として適用されればよい。たとえばプリズム132に関しては、レーザチャンバ310側の入出射面とグレーティング11側の入出射面とのうち、レーザチャンバ310側の入出射面の法線がレーザ光L21の光軸に対して入射角度α1傾くように配置されてよい。その場合、レーザ光L21の入射面を基準としたc軸C1の回転角度θ、法線N1とc軸C1とがなす角度β、およびプリズム132内のレーザ光L21の光軸とc軸C1とがなす角度γについても、レーザチャンバ310側の入出射面を基準として設定されてよい。ただし、これに限らず、グレーティング11側の入出射面が基準とされてもよい。これは、プリズムやウインドウに替えてウエッジ基板を用いる場合、ウェッジ基板などにも適用されてよい。
以上のように、実施の形態1および2にかかるMgF結晶を用いた透過型光学素子の構成・配置は、部分反射ミラー111、112および133などの透過型光学素子や、プリズム131および132などの2つの入出射面が平行でない場合であっても、それらの透過型光学素子に適用されてもよい。
9.MgF結晶による透過型光学素子を備えたレーザ装置の第2例(実施の形態6)
また、上記で説明した透過型光学素子は、発振段レーザや増幅段レーザや光共振器などに限られず、検出器やその他の光学システムに適用されてもよい。図17は、実施の形態6にかかる検出器50および60とパルスストレッチャ70とを含むレーザ装置2000の構成を概略的に示す。
図17に示されるように、レーザ装置2000は、図16に示されるレーザ装置1000と同様に、発振段レーザ1と、増幅段レーザ2と、2つの高反射ミラー31および32を含む光学系とを備えてもよい。また、レーザ装置2000は、2つの検出器50および60と、パルスストレッチャ70とをさらに備えてもよい。発振段レーザ1、増幅段レーザ2および2つの高反射ミラー31および32を含む光学系とは、それぞれ図16に示されたものと同様であってよい。なお、発振段レーザ1から出力されたレーザ光L22の偏光方向は、たとえば図17の紙面と平行な方向であってよい。
検出器50は、たとえば発振段レーザ1と増幅段レーザ2との間の光路上に配置されてもよい。検出器50は、レーザ光L22の光路を分岐するビームスプリッタ141と、分岐されたレーザ光L22の各種パラメータを検出する光センサ52とを含んでもよい。このビームスプリッタ141は、レーザ光L22の光軸に対するc軸の配置が上述した実施の形態1または2で例示された条件を満足するように配置されるとよい。
また、増幅段レーザ2のレーザ出力側に配置される検出器60のビームスプリッタ142の配置も、たとえば検出器50におけるビームスプリッタ141の配置と同様であってよい。なお、検出器60の光センサ62は、分岐されたレーザ光L23の各種パラメータを検出してよい。
さらに、検出器60を通過したレーザ光L23の光路上に配置されたパルスストレッチャ70のうち、レーザ入力段に位置するビームスプリッタ143の配置も、たとえば検出器50におけるビームスプリッタ141の配置と同様であってよい。なお、パルスストレッチャ70は、ビームスプリッタ143の他、ビームスプリッタ143を含むリング状の光路を形成する複数の高反射ミラー72〜75を含んでもよい。
また、レーザ装置2000は、検出器50および60やパルスストレッチャ70に限られず、たとえばレーザ光のコヒーレンスを低下させる低コヒーレンス化機構や、レーザ光L23のバースト出力の実現やレーザ光が照射された物からの戻り光がレーザ装置内へ進入するのを防止するための光シャッタなど、他の光学系を含んでもよい。その際、それらの光学系が備える透過型光学素子の配置は、上述した実施の形態1または2にかかるMgF結晶が用いられた透過型光学素子の配置を適用されるとよい。
上記の説明は、制限ではなく単なる例示を意図したものである。従って、添付の特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。
本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書、及び添付の特許請求の範囲に記載される不定冠詞「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。
1000、2000 レーザ装置
1 発振段レーザ
2 増幅段レーザ
100、100A、100B ウィンドウ
100a 第1主面
100b 第2主面
101、102 ウィンドウ
111、112、113 部分反射ミラー
131、132 プリズム
133 出力結合ミラー
141、142、143 ビームスプリッタ
200 評価装置
210 ArFエキシマレーザ装置
211、221 光導波管
220 計測用チャンバ
230 偏光度計測系
231、232 ウィンドウ
233 ローションプリズム
234 エネルギーセンサ
235 ビームダンパ
300、400 増幅段レーザ
310 レーザチャンバ
311 放電電極
11 グレーティング
31、32、72〜75、401〜403 高反射ミラー
50、60 検出器
52、62 光センサ
C1 c軸
N1 法線
R1 回転方向
L1、L2、L11、L12、L12a、L12b、L21、L22、L23 レーザ光

Claims (22)

  1. 結晶構造上のc軸を備え、レーザ光が入射する面を備えた透過型光学素子であって、
    前記レーザ光の入射面内において前記c軸が前記レーザ光の入射方向に対して傾くように配置される、透過型光学素子。
  2. 前記透過型光学素子は、MgF結晶を用いて構成される、請求項1記載の透過型光学素子。
  3. 前記面と平行な平面内における前記c軸の前記入射面に対する回転角度は、170°以上190°以下である、請求項1記載の透過型光学素子。
  4. 前記面と平行な平面内における前記c軸の前記入射面に対する回転角度は、175°以上185°以下である、請求項1記載の透過型光学素子。
  5. 前記面と平行な平面内における前記c軸の前記入射面に対する回転角度は、179°以上181°以下である、請求項1記載の透過型光学素子。
  6. 前記レーザ光の前記入射方向が前記面の法線に対してブリュースター角度傾くように配置される、請求項1記載の透過型光学素子。
  7. ウィンドウ、ビームスプリッタ、プリズムおよび出力結合ミラーのうちのいずれかである、請求項1記載の透過型光学素子。
  8. 請求項1記載の透過型光学素子をウィンドウとして含む、レーザチャンバ。
  9. 請求項1記載の透過型光学素子をウィンドウおよび出力結合ミラーのうち少なくとも1つとして含む、増幅段レーザ。
  10. 請求項1記載の透過型光学素子をウィンドウ、プリズムおよび出力結合ミラーのうち少なくとも1つとして含む、発振段レーザ。
  11. 請求項1記載の透過型光学素子をウィンドウ、ビームスプリッタ、プリズムおよび出力結合ミラーのうち少なくとも1つとして含む、レーザ装置。
  12. 結晶構造上のc軸を備え、レーザ光が入射する面を備えた透過型光学素子であって、
    前記c軸は、前記面と実質的に平行であって、前記レーザ光の入射面に対して実質的に垂直であるように配置される、透過型光学素子。
  13. 前記透過型光学素子は、MgF結晶を用いて構成される、請求項12記載の透過型光学素子。
  14. 前記面と平行な平面内における前記c軸の前記入射面に対する回転角度は、80°以上100°以下である、請求項12記載の透過型光学素子。
  15. 前記面と平行な平面内における前記c軸の前記入射面に対する回転角度は、85°以上95°以下である、請求項12記載の透過型光学素子。
  16. 前記面と平行な平面内における前記c軸の前記入射面に対する回転角度は、89°以上91°以下である、請求項12記載の透過型光学素子。
  17. 前記レーザ光の前記入射方向が前記面の法線に対してブリュースター角度傾くように配置される、請求項12記載の透過型光学素子。
  18. ウィンドウ、ビームスプリッタ、プリズムおよび出力結合ミラーのうちのいずれかである、請求項12記載の透過型光学素子。
  19. 請求項12記載の透過型光学素子をウィンドウとして含む、レーザチャンバ。
  20. 請求項12記載の透過型光学素子をウィンドウおよび出力結合ミラーのうち少なくとも1つとして含む、増幅段レーザ。
  21. 請求項12記載の透過型光学素子をウィンドウ、プリズムおよび出力結合ミラーのうち少なくとも1つとして含む、発振段レーザ。
  22. 請求項12記載の透過型光学素子をウィンドウ、ビームスプリッタ、プリズムおよび出力結合ミラーのうち少なくとも1つとして含む、レーザ装置。
JP2012270932A 2012-03-06 2012-12-12 透過型光学素子、レーザチャンバ、増幅段レーザ、発振段レーザ、およびレーザ装置 Pending JP2013214707A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012270932A JP2013214707A (ja) 2012-03-06 2012-12-12 透過型光学素子、レーザチャンバ、増幅段レーザ、発振段レーザ、およびレーザ装置
US13/772,551 US20130235893A1 (en) 2012-03-06 2013-02-21 Transmissive optical device, laser chamber, amplifier stage laser device, oscillation stage laser device and laser apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012049121 2012-03-06
JP2012049121 2012-03-06
JP2012270932A JP2013214707A (ja) 2012-03-06 2012-12-12 透過型光学素子、レーザチャンバ、増幅段レーザ、発振段レーザ、およびレーザ装置

Publications (1)

Publication Number Publication Date
JP2013214707A true JP2013214707A (ja) 2013-10-17

Family

ID=49114102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012270932A Pending JP2013214707A (ja) 2012-03-06 2012-12-12 透過型光学素子、レーザチャンバ、増幅段レーザ、発振段レーザ、およびレーザ装置

Country Status (2)

Country Link
US (1) US20130235893A1 (ja)
JP (1) JP2013214707A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016203749B4 (de) * 2016-03-08 2020-02-20 Carl Zeiss Smt Gmbh Optisches System, insbesondere für die Mikroskopie
WO2018229854A1 (ja) * 2017-06-13 2018-12-20 ギガフォトン株式会社 レーザ装置及び光学素子の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175736A (en) * 1988-10-21 1992-12-29 Spectra-Physics Tunable dye laser with thin birefringent filter for improved tuning
US6868106B1 (en) * 1998-06-04 2005-03-15 Lambda Physik Ag Resonator optics for high power UV lasers
JP2005524998A (ja) * 2002-05-07 2005-08-18 サイマー インコーポレイテッド 長寿命光学部品を有する高出力遠紫外線レーザ
JP2008116940A (ja) * 2006-10-23 2008-05-22 Schott Ag 光の結晶透過中に起こる直線偏光の解消を防止するための配置及び方法
JP2009081363A (ja) * 2007-09-27 2009-04-16 Gigaphoton Inc ガスレーザ用光学素子及びそれを用いたガスレーザ装置
JP2009152538A (ja) * 2007-11-30 2009-07-09 Gigaphoton Inc ガスレーザ用光学素子及びそれを用いたガスレーザ装置
WO2009125745A1 (ja) * 2008-04-07 2009-10-15 ギガフォトン株式会社 ガス放電チャンバ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4677640A (en) * 1985-09-24 1987-06-30 Spectra-Physics, Inc. Crystalline quartz laser window assembly
US5062694A (en) * 1991-04-08 1991-11-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Birefringent filter design
EP0712183B1 (en) * 1994-11-14 2002-08-21 Mitsui Chemicals, Inc. Wavelength stabilized light source
US6904073B2 (en) * 2001-01-29 2005-06-07 Cymer, Inc. High power deep ultraviolet laser with long life optics
EP1308235B1 (de) * 2001-11-06 2004-11-24 Raylase Ag Verfahren und Vorrichtung zur Steuerung der Laserstrahlenergie
DE102006049846A1 (de) * 2006-10-23 2008-05-08 Schott Ag Anordnung sowie ein Verfahren zur Vermeidung der Depolarisation von linear-polarisiertem Licht beim Durchstrahlen von Kristallen
JP2010107611A (ja) * 2008-10-29 2010-05-13 Olympus Imaging Corp 結像光学系及びそれを用いた撮像装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175736A (en) * 1988-10-21 1992-12-29 Spectra-Physics Tunable dye laser with thin birefringent filter for improved tuning
US6868106B1 (en) * 1998-06-04 2005-03-15 Lambda Physik Ag Resonator optics for high power UV lasers
JP2005524998A (ja) * 2002-05-07 2005-08-18 サイマー インコーポレイテッド 長寿命光学部品を有する高出力遠紫外線レーザ
JP2008116940A (ja) * 2006-10-23 2008-05-22 Schott Ag 光の結晶透過中に起こる直線偏光の解消を防止するための配置及び方法
JP2009081363A (ja) * 2007-09-27 2009-04-16 Gigaphoton Inc ガスレーザ用光学素子及びそれを用いたガスレーザ装置
JP2009152538A (ja) * 2007-11-30 2009-07-09 Gigaphoton Inc ガスレーザ用光学素子及びそれを用いたガスレーザ装置
WO2009125745A1 (ja) * 2008-04-07 2009-10-15 ギガフォトン株式会社 ガス放電チャンバ

Also Published As

Publication number Publication date
US20130235893A1 (en) 2013-09-12

Similar Documents

Publication Publication Date Title
JP6348121B2 (ja) レーザ装置
JP4763471B2 (ja) レーザチャンバのウィンドウ劣化判定装置および方法
US11025026B2 (en) Laser system
JP5630773B2 (ja) ガス放電チャンバ
US10151640B2 (en) Light beam measurement device, laser apparatus, and light beam separator
CN109314365B (zh) 激光系统
WO2014119199A1 (ja) レーザ装置及び極端紫外光生成装置
JP2002198588A (ja) フッ素分子レーザ
JPWO2019012642A1 (ja) レーザシステム
JP4907865B2 (ja) 多段増幅型レーザシステム
JP2013214707A (ja) 透過型光学素子、レーザチャンバ、増幅段レーザ、発振段レーザ、およびレーザ装置
US11264773B2 (en) Laser apparatus and method for manufacturing optical element
US10777958B2 (en) Beam reverser module and optical power amplifier having such a beam reverser module
JP2006073921A (ja) 紫外線ガスレーザ用光学素子及び紫外線ガスレーザ装置
JP5393725B2 (ja) 多段増幅型レーザシステム
US20170149199A1 (en) Laser device
US10965087B2 (en) Laser device
WO2018061210A1 (ja) レーザ装置
JP2009152538A (ja) ガスレーザ用光学素子及びそれを用いたガスレーザ装置
JP2009081363A (ja) ガスレーザ用光学素子及びそれを用いたガスレーザ装置
US11841267B2 (en) Energy measuring apparatus and excimer laser apparatus
JP2011238976A (ja) ガスレーザ用光学素子及びそれを用いたガスレーザ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151110

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170110