JP2013211682A - パルス信号生成回路、パルス信号生成方法 - Google Patents

パルス信号生成回路、パルス信号生成方法 Download PDF

Info

Publication number
JP2013211682A
JP2013211682A JP2012080370A JP2012080370A JP2013211682A JP 2013211682 A JP2013211682 A JP 2013211682A JP 2012080370 A JP2012080370 A JP 2012080370A JP 2012080370 A JP2012080370 A JP 2012080370A JP 2013211682 A JP2013211682 A JP 2013211682A
Authority
JP
Japan
Prior art keywords
signal
count
pulse
value
pwm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012080370A
Other languages
English (en)
Inventor
Shiyunsuke Saikouji
俊介 西光寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2012080370A priority Critical patent/JP2013211682A/ja
Publication of JP2013211682A publication Critical patent/JP2013211682A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pulse Circuits (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】精度の高いPWM信号を生成できるパルス信号生成回路を提供する
【解決手段】PWM周期調整部400は、クロックの分周により生成されるカウントアップ信号enを、パルス周期を広げる付加パルスの付加頻度を示すPWPARL210の設定値に基づいて調整した第2カウントアップ信号en2を生成する。PWM波形生成部500は、第2カウントアップ信号en2と、予め定められたデューティー比と、に基づいてPWM信号を生成する。
【選択図】図1

Description

本発明は、パルス信号生成回路、及びパルス信号生成方法に関する。
マイクロコンピュータ内では、各処理部が正確な動作を行うために内部タイマの精度を向上させる必要がある。そのため、マイクロコンピュータは、特定の周波数を生成する専用の水晶発振子を用いてタイマを構成する場合がある。専用の水晶発振子を用いることにより、用途に応じた正確な時間が計れるタイマを構成することが可能となる。
特許文献1には、動作用のクロックの周波数に関わらず、所要のビットレートを生成することができる半導体装置を開示している。当該半導体装置は、特定の周波数を持つ水晶発振子を必要としない。当該半導体装置は、動作用クロックをカウントし、そのカウント結果に基づいて単位転送時間を規定するために用いる基本クロックを生成するボーレートジェネレータと、基本クロックに従って送受信制御を行う送受信コントローラと、を備える。さらに、当該半導体装置は、ボーレートジェネレータへの動作用クロックの供給を部分的にマスクするビットレートモジュレータを備える。ビットレートモジュレータのマスク処理の頻度を調整することにより、専用の水晶発振子を有さない構成であっても、基本クロックの精度を調整することができる。
特開2011−114630号公報
ところで、モータ(DCモータ、RCサーボモータ等)を制御するためにPWM(Pulse Width Modulation: パルス幅変調)制御技術が用いられる。PWM制御技術では、直流電源のスイッチをONしている時間とOFFしている時間との割合(デューティー比)により、モータを制御する。PWM制御により生成されるパルス信号(PWM信号)は、ON/OFFを繰り返す電気信号であり、矩形波で表わされる。
一般的なPWM制御技術では、パルス信号がハイ(ON)になっている幅(以下、ハイ幅とも記載する)とロウ(OFF)になっている幅(ロウ幅とも記載する)の比、すなわちデューティー比を変更することができる。
しかしながら、本願発明者は、従来の技術ではPWM信号の周期(ハイ幅とロウ幅の合計幅)を細かく調整することが出来ないという課題を見出した。近年、産業用ロボット等の普及が広がってきている。これらのロボットの制御に用いるモータでは、瞬間的にON/OFFを繰り返す制御が必要となる。当該繰り返し制御を行うためには、高速な応答速度が求められる。高速な応答速度を実現するためには、PWM信号の周期を細かく設定できることが必須となる。同様に、電気自動車のモータ制御を行う場合にも精密なPWM制御を行う必要があり、PWM信号の周期を細かく設定できることが必須となる。しかしながら、上記した特許文献1の技術はPWM信号の周期の調整に応用できるものではないため、従来の技術では生成するPWM信号の精度が十分ではないという問題があった。
一実施の形態によれば、パルス信号生成回路は、クロックの分周により生成されるカウントアップ信号をカウントし、当該カウント値、及びPWM信号のパルス周期を広げる付加パルスの付加頻度を示す第1設定値に基づいて、前記付加パルスを付加するパルス周期を示す指示信号を生成する。そして、パルス信号生成回路は、前記カウント値と前記指示信号に基づき、前記カウントアップ信号を調整した第2カウントアップ信号を生成し、この第2カウントアップ信号を用いて前記PWM信号を生成する。
前記一実施の形態によれば、精度の高いPWM信号を生成することができる。
実施の形態1にかかるパルス信号生成回路の構成を示すブロック図である。 一般的なPWM制御によるPWM信号の仕組みを説明する概念図である。 実施の形態1にかかるPWM周期調整部400の概略構成を示すブロック図である。 実施の形態1にかかるPWM周期調整部400の動作を示すタイミングチャートである。 実施の形態1にかかるPWM周期調整部400の詳細構成例を示すブロック図である。 実施の形態1にかかるパルス生成部425の詳細構成例を示すブロック図である。 実施の形態1にかかるPWM波形生成部500の概略構成を示すブロック図である。 実施の形態1にかかるPWM波形生成部500の動作を示すタイミングチャートである。 実施の形態1にかかるPWM波形生成部500の詳細構成例を示すブロック図である。 実施の形態1にかかるカウンタ部510の詳細構成例を示すブロック図である。 実施の形態1にかかるパルス信号生成回路の動作概念図である。 実施の形態2にかかるPWM周期調整部400の概略構成を示すブロック図である。 実施の形態2にかかるPWM周期調整部400の動作を示すタイミングチャートである。 実施の形態2にかかるPWM周期調整部400の動作を示すタイミングチャートである。 実施の形態2にかかるPWM周期調整部400の詳細構成例を示すブロック図である。 実施の形態2にかかるカウント調整部417の詳細構成例を示すブロック図である。 実施の形態2にかかるパルス信号生成回路の動作概念図である。 実施の形態2にかかるパルス信号生成回路の動作概念図である。 実施の形態3にかかるパルス信号生成回路の構成を示すブロック図である。 実施の形態3にかかるパルス信号生成回路の動作概念図である。 実施の形態4にかかるパルス信号生成回路の構成を示すブロック図である。
<実施の形態1>
以下、図面を参照して本発明の実施の形態について説明する。図1は、本実施の形態にかかるパルス信号生成回路の構成を示すブロック図である。パルス信号生成回路1は、セレクタ100と、PWMコントロールレジスタ(以下、PWCRとも記載する)200と、PWM周期調整レジスタ(以下、PWPARLとも記載する)210と、PWMデータレジスタ(H)(以下、PWDRHとも記載する)220と、PWMデータレジスタ(L)(以下、PWDRLとも記載する)230と、エッジ検出部300と、PWM周期調整部400と、PWM波形生成部500と、を備える。パルス信号生成回路1は、PWM制御によるパルス幅変調信号(PWM信号)を生成する回路である。例えば、パルス信号生成回路1は、PWM信号により駆動するモータを含む情報処理システムに内蔵され得る。
セレクタ100には、外部から入力されるクロック(外部クロック)、及びシステムクロック(φ)を分周した信号(φ/2、φ/4、φ/8…)が入力される。ここで、外部から入力されるクロックは、システムクロック(φ)と同じソースから生成したφ/(2^n)(n>1)の周波数を持つ。セレクタ100にはPWCR200から値が入力され、当該値に応じて入力された信号(外部クロック、φ/2、φ/4、φ/8)の一つを選択してエッジ検出部300に供給する。
エッジ検出部300は、入力信号のエッジを検出して、エッジの検出状態をPWM周期調整部400に供給する。以下、エッジ検出部300が出力する信号をカウントアップタイミング信号enと記載する。
PWM周期調整部400は、カウントアップ信号en及びPWPARL210に設定された値(第1設定値)に応じて、後述のPWM波形生成部500がPWM信号の生成に用いる第2カウントアップ信号en2を生成する。カウントアップ信号enから第2カウントアップ信号en2に変換する処理を行うことにより、パルス信号生成回路1が生成するPWM信号の周期(ハイ幅とロウ幅の合計幅、以下の説明では説明の便宜のためパルス周期とも記載する。)が調整可能となる。まず、説明の便宜のため、一般的なPWM制御によるPWM信号の仕組みについて、図2を参照して説明する。
後述するPWDRH220には、nビット(nは1以上の整数)の数値(デューティー比の基本設定値)が設定される。一般的なパルス信号生成装置では、カウントアップタイミング信号en(外部クロックまたはシステムクロックの分周信号)のエッジを2のn乗回(n=8の場合には256回)だけカウントし、そのカウントにかかるサイクルを1パルス周期とする。この際、PWDRH220に設定された値のカウントが生じたタイミングで、PWM信号をハイレベルからロウレベルに切り替える。例えば、PWDRH220に"11000000"(十進数に換算すると192)が設定されていた場合、256カウントを1パルス周期とし、ハイ幅が192カウントのPWM信号が生成される。
続いて、PWM周期調整部400の概略構成を、図3を参照して説明する。PWM周期調整部400は、概ね3つのブロック(カウンタ部410、パルス付加タイミング検出部420、第2カウントアップ信号生成部430)から構成される。カウンタ部410は、入力されたカウントアップタイミング信号enのエッジ検出回数を出力する。カウンタ部410は、フルカウント(2のn乗)までカウントした場合、0から再度カウントを行う。カウンタ部410は、エッジ検出回数であるnビットのカウント値(信号S1)をパルス付加タイミング検出部420と第2カウントアップ信号生成部430に供給する。
パルス付加タイミング検出部420は、PWPARL210からiビット(iは1以上の整数)の設定値を読み出す。PWPARL210の設定値(第1設定値)は、パルス周期を広げる付加パルスの付加頻度を示す値である。パルス付加タイミング検出部420には、カウントアップタイミング信号en及びカウンタ部410の出力信号(S1)が入力される。パルス付加タイミング検出部420は、パルス周期単位(カウントアップタイミング信号enのエッジが2のn乗回検出される毎)にハイレベル、またはロウレベルが切り替わり得る2値信号S2を生成する。この2値信号S2は、付加パルスを付与するパルス周期を指示する(パルス周期を広げる周期を指示する)指示信号である。詳細を図4のタイミングチャートを参照しつつ説明する。
以下、PWPARL210には"110000"(6ビット値であり、10進数で48を示す値)が設定されているものとする。パルス付加タイミング検出部420は、PWPARL210に設定されたiビットの値(48)と、2のi乗(64)と、の比率に応じてハイレベル、ロウレベルを切り替える。すなわち、パルス付加タイミング検出部420は、指示信号S2として、64パルス周期のうち48パルス周期だけハイレベル(付加パルスを付与するタイミングを示す値)を出力し、それ以外の場合にはロウレベル(付加パルスを付与しないタイミングを示す値)を出力する。
本実施の形態では、第2カウントアップ信号生成部430は、ANDゲート431と、インバータ432と、ANDゲート433と、から構成される。ANDゲート431は、信号S1(nビット値)と、指示信号S2との論理積をマスク信号(msk)としてインバータ432及びカウンタ部410に出力する。ANDゲート431は、nビット値(信号S1)がフルカウント(全てのビットが1となった状態)であり、かつ指示信号S2がハイレベルの場合にのみ、マスク信号(msk)としてハイレベルを出力する(図4参照)。マスク信号(msk)は、パルス周期に付加パルスを付加するタイミングを規定する信号である。インバータ432は、マスク信号(msk)の反転信号をANDゲート433に供給する。
ANDゲート433は、マスク信号(msk)の反転信号と、カウントアップタイミング信号enと、の論理積を第2カウントアップタイミング信号en2としてPWM波形生成部500に出力する。図4に示すように、第2カウントアップタイミング信号en2は、マスク信号(msk)としてハイレベルが入力された際には、ロウレベルとなるカウントアップ信号である。
続いて、PWM周期調整部400の詳細構成例を、図5を参照して説明する。図5に示すブロック図は、図3に示したPWM周期調整部400の概略構成を具現化した回路構成の一例である。カウンタ部410は、インクリメンタ411、セレクタ412、ANDゲート413、1ビットフリップフロップ414、フリップフロップ415、及びインバータ416を備える。なお、各フリップフロップのクロック端子には、システムクロック(φ)が供給されている(パルス付加タイミング検出部420においても同様である。)。
フリップフロップ415の出力であるnビットカウント値は、ANDゲート431、ANDゲート421、インクリメンタ411、及びセレクタ421に供給される。インクリメンタ411は、nビットカウント値(信号S1)に1を加算し、当該加算結果をセレクタ412に供給する。セレクタ412は、いわゆる2入力のマルチプレクサであり、カウントアップ信号enを選択制御信号として用いる。セレクタ412は、カウントアップ信号enがハイレベルの場合にはインクリメンタ411からの入力信号をANDゲート413に供給し、カウントアップ信号enがロウレベルの場合にはフリップフロップ415からの出力であるnビットカウント値(信号S1)をANDゲート413に供給する。
ANDゲート413は、セレクタ412の出力信号と、インバータ416の出力信号と、の論理積をフリップフロップ415の入力端子Dに供給する。1ビットフリップフロップ414の入力端子Dは、ANDゲート431と接続し、出力信号をインバータ416に供給する。ここで、1ビットフリップフロップ414は、カウントアップ信号enをイネーブル端子の入力とする。インバータ416は、1ビットフリップフロップ414の出力信号の反転信号をANDゲート413に供給する。インバータ416の出力信号は、第2カウントアップ信号en2のカウントアップをマスク信号(msk)により一時的に停止させたことに対応して、カウンタ410のカウントアップも一時的に停止させるために用いられる。ただし、ゲートループを回避するために、第2カウントアップ信号en2のカウントアップのカウントアップが一時停止したタイミングとは異なるタイミング(1カウント後)にカウントアップが一時停止するように値が設定される。
パルス付加タイミング検出部420は、ANDゲート421と、インクリメンタ422と、セレクタ423と、フリップフロップ424と、パルス生成部425と、を備える。ANDゲート421は、カウントクロック信号enとフリップフロップ415の出力信号S1の論理積を、セレクタ423の選択制御信号として供給する。インクリメンタ422は、フリップフロップ424から出力されるiビット(iは1以上の整数)の数値に1を加算し、当該加算結果をセレクタ423に供給する。セレクタ423は、ANDゲート421の出力信号がハイレベルの場合にはインクリメンタ422からの入力信号をフリップフロップ424の入力端子Dに供給し、ANDゲート421の出力信号がロウレベルの場合にはフリップフロップ424からの入力信号をフリップフロップ424の入力端子Dに供給する。フリップフロップ424は、iビットの数値をインクリメンタ422、セレクタ423、及びパルス生成部425に供給する。フリップフロップ424は、一般的なD型フリップフロップであり、パルス周期毎にカウントアップするiビットのカウンタとして動作する。当該カウント値は、パルス周期毎に1だけカウントアップする。
パルス生成部425は、フリップフロップ424の出力(iビットのカウント値)、及びPWPARL210の設定値を基に、前述の指示信号S2を生成する処理部である。パルス生成部425の詳細な構成例を図6に示す。
図6に示すPWPARL210には、6ビット(i=6)の値が設定されている。パルス生成部425は、PWPARL210に設定されたビット値のビット幅(すなわち6)に対応するANDゲート(451〜456)が備えられている。
以下、PWPARL210に設定されている値は、"110000(48)"とする。フリップフロップ424の出力値は、前述のようにパルス周期のカウント値(本例では6ビットの値)である。ANDゲート451には、パルス周期のカウント値の最上位ビットと、PWPARL210の最上位ビット(すなわち"1")が入力される。ANDゲート451は、両入力の論理積をORゲート457に供給する。同様に、ANDゲート452には、パルス周期のカウント値の最上位ビットの反転値と、パルス周期のカウント値の上位第2ビット値と、PWPARL210の上位第2ビット値(すなわち"1")と、が入力される。ANDゲート452は、これらの入力の論理積をORゲート457に供給する。ANDゲート453〜456への入力及びANDゲート453〜456からの出力は、図示する通りである。
ORゲート457は、ANDゲート451〜456の出力の論理和を指示信号S2としてANDゲート431に出力する。以上、説明したように、図6に示す構成により、パルス生成部425は、図4に示す出力信号S2を生成する。
以上がPWM周期調整部400の構成例である。なお、上述の図5、図6の構成はあくまで一例であり、各回路を等価な別回路に置き換えても良いことは勿論である。次に、PWM周期調整部400の出力する第2カウントアップ信号en2について検討する。例えばカウントアップ信号enの周波数が20MHzである場合、換言するとカウントアップ信号enの周期が50nsである場合について検討する。PWPARL210に"100000"が設定されている場合、パルス生成部425は、64パルス周期のうち32パルス周期に対して遅延を生じさせる(マスク信号(msk)を立ち上げる)。これにより、第2カウントアップ信号en2は、19.96MHz(周期=50.10ns)となる。
同様に、PWPARL210に"010000"が設定されている場合、パルス生成部425は、64パルス周期のうち16パルス周期に対して遅延を生じさせる(マスク信号(msk)を立ち上げる)。これにより、第2カウントアップ信号en2は、19.98MHz(周期=50.05ns)となる。PWPARL210に"110000"が設定されている場合、パルス生成部325は、64パルス周期のうち48パルス周期に対して遅延を生じさせる(マスク信号(msk)を立ち上げる)。これにより、第2カウントアップ信号en2の周期は、19.94MHz(周期=50.15ns)となる。同様に、PWPARL210に"111111"が設定されている場合、パルス生成部425は、64パルス周期のうち63パルス周期に対して遅延を生じさせる(マスク信号(msk)を立ち上げる)。これにより、第2カウントアップ信号en2は、19.92MHz(周期=50.19ns)となる。
続いて、PWM波形生成部500の構成について説明する。PWM波形生成部500は、ANDゲート433の出力信号(第2カウントアップ信号en2)、PWDRH220、及びPWDRL230を基にPWM信号を生成する。図7は、PWM波形生成部500の概略構成を示すブロック図である。
PWDRH220には、前述のようにnビットの数値が設定されている。このnビットの設定値は、PWM波形生成部500が出力するPWM信号のハイ幅の基本値(基本となるデューティー比)を定める。例えば、PWDRH220に8ビットの値"11001000"(十進数で200)が設定されていた場合、基本のデューティー比は200:56となる。
PWDRL230には、mビットの数値(第3設定値)が設定されている。このmビットの設定値は、PWM波形生成部500が出力するPWM信号のハイ幅を基本デューティー比に定める値から1カウントだけ広くする頻度を定める値である。例えば、PWDRH220に8ビットの値"11001000"が設定され、PWDRL230に6ビットの値"010100"が設定されていた場合、64パルス周期のうち20パルス周期だけデューティー比が201:55となり、その他の場合にはデューティー比が200:56となる。
PWM波形生成部500は、カウンタ部510と、パルス挿入前PWM生成部520と、ハイ幅調整パルス生成部530と、ORゲート540と、を備える。カウンタ部510は、第2カウントアップ信号en2をカウントする。ここで、カウンタ部510は、カウント数をmビット(PWDRL230の設定ビット幅)+nビット(PWDRH220の設定ビット幅)の幅の数値でカウントする。カウンタ部510は、カウント値の上位mビット値をハイ幅調整パルス生成部530に供給し、カウント値の下位nビット値をパルス挿入前PWM生成部520に供給する。
パルス挿入前PWM生成部520には、第2カウントアップ信号en2及びnビットのカウント値が供給される。パルス挿入前PWM生成部520にはPWDRH220から設定値が入力される。パルス挿入前PWM生成部520は、設定値に応じた通常のPWM信号(以下、パルス挿入前PWM信号とも記載する。)を生成する。例えば、例えば、PWDRH220に8ビットの値"11001000"が設定されていた場合、パルス挿入前PWM生成部520は、デューティー比は200:56のパルス挿入前PWM信号を生成し、ORゲート540及びハイ幅調整パルス生成部530に供給する。
ハイ幅調整パルス生成部530には、パルス挿入前PWM信号、及びmビットのカウント値が供給される。ハイ幅調整パルス生成部530には、PWDRL230の設定値が入力される。ハイ幅調整パルス生成部530は、当該設定値に応じてデューティー比を調整するためのハイ幅調整信号を生成し、当該ハイ幅調整信号をORゲート540に供給する。
ORゲート540は、ハイ幅調整パルス生成部530の出力するハイ幅調整信号と、パルス挿入前PWM生成部520の出力信号の論理積を出力する。
図8は、PWM波形生成部500の各処理部の出力信号を示すタイミングチャートである。なお、図8には、後述するPWM波形生成部500の詳細構成(図9)に関する信号の状態も一部記載されている。また、前述のようにPWM波形生成部500に供給される第2カウントアップ信号en2は、図4に示すように一部がマスクされているが、図8では説明の便宜のためマスクされている箇所は記載しない。
パルス挿入前PWM生成部520は、カウンタ510の出力値と、PWDRH220に設定されたデューティー比を基に、パルス挿入前PWM信号を生成する。例えば、デューティー比が「A:B」である場合、パルス挿入前PWM生成部520は、"A:B"のデューティー比のパルス挿入前PWM信号を生成する。ハイ幅調整パルス生成部530は、PWDRL230に設定された頻度で、パルス挿入前PWM生成部520の生成した信号(パルス挿入前PWM信号)の立下り時に1カウント分だけハイレベルとなるハイ幅調整パルス信号を生成する。ORゲート540は、ハイ幅調整パルス信号と、パルス挿入前PWM信号の論理和をPWM信号として任意のモータ等に出力する。このPWM信号は、ハイ幅調整パルス信号がハイレベルの場合、ハイ幅が基本となるデューティー比よりも大きくすることができる。これにより、デューティー比をより細かく設定することができる。
続いて、図9及び図10を参照して、PWM波形生成部500の詳細な構成例について説明する。図9は、PWM波形生成部500の詳細構成を示すブロック図である。図10は、カウンタ部510の構成例を示すブロック図である。はじめに図10を参照して、カウンタ部510の構成例について説明する。
カウンタ部510は、インクリメンタ511と、セレクタ512と、フリップフロップ513と、ANDゲート514と、セレクタ515と、フリップフロップ516と、インクリメンタ517よ、を備える。なお、図10に示すカウンタ部510の構成はあくまで一例であり、第2カウントアップ信号en2をm+nビット単位でカウントアップし、上位mビットと下位nビットを出力する構成であればその他の任意の構成であっても良い。
フリップフロップ513は、nビット値(第2カウントアップ信号en2のカウント値の下位nビット)をANDゲート514、セレクタ512、加算器512、比較器521、及びANDゲート524に供給する。インクリメンタ511は、入力値に1を加算してセレクタ512に供給する。セレクタ512は、第2カウントアップ信号en2がハイレベルの場合にはインクリメンタ511からの入力信号をフリップフロップ513に供給し、第2カウントアップ信号en2がロウレベルの場合にはフリップフロップ513からの入力信号をそのままフリップフロップ513に供給する。
ANDゲート514には、フリップフロップ513からnビット値が入力されるとともに、第2カウントアップ信号en2が入力される。ANDゲート514は、nビット値がフルカウント(全てのビットに1が設定されている状態)であり、第2カウントアップ信号en2がハイレベルである場合にのみ、ハイレベルを出力する。
フリップフロップ516は、mビット値(第2カウントアップ信号en2のカウント値の上位mビット)をセレクタ515、インクリメンタ517、及びハイ幅調整タイミング生成部531に供給する。インクリメンタ517は、入力値に1を加算してセレクタ515に供給する。セレクタ515は、ANDゲート514の出力値がハイレベルの場合にはインクリメンタ517からの出力信号をフリップフロップ516に供給し、ANDゲート514の出力値がロウレベルの場合にはフリップフロップ516からの入力信号をそのままフリップフロップ516に供給する。
再び、図9を参照し、PWM波形生成部500内の他の処理部の構成について説明する。パルス挿入前PWM生成部520は、比較器521と、ANDゲート522と、インバータ523と、ANDゲート524と、ORゲート525と、ANDゲート526と、フリップフロップ527と、を備える。
比較器521には、カウンタ部510からnビット値が供給される。比較器521には、PWDRH220に設定された値が入力される。比較器521は、カウンタ部510から供給されたnビット値と、PWDRH220の設定値と、を比較する。比較部521の内部構成は、図6に示す構成と略同一である。比較器521は、比較結果をANDゲート522に供給する。
ANDゲート522は、第2カウントアップ信号en2と、比較器521の出力信号と、の論理積をインバータ523に供給し、インバータ523は、供給された信号の反転信号をANDゲート526に供給する。ANDゲート524には、カウンタ部510からnビット値と、第2カウントアップ信号en2と、が供給される。ANDゲート524は、nビット値がフルカウント(全てのビットに1が設定されている状態)であり、第2カウントアップ信号en2がハイの場合にのみ、ハイレベルをORゲート525に出力する。
ORゲート525は、ANDゲート524の出力信号と、フリップフロップ527の出力信号と、の論理和をANDゲート526に供給する。ANDゲート526は、インバータ523の出力と、ORゲート525の出力と、の論理積をフリップフロップ527に供給する。フリップフロップ527は、PWDRH220に設定されたデューティー比のパルス挿入前PWM信号をシフト回路532及びORゲート540に供給する。ORゲート525とANDゲート526はその接続の順番が逆であってもかまわない。
ハイ幅調整パルス生成部530は、ハイ幅調整タイミング生成部531と、シフト回路532と、ANDゲート533と、を備える。ハイ幅調整タイミング生成部531は、PWDRL230からmビット値を読み出し、読み出したmビット値に応じてパルス周期単位でハイレベル、ロウレベルが切り替わる信号をANDゲート533に供給する(図8参照)。ハイ幅調整タイミング生成部531の内部構成は、図6に示す構成と略同一であるため、詳細な説明は省略する。
シフト回路532には、第2カウントアップ信号en2と、パルス挿入前PWM信号(フリップフロップ527の出力信号)が入力される。シフト回路532は、図8に示すように、パルス挿入前PWM生成部520の出力したパルス挿入前PWM信号を第2カウントアップ信号en2の1周期(以下、1イネーブルサイクルとも記載する。)だけずらしたPWM信号であるシフト信号を生成する。シフト回路532は、生成したシフト信号をANDゲート533に供給する。
ANDゲート533は、図8に示すように、シフト信号と、ハイ幅調整タイミング生成部531の出力信号と、の論理積をハイ幅調整信号としてORゲート540に供給する。
ORゲート540は、パルス挿入前PWM生成部520の出力したパルス挿入前PWM信号と、ハイ幅調整信号(ANDゲート533の出力信号)と、の論理積をPWM信号として任意のモータ等に出力する。
(効果)
続いて、本実施の形態にかかるパルス信号生成回路の効果について図11の動作概念図を参照しつつ、説明する。なお、図11では、説明の便宜のため、PWM波形生成部500によるハイ幅の調整は行われないものとする。
パルス付加タイミング検出部420は、PWPARL210の設定値(第1設定値)に応じてパルス周期毎にハイレベル、ロウレベルが切り替わる指示信号S2を生成する(図11参照)。例えば、PWPARL210に"110000"(6ビット値であり、10進数で48を示す値)が設定されていた場合、パルス付加タイミング検出部420は、指示信号S2として、64パルス周期のうち48パルス周期だけハイレベルを出力する。第2カウントアップ信号生成部430は、カウンタ部410のカウント値がフルカウントであり、かつ指示信号S2がハイレベルの場合にのみハイレベルとなるマスク信号(msk)を生成する(図11参照)。そして、第2カウントアップ信号生成部430は、マスク信号(msk)がハイレベルの場合に、カウントアップ信号enをマスクした第2カウントアップ信号en2を生成する(図11参照)。PWM波形生成部500は、この第2カウントアップ信号en2を用いてPWM信号を生成する。ここで、マスク信号(msk)がハイレベルの場合、第2カウントアップ信号en2はカウントアップしない。一時的にカウントアップしない第2カウントアップ信号en2を用いて生成されるPWM信号の周期は、規定値(PWDRH220のビット幅)より広くなる。
すなわち、本実施の形態にかかるパルス信号生成回路は、PWPARL210の設定値に応じてPWM信号のパルス周期を調整すること(周波数を大きくしたり、小さくしたりすること)ができる。PWM信号のパルス周期の設定範囲が広がるため、ロボットの制御に用いるモータに必要となる高速な応答速度を実現することが可能となる。
<実施の形態2>
実施の形態1にかかるPWM周期調整部400は、図4に示すように1イネーブルサイクルだけカウントを調整する、すなわち規定値よりも1イネーブルサイクルだけPWM信号のパルス周期を大きくするように調整していた。本実施の形態にかかるPWM周期調整部400は、複数イネーブルサイクルだけパルス周期を広げることを特徴とする。本実施の形態にかかるPWM周期調整部400について、以下に説明する。なお、パルス信号生成回路1の他の処理部については、実施の形態1と略同一(ただし、後述するPWPARH240、及びモードレジスタ250を備える点が異なる)であるため、詳細な説明は省略する。
図12は、本実施の形態にかかるPWM周期調整部400の構成を示すブロック図である。PWM周期調整部400には、レジスタPWPARH240からnビット値が入力される。PWPARH240は、PWM信号のパルス周期の拡張幅を示すnビット値(以下、付加パルス幅とも記載する。)が設定されている。さらに、PWM周期調整部400には、モードレジスタ250からモード情報(0または1のいずれかとなる値)が入力される。モード情報とは、常にパルス周期を付加パルス幅だけ広げることを指示する値(0)、またはPWDRH220に設定された頻度に応じてパルス周期を付加パルス幅だけ広げることを指示する値(1)のいずれかを取る情報である。なお、モード情報は、レジスタではなくピンに記憶されても良い。
PWPARH240は、PWPARL210と関連付けられた値を保持する。詳細には、後述のモードレジスタに0(常にパルス周期をパルス幅だけ広げる)が設定された場合、PWPARH240がハイ側の値となり、PWPARL210がロウ側の値となる一つの値とみなすことができ、当該値は最終的な第2カウントアップ信号en2の拡張パルス幅を示す値となる。例えば、モードレジスタに0が設定した場合であってPWPARH240に1以上の値を設定した場合、毎パルス周期が、設定されたPWPARH240に設定されたイネーブルサイクルだけ拡張される。例えば、PWPARH240に00000011(十進数で3)、PWPARL210に100000を設定が設定された場合、毎パルス周期が3イネーブルサイクルだけ拡張され、かつパルス周期の2回に1度だけ1イネーブルサイクルが拡張され、平均すると1つのパルス周期が3.5イネーブルサイクルだけ拡張される。これにより、PWPARH240が整数部でPWPARL210が小数部の1つの値にみなすことができる。
モードレジスタに1が設定された場合、毎パルス周期が拡張されることはなくなる。パルス周期は、PWPARL210に設定された頻度に応じて、PWPARH240に設定したイネーブルサイクルだけ拡張される。
PWM周期調整部400は、カウント部410と、付加パルスタイミング生成部420と、第2カウントアップ信号生成部430と、を備える。カウント部410には、カウントアップ信号enが供給される。カウント部410には、PWPARH240からnビット値が入力される。
カウント部410は、内部にカウント調整部417を備える。マスク信号(msk)は、PWPARH240に設定された値だけハイレベルとなる。カウント調整部417は、マスク信号(msk)がハイレベルとなっている間だけカウントアップを停止する。これにより、第2カウントアップ信号en2の出力先であるPWM波形生成部500内のカウンタ部510が保持するカウント値とずれが生じないように制御する。
付加パルスタイミング生成部420には、実施の形態1と同様に、PWPARL210が入力される。付加パルスタイミング生成部420は、当該読み出した値に応じてパルス周期単位(カウントアップタイミング信号enのエッジが2のn乗回検出される毎)でハイレベル、またはロウレベルが切り替わり得る2値の指示信号S2を生成する。
第2カウントアップ信号生成部430には、PWPARH240の値及びモードレジスタ250の設定値が入力される。第2カウントアップ信号生成部430は、これらの設定値に応じてマスク信号(msk)を生成し、生成したマスク信号(msk)をカウント部410に供給する。詳細には、第2カウントアップ信号生成部430は、PWPARH240の値と同じ幅のハイ幅を持つマスク信号(msk)を生成する。換言すると第2カウントアップ信号生成部430は、PWPARH240の値に応じて値の切替タイミング(ハイレベルからロウレベル、ロウレベルからハイレベル)を定める。そして、第2カウントアップ信号生成部430は、生成したマスク信号(msk)を用いてカウントアップ信号enをマスクした第2カウントアップ信号en2を生成する。
PWM周期調整部400内の処理部の詳細動作を図13及び図14のタイミングチャートを用いて説明する。図13は、モードレジスタ250に0が設定された場合(常にパルス周期を付加パルス幅だけ広げる場合)の各処理部の出力信号を示すタイミングチャートである。図14は、モードレジスタ250に1が設定された場合(PWDRL210に設定された頻度で、パルス周期を付加パルス幅だけ広げる場合)の各処理部の出力信号を示すタイミングチャートである。
はじめに、図13について説明する。図13および図14の説明において、PWPARL210には"010101"(6ビット値であり、10進数で21を示す値)が設定されているものとする。パルス付加タイミング検出部420は、PWPARL210に設定されたiビットの値(21)と、2のi乗(64)と、の比率に応じてパルス周期毎にハイレベル、ロウレベルを切り替えた信号S2を出力する。
また、図13および図14の説明において、PWPARH240には"00000011"(8ビット値であり、10進数で3を示す値)が設定されているものとする。すなわち、付加パルス幅は3である。前述のように、図13では、モードレジスタ250に0が設定されている。そのため、第2カウントアップ信号生成部430は、パルス周期毎に付加パルス幅(3)だけハイレベルとなるマスク信号(msk)を生成する。第2カウントアップ信号生成部430は、生成したマスク信号(msk)をカウンタ部410に供給する。
カウンタ部410は、付加パルス幅に応じて、カウントアップを停止する期間を設けた上でカウントアップを行う。図13では、カウンタ部410は、"00000001"を3イネーブルサイクル分だけカウントアップしないように制御している。
マスク信号(msk)が付加パルス幅だけパルス周期毎にハイレベルとなるため、生成される第2カウントアップ信号en2は、PWDRH220のビット幅から定まる周波数に対し、付加パルス幅に対応する値だけ調整された周波数を得ることができる。さらに、指示信号S2がハイレベルになったことに応じて、マスク信号(msk)が1イネーブルサイクル分だけハイレベルとなる。
続いて、図14について説明する。図13と同様にパルス付加タイミング検出部420は、PWPARL210に設定されたiビットの値(21)と、2のi乗(64)と、の比率に応じてパルス周期毎にハイレベル、ロウレベルを切り替えた指示信号S2を出力する。
図14の例では、モードレジスタ250に1が設定されている。そのため、第2カウントアップ信号生成部430は、64回のパルス周期のうち21回のパルス周期において、付加パルス幅(3)だけハイレベルとなるマスク信号(msk)を生成する。
カウンタ部410は、付加パルス幅とマスク信号(msk)に応じて、カウントアップ停止を調整し、カウント値を出力する。ここで、カウンタ部410は、マスク信号(msk)がハイレベルとなるパルス周期である場合、カウントアップを停止する期間を設ける。なお、カウンタ部410は、モードレジスタ250に1が設定されている場合、64回のパルス周期のうち21回のパルス周期においてカウントアップを停止する期間を設ける構成であれば他の任意の構成であっても良い。これにより、マスク信号(msk)を生成するカウンタ部410もマスクしたイネーブルサイクルだけカウントアップが止まり、カウントアップが止まることによりPWM波形生成部500内のカウントアップとのずれを補正し、長い時間で動作が破綻しないようにしている。
続いて、本実施の形態にかかるPWM周期調整部400の詳細構成例を、図15を参照して説明する。図15に示すブロック図は、図12に示したPWM周期調整部400の概略構成を具現化した回路構成の一例である。
付加パルスタイミング検出部420の構成は、図5に示す構成と略同一である。カウンタ410の構成は、図5に示す構成と比べ、1ビットフリップフロップ414に代わり、カウント調整部417を備える構成である。カウント調整部417の詳細な構成は、図16を参照して後述する。
第2カウントアップ信号生成部430は、図5に示す構成と比べ、ANDゲート431を有さず、インバータ434と、比較器435と、ANDゲート436と、インバータ437と、ANDゲート438と、ORゲート439と、ANDゲート440と、ANDゲート441と、ANDゲート442と、1ビットフリップフロップ443と、ORゲート444と、を備える。インバータ432がマスク信号(msk)を受信する構成やANDゲート433が第2カウントアップタイミング信号en2を出力する構成は、図5と同様である。
インバータ434は、PWPARH240からiビットの設定値(付加パルス幅)を読み出し、その反転値を比較器435に供給する。比較部435には、カウント部410からnビットのカウント値が供給される。比較器435は、付加パルス幅の反転値よりもカウント値が大きい場合には1をANDゲート438及び441に供給し、それ以外の場合には0をANDゲート438及び441に供給する。
ANDゲート436には、カウント部410からnビットのカウント値が供給される。ANDゲート436は、各ビットが全て1である場合(フルカウントである場合)に1をORゲート439に供給し、それ以外の場合に0をORゲート439に供給する。ANDゲート438は、モードレジスタ250の設定値と比較部435の論理積をORゲート439に供給する。
ORゲート439は、ANDゲート436の出力値とANDゲート438の出力値との論理和をANDゲート440に供給する。ANDゲート440は、パルス生成部425の出力信号S2とORゲート439の出力値との論理積をANDゲート442及びORゲート444に供給する。ANDゲート441は、比較器435の出力値とモードレジスタ250の設定値の反転値との論理積をANDゲート442及びORゲート444に供給する。ANDゲート442は、ANDゲート441の出力値とANDゲート440の出力値との論理積を1ビットフリップフロップ443のデータ端子に供給する。1ビットフリップフロップ443のクロック端子には分周前のクロックが供給され、イネーブル端子にはカウントアップタイミング信号enが供給される。1ビットフリップフロップ443は、一般的な1ビット用のフリップフロップであり、出力値をORゲート444に供給する。
ORゲート444は、ANDゲート441の出力値と、1ビットフリップフロップ442の出力値と、ANDゲート440の出力値と、の論理和をマスク信号(msk)としてインバータ432及びカウント調整部417に供給する。
続いて、カウント調整部417の詳細構成例を、図16を参照して説明する。カウント調整部417は、フリップフロップ4171と、インバータ4172と、ANDゲート4173と、セレクタ4174と、フリップフロップ4175と、セレクタ4176と、デクリメンタ4177と、ORゲート4178と、ANDゲート4179と、を備える。
フリップフロップ4171のクロック端子(図示せず)には分周前のシステムクロックが供給され、イネーブル端子にはカウントアップタイミング信号enが供給され、データ端子にはマスク信号(msk)が供給される。フリップフロップ4171は、出力信号をANDゲート4173に供給する。ANDゲート4173は、マスク信号(msk)の反転信号と、フリップフロップ4171の出力信号と、の論理積をセレクタ4174の選択信号として供給する。ANDゲート4173は、マスク信号(msk)の立下りを検出する。
セレクタ4174は、ANDゲート4173からの供給信号の値が0である場合にはフリップフロップ4175の出力信号をORゲート4178に供給する。一方、セレクタ4174は、ANDゲート4173からの供給信号の値が1である場合にはPWPARH240の設定値をORゲート4178、セレクタ4176、及びデクリメンタ4177に供給する。デクリメンタ4177は、入力値を1だけ減算してセレクタ4176に供給する。セレクタ4176は、ANDゲート4179からの入力が0の場合にセレクタ4174からの供給値をフリップフロップ4175のデータ端子に供給する。セレクタ4176は、ANDゲート4179からの入力が1の場合にデクリメンタ4177からの供給値をフリップフロップ4175のデータ端子に供給する。
フリップフロップ4175のクロック端子(図示せず)には分周前のシステムクロックが供給される。フリップフロップ4175は、nビットの出力値をセレクタ4174に供給する。ORゲート4178は、入力されたnビット値の各ビットが全て0である場合にのみ0をANDゲート4179及びインバータ416に供給する。ANDゲート4179は、ORゲート4178の出力値とカウントアップタイミング信号enの論理和をセレクタ4176に選択信号として供給する。
(効果)
続いて、本実施の形態にかかるパルス信号生成回路の効果について図17および図18の動作概念図を参照しつつ、説明する。なお、図17及び図18では、説明の便宜のため、PWM波形生成部500によるハイ幅の調整は行われないものとする。
図17は、モード情報に0が設定された場合のPWM信号の生成概念を示す図である。図示するように、マスク信号(msk)は、パルス周期毎に、PWPARH240の設定値(第2設定値)に応じた数のイネーブルサイクルだけハイレベルとなり、これに応じて生成されるPWM信号のロウ幅も広がる。毎回のパルス周期が大きくなることにより、PWM信号のエッジの出現頻度が少なくなる。エッジの出現頻度が少なくなることにより、PWM信号が供給されるモータが慣性で動作する時間が長くなる。これにより、モータ自体の消費電力の削減に寄与することができる。
図18は、モード情報に1が設定された場合のPWM信号の生成概念を示す図である。図示するように、マスク信号(msk)は、PWPARL210の設定値(第1設定値)の頻度に応じ、複数イネーブルサイクルに渡ってハイレベルとなる。ここで、ハイレベルとなるイネーブルサイクルの幅は、PWPARH240の設定値(第2設定値)と同じである。すなわち、パルス周期を広げる頻度及びパルス周期を広げる幅を両方調整できる。そのため、生成するPWM信号の調整をより細かくすることができる。
<実施の形態3>
本実施の形態にかかるパルス信号生成回路は、PWM信号の生成中に付加パルス幅を変更できる、すなわちPWM信号生成中に周波数を適宜調整できることを特徴とする。本実施の形態にかかるパルス信号生成回路について実施の形態2と異なる点を以下に説明する。
図19は、本実施の形態にかかるパルス信号生成回路の構成を示すブロック図である。本実施の形態にかかるパルス信号生成回路1は、パルス幅調整部600を備える。PWM周期調整部400の内部構成は、図12に示す構成と同様である。パルス幅調整部600は、PWPARH240の値を任意のタイミングで変更(たとえば加算、減算)する回路である。PWPARH240の値を変更することにより、PWM周期調整部400の生成する第2カウントアップタイミング信号en2の周期(周波数)を適宜変更できる。
図20は、本実施の形態にかかるパルス信号生成回路の各処理部の出力信号を示すタイミングチャートである。なお、図20の例では、モードレジスタ250には0(毎パルス周期に付加パルスを付与する)が設定されているものとする。また、PWDRL230には、0が設定されているものとする。
パルス幅調整部600は、PWPARH240の値を時間の経過が進むにつれて加算している。PWPARH240の値が大きくなるため、PWM周期調整部400は、ハイ幅が徐々に大きくなるマスク信号(msk)を内部で生成する。マスク信号(msk)のハイ幅が徐々に大きくなるため、PWM波形生成部500は、ハイ幅が同じ幅であり、ロウ幅が徐々に大きくなるPWM信号を生成する。
(効果)
図20に示すように、パルス幅調整部600がPWPARH240の値をPWM信号の生成中に適宜調整することにより、パルス幅が周期毎に異なるPWM信号を生成することができる。パルス幅を周期毎に調整できることにより、より複雑なモータ制御を実現することができる。なお、パルス幅調整部600は、加算、減算に限らず例えば乗算によってパルス幅を調整しても良い。
<実施の形態4>
本実施の形態にかかるパルス信号生成回路は、レジスタ(PWCR200,PWPARL210等)の値を浮動小数点レジスタに保持できることを特徴とする。本実施の形態にかかるパルス信号生成回路について実施の形態2と異なる点を以下に説明する。
図21は、本実施の形態にかかるパルス信号生成回路1の構成を示すブロック図である。PWCR200に格納されていた値は、単一の浮動小数点レジスタ260の指数部に格納され、PWPARL210及びPWPARH240に格納されていた値は基数部に格納される。変換部700は、浮動小数点レジスタ260から値を読み出して変換処理(たとえば浮動小数点レジスタ260に設定された値の指数部分をセレクタ100に供給する値(PWCR)として切り出し、基数部分の上位nビットをPWM周期調整部400に供給する値(PWPARL)として切り出す。)を行う。そして、変換部700は、セレクタ100、PWM周期調整部400、及びPWM波形生成部500に設定値を供給する。その他の処理部の構成及び動作は、実施の形態1と同様であるため、その詳細な説明は省略する。
なお、図21では実施の形態1との差異を説明したが、実施の形態3についても浮動小数点レジスタ260を備える構成とすることもできる。また、PWDRH220及びPWDRL230に格納されていた値を浮動小数点レジスタ260の基数部に格納することもできる。
(効果)
近年、パルス信号生成回路を内部に備えるマイクロコンピュータの高集積化が進んでいる。これに伴い、マイクロコンピュータが浮動小数点レジスタを保持できる場面が増えてきている。本実施の形態では、上述のように浮動小数点レジスタ260内に各処理部(セレクタ100等)に対する設定値を一元管理することができる。浮動小数点レジスタ260内で設定値を一元管理することにより、例えば各設定値のビット幅を隠蔽することができる。
以上、本発明を実施の形態に即して説明した。しかし、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
1 パルス信号生成回路
100、412、4174、4176、423、512、515 セレクタ
200 PWCR
210 PWPARL
220 PWDRH
230 PWDRL
240 PWPARH
250 モードレジスタ
260 浮動小数点レジスタ
300 エッジ検出部
400 PWM周期調整部
410 カウンタ部
411、422、511、517 インクリメンタ
413、4173、4179、421、431、433、436、438、440、441、442、451、452、453、454、455、456、514、522、524、526、533 ANDゲート
414、443 1ビットフリップフロップ
415、4171、4175,424、513、516 フリップフロップ
416、4172、432、434、437、523 インバータ
417 カウント調整部
4177 デクリメンタ
4178、439、444、525、527、540 ORゲート
420 パルス付加タイミング検出部
425 パルス生成部
430 第2カウントアップ信号生成部
435、521 比較器
500 PWM波形生成部
510 カウンタ部
520 パルス挿入前PWM生成部
530 付加パルス生成部
531 パルス生成部
532 シフト回路
600 パルス幅調整部
700 変換部

Claims (8)

  1. クロックを基に生成されるカウントアップ信号を、PWM信号のパルス周期を広げる付加パルスの付加頻度を示す第1設定値に基づいて調整した第2カウントアップ信号を生成するPWM周期調整部と、
    前記第2カウントアップ信号と、予め定められたデューティー比と、に基づいて前記PWM信号を生成するPWM波形生成部と、を備え、
    前記PWM周期調整部は、前記カウントアップ信号をカウントするカウント部と、
    前記カウント部のカウント値、前記第1設定値、及び前記第1設定値のビット幅に基づいて、前記付加パルスを付加するパルス周期を示す指示信号を生成するパルス付加タイミング検出部と、
    前記カウント部のカウント値と前記指示信号に基づき、前記カウントアップ信号に前記付加パルスを付加するタイミングを示すマスク信号を生成し、前記マスク信号に応じて前記カウントアップ信号をマスクすることにより前記第2カウントアップ信号を生成する第2カウントアップ信号生成部と、を備えるパルス信号生成回路。
  2. 前記カウント部は、前記付加パルスの幅を示す第2設定値に応じて前記カウントアップ信号のカウントアップをマスクし、
    前記第2カウントアップ信号生成部は、前記第2設定値に応じて、前記マスク信号の値の切替タイミングを定めることを特徴とする請求項1に記載のパルス信号生成回路。
  3. 前記第2カウントアップ信号生成部は、前記パルス周期を前記第2設定値だけ常に拡張する、または、前記第1設定値に規定の頻度だけ前記パルス周期を前記第2設定値だけ拡張する、ことのいずれかを規定するモード情報に基づいて、前記第2カウントアップ信号を生成することを特徴とする請求項2に記載のパルス信号生成回路。
  4. 前記第2設定値を変更するパルス幅調整部を更に備えることを特徴とする請求項2に記載のパルス信号生成回路。
  5. 前記第1設定値、前記クロックの分周値を定める設定値、前記デューティー比を定める設定値のうち少なくとも2つを保持する浮動小数点レジスタを備える請求項1に記載のパルス信号生成回路。
  6. 前記PWM波形生成部は、前記デューティー比に規定されたハイ幅を変更する頻度を示す第3設定値に基づいて、前記PWM信号のハイ幅とロウ幅を調整することを特徴とする請求項1に記載のパルス信号生成回路。
  7. 請求項1に記載のパルス信号生成回路と、前記パルス信号生成回路の生成した前記PWM信号により駆動するモータと、を備えた情報処理システム。
  8. クロックの分周により生成されるカウントアップ信号をカウントし、
    前記カウントアップ信号のカウント値、PWM信号のパルス周期を広げる付加パルスの付加頻度を示す第1設定値、及び前記第1設定値のビット幅に基づいて、前記付加パルスを付加するパルス周期を示す指示信号を生成し、
    前記カウント値と前記指示信号に基づき、前記カウントアップ信号に前記付加パルスを付加するタイミングを示すマスク信号を生成し、
    前記マスク信号に応じて前記カウントアップ信号をマスクすることにより生成した第2カウントアップ信号を用いて前記PWM信号を生成する、パルス信号生成方法。
JP2012080370A 2012-03-30 2012-03-30 パルス信号生成回路、パルス信号生成方法 Pending JP2013211682A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012080370A JP2013211682A (ja) 2012-03-30 2012-03-30 パルス信号生成回路、パルス信号生成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012080370A JP2013211682A (ja) 2012-03-30 2012-03-30 パルス信号生成回路、パルス信号生成方法

Publications (1)

Publication Number Publication Date
JP2013211682A true JP2013211682A (ja) 2013-10-10

Family

ID=49529168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012080370A Pending JP2013211682A (ja) 2012-03-30 2012-03-30 パルス信号生成回路、パルス信号生成方法

Country Status (1)

Country Link
JP (1) JP2013211682A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109634352A (zh) * 2019-01-08 2019-04-16 优利德科技(中国)股份有限公司 一种脉冲波产生电路及脉冲波产生方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109634352A (zh) * 2019-01-08 2019-04-16 优利德科技(中国)股份有限公司 一种脉冲波产生电路及脉冲波产生方法
CN109634352B (zh) * 2019-01-08 2024-04-16 优利德科技(中国)股份有限公司 一种脉冲波产生电路及脉冲波产生方法

Similar Documents

Publication Publication Date Title
JP5165463B2 (ja) Pwm制御装置及びパルス波形制御方法
JP4787712B2 (ja) Pwm信号生成回路およびそれを備えた電源装置
JP5319986B2 (ja) パルス生成装置
KR20090051143A (ko) 자기 교정 디지털 펄스-폭 변조기(dpwm)
JP5494858B2 (ja) クロック信号分周回路及びクロック信号分周方法
EP2761752B1 (en) Maintaining pulse width modulation data-set coherency
JP5987292B2 (ja) 半導体集積回路装置及びそれを用いた電子機器
TWI618360B (zh) 增強之數値控制振盪器
US9035710B2 (en) PWM signal generating circuit, printer, and PWM signal generating method
TWI599178B (zh) 高解析度之脈衝寬度調變器
JP4271505B2 (ja) 電圧変換回路ならびにそれを備える半導体集積回路装置および携帯端末
JP2013211682A (ja) パルス信号生成回路、パルス信号生成方法
US7327300B1 (en) System and method for generating a pulse width modulated signal having variable duty cycle resolution
JP2010011389A (ja) 分周器
JP2009303434A (ja) モータ制御装置
JP4098091B2 (ja) トグルモジュールへのフィードバックを備えるパルス幅変調
JP2006269930A (ja) パルス制御回路
JP2006197367A (ja) カウンタ回路と、それを含む半導体装置
JP2014108021A (ja) Pwm出力装置
JP7220401B2 (ja) パルス幅変調回路
US8559246B2 (en) Digital retention voltage generation
TWI655577B (zh) 運算速度補償電路及其補償方法
JP2011109524A (ja) 半導体装置
US11016522B2 (en) Waveform generation
KR101632037B1 (ko) 고속 전류 모드 로직 제어 장치 및 방법