JP2013211187A - プラズマ生成手段を備えた導波管およびそれを用いたプラズマ発生装置 - Google Patents
プラズマ生成手段を備えた導波管およびそれを用いたプラズマ発生装置 Download PDFInfo
- Publication number
- JP2013211187A JP2013211187A JP2012081375A JP2012081375A JP2013211187A JP 2013211187 A JP2013211187 A JP 2013211187A JP 2012081375 A JP2012081375 A JP 2012081375A JP 2012081375 A JP2012081375 A JP 2012081375A JP 2013211187 A JP2013211187 A JP 2013211187A
- Authority
- JP
- Japan
- Prior art keywords
- waveguide
- plasma
- plasma generation
- microwave
- generation means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Plasma Technology (AREA)
Abstract
【課題】プラズマ生成手段を備えた導波管およびかかる導波管を用いたプラズマ発生装置について、比較的容易かつ確実にプラズマ生成箇所を増やすことができるようにする。
【解決手段】マイクロ波によりプラズマを生成するためのプラズマ生成手段P1〜P6を備えた導波管20であって、長手方向における一端側が、管内にマイクロ波を供給するマイクロ波源に結合され、長手方向において前記一端側に対向する他端側に、前記マイクロ波源から供給されるマイクロ波を反射可能な導波管終端部22が設けられており、前記導波管終端部が長手方向へ移動可能に構成され、前記プラズマ生成手段が、前記マイクロ波源からのマイクロ波の定在波の導波管管内波長の1/2以下の間隔で、長手方向において管内に複数配置されている、ことを特徴とする。
【選択図】図1
【解決手段】マイクロ波によりプラズマを生成するためのプラズマ生成手段P1〜P6を備えた導波管20であって、長手方向における一端側が、管内にマイクロ波を供給するマイクロ波源に結合され、長手方向において前記一端側に対向する他端側に、前記マイクロ波源から供給されるマイクロ波を反射可能な導波管終端部22が設けられており、前記導波管終端部が長手方向へ移動可能に構成され、前記プラズマ生成手段が、前記マイクロ波源からのマイクロ波の定在波の導波管管内波長の1/2以下の間隔で、長手方向において管内に複数配置されている、ことを特徴とする。
【選択図】図1
Description
本発明は、マイクロ波によりプラズマを生成するためのプラズマ生成手段を備えた導波管、及びかかる導波管を用いたプラズマ発生装置に関するものである。
周知のように、半導体や原材料などの表面処理や医療機器分野での滅菌もしくは殺菌に使用されるプラズマは、原料ガスに外部からエネルギーを与えることによって生成される。この外部エネルギーとしてプラズマの生成に好適な数kHz〜数GHzの周波数をもつ電磁波が利用されており、この電磁波の周波数が高いほど、生成されるプラズマは高密度であり高エネルギーであることが知られている。
エネルギー密度が高い数GHzの電磁波周波数としては、産業・科学・医療の分野で使用できる2.45GHzのマイクロ波が知られている。例えばマグネトロンなどのマイクロ波源で生成されるマイクロ波は、一般に、導波管を通して反応容器に供給する過程でマイクロ波エネルギーをプラズマに変換するようになっている。
導波管の長さは有限であり、マイクロ波源に結合された端部と反対側の端部は導波管終端と呼ばれ、マイクロ波源からのマイクロ波の入射波は、この導波管終端で反射し反射波としてマイクロ波源の方向に返って行く。そして、導波管内では、入射波と反射波とが合成されて定在波が生じる。定在波は、導波管内の長手方向における位置によってマイクロ波の振幅が異なり、振幅が最小の部位を「節」と呼び、振幅が最大の部位を「腹」と呼んでいる。節と節の間の長さ若しくは腹と腹の間の長さは、定在波の導波管管内波長λgの1/2となるものである。
導波管と反応容器のマイクロ波結合は、導波管管内波長λgの1/2の部分でマイクロ波の振幅が最も大きくなる部位(つまり「腹」の部分)で行われるのが一般的であり、反応容器が大きいものでは複数の「腹」の部分でマイクロ波の結合が行なわれている。
反応容器内でプラズマによる処理を確実および/または均一に行うためには、反応容器単位体積当たりのプラズマの生成箇所が多いことが望ましく、かかる観点から、従来、種々の工夫がなされている(例えば、特許文献1,2及び3参照)。
反応容器内でプラズマによる処理を確実および/または均一に行うためには、反応容器単位体積当たりのプラズマの生成箇所が多いことが望ましく、かかる観点から、従来、種々の工夫がなされている(例えば、特許文献1,2及び3参照)。
例えば、特許文献1に記載された発明では、2.45GHzのマイクロ波を用いたプラズマ処理装置において、定在波のピークとなる間隔(つまり、導波管管内波長λgの1/2)である略79mmでスリットが設定され、そのスリットからマイクロ波が反応容器内に供給され、プラズマを発生させるようにしている。しかしながら、プラズマの生成箇所としてのスリットの間隔は、定在波の導波管管内波長λgの1/2である略79mmと、かなり大きいものであり、導波管の過大な長大化を招くことなく、プラズマ生成箇所を増やすことは困難であった。
また、特許文献2には、プラズマ発生ノズルによるプラズマ発生箇所を増やすために、マイクロ波導波管を分岐して構成することが開示され、また、プラズマ照射を均一に行えるようにするために、ワークを移動可能とすることが開示されている。しかしながら、導波管の分岐およびワークの移動可能化は何れも、かなりの構成の複雑化を招くという難点があった。
更に、特許文献3に記載された発明では、マイクロ波によるプラズマ生成は、複数のプラズマ発生ノズルに個々に対応したスタブを設けることが必要で、しかも個々にスタブの調整をするようになっている。しかしながら、導波管の中の1つのスタブの変化は、対応するプラズマ発生ノズルのみならず、他のプラズマ発生ノズルにも影響を及ぼすので、全てのプラズマ発生ノズルについて安定した動作を得ることは難しいという難点があった。
本発明は、以上の諸問題に鑑みてなされたもので、プラズマ生成手段を備えた導波管おびよかかる導波管を用いたプラズマ発生装置について、比較的容易かつ確実にプラズマ生成箇所を増やすことができるようにすることを、基本的な目的とする。
本願発明者は、かかる目的達成のために種々研究開発を進める中で、未だプラズマを生成していないプラズマ生成手段に最初にプラズマを発生させるのに要するマイクロ波電圧と、既に発生しているプラズマ生成手段のプラズマ状態を維持するのに要するマイクロ波電圧とを比較した場合、必要なマイクロ波電圧は後者の方が大幅に低く、前者の場合に比べて概ね1/3程度以下で済むことを見出した。
例えば、非導電性パイプをスリット付きの導電性パイプで同軸に覆って構成した二重管構造のプラズマ生成手段を用いた場合を例にとって説明すれば、非導電性パイプ内の原料ガスを最初にプラズマ化する場合、スリット付き導電性パイプのインピーダンスが大きいため、比較的大きなマイクロ波電圧が必要である。これに対して、既にプラズマが発生している場合には、非導電性パイプ内のプラズマが導電性を有しているので、スリット付き導電性パイプのインピーダンスが小さく、プラズマ状態を維持するのに要するマイクロ波電圧は小さくて済むものと考えられる。
図13は、上述のプラズマ生成手段のプラズマ発生特性を示すグラフである。このグラフにおいて、左側の縦軸はマグネトロンの入力電力(つまり、所要マイクロ波電圧)を示し、横軸は反応容器内の圧力(つまり、プラズマ生成手段の非導電性パイプ内の圧力)を示している。また、右側の縦軸は、最初にプラズマを発生させるのに要する電力(これを「プラズマ発生電力」と称する)と、既に発生しているプラズマ生成手段のプラズマ状態を維持するのに要する電力(これを「プラズマ維持電力」と称する)との比率を示している。
図13から良く分かるように、プラズマ発生電力に対するプラズマ維持電力の比率は(図13:破線表示の折れ線参照)、反応容器内の圧力に依存し、圧力が高くなるに連れて前記比率も高くなるが、計測した範囲内では、最も圧力が高い1000Paでも約35%程度である。従って、実用的な圧力を勘案すれば、プラズマ発生電力に対するプラズマ維持電力の比率は概ね1/3程度以下である。すなわち、一旦発生したプラズマ生成手段のプラズマ状態を維持するのに要する電力(プラズマ維持電力)は、最初にプラズマを発生させるのに要する電力(プラズマ発生電力)の概ね1/3程度以下で済むことになる。
そこで、本願の第1の発明は、マイクロ波によりプラズマを生成するためのプラズマ生成手段を備えた導波管であって、a)長手方向における一端側が、管内にマイクロ波を供給するマイクロ波源に結合され、b)長手方向において前記一端側に対向する他端側に、前記マイクロ波源から供給されるマイクロ波を反射可能な導波管終端部が設けられており、c)前記導波管終端部が長手方向へ移動可能に構成され、d)前記プラズマ生成手段が、前記マイクロ波源からのマイクロ波の定在波の導波管管内波長の1/2以下の間隔で、長手方向において管内に複数配置されている、ことを特徴としたものである。
この場合において、前記導波管は、所定の基本モードを有するマイクロ波導波管であることが好ましい。
以上の場合において、前記プラズマ生成手段でのプラズマ発生の有無が検知手段によって検知される、ことがより好ましい。
この場合において、前記検知手段からの検知情報に基づいて、プラズマ未発生の任意のプラズマ生成手段でプラズマが発生するように前記導波管終端部が移動させられ、その後、残余のプラズマ生成手段でもプラズマが発生するように前記導波管終端部が更に移動させられる、ことができる。
以上の場合において、全てのプラズマ生成手段でプラズマが発生している状態では、各プラズマ生成手段は、前記定在波の節と節の間に相当する箇所に位置し、全てのプラズマ生成手段について、前記定在波の腹に相当する箇所からの距離が等しくなるように、前記導波管終端部の位置が設定される、ことが好ましい。
また、以上の場合において、前記プラズマ生成手段は、非導電性パイプと、該非導電性パイプの外側を覆う導電性パイプとで二重管構造を備えていてもよく、外側の導電性パイプには、円周上で180度の対向位置に位置決めされた一対のスリット部が設けられており、プラズマ生成手段は、これらスリット部が導波管の長手方向中心線に沿って並ぶように配置されてもよい。
また、本願の第2の発明に係るプラズマ発生装置は、a)上述の導波管の何れかと、b)前記導波管の長手方向における一端側に結合され、管内にマイクロ波を供給するマイクロ波源と、c)前記導波管終端部を長手方向へ移動させる移動手段と、d)前記移動手段を制御する制御手段と、を備えていることを特徴としたものである。
この場合において、前記プラズマ生成手段でのプラズマ発生の有無を検知する検知手段が付設され、該検知手段の検知信号は前記制御手段に送信される、ように構成されていることが好ましい。
本願の第1の発明によれば、マイクロ波によりプラズマを生成するためのプラズマ生成手段を備えた導波管において、長手方向における一端側のマイクロ波源から供給されるマイクロ波を反射可能な導波管終端部が長手方向へ移動可能に構成されているので、導波管内の定在波の振幅が最大となる「腹」の位置を導波管の長手方向について変化させることができる。従って、プラズマ生成手段が導波管の長手方向において管内に複数配置されている場合でも、導波管終端部を長手方向へ移動させて、定在波の振幅が最大となる「腹」の位置を長手方向について変化させることで、各々のプラズマ生成手段について、順次、定在波の「腹」の部分に相当する部位に位置するように、定在波との相対位置関係を設定することがきる。この相対位置関係を前記のように設定することにより、全てのプラズマ生成手段について、順次、定在波の振幅が最大となる「腹」の部分に相当する最大のマイクロ波電圧を印加してプラズマを生成させることができる。この結果、1つの導波管について、比較的容易かつ確実にプラズマ生成箇所を増やすことができる。この場合において、長手方向に複数設けられているプラズマ生成手段は、マイクロ波源からのマイクロ波の管内波長の1/2以下の間隔で配置されているので、導波管終端部は、この間隔で移動させれば良い。
また、本願の第2の発明によれば、プラズマ発生装置は、a)第1の発明に係る導波管の何れかと、b)前記導波管の長手方向における一端側に結合され、管内にマイクロ波を供給するマイクロ波源と、c)前記導波管終端部を長手方向へ移動させる移動手段と、d)前記移動手段を制御する制御手段と、を備えていることにより、第1の発明と同様の作用効果を奏することができ、比較的容易かつ確実にプラズマ生成箇所を増やして、プラズマの高密度化を達成することができる。
以下、本発明の実施形態について、添付図面を参照しながら詳細に説明する。
尚、以下の説明では、特定の方向を意味する用語(例えば、「上」,「下」,「左」,「右」,「前」,「後」、及びそれらを含む他の用語、並びに「時計回り方向」,「反時計回り方向」など)を使用する場合があるが、それらの使用は図面を参照した発明の理解を容易にするためである。従って、本発明は、それらの用語の語義によって限定的に解釈されるべきものではない。
尚、以下の説明では、特定の方向を意味する用語(例えば、「上」,「下」,「左」,「右」,「前」,「後」、及びそれらを含む他の用語、並びに「時計回り方向」,「反時計回り方向」など)を使用する場合があるが、それらの使用は図面を参照した発明の理解を容易にするためである。従って、本発明は、それらの用語の語義によって限定的に解釈されるべきものではない。
図1は、本実施形態に係るプラズマ処理システム1の全体構成を概略的に示すブロック構成図である。また、図2は、前記プラズマ処理システム1の主要部を構成するプラズマ発生装置10の分配部11及び導波管20、並びに反応容器5の縦断面を斜め上方から見て示した断面斜視図であり、図3は、図2の要部である分配部11及び導波管20を拡大して示す部分拡大断面図である。更に、図4は、前記導波管20内の一部のプラズマ生成手段P3,P4の上部を破砕して示す拡大斜視図である。また更に、図5は、前記分配部11及び導波管20並びに反応容器5の縦断面図であり、図6は、図5のY6−Y6線に沿った縦断面図である。また更に、図7は、6本のプラズマ生成手段P1〜P6と検知センサS1〜S6との位置関係を示す導波管20の横断面図であり、図8は、図7の要部を拡大して示す部分拡大断面図である。
図1に示すように、本実施形態に係るプラズマ処理システム1は、プラズマ発生装置10にプラズマ用の原料ガスを供給するための原料ガス供給源2と、この原料ガス供給源2からの原料ガスの供給量(つまり流量)を制御する制御手段としての流量制御弁3とを備えている。この流量制御弁3を通って供給された原料ガスは、プラズマ発生装置10に付設されたガス分配部11を介してプラズマ発生装置10内に供給される。
原料ガスとしては、例えば、酸素もしくは空気などを用いることができる。また、流量制御弁3としては、ガス流量を好適に制御し得る種々の公知の流量制御弁を用いることができる。
原料ガスとしては、例えば、酸素もしくは空気などを用いることができる。また、流量制御弁3としては、ガス流量を好適に制御し得る種々の公知の流量制御弁を用いることができる。
前記プラズマ発生装置10は、マイクロ波を伝送可能な所定長さの本体部21を有するマイクロ波導波管20(以下、適宜、単に「導波管」と言う)と、この導波管20の長手方向における一端側(図1における左端側)に結合されて導波管20内にマイクロ波を供給するマイクロ波源13とを備えている。このマイクロ波源13としては、好ましくは、例えば2.45GHzのマイクロ波を発生することができるもので、例えば、所謂マグネトロンなど、従来公知のマイクロ波発生装置を用いることができる。また、導波管20の本体部21は、図6から良く分かるように、縦断面の周縁形状が例えば長方形状に形成された中空体として構成され、所定方向(本実施形態では略水平方向)に真直して延設されている。
前述のガス分配部11は、図2,3,5及び6から良く分かるように、導波管20の上側に付設されており、縦断面の周縁形状が全体として略長方形状のボックス体として構成され、その上部中央には、流量制御弁3から送給されて来た原料ガスが流入するガス流入部11sが設けられている。
また、導波管20の下側には、プラズマを用いて所要の処理(例えば滅菌もしくは消毒処理)を行うための反応容器5が配置されている。この反応容器5の下部中央には、真空ポンプ6(図1参照)に接続される排気部5dが設けられている。この反応容器5の底面上には、滅菌もしくは消毒処理を施す処理対象物K1,K2を載置するために、好ましくは多孔状の載置台5kが配設されている。
また、導波管20の下側には、プラズマを用いて所要の処理(例えば滅菌もしくは消毒処理)を行うための反応容器5が配置されている。この反応容器5の下部中央には、真空ポンプ6(図1参照)に接続される排気部5dが設けられている。この反応容器5の底面上には、滅菌もしくは消毒処理を施す処理対象物K1,K2を載置するために、好ましくは多孔状の載置台5kが配設されている。
導波管20の長手方向において前記一端側に対向する他端側(図1における右端側)には、導波管終端部22が設けられている。本実施形態では、この導波管終端部22は、導波管本体部21の縦断面における内周形状に対応して、縦断面形状が全体として長方形状に形成され、導波管20の本体部21の内面に沿って長手方向へスムースに摺動できるように寸法設定されている。
また、導波管終端部22の管内に臨む内面22fは、図2,図5及び図7〜9から良く分かるように、マイクロ波源13から供給されて導波管20内に入射されたマイクロ波を反射する導波管終端面22f(以下、適宜、単に「終端面」という)を構成している。この終端面22fに対向する終端部外面22gには、外方(各図における右方)へ突出する所定長さのアーム(突出アーム)22pが一体的に設けられている。この突出アーム22pは、導波管本体部21の端末壁部21wに設けられた開口を貫通して外方へ伸長しており、その先端側には、後述する終端移動装置15が接続される。導波管終端部22は導電性材料(例えば金属)で製作されており、導波管20内を伝播するマイクロ波を終端面22fで反射するものである。
また、導波管終端部22の外周部には、自由空間でのマイクロ波波長をλ0で表せば、その1/4の長さ(1/4λ0)のマイクロ波チョーク22cが設けられている。このマイクロ波チョーク22cは、導波管終端部22の外周部と導波管本体部21の内面との隙間をマイクロ波が通過することを防止するとともに、該隙間におけるマイクロ波の放電を防止して導波管終端部22の摺動動作の安全性をより高めるものである。
本実施形態に係るプラズマ発生装置10では、導波管終端部22を導波管20の長手方向に移動(摺動)させて、終端面22fの長手方向における位置を変更することができるようにするために、導波管終端部22を移動させる終端移動装置15が設けられている。この終端移動装置15は、図2及び図5から良く分かるように、ベース15bに固定されたモータMと、該モータMの出力軸Msに一端側が固定された回動アーム15kと、この回動アーム15kと導波管終端部22の突出アーム22pとを接続するアーム部材15c(リンクアーム)とを備えている。このリンクアーム15cは、一端側が前記回動アーム15kの先端側に回動自在に結合され、他端側は前記突出アーム22pの先端側に回動自在に結合されている。
前記終端移動装置15のモータMには、好ましくは、出力軸Msの回転量を任意に調節できる所謂ステッピングモータが用いられており、このモータMが駆動されることにより、その出力軸Msが所定量だけ回転し、その回転運動が、回動アーム15k及びリンクアーム15cを介して、前記突出アーム22pの(つまり導波管終端部22の)導波管20の内面に沿った直線運動に変換される。これにより、導波管終端部22をモータMの回転量に応じた任意の位置に移動させ、終端面22fの長手方向における位置を任意に変化させることができる。
図1に示されるように、終端移動装置15は、プラズマ発生装置10の制御手段としてのコントローラ17に信号授受可能に接続されており、このコントローラ17からの命令信号に応じて、モータMが駆動されるように構成されている。コントローラ17は、例えば、マイクロコンピュータを主要部として構成することができ、後述する検知センサS1〜S6に信号授受可能に接続されており、これら検知センサS1〜S6からの検知信号が入力されるようになっている。また、このコントローラ17には、前述のマイクロ波源13並びに流量制御弁3及び真空ポンプ6も信号授受可能に接続されており、その作動がコントローラ17によって制御されるように構成されている。
導波管20の内部には、複数本数(本実施形態では、例えば6本)のプラズマ生成手段P1〜P6が、導波管20の長手方向中心線Lc(図7〜図11参照)に沿って配列されている。これらプラズマ生成手段P1〜P6は、マイクロ波によりプラズマを生成するためのプラズマ生成手段の役割を果たすもので、導波管20の長手方向に対して交差する方向(好ましくは直交する方向)に伸長しており、その上端部は、導波管20の上側に付設された前述のガス分配部11内に挿入されて開口している。また、プラズマ生成手段P1〜P6の下端部は、導波管20の下側に配置された前述の反応容器5内に挿入されて開口している。
導波管20の上面とガス分配部11の下面との間には、プラズマ生成手段P1〜P6の外周を覆う環状のシール部材(環状シール)26がそれぞれ装着されており、ガス分配部11内へのプラズマ生成手段P1〜P6の上端部の挿入部分から原料ガスが漏れ出ることを防止している。また、導波管20の下面と反応容器5の上面との間にも、プラズマ生成手段P1〜P6の外周を覆う環状のシール部材(環状シール)27がそれぞれ装着されており、反応容器5内へのプラズマ生成手段P1〜P6の下端部の挿入部分から外部エアが進入して、反応容器5内の真空度が(従って、プラズマ生成手段P1〜P6内の真空度が)低下することを防止している。前記環状シール26,27としては、例えばゴム製シール等の気密なシール性を有するシール部材が用いられている。
プラズマ生成手段P1〜P6は、全て同一構造のもので、図3及び図4から良く分かるように、原料ガスを内部に流通させる非導電性パイプ24と、その外側を覆うようにして同軸状に配置された導電性パイプ25とで、二重管状に形成されている。前記非導電性パイプ24は、石英や耐熱ガラス等の非導電性材料を用いて管状に形成したものであり、前記導電性パイプ25は、ステンレス鋼や真鍮などの導電性材料を用いて管状に形成したものである。
この導電性パイプ25には、所定の幅および長さに寸法設定された一対のスリット部25sが設けられている。この一対のスリット部25sは、導電性パイプ25の円周上で180度の対向位置に位置決めされており、プラズマ生成手段P1〜P6を導波管20に取り付けた際には、これらスリット部25sが導波管20の長手方向中心線Lc(図7〜図11参照)に沿って並ぶように、プラズマ生成手段P1〜P6の配列状態が定められている。このような一対のスリット部25sを有する導電性パイプ25が、導波管20内を伝送されるマイクロ波を受信し、そのマイクロ波を内側の非導電性パイプ24内に放射することができる、いわば「アンテナ」の役割を果たすことになる。
流量制御弁3を通ったプラズマ用原料ガスは、ガス分配部11内に入り、そこから複数のプラズマ生成手段P1〜P6の各非導電性パイプ24を通り反応容器5内に流入する。このとき、導波管20内には、当該導波管20の一端側に配置されたマイクロ波源13から、所要特性のマイクロ波が供給されている。
図6から良く分かるように、導電性パイプ25のスリット25sの幅方向(図6における左右方向)は導波管20の短辺方向(図6における左右方向)に一致するように設定されている。基本モードの矩形導波管20では短辺方向(つまり幅方向)にマイクロ波電界が生じるので、導電性パイプ25のスリット25sには幅方向にマイクロ波電界が存在することになる。本実施形態では、好ましくは、「TE10」の基本モードを有する矩形導波管20が用いられており、導波管20の幅方向についてのみ1つのマイクロ波電界が生じることになる。
このように基本モード(TE10)の矩形導波管20を用いることにより、導波管20の幅方向にマイクロ波電界を存在せしめることができる。そして、各プラズマ生成手段P1〜P6は、非導電性パイプ24と、該非導電性パイプ24の外側を覆う導電性パイプ25とで二重管構造を備え、外側の導電性パイプ25には、円周上で180度の対向位置に位置決めされた一対のスリット部25sが設けられており、プラズマ生成手段P1〜P6は、これらスリット部25sが導波管の長手方向中心線Lcに沿って並ぶように配置されている。このように構成することにより、導電性パイプ25のスリット25sには幅方向にマイクロ波電界が存在することとなり、その内側の非導電性パイプ24内にマイクロ波を放射することができる。
反応容器5内の圧力は、真空ポンプ6の排気能力と流量制御弁3で定まる原料ガス流量とで、所定の真空圧力に制御されている。非導電性パイプ24内の原料ガスの圧力は、真空ポンプ6で減圧されている反応容器5内の圧力と概ね同圧であり、大気中にごく僅かに存在する自由電子がマイクロ波の電界で加速され原子に衝突することにより、原子中の電子のエネルギー準位が高くなり、原子が励起状態もしくは電離状態になる。このように電子が励起状態や電離状態になった原料ガスは、プラズマとなり反応容器5に流入することになる。
本実施形態では、図7及び図8に示されるように、二重管構造のプラズマ生成管としての各プラズマ生成手段P1〜P6について、当該プラズマ生成手段でプラズマが生成されているか否かを検知するために、各プラズマ生成手段P1〜P6に対応して、6個の検知センサS1〜S6が設けられている。導波管本体部21の側壁の適所に開口21hが形成されており、検知センサS1〜S6それぞれの受光部Sjが対応する開口21h内に位置するように、各検知センサS1〜S6が導波管本体部21の側壁に取り付けられている。
これら検知センサS1〜S6は、全て同一構造のもので、プラズマ光を感知する受光素子を有する受光部Sjを主要部として備えている。任意のプラズマ生成手段でプラズマが生成されると、非導電性パイプ24内でプラズマが発光し、このプラズマの発光が(つまり、プラズマの発生が)、スリット部25sを通って、対応する検知センサの受光部Sjで感知される。このようにして、任意のプラズマ生成手段P1〜P6でのプラズマの生成を検知することができる。そして、その検知信号が前述のコントローラ17に送信されるようになっている。
このように、プラズマ生成手段P1〜P6でのプラズマ発生の有無を検知する検知手段として検知センサS1〜S6を付設したことにより、各プラズマ生成手段P1〜P6でのプラズマ発生の有無を確実に検知することができる。また、これら検知センサS1〜S6の検知信号をコントローラ17に送信することにより、各プラズマ生成手段P1〜P6でのプラズマ発生の有無に応じた好適な制御を実現することが可能になる。
尚、プラズマ生成手段P1〜P6でのプラズマ発生の有無を検知する検知手段としては、上述のように受光素子を利用した検知センサS1〜S6に限定されることなく、他の種々の公知の手法を用いた検知手段も有効に適用することができる。
尚、プラズマ生成手段P1〜P6でのプラズマ発生の有無を検知する検知手段としては、上述のように受光素子を利用した検知センサS1〜S6に限定されることなく、他の種々の公知の手法を用いた検知手段も有効に適用することができる。
上述のように反応容器5内に流入したプラズマは、その流入スピードと拡散により反応容器5内に拡がり、載置台5k上に置かれた口腔鏡K1やピンセットK2等の処理対象物の表面に付着する細菌細胞にも達することになる。例えば酸素を原料としたプラズマでは、酸素活性ラジカルの非常に強い酸化作用で細菌細胞の有機物の水素と結合して、細胞の組成変化により細胞を死滅させる殺菌作用がある。この殺菌作用は、プラズマ密度が高いほどその効果は大であることが知られている。本実施形態では、このプラズマ密度を高めるために、導波管20の限られた寸法の下で、プラズマ生成手段P1〜P6について設置密度を高くするようにしている。
以下、プラズマ生成手段P1〜P6の設置密度を高める手法について説明する。図9,図10及び図11は、導波管20内の定在波と導波管終端部22及びプラズマ生成手段P1〜P6の位置関係の種々の例を示す導波管20の横断面図である。
周知のように、導波管20内には、マイクロ波源13からのマイクロ波の入射波電界と導波管終端面22fで反射した反射波電界とが合成されて、進行成分が打ち消し合って同じ場所で振動する定在波電界が形成される。定在波電界は電界が最小である「節」と電界が最大となる「腹」とが交互に現れて、「節と節」の距離又は「腹と腹」の距離は導波管管内波長λgの1/2を呈する。
周知のように、導波管20内には、マイクロ波源13からのマイクロ波の入射波電界と導波管終端面22fで反射した反射波電界とが合成されて、進行成分が打ち消し合って同じ場所で振動する定在波電界が形成される。定在波電界は電界が最小である「節」と電界が最大となる「腹」とが交互に現れて、「節と節」の距離又は「腹と腹」の距離は導波管管内波長λgの1/2を呈する。
プラズマ生成手段は、通常、定在波電界が最大となる「腹」に設置し、両者の相対的な位置関係は固定されるので、プラズマ生成手段は、定在波の「節と節」の間に、つまり導波管管内波長λgの1/2の長さLg(=(1/2)λg)に対して、1本の割合で設置されることになる。これに対して、本実施形態では、前記長さLgに対して、プラズマ生成手段が2本ずつ(P1とP2,P3とP4,P5とP6)存在している。
本実施形態では、例えば、プラズマ生成手段P1,P3,P5が一つのグループを形成し、相互の中心間の間隔が導波管管内波長λgの1/2の長さLgに設定され、残りのプラズマ生成手段P2,P4,P6が別の一つのグループを形成し、相互の中心間の間隔がやはり導波管管内波長λgの1/2の長さLgに設定されている。このように導波管管内波長λgの1/2の長さLgに対して2つのグループのプラズマ生成手段を設けたことにより、プラズマ生成手段の設置密度を高めてより高密度のプラズマを生成することができる。尚、プラズマ生成手段のグループ数を更に増やすことにより、プラズマ密度を更に高めることができる。
そして、図9の状態では、プラズマ生成手段P2,P4,P6は、定在波電界が最大となる「腹」に位置しているが、プラズマ生成手段P1,P3,P5は、この「腹」と定在波電界が最小となる前記「節」との間で、比較的「節」に近い側に、位置している。
このため、図9の状態では、プラズマ生成手段P2,P4,P6については、定在波電界が最大となる「腹」に位置しているので、マイクロ波源13の入力電力をプラズマ発生電力(図13参照)以上に設定することにより、非導電性パイプ24内の原料ガスをプラズマ化することができる。しかし、残りのプラズマ生成手段P1,P3,P5については、定在波電界が最小となる「節」の比較的近くに位置しているので、定在波電界が小さくて非導電性パイプ24内の原料ガスをプラズマ化することはできない。
このため、図9の状態では、プラズマ生成手段P2,P4,P6については、定在波電界が最大となる「腹」に位置しているので、マイクロ波源13の入力電力をプラズマ発生電力(図13参照)以上に設定することにより、非導電性パイプ24内の原料ガスをプラズマ化することができる。しかし、残りのプラズマ生成手段P1,P3,P5については、定在波電界が最小となる「節」の比較的近くに位置しているので、定在波電界が小さくて非導電性パイプ24内の原料ガスをプラズマ化することはできない。
そこで、本実施形態では、マイクロ波源13からのマイクロ波を反射する導波管終端面22fの長手方向における位置を変化させることにより、定在波の「節」及び「腹」の位置を好適に変化させるようにしている。
図10は、図9の状態から導波管終端部22を移動させることで、プラズマ生成手段P1,P3,P5について、定在波電界が最大となる「腹」に位置するように、導波管終端面22fの位置を変化させた例を示している。
図10は、図9の状態から導波管終端部22を移動させることで、プラズマ生成手段P1,P3,P5について、定在波電界が最大となる「腹」に位置するように、導波管終端面22fの位置を変化させた例を示している。
この図10の状態では、プラズマ生成手段P1,P3,P5のグループについては、定在波電界が最大となる「腹」に位置することとなったので、非導電性パイプ24内の原料ガスをプラズマ化することができる。一方、プラズマ生成手段P2,P4,P6のグループについては、定在波電界が最小となる「節」の比較的近くに位置することとなったので、定在波電界が小さくなる。
しかし、一旦、非導電性パイプ24内で原料ガスがプラズマ化すると、この発生したプラズマが消失する定在波電界は、前述したように(図13参照)、最大定在波電界の概ね1/3未満の大きさである。つまり、一旦発生したプラズマを継続的に維持するのに要するマイクロ波電界は、プラズマを最初に発生させるのに要するマイクロ波電界の概ね1/3未満の大きさで済むことになる。従って、例えば図10を用いて説明すれば、プラズマ生成手段P1,P3,P5のグループでプラズマを発生させるために定在波電界が最大となる「腹」に位置するように位置調節したときに、既に発生済みのプラズマ生成手段P2,P4,P6のグループは、定在波電界Ecが最大定在波電界Emの1/3よりも大きくなる(Ec>1/3(Em))位置に存在するように設定すれば良い。
定在波電界の強度は、導波管20のマイクロ波伝播方向(つまり長手方向)について、正弦波状であり、プラズマ生成手段P1,P3,P5のグループとプラズマ生成手段P2,P4,P6のグループの隣り合う一組のプラズマ生成手段(プラズマ生成手段P1とP2,プラズマ生成手段P3とP4,プラズマ生成手段P5とP6)について、前述の条件を満足するプラズマ生成手段どうしの(例えば、プラズマ生成手段P1とプラズマ生成手段P2との間の)中心間距離Dpは、次式(1)で表すことができる。
・Dp=(1−2×SIN−1(1/3)/π)λg/4 …(1)
・Dp=(1−2×SIN−1(1/3)/π)λg/4 …(1)
式(1)において、λgは導波管20内に存在するマイクロ波の管内波長であり、基本モード(TE10)の矩形導波管20の縦断面の長辺の寸法をAとし(図5,6参照)、マイクロ波の自由空間波長をλ0とすると、マイクロ波の導波管管内波長λgは次式(2)で表すことができる。
・λg=λ0/(1−(λ0/2A)2)1/2 …(2)
本実施形態では、前述のプラズマ生成手段どうしの中心間距離Dpは、マイクロ波の導波管管内波長λgの1/4未満となるように設定されている。
・λg=λ0/(1−(λ0/2A)2)1/2 …(2)
本実施形態では、前述のプラズマ生成手段どうしの中心間距離Dpは、マイクロ波の導波管管内波長λgの1/4未満となるように設定されている。
例えば、2.45GHzのマイクロ波ではその自由空間波長λ0は122mmであり、基本モード(TE10)の矩形導波管20の縦断面の長辺の寸法Aを例えば109mmとすると、導波管管内波長λgは148mmである。従って、この場合、前記式(1)及び式(2)を用いて算出すれば、プラズマ生成手段P1とプラズマ生成手段P2との間の中心間距離Dpは、29.1mmとなる。この中心間距離Dp(=29.1mm)は、マイクロ波の導波管管内波長λg(=148mm)の1/4未満となっている。
図11は、先にプラズマを発生したプラズマ生成手段P2,P4,P6がプラズマ状態を維持し、且つ、プラズマ生成手段P1,P3,P5にてプラズマが発生した後に、つまり、全てのプラズマ生成手段P1〜P6でプラズマが発生した状態で、各プラズマ生成手段P1〜P6が、定在波電界が最大となる「腹」と定在波電界が最小となる「節」との中間に位置するように、導波管終端面22fの位置を変化させた例を示している。この状態では、発生した全てのプラズマ生成手段P1〜P6は、各々の定在波電界Edの大きさが最大定在波電界Emと前述の定在波電界Ecとの間になる位置に存在し(Em>Ed>Ec)、それぞれプラズマ状態を維持することになる。
すなわち、全てのプラズマ生成手段P1〜P6でプラズマが発生している状態では、各プラズマ生成手段P1〜P6は、マイクロ波の定在波の「節」と「節」の間に相当する箇所に位置しており、しかも、全てのプラズマ生成手段P1〜P6について、前記定在波の「腹」に相当する箇所からの距離が等しくなるように、前記導波管終端部22の位置が設定されるようになっている。
このように設定することにより、全てのプラズマ生成手段P1〜P6について、各々の定在波電界Edの大きさを等しくすることができ、全てのプラズマ生成手段P1〜P6でのプラズマ状態を効率良く維持することができる。
このように設定することにより、全てのプラズマ生成手段P1〜P6について、各々の定在波電界Edの大きさを等しくすることができ、全てのプラズマ生成手段P1〜P6でのプラズマ状態を効率良く維持することができる。
以上のように構成されたプラズマ処理システム1の作動の概略を、図12のフローチャートを参照しながら説明する。
システムがスタート(始動)すると、まず、ステップ#1で、流量制御弁3の開度を調整して真空ポンプ6で排気を行い、反応容器5内を(従って、プラズマ生成手段P1〜P6の非導電性パイプ24内を)減圧し、所定の減圧状態に調節する。次いで、ステップ#2で、マイクロ波源13を駆動調整し、導波管20内に所定の導波管内波長λgとなるマイクロ波を供給する。
システムがスタート(始動)すると、まず、ステップ#1で、流量制御弁3の開度を調整して真空ポンプ6で排気を行い、反応容器5内を(従って、プラズマ生成手段P1〜P6の非導電性パイプ24内を)減圧し、所定の減圧状態に調節する。次いで、ステップ#2で、マイクロ波源13を駆動調整し、導波管20内に所定の導波管内波長λgとなるマイクロ波を供給する。
その後、ステップ#3で、前述のように、例えば、先ずプラズマ生成手段P2,P4,P6にてプラズマを発生させ、そのプラズマ状態を維持しつつ、残りのプラズマ生成手段P1,P3,P5でプラズマを発生させるべく、終端移送装置22を駆動して導波管終端面22fの位置を、上述のように変化させる。そして、ステップ#4で、全てのプラズマ生成手段P1〜P6でプラズマが発生しているか否かが継続的に判定される。
このステップ#4での判定結果がYES(全てでプラズマ発生)の場合には、ステップ#5で、全てのプラズマ生成手段P1〜P6でのプラズマ状態が維持されるようにすべく、各プラズマ生成手段P1〜P6が前述の中間位置(定在波の「腹」と「節」の中間の位置:図11参照)に位置するように、導波管終端面22fの位置を調節する。そして、プラズマ発生装置10が安定した通常動作に移行し、この動作が継続される。これにより、反応容器5内に置かれた口腔鏡K1やピンセットK2等の処理対象物に対する滅菌処理が行われる(ステップ#6)。
その後、ステップ#7で、プラズマ処理システム1による滅菌処理が終了したか否かが継続的に判定される。この判定は、例えば、プラズマ発生装置10の通常作動に移行してからの経過時間もしくはガス流量の累積値に基づいて、所定の閾値を越えたか否かで判定される。そして、このステップ#7での判定結果がYES(滅菌処理:終了)になると、システム1の作動が終了する。
一方、ステップ#4での判定結果がNO(プラズマを発生しないプラズマ生成手段が少なくとも1つは在る)の場合には、ステップ#8で、このNO判定の繰り返し回数(n)がカウントされ、このカウント値nが予め定められた規定回数Nsに達したか否かが判定される。そして、このNO判定回数nが予め定めた規定回数Nsに達するまでは(ステップ#8:NO)、ステップ#1からステップ#4までの各ステップが繰り返して実行される。一方、NO判定の回数nが規定回数Nsに達した場合には(ステップ#8:YES)、装置・システムに何らかの不具合が発生していることが考えられるので、プラズマ発生装置10のコントローラ17にエラー表示が行われ(ステップ#9)、システムの点検等を行うために、システムの作動が停止されるようになっている。
以上のようなプラズマ処理システム1の作動は、例えば、前記コントローラ17に付設された(若しくは内蔵された)メモリに読み出し可能に格納されたソフトウェア・プログラムによって、制御実行することができる。
以上、説明したように、本実施形態によれば、マイクロ波によりプラズマを生成するためのプラズマ生成手段P1〜P6を備えた導波管20において、長手方向における一端側のマイクロ波源13から供給されるマイクロ波を反射可能な導波管終端部22が(つまり、反射面を構成する終端面22fが)、終端移動装置15によって長手方向へ移動可能に構成されているので、導波管20内の定在波の振幅が最大となる「腹」の位置を長手方向について変化させることができる。
従って、プラズマ生成手段P1〜P6が長手方向において管内に複数配置されている場合でも、導波管終端部22を長手方向へ移動させて、定在波の振幅が最大となる「腹」の位置を長手方向について変化させることで、各々のプラズマ生成手段P1〜P6について、順次、定在波の「腹」の部分に相当する部位に位置するように、定在波との相対位置関係を設定することがきる。
この相対位置関係を前記のように設定することにより、全てのプラズマ生成手段について、順次、定在波の振幅が最大となる「腹」の部分に相当する最大のマイクロ波電圧を印加してプラズマを生成させることができる。この結果、1つの導波管について、比較的容易かつ確実にプラズマ生成箇所を増やすことができる。この場合において、長手方向に複数設けられているプラズマ生成手段は、マイクロ波源からのマイクロ波の管内波長の1/2以下の間隔で配置されているので、導波管終端部は、この間隔で移動させれば良い。
従って、プラズマ生成手段P1〜P6が長手方向において管内に複数配置されている場合でも、導波管終端部22を長手方向へ移動させて、定在波の振幅が最大となる「腹」の位置を長手方向について変化させることで、各々のプラズマ生成手段P1〜P6について、順次、定在波の「腹」の部分に相当する部位に位置するように、定在波との相対位置関係を設定することがきる。
この相対位置関係を前記のように設定することにより、全てのプラズマ生成手段について、順次、定在波の振幅が最大となる「腹」の部分に相当する最大のマイクロ波電圧を印加してプラズマを生成させることができる。この結果、1つの導波管について、比較的容易かつ確実にプラズマ生成箇所を増やすことができる。この場合において、長手方向に複数設けられているプラズマ生成手段は、マイクロ波源からのマイクロ波の管内波長の1/2以下の間隔で配置されているので、導波管終端部は、この間隔で移動させれば良い。
また、本実施形態に係るプラズマ発生装置は、上述の導波管20と、該導波管20の長手方向における一端側に結合され、管内にマイクロ波を供給するマイクロ波源13と、導波管終端部22を長手方向へ移動させる終端移動装置15と、この終端移動装置15を制御するコントローラ17と、を備えていることにより、上述の作用効果を奏することができ、比較的容易かつ確実にプラズマ生成箇所を増やして、反応容器5内のプラズマの高密度化を達成することができる。
尚、以上の説明は、反応容器5内に置かれた処理対象物K1,K2に対する滅菌処理を行うプラズマ処理システム1に適用した場合についてのものであったが、本発明は、かかる場合に限定されるものではなく、他の用途においても、有効に適用できるものである。
このように、本発明は、上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲において、種々の変更や設計上の改良等を行い得るものであることは、言うまでもない。
本発明は、マイクロ波によりプラズマを生成するためのプラズマ生成手段を備えた導波管、及びかかる導波管を用いたプラズマ発生装置に関するもので、例えば、プラズマによって処理対象物の滅菌などを行うプラズマ処理システムに用いられる導波管およびプラズマ発生装置として、有効に利用することができる。
1 プラズマ処理システム
10 プラズマ発生装置
13 マイクロ波源
15 終端移動装置
17 コントローラ
20 導波管
22 導波管終端部
24 非導電性パイプ
25 導電性パイプ
25s スリット部
P1〜P6 プラズマ生成手段
S1〜S6 検知センサ
10 プラズマ発生装置
13 マイクロ波源
15 終端移動装置
17 コントローラ
20 導波管
22 導波管終端部
24 非導電性パイプ
25 導電性パイプ
25s スリット部
P1〜P6 プラズマ生成手段
S1〜S6 検知センサ
Claims (8)
- マイクロ波によりプラズマを生成するためのプラズマ生成手段を備えた導波管であって、
長手方向における一端側が、管内にマイクロ波を供給するマイクロ波源に結合され、
長手方向において前記一端側に対向する他端側に、前記マイクロ波源から供給されるマイクロ波を反射可能な導波管終端部が設けられており、
前記導波管終端部が長手方向へ移動可能に構成され、
前記プラズマ生成手段が、前記マイクロ波源からのマイクロ波の定在波の導波管管内波長の1/2以下の間隔で、長手方向において管内に複数配置されている、
ことを特徴とする導波管。 - 前記導波管は、所定の基本モードを有するマイクロ波導波管である、ことを特徴とする請求項1に記載の導波管。
- 前記プラズマ生成手段でのプラズマ発生の有無が検知手段によって検知される、ことを特徴とする請求項1又は2に記載の導波管。
- 前記検知手段からの検知情報に基づいて、プラズマ未発生の任意のプラズマ生成手段でプラズマが発生するように前記導波管終端部が移動させられ、その後、残余のプラズマ生成手段でもプラズマが発生するように前記導波管終端部が更に移動させられる、ことを特徴とする請求項3に記載の導波管。
- 全てのプラズマ生成手段でプラズマが発生している状態では、各プラズマ生成手段は、前記定在波の節と節の間に相当する箇所に位置し、全てのプラズマ生成手段について、前記定在波の腹に相当する箇所からの距離が等しくなるように、前記導波管終端部の位置が設定される、ことを特徴とする請求項1から4の何れかに記載の導波管。
- 前記プラズマ生成手段は、非導電性パイプと、該非導電性パイプの外側を覆う導電性パイプとで二重管構造を備え、外側の導電性パイプには、円周上で180度の対向位置に位置決めされた一対のスリット部が設けられており、プラズマ生成手段は、これらスリット部が導波管の長手方向中心線に沿って並ぶように配置される、ことを特徴とする請求項1から5の何れかに記載の導波管。
- 請求項1から6の何れかに記載された導波管と、
前記導波管の長手方向における一端側に結合され、管内にマイクロ波を供給するマイクロ波源と、
前記導波管終端部を長手方向へ移動させる移動手段と、
前記移動手段を制御する制御手段と、
を備えていることを特徴とするプラズマ発生装置。 - 前記プラズマ生成手段でのプラズマ発生の有無を検知する検知手段が付設され、該検知手段の検知信号は前記制御手段に送信される、ことを特徴とする請求項7に記載のプラズマ発生装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012081375A JP2013211187A (ja) | 2012-03-30 | 2012-03-30 | プラズマ生成手段を備えた導波管およびそれを用いたプラズマ発生装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012081375A JP2013211187A (ja) | 2012-03-30 | 2012-03-30 | プラズマ生成手段を備えた導波管およびそれを用いたプラズマ発生装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013211187A true JP2013211187A (ja) | 2013-10-10 |
Family
ID=49528849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012081375A Pending JP2013211187A (ja) | 2012-03-30 | 2012-03-30 | プラズマ生成手段を備えた導波管およびそれを用いたプラズマ発生装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013211187A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020205172A (ja) * | 2019-06-17 | 2020-12-24 | 株式会社ディスコ | 冷却ジャケット及びプラズマ発生装置 |
CN112972747A (zh) * | 2021-02-20 | 2021-06-18 | 四川锦誉天成科技有限公司 | 一种基于微波能量传输的消毒灭菌系统 |
CN114688676A (zh) * | 2022-05-31 | 2022-07-01 | 雷神等离子科技(杭州)有限公司 | 一种全空间覆盖等离子杀毒设备及方法 |
JP7246802B1 (ja) | 2022-11-16 | 2023-03-28 | 東亜電子機材株式会社 | プラズマ生成装置用のガス流量調整パイプ |
JP7462997B1 (ja) | 2023-11-02 | 2024-04-08 | 東亜電子機材株式会社 | プラズマ着火装置及びプラズマ着火方法 |
-
2012
- 2012-03-30 JP JP2012081375A patent/JP2013211187A/ja active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020205172A (ja) * | 2019-06-17 | 2020-12-24 | 株式会社ディスコ | 冷却ジャケット及びプラズマ発生装置 |
JP7258435B2 (ja) | 2019-06-17 | 2023-04-17 | 株式会社ディスコ | 冷却ジャケット及びプラズマ発生装置 |
CN112972747A (zh) * | 2021-02-20 | 2021-06-18 | 四川锦誉天成科技有限公司 | 一种基于微波能量传输的消毒灭菌系统 |
CN114688676A (zh) * | 2022-05-31 | 2022-07-01 | 雷神等离子科技(杭州)有限公司 | 一种全空间覆盖等离子杀毒设备及方法 |
JP7246802B1 (ja) | 2022-11-16 | 2023-03-28 | 東亜電子機材株式会社 | プラズマ生成装置用のガス流量調整パイプ |
JP2024072527A (ja) * | 2022-11-16 | 2024-05-28 | 東亜電子機材株式会社 | プラズマ生成装置用のガス流量調整パイプ |
JP7462997B1 (ja) | 2023-11-02 | 2024-04-08 | 東亜電子機材株式会社 | プラズマ着火装置及びプラズマ着火方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2013211187A (ja) | プラズマ生成手段を備えた導波管およびそれを用いたプラズマ発生装置 | |
US7806077B2 (en) | Plasma nozzle array for providing uniform scalable microwave plasma generation | |
JP5762708B2 (ja) | プラズマ生成装置、プラズマ処理装置及びプラズマ処理方法 | |
US6352050B2 (en) | Remote plasma mixer | |
JP5060951B2 (ja) | プラズマ発生システム | |
JP6010406B2 (ja) | マイクロ波放射機構、マイクロ波プラズマ源および表面波プラズマ処理装置 | |
JP5663819B2 (ja) | プラズマ源及び当該プラズマ源を備える医療機器 | |
EP2211915B1 (en) | Hydroxyl radical producing plasma sterilisation apparatus | |
TWI343764B (ja) | ||
JP2008276986A (ja) | マイクロ波照射装置 | |
JP2007149878A (ja) | マイクロ波導入装置及びプラズマ処理装置 | |
JP2010500702A (ja) | プラズマ発生装置およびこれを用いたワーク処理装置 | |
JP2017005345A (ja) | 電力合成器およびマイクロ波導入機構 | |
JP2013511807A5 (ja) | ||
JP2006339547A (ja) | プラズマ処理装置 | |
JPWO2013005438A1 (ja) | マイクロ波加熱装置 | |
JP2008277263A (ja) | プラズマ発生装置 | |
US6161501A (en) | Device for plasma generation | |
JP2005259633A (ja) | マイクロ波プラズマ放電処理装置 | |
JP2007227069A (ja) | プラズマ発生方法および装置ならびにそれを用いるワーク処理装置 | |
JP4619966B2 (ja) | ワーク処理装置 | |
JP2003229300A (ja) | マイクロ波放電発生装置及び環境汚染ガスの処理方法 | |
CN112694148B (zh) | 一种大气压表面波等离子体水处理装置 | |
CN116390320A (zh) | 一种电子回旋共振放电装置及应用 | |
KR20100062715A (ko) | 상압 플라즈마 발생 장치 및 이를 이용한 상압 플라즈마 발생 방법 |