JP2013208724A - Molding intermediate material using thick carbon fiber - Google Patents

Molding intermediate material using thick carbon fiber Download PDF

Info

Publication number
JP2013208724A
JP2013208724A JP2012078863A JP2012078863A JP2013208724A JP 2013208724 A JP2013208724 A JP 2013208724A JP 2012078863 A JP2012078863 A JP 2012078863A JP 2012078863 A JP2012078863 A JP 2012078863A JP 2013208724 A JP2013208724 A JP 2013208724A
Authority
JP
Japan
Prior art keywords
carbon fiber
resin
fiber
reinforcing material
resin reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012078863A
Other languages
Japanese (ja)
Inventor
Yasuharu Kurihara
康晴 栗原
Takeshi Ishikawa
健 石川
Akihiro Kokubo
章博 小久保
Yuji Fujita
祐二 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2012078863A priority Critical patent/JP2013208724A/en
Publication of JP2013208724A publication Critical patent/JP2013208724A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon fiber-reinforced composite material obtained by impregnating a carbon fiber bundle with a thermosetting resin or a thermoplastic resin, reducing voids and having well-balanced mechanical characteristics and molding fluidity to improve impregnating ability of a matrix resin, and thus provide a fiber reinforced molding member reinforced with carbon fibers excellent in a property to be shaped by a molding die when molded.SOLUTION: A resin-reinforced material including carbon fibers having a single fiber fineness of 1.0-2.4 dtex is provided. Preferably, a circularity of a single fiber of the carbon fiber is 0.70-0.90, the carbon fibers of 10-90 mass% are included, and a length of the carbon fiber is 1-60 mm.

Description

本発明は炭素繊維に熱硬化性樹脂もしくは熱可塑性樹脂を含浸した、加工性に優れた樹脂成形材料に用いる炭素繊維の形状や組成に関するものである。   The present invention relates to the shape and composition of carbon fibers used for a resin molding material excellent in processability, in which carbon fibers are impregnated with a thermosetting resin or a thermoplastic resin.

従来、炭素繊維に熱可塑性樹脂、熱硬化樹脂を含浸させるためには高温・高圧でのプレスや反応が必要であった。特に可塑性樹脂においては加熱溶融させた状態では粘度が高く流動性に乏しいために、炭素繊維の間に入り込んで均一なマトリックスを形成するのは困難であり、ボイドも発生しやすい状態であった。   Conventionally, in order to impregnate a carbon fiber with a thermoplastic resin or a thermosetting resin, a press or reaction at a high temperature and a high pressure has been required. In particular, in a plastic resin, when heated and melted, the viscosity is high and the fluidity is poor. Therefore, it is difficult to form a uniform matrix by entering between the carbon fibers, and voids are easily generated.

単繊繊維度が大きい繊維は樹脂を含浸させるのに粘度抵抗が従来の物よりも低くなり、流動性があがって材料中のボイドが少なく、高い物性が期待できる。また、板状やマット状に成形した物を金型内で圧縮加工する際には、繊維の移動や変形に対して抵抗が少ない傾向にあり、加工の自由度が高くなる。   A fiber having a large single fiber degree has a lower viscosity resistance than that of a conventional material when impregnated with a resin, has high fluidity, has less voids in the material, and can be expected to have high physical properties. Further, when a product formed into a plate shape or a mat shape is subjected to compression processing in a mold, there is a tendency that resistance to movement and deformation of the fiber is low, and the degree of freedom of processing is increased.

特開2011−157524号公報JP 2011-157524 A

本発明は、炭素繊維束に熱硬化性樹脂もしくは熱可塑性樹脂を含浸した、ボイドが少なく高度な力学特性と成形流動性のバランスに優れた炭素繊維強化複合材料を提供する。   The present invention provides a carbon fiber reinforced composite material in which a carbon fiber bundle is impregnated with a thermosetting resin or a thermoplastic resin and has few voids and has an excellent balance between high mechanical properties and molding fluidity.

本発明は、単繊繊維度1.0dtex〜2.4dtexである炭素繊維からなる樹脂補強材である。   The present invention is a resin reinforcing material made of carbon fibers having a single fiber density of 1.0 dtex to 2.4 dtex.

本発明によれば、加工性等に優れた炭素繊維強化複合材料を製造するに当たり、単繊維繊度が1.0dtex〜2.4dtex、真円度が0.70以上0.90以下である炭素繊維束を用いて、ここに熱硬化樹脂もしくは熱可塑性樹脂を含浸させることにより、加工性と物理的強度に優れた炭素繊維複合材料を製造する。   According to the present invention, a carbon fiber having a single fiber fineness of 1.0 dtex to 2.4 dtex and a roundness of 0.70 or more and 0.90 or less in producing a carbon fiber reinforced composite material excellent in processability and the like. A carbon fiber composite material excellent in workability and physical strength is manufactured by impregnating a thermosetting resin or a thermoplastic resin with the bundle.

本発明によって製造される炭素繊維強化複合材料とは、少なくとも、炭素繊維と、マトリックス樹脂となる熱可塑性樹脂の2種類を含有した成形体を言う。本発明において使用される炭素繊維とは、ガラス繊維、炭素繊維、金属繊維、芳香族ポリアミド繊維、ポリアラミド繊維、アルミナ繊維、炭化ケイ素繊維、ボロン繊維等の高強度、高弾性律繊維等を併用して使用でき、2種以上を混合してもよい。   The carbon fiber reinforced composite material produced according to the present invention refers to a molded body containing at least two types of carbon fiber and a thermoplastic resin serving as a matrix resin. The carbon fiber used in the present invention is a glass fiber, carbon fiber, metal fiber, aromatic polyamide fiber, polyaramid fiber, alumina fiber, silicon carbide fiber, boron fiber, and the like, which are used in combination with high strength, high elasticity fiber. Two or more kinds may be mixed.

炭素繊維は、力学的特性の付与効果のために必須であり、炭素繊維束の表面には予め表面処理、カップリング剤、サイジング剤の付与を行うことができる。   Carbon fiber is essential for the effect of imparting mechanical properties, and surface treatment, coupling agent, and sizing agent can be applied to the surface of the carbon fiber bundle in advance.

本発明におけるマトリックスとなる熱硬化樹脂の種類としてはウレタン樹脂、メラミン樹脂、尿素樹脂、熱硬化型アクリル樹脂、フェノール樹脂、エポキシ樹脂、熱硬化型ポリエステル樹脂などが適している。   As a kind of the thermosetting resin used as the matrix in the present invention, urethane resin, melamine resin, urea resin, thermosetting acrylic resin, phenol resin, epoxy resin, thermosetting polyester resin and the like are suitable.

また、熱可塑性樹脂の種類としては、特には制限はないが、耐衝撃性に優れ、かつ、成形が容易である熱可塑性樹脂が好ましい。そのような熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、液晶ポリエステル等のポリエステルや、ポリエチレン、ポリプロピレン、ポリブチレン等のポリオレフィンや、ポリオキシメチレン、ポリアミド、ポリカーボネート、ポリメチレンメタクリレート、ポリ塩化ビニル、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、フェノール(ノボラック型)等や、これらの共重合体、変性体、および2種類以上ブレンドした樹脂等が挙げられる。また、更に耐衝撃性向上のために、上記樹脂にエラストマー、もしくは、ゴム成分を添加した樹脂であっても良い。   The type of thermoplastic resin is not particularly limited, but a thermoplastic resin that is excellent in impact resistance and easy to mold is preferable. Examples of such thermoplastic resins include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and liquid crystal polyester, polyolefins such as polyethylene, polypropylene, and polybutylene, polyoxymethylene, polyamide, polycarbonate, polymethylene methacrylate, and polyvinyl chloride. , Polyphenylene sulfide, polyphenylene ether, polyimide, polyamideimide, polyetherimide, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, phenol (novolak type), and their copolymers, modified products, and 2 Examples include resins blended in more than one type. Further, in order to further improve the impact resistance, an elastomer or a resin in which a rubber component is added to the above resin may be used.

複合材としての成形方法は、形状が成形できれば特に制限はない。   The molding method as a composite material is not particularly limited as long as the shape can be molded.

以下、本発明の好ましい実施の形態を説明する。
「熱硬化樹脂マトリックスの場合」
使用される炭素繊維束は単繊繊維度1.0dtex〜2.4dtex、長さが1〜60mmであり、望ましくは長さ5〜40mmであり、さらに望ましくは15〜35mmである。形状はテープ、プリプレグ、チョップに加工され、取り扱いが容易である。炭素繊維束の加工法については従来、抄紙法、引き抜き法、プレス法などがあり、性能や形状が達成できれば特に制限はない。この炭素繊維束10〜90質量部を金型内になるべく均一に分散させた状態で樹脂10〜90質量部を型内に供給して反応させる。加熱条件はマトリックス樹脂の種類によって異なるがおおむね摂氏200度程度であり、硬化反応が十分に進んだ後に冷却し、型を開いて製品を取り出す。この場合、取り出された製品は後の工程で利用される中間材料としてでもよく、最終製品形状でも良い。
Hereinafter, preferred embodiments of the present invention will be described.
"In the case of thermosetting resin matrix"
The carbon fiber bundle used has a single fiber density of 1.0 dtex to 2.4 dtex and a length of 1 to 60 mm, preferably 5 to 40 mm, and more preferably 15 to 35 mm. The shape is processed into tape, prepreg, and chop and is easy to handle. Conventionally, methods for processing a carbon fiber bundle include a papermaking method, a drawing method, a pressing method, and the like, and there is no particular limitation as long as performance and shape can be achieved. In a state where 10 to 90 parts by mass of the carbon fiber bundle is dispersed as uniformly as possible in the mold, 10 to 90 parts by mass of the resin is supplied into the mold and reacted. The heating conditions vary depending on the type of the matrix resin, but are generally about 200 degrees Celsius. After the curing reaction has sufficiently progressed, the product is cooled, the mold is opened, and the product is taken out. In this case, the taken-out product may be an intermediate material used in a subsequent process or may be a final product shape.

「熱可塑性樹脂マトリックスの場合」
使用される炭素繊維束は繊維状のまま、あるいはテープ、プリプレグ、チョップ状に加工されて利用される。
"In case of thermoplastic resin matrix"
The carbon fiber bundle used is used in the form of a fiber or processed into a tape, prepreg, or chop.

マトリックスの熱可塑性樹脂は金型内に分散配置された炭素繊維束に溶融含浸させるべく、押出成形や射出成形で金型内に供給され、保圧・冷却工程を経て製品となる。炭素繊維束に熱可塑性樹脂を含浸させる方法としては、樹脂を加熱溶融して、繊維強化材に含浸させる方法(溶融含浸法)、粉末状の樹脂を流動床法や懸濁法によって繊維強化材に塗布・融着させる方法(パウダー法)、樹脂を溶液化し、繊維強化材に含浸後溶媒を除去する方法(溶液含浸法)等いずれの方法を用いても良いが、溶融含浸法を用いることが好ましい。また、炭素繊維束に熱可塑性樹脂を含浸させる際、炭素繊維ウェブは積層させてもよい。   The thermoplastic resin of the matrix is supplied into the mold by extrusion molding or injection molding so as to melt and impregnate the carbon fiber bundle dispersedly arranged in the mold, and becomes a product through a pressure holding / cooling process. As a method of impregnating a carbon fiber bundle with a thermoplastic resin, a method in which the resin is heated and melted and impregnated in a fiber reinforcing material (melting impregnation method), a fiber-reinforced resin is obtained by a fluidized bed method or a suspension method. Any method can be used, such as a method of applying and fusing to a fiber (powder method), a method of dissolving a resin and removing the solvent after impregnating the fiber reinforcement (solution impregnation method), but using a melt impregnation method Is preferred. Further, when the carbon fiber bundle is impregnated with the thermoplastic resin, the carbon fiber web may be laminated.

「用途」
本発明の炭素繊維強化複合材料の用途としては、「パソコン、携帯電話、携帯情報端末等のOA機器」、「冷蔵庫、エアコン、その他家電製品」、「支柱、パネル、補強材などの土木、建材用部品」、「ボディ外板、フレーム、ホイール、ギアボックスなど自動車部品」、「翼、本体、ランディングギア類などの航空機用部品」が挙げられる。
"Use"
Applications of the carbon fiber reinforced composite material of the present invention include “OA devices such as personal computers, mobile phones, and personal digital assistants”, “refrigerators, air conditioners, and other home appliances”, “civils such as support columns, panels, and reinforcing materials, and building materials. Parts ”,“ automobile parts such as body skins, frames, wheels, and gear boxes ”and“ aircraft parts such as wings, main bodies, and landing gears ”.

以下、具体的な実施例により本発明を説明する。ただし下記の実施例は本発明を制限するものではない。   Hereinafter, the present invention will be described with reference to specific examples. However, the following examples do not limit the present invention.

[プレス流動性]
炭素繊維束とポリプロピレン樹脂フィルムを150mm×150mmに切り出して積層し、この積層物を温度200℃、圧力20MPaで5分間プレス成形し、炭素繊維強化成型用基材を得た。炭素繊維強化成型用基材を70×70×4mm厚みに切り出し流動性評価サンプルを得た。100×100×2mmの平板金型に、流動性評価サンプルをセットし、温度200℃、20MPaと10MPaの加圧力で5分間プレス成形を行い、充填状況により、以下の3段階で評価を行った。
○:20MPa、10MPa何れの条件でも充填可能。
△:20MPaで充填可能、10MPaでは未充填部分が確認できる。
×:20MPa、10MPa何れの条件でも未充填部分を確認できる。
[Press fluidity]
A carbon fiber bundle and a polypropylene resin film were cut out and laminated to 150 mm × 150 mm, and this laminate was press-molded at a temperature of 200 ° C. and a pressure of 20 MPa for 5 minutes to obtain a carbon fiber reinforced molding substrate. A carbon fiber reinforced molding substrate was cut into a thickness of 70 × 70 × 4 mm to obtain a fluidity evaluation sample. A fluidity evaluation sample was set in a flat plate mold of 100 × 100 × 2 mm, press-molded for 5 minutes at a temperature of 200 ° C., 20 MPa, and 10 MPa, and evaluated according to the following three stages depending on the filling condition. .
○: Filling is possible under any conditions of 20 MPa and 10 MPa.
Δ: Fillable at 20 MPa, unfilled portion can be confirmed at 10 MPa.
X: An unfilled part can be confirmed under any conditions of 20 MPa and 10 MPa.

[CF1〜CF5炭素繊維]
・CF1:1.4dtex PAN系炭素繊維、単繊維繊度:1.4dtex、単繊維直径:10μm、単繊維真円度:0.87、繊維長:6.4mm
・CF2:1.4dtex PAN系炭素繊維、単繊維繊度:1.4dtex、単繊維直径 10μm、単繊維真円度 0.87、繊維長 3.2mm
・CF3:2.4dtex PAN系炭素繊維、単繊維繊度 2.4dtex、単繊維直径 13μm、単繊維真円度 0.87、繊維長 6.4mm
・CF4:2.4dtex PAN系炭素繊維、単繊維繊度 2.4dtex、単繊維直径 13μm、単繊維真円度 0.87、繊維長 3.2mm
・CF5:1.4dtex PAN系炭素繊維、単繊維繊度 1.4dtex単繊維直径 10μm、単繊維真円度 0.75、繊維長 6.4mm
・CF6:1.4dtex PAN系炭素繊維、単繊維繊度 1.4dtex、単繊維直径 10μm、単繊維真円度 0.75、繊維長 3.2mm
・CF7:0.7dtex PAN系炭素繊維、単繊維繊度 0.7dtex、単繊維直径 7μm、単繊維真円度 0.90、繊維長 6.4mm、
・CF8:0.7dtex PAN系炭素繊維、単繊維繊度 0.7dtex、単繊維直径 7μm、単繊維真円度 0.90、繊維長 3.2mm
[CF1-CF5 carbon fiber]
CF1: 1.4 dtex PAN-based carbon fiber, single fiber fineness: 1.4 dtex, single fiber diameter: 10 μm, single fiber roundness: 0.87, fiber length: 6.4 mm
CF2: 1.4 dtex PAN-based carbon fiber, single fiber fineness: 1.4 dtex, single fiber diameter 10 μm, single fiber roundness 0.87, fiber length 3.2 mm
CF3: 2.4 dtex PAN-based carbon fiber, single fiber fineness 2.4 dtex, single fiber diameter 13 μm, single fiber roundness 0.87, fiber length 6.4 mm
CF4: 2.4 dtex PAN-based carbon fiber, single fiber fineness 2.4 dtex, single fiber diameter 13 μm, single fiber roundness 0.87, fiber length 3.2 mm
CF5: 1.4 dtex PAN-based carbon fiber, single fiber fineness 1.4 dtex single fiber diameter 10 μm, single fiber roundness 0.75, fiber length 6.4 mm
CF6: 1.4 dtex PAN-based carbon fiber, single fiber fineness 1.4 dtex, single fiber diameter 10 μm, single fiber roundness 0.75, fiber length 3.2 mm
CF7: 0.7 dtex PAN-based carbon fiber, single fiber fineness 0.7 dtex, single fiber diameter 7 μm, single fiber roundness 0.90, fiber length 6.4 mm,
CF8: 0.7 dtex PAN-based carbon fiber, single fiber fineness 0.7 dtex, single fiber diameter 7 μm, single fiber roundness 0.90, fiber length 3.2 mm

[熱可塑性樹脂]
・ポリプロピレン樹脂:日本ポリプロ(株)製、商品名:「ノバテック」PP(登録商標)SA06A
[Thermoplastic resin]
-Polypropylene resin: manufactured by Nippon Polypro Co., Ltd., trade name: "NOVATEC" PP (registered trademark) SA06A

[実施例1]
炭素繊維束(a)は長さ6.4mmにカットし、CF1を得た。また、炭素繊維束(b)として炭素繊維束を3.2mmにカットし、炭素繊維束CF2を得た。この炭素繊維束を用いて目付が60g/m2の基材を得た。分散には抄紙法を用いた。
[Example 1]
The carbon fiber bundle (a) was cut to a length of 6.4 mm to obtain CF1. Moreover, the carbon fiber bundle was cut into 3.2 mm as the carbon fiber bundle (b) to obtain a carbon fiber bundle CF2. A substrate having a basis weight of 60 g / m 2 was obtained using this carbon fiber bundle. The papermaking method was used for dispersion.

得られた抄紙基材を100℃の温度で1時間乾燥した。150mm×150mmの抄紙基材とPPフィルムを積層し、200℃のプレス熱盤内に投入し、20MPaで10分間プレス成形し、炭素繊維強化熱可塑性樹脂を得た。実施条件および得られた炭素繊維強化熱可塑性樹脂の評価結果を、表1に示した。   The obtained papermaking substrate was dried at a temperature of 100 ° C. for 1 hour. A 150 mm × 150 mm papermaking substrate and a PP film were laminated, put into a 200 ° C. press hot platen, and press molded at 20 MPa for 10 minutes to obtain a carbon fiber reinforced thermoplastic resin. The execution conditions and the evaluation results of the obtained carbon fiber reinforced thermoplastic resin are shown in Table 1.

[実施例2]
炭素繊維束(a)の質量比を30%、炭素繊維束(b)の質量比を70%とした以外は実施例1と同様の方法で基材を得た。実施条件および得られた繊維強化熱可塑性樹脂の評価結果を表1に示した。
[Example 2]
A substrate was obtained in the same manner as in Example 1 except that the mass ratio of the carbon fiber bundle (a) was 30% and the mass ratio of the carbon fiber bundle (b) was 70%. The execution conditions and the evaluation results of the obtained fiber reinforced thermoplastic resin are shown in Table 1.

[実施例3]
炭素繊維束(a)の質量比を80%、炭素繊維束(b)の質量比を20%をとした以外は実施例1と同様の方法で基材を得た。実施条件および得られた炭素繊維強化熱可塑性樹脂の評価結果を、表1に示した。
[Example 3]
A substrate was obtained in the same manner as in Example 1 except that the mass ratio of the carbon fiber bundle (a) was 80% and the mass ratio of the carbon fiber bundle (b) was 20%. The execution conditions and the evaluation results of the obtained carbon fiber reinforced thermoplastic resin are shown in Table 1.

[実施例4]
CF3炭素繊維を使用し炭素繊維束(a)の質量比を50%、CF4炭素繊維を使用し炭素繊維束(b)の質量比を50%とした以外は実施例1と同様の方法で基材を得た。実施条件および得られた炭素繊維強化熱可塑性樹脂の評価結果を、表1に示した。
[Example 4]
The base was the same as in Example 1 except that CF3 carbon fiber was used and the mass ratio of carbon fiber bundle (a) was 50%, and CF4 carbon fiber was used and the mass ratio of carbon fiber bundle (b) was 50%. The material was obtained. The execution conditions and the evaluation results of the obtained carbon fiber reinforced thermoplastic resin are shown in Table 1.

[実施例5]
CF5炭素繊維を使用し炭素繊維束(a)の質量比を50%、CF6炭素繊維を使用し炭素繊維束(b)の質量比を50%をとした以外は実施例1と同様の方法で基材を得た。実施条件および得られた炭素繊維強化熱可塑性樹脂の評価結果を、表1に示した。
[Example 5]
The same method as in Example 1 except that CF5 carbon fiber was used and the mass ratio of carbon fiber bundle (a) was 50%, and CF6 carbon fiber was used and the mass ratio of carbon fiber bundle (b) was 50%. A substrate was obtained. The execution conditions and the evaluation results of the obtained carbon fiber reinforced thermoplastic resin are shown in Table 1.

[比較例1]
長さ6.4mmのCF1炭素繊維束(a)のみで強化繊維束を作製した。それ以外は実施例1と同様の方法で基材を得た。実施条件および得られた繊維強化熱可塑性樹脂の評価結果を、表1に示した。
[Comparative Example 1]
A reinforcing fiber bundle was produced only with a CF1 carbon fiber bundle (a) having a length of 6.4 mm. Otherwise, a substrate was obtained in the same manner as in Example 1. The execution conditions and the evaluation results of the obtained fiber reinforced thermoplastic resin are shown in Table 1.

[比較例2]
CF7炭素繊維を使用し炭素繊維束(a)の質量比を50%、CF8炭素繊維を使用し炭素繊維束(b)の質量比を50%をとした以外は実施例1と同様の方法で基材を得た。実施条件および得られた炭素繊維強化熱可塑性樹脂の評価結果を、表1に示した。
[Comparative Example 2]
The same method as in Example 1 except that CF7 carbon fiber was used and the mass ratio of carbon fiber bundle (a) was 50%, and CF8 carbon fiber was used and the mass ratio of carbon fiber bundle (b) was 50%. A substrate was obtained. The execution conditions and the evaluation results of the obtained carbon fiber reinforced thermoplastic resin are shown in Table 1.

[比較例3]
CF7炭素繊維を使用し炭素繊維束(a)の質量比を70%、CF8炭素繊維を使用し炭素繊維束(b)の質量比を30%をとした以外は実施例1と同様の方法で基材を得た。実施条件および得られた炭素繊維強化熱可塑性樹脂の評価結果を、表1に示した。
[Comparative Example 3]
The same method as in Example 1 except that CF7 carbon fiber was used and the mass ratio of carbon fiber bundle (a) was 70%, and CF8 carbon fiber was used and the mass ratio of carbon fiber bundle (b) was 30%. A substrate was obtained. The execution conditions and the evaluation results of the obtained carbon fiber reinforced thermoplastic resin are shown in Table 1.

表1から明らかなように、単繊維繊度が1.0dtex〜2.4dtex、真円度が0.70以上0.90以下である炭素繊維を用いると流動性が向上し、結果としてプレス成形などの加工がしやすく、2次加工についても同様の性質を維持した炭素繊維複合材料が得られる。    As is apparent from Table 1, when carbon fibers having a single fiber fineness of 1.0 dtex to 2.4 dtex and a roundness of 0.70 or more and 0.90 or less are used, fluidity is improved, and as a result, press molding or the like is performed. It is easy to process, and a carbon fiber composite material that maintains the same properties in the secondary processing can be obtained.

Claims (10)

単繊繊維度1.0dtex〜2.4dtexである炭素繊維からなる樹脂補強材。   A resin reinforcing material made of carbon fiber having a single fiber degree of 1.0 dtex to 2.4 dtex. 前記炭素繊維の単繊維の真円度が0.70以上0.90以下である請求項1に記載の樹脂補強材。   The resin reinforcing material according to claim 1, wherein the roundness of the single fiber of the carbon fiber is 0.70 or more and 0.90 or less. 前記樹脂補強材に炭素繊維が10〜90質量%の範囲で含まれる請求項1または2のいずれかに記載の樹脂補強材。   The resin reinforcing material according to claim 1, wherein the resin reinforcing material contains carbon fiber in a range of 10 to 90% by mass. 前記炭素繊維の長さが1〜60mmである請求項1〜3のいずれかに記載の樹脂補強材。   The resin reinforcing material according to claim 1, wherein the carbon fiber has a length of 1 to 60 mm. 補強される樹脂が熱硬化性樹脂または熱可塑性樹脂である請求項1〜4のいずれかに記載の樹脂補強材。   The resin reinforcing material according to claim 1, wherein the resin to be reinforced is a thermosetting resin or a thermoplastic resin. 前記樹脂補強材の空隙率49〜98体積%である請求項1〜5のいずれかに記載の樹脂補強材。   The resin reinforcing material according to claim 1, wherein the resin reinforcing material has a porosity of 49 to 98% by volume. 前記樹脂補強材がマット材である請求項1〜6のいずれかに記載の樹脂補強材。   The resin reinforcing material according to claim 1, wherein the resin reinforcing material is a mat material. 前記樹脂補強材が不織布である請求項1〜6のいずれかに記載の樹脂補強材。   The resin reinforcing material according to claim 1, wherein the resin reinforcing material is a nonwoven fabric. 前記樹脂補強材がチョップ材である請求項1〜6のいずれかに記載の樹脂補強材。   The resin reinforcing material according to claim 1, wherein the resin reinforcing material is a chop material. プレス成形、RTM成形、ハンドレイアップ法のいずれか1種の成形法で請求項1〜10のいずれかに記載の樹脂補強材を製造する樹脂補強材の製造方法。   The manufacturing method of the resin reinforcing material which manufactures the resin reinforcing material in any one of Claims 1-10 with any 1 type | molding method of press molding, RTM molding, and a hand lay-up method.
JP2012078863A 2012-03-30 2012-03-30 Molding intermediate material using thick carbon fiber Pending JP2013208724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012078863A JP2013208724A (en) 2012-03-30 2012-03-30 Molding intermediate material using thick carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012078863A JP2013208724A (en) 2012-03-30 2012-03-30 Molding intermediate material using thick carbon fiber

Publications (1)

Publication Number Publication Date
JP2013208724A true JP2013208724A (en) 2013-10-10

Family

ID=49527094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012078863A Pending JP2013208724A (en) 2012-03-30 2012-03-30 Molding intermediate material using thick carbon fiber

Country Status (1)

Country Link
JP (1) JP2013208724A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078310A (en) * 2013-10-17 2015-04-23 三菱レイヨン株式会社 Prepreg
JP2016107548A (en) * 2014-12-09 2016-06-20 東レ株式会社 Stampable base material, manufacturing method thereof, and stamping molded article
JP2016188271A (en) * 2015-03-30 2016-11-04 三菱レイヨン株式会社 Manufacturing method of prepreg

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078310A (en) * 2013-10-17 2015-04-23 三菱レイヨン株式会社 Prepreg
JP2016107548A (en) * 2014-12-09 2016-06-20 東レ株式会社 Stampable base material, manufacturing method thereof, and stamping molded article
JP2016188271A (en) * 2015-03-30 2016-11-04 三菱レイヨン株式会社 Manufacturing method of prepreg

Similar Documents

Publication Publication Date Title
US10836118B2 (en) Modified resin systems for liquid resin infusion applications and process methods related thereto
KR102245594B1 (en) Heat-curable resin composition, prepreg, and method for producing fiber-reinforced composite using each of same
JP5499548B2 (en) Carbon fiber nonwoven fabric, carbon fiber reinforced resin sheet, and carbon fiber reinforced resin molded body
TWI697398B (en) Manufacturing method of structure
JP6700049B2 (en) Carbon fiber sheet material, prepreg, laminated body, molded body and manufacturing method thereof
JP7425731B2 (en) Carbon fiber sheet material, prepreg, molded body, method for manufacturing carbon fiber sheet material, method for manufacturing prepreg, and method for manufacturing molded body
CN110505958B (en) Fiber-reinforced composite material molded article and method for producing same
JP2013208724A (en) Molding intermediate material using thick carbon fiber
EP3039060B1 (en) Overmolding with non-oriented fibers
JP2017170781A (en) Laminate and vehicle component using the same
Du et al. Kenaf bast fiber bundle–reinforced unsaturated polyester composites. IV: effects of fiber loadings and aspect ratios on composite tensile properties
CA2968081C (en) Epoxy-based resin composition for composite materials
Chang et al. The mechanical properties of plasma‐treated carbon fiber reinforced PA6 composites with CNT
CN115023329B (en) Cold press molded article comprising carbon fiber and glass fiber, and method for producing same
JP7425732B2 (en) Carbon fiber sheet material, prepreg, molded body, method for manufacturing carbon fiber sheet material, method for manufacturing prepreg, and method for manufacturing molded body
JP2013208791A (en) Method of producing composite molded product
JP6368748B2 (en) Molding method for molding fiber reinforced resin
Mustafa Al-Areqi et al. Development of 3D Printed Biodegradable Poly-lactic Acid/Polyurethane Foams/Milled Glass Fibers of Sustainable Composites with Application on Helmet
US20220009179A1 (en) Method for producing press-molded body
CN112500599B (en) Recycled fibrous material and method
KR20110103634A (en) A manufacturing method of mat-plastic composite containing clay particles
Venugopal et al. Research Article Effect on Compression Molding Parameters in Mechanical Properties of MWCNT/Glass Fiber/Epoxy Composites
JP2022170112A (en) Fiber-reinforced molding, method for manufacturing fiber-reinforced molding, and resin sheet
JP2014105245A (en) Method for producing thermoplastic molding
Liu et al. Strengths of Basalt Fiber Reinforced Fir Sawdust Panel