JP6700049B2 - Carbon fiber sheet material, prepreg, laminated body, molded body and manufacturing method thereof - Google Patents

Carbon fiber sheet material, prepreg, laminated body, molded body and manufacturing method thereof Download PDF

Info

Publication number
JP6700049B2
JP6700049B2 JP2016011125A JP2016011125A JP6700049B2 JP 6700049 B2 JP6700049 B2 JP 6700049B2 JP 2016011125 A JP2016011125 A JP 2016011125A JP 2016011125 A JP2016011125 A JP 2016011125A JP 6700049 B2 JP6700049 B2 JP 6700049B2
Authority
JP
Japan
Prior art keywords
carbon fiber
sheet material
fiber sheet
carbon
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016011125A
Other languages
Japanese (ja)
Other versions
JP2017128705A (en
Inventor
健 住本
健 住本
裕也 豊川
裕也 豊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Awa Paper Manufacturing Co Ltd
Original Assignee
Awa Paper Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Awa Paper Manufacturing Co Ltd filed Critical Awa Paper Manufacturing Co Ltd
Priority to JP2016011125A priority Critical patent/JP6700049B2/en
Publication of JP2017128705A publication Critical patent/JP2017128705A/en
Application granted granted Critical
Publication of JP6700049B2 publication Critical patent/JP6700049B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は炭素繊維シート材、プリプレグ、積層体、成形体及びそれらの製造方法に関する。   The present invention relates to a carbon fiber sheet material, a prepreg, a laminated body, a molded body, and a method for producing them.

繊維強化シート材やこれを積層して得られる繊維強化樹脂成形体は、車両や航空機など各種分野に使用されている。特に繊維強化プラスチック(FRP)は、埋設される強化繊維でプラスチックが補強されることから、プラスチック単体では到底に実現できない優れた強度を実現する。FRPに使用される強化繊維には、主としてガラス繊維が使用されるが、アルミニウム繊維やステンレス繊維などの金属繊維、アラミド繊維やPBO繊維などの有機繊維、及びシリコンカーバイト繊維などの無機繊維なども使用される。さらに近年、極めて優れた物性を示すことから、炭素繊維などの無機繊維なども使用されるようになった。   A fiber reinforced sheet material and a fiber reinforced resin molded product obtained by laminating the same are used in various fields such as vehicles and aircraft. In particular, fiber reinforced plastic (FRP) realizes excellent strength that cannot be achieved by a single plastic, because the plastic is reinforced by the embedded reinforcing fibers. Although glass fibers are mainly used as the reinforcing fibers used in FRP, metal fibers such as aluminum fibers and stainless fibers, organic fibers such as aramid fibers and PBO fibers, and inorganic fibers such as silicon carbide fibers are also used. used. Further, in recent years, inorganic fibers such as carbon fibers have come to be used because they have extremely excellent physical properties.

高強度繊維として炭素繊維を使用する炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastics:CFRP)は、熱硬化性樹脂をマトリックス(母材)樹脂として、複数のプリプレグを積層してプリフォームとし、これをプレス成形して製作される。プリプレグは、炭素繊維をシート状に加工している高強度繊維基材に熱硬化性樹脂を含浸させて製作される。高強度繊維基材は、連続、もしくは不連続の高強度繊維を配列させ、又は織物加工させて製作される(特許文献1参照)。   Carbon Fiber Reinforced Plastics (CFRP), which uses carbon fibers as high-strength fibers, uses thermosetting resin as a matrix (base material) resin and stacks multiple prepregs into a preform, which is pressed. It is made by molding. The prepreg is manufactured by impregnating a thermosetting resin into a high-strength fiber base material obtained by processing carbon fibers into a sheet. The high-strength fiber base material is manufactured by arranging continuous or discontinuous high-strength fibers or by textile processing (see Patent Document 1).

特許第5309563号公報Japanese Patent No. 5309563

特許文献1に開示される炭素繊維強化熱可塑性樹脂成形体は、単繊維状の炭素繊維を用いている。該文献によれば、図1に示す炭素繊維強化熱可塑性樹脂成形体900の切断面の模式図のように、炭素繊維901が単繊維の状態で熱可塑性樹脂930中に分散していることが好ましいとされている。逆に、炭素繊維が束の状態で存在すると、束と束の隙間に樹脂のみで構成される樹脂リッチ部が発生し、力学特性が低下する場合がある。また炭素繊維が束の状態で存在すると、炭素繊維束内に熱可塑性樹脂が含浸できず、未含浸部となり、力学特性が低下する場合もあると該文献では説明されている。   The carbon fiber reinforced thermoplastic resin molded body disclosed in Patent Document 1 uses single fiber carbon fibers. According to the document, the carbon fibers 901 are dispersed in the thermoplastic resin 930 in a single fiber state, as shown in the schematic view of the cut surface of the carbon fiber reinforced thermoplastic resin molded body 900 shown in FIG. It is said to be preferable. On the other hand, if the carbon fibers are present in a bundle, a resin-rich portion composed only of the resin is generated in the gap between the bundles, and the mechanical properties may be deteriorated. Further, when the carbon fibers are present in a bundled state, the thermoplastic resin cannot be impregnated into the carbon fiber bundle to form an unimpregnated portion, and the mechanical properties may be deteriorated, which is described in the document.

しかしながら、本願発明者らが詳細な検証試験を行ったところ、図1に示すように単繊維状の炭素繊維を均一に分散させると、却って強度が低下すること判明した。その理由を検討したところ、図1のように炭素繊維901を単繊維状に分散させると、各炭素繊維の周囲に空間が発生することから、この空間を埋めるために母材となる熱可塑性樹脂930の量が多く必要となり、単位体積当たりの樹脂量が多くなる結果、相対的に炭素繊維の比率が低下して強度を向上できないためと推測される。   However, as a result of a detailed verification test conducted by the inventors of the present application, it was found that the strength is rather decreased when the single-fiber carbon fibers are uniformly dispersed as shown in FIG. As a result of studying the reason, when the carbon fibers 901 are dispersed in a single fiber shape as shown in FIG. 1, a space is generated around each carbon fiber. Therefore, the thermoplastic resin which is the base material for filling the space is formed. It is presumed that a large amount of 930 is required and the amount of resin per unit volume increases, resulting in a relative decrease in the ratio of carbon fibers and an inability to improve strength.

本発明は、このような知見に基づいてなされたものであって、その目的の一は、強度を更に向上させた炭素繊維シート材、プリプレグ、積層体、成形体及びそれらの製造方法を提供することにある。   The present invention has been made on the basis of such findings, and one of the objects thereof is to provide a carbon fiber sheet material, a prepreg, a laminate, a molded body having a further improved strength and a method for producing them. Especially.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

本発明の第1の側面に係る炭素繊維シート材によれば、複数本の炭素繊維と、前記炭素繊維を結合するバインダ樹脂とを備える炭素繊維シート材であって、前記炭素繊維が長さ方向に対する断面視において束状に収束された状態で分散されており、前記炭素繊維シート材を3枚重ねて測定した通気度を、60〜150cm3/cm2・secとできる。 The carbon fiber sheet material according to the first aspect of the present invention is a carbon fiber sheet material including a plurality of carbon fibers and a binder resin that binds the carbon fibers, wherein the carbon fibers have a length direction. In the cross-sectional view, the particles are dispersed in a bundled state, and the air permeability measured by stacking three carbon fiber sheet materials can be 60 to 150 cm 3 /cm 2 ·sec.

また、本発明の第2の側面に係る炭素繊維シート材によれば、複数本の炭素繊維と、前記炭素繊維を結合するバインダ樹脂とを備える炭素繊維シート材であって、前記炭素繊維が長さ方向に対する断面視において束状に収束された状態で分散されており、前記炭素繊維シート材に50kPaの圧力を印加した際の平均厚さを、前記炭素繊維の平均直径に対して10〜400倍とできる。   Moreover, according to the carbon fiber sheet material concerning the 2nd side surface of this invention, it is a carbon fiber sheet material provided with several carbon fiber and the binder resin which couple|bonds the said carbon fiber, Comprising: The said carbon fiber is long. The carbon fibers are dispersed in a bundle in a cross-sectional view in the vertical direction, and the average thickness when a pressure of 50 kPa is applied to the carbon fiber sheet material is 10 to 400 with respect to the average diameter of the carbon fibers. It can be doubled.

さらに、本発明の第3の側面に係る炭素繊維シート材によれば、前記炭素繊維を、未開繊の状態で収束させた状態とできる。   Furthermore, with the carbon fiber sheet material according to the third aspect of the present invention, the carbon fibers can be brought into a state in which they are converged in an unopened state.

さらにまた、本発明の第4の側面に係る炭素繊維シート材によれば、前記炭素繊維を、不連続炭素繊維とすることができる。   Furthermore, according to the carbon fiber sheet material of the fourth aspect of the present invention, the carbon fibers can be discontinuous carbon fibers.

さらにまた、本発明の第5の側面に係る炭素繊維シート材によれば、前記炭素繊維を、重量平均繊維長で0.2mm〜26mmとすることができる。   Furthermore, according to the carbon fiber sheet material of the fifth aspect of the present invention, the carbon fibers can have a weight average fiber length of 0.2 mm to 26 mm.

さらにまた、本発明の第6の側面に係る炭素繊維シート材によれば、前記炭素繊維が、表面に凹凸を有するものとできる。これにより、見た目上の炭素繊維の表面積を大きくしてマトリックス樹脂との界面接着面積を増すことにより、炭素繊維強化樹脂成形体としたときの強度を向上させることが可能となる。   Furthermore, according to the carbon fiber sheet material of the sixth aspect of the present invention, the carbon fibers can have irregularities on the surface. As a result, the apparent surface area of the carbon fiber is increased and the interfacial adhesion area with the matrix resin is increased, whereby the strength of the carbon fiber reinforced resin molded product can be improved.

さらにまた、本発明の第7の側面に係る炭素繊維シート材によれば、前記炭素繊維が、表面に破断面を有するものとできる。   Furthermore, according to the carbon fiber sheet material of the seventh aspect of the present invention, the carbon fiber can have a fracture surface on the surface.

さらにまた、本発明の第8の側面に係る炭素繊維シート材によれば、前記炭素繊維を、マトリックス樹脂、及び/又はサイジング剤が残留、及び/又は一部が炭化された状態でリサイクルされた炭素繊維とできる。上記構成により、CFRPの廃材等より炭素繊維を回収する際、残留樹脂分の残った状態でも、当該炭素繊維を有効活用することができる。   Furthermore, according to the carbon fiber sheet material according to the eighth aspect of the present invention, the carbon fiber is recycled in a state where the matrix resin and/or the sizing agent remain and/or a part thereof is carbonized. It can be carbon fiber. With the above configuration, when the carbon fiber is recovered from the waste material of CFRP or the like, the carbon fiber can be effectively utilized even when the residual resin component remains.

さらにまた、本発明の第9の側面に係るプリプレグによれば、これらの炭素繊維シート材に、マトリックス樹脂となる熱硬化性樹脂を含浸することができる。   Furthermore, with the prepreg according to the ninth aspect of the present invention, these carbon fiber sheet materials can be impregnated with a thermosetting resin that serves as a matrix resin.

さらにまた、本発明の第10の側面に係るプリプレグによれば、複数本の炭素繊維と、前記炭素繊維を結合するバインダ樹脂と、熱可塑性樹脂繊維を混抄してなるプリプレグであって、前記炭素繊維が長さ方向に対する断面視において束状に収束された状態で、前記バインダ樹脂中に分散されており、前記プリプレグを3枚重ねて測定した通気度を、20〜100cm3/cm2・secとできる。 Furthermore, the prepreg according to the tenth aspect of the present invention is a prepreg obtained by mixing a plurality of carbon fibers, a binder resin that binds the carbon fibers, and a thermoplastic resin fiber, wherein the carbon The fibers are dispersed in the binder resin in a state of being bundled in a cross-sectional view in the lengthwise direction, and the air permeability measured by stacking three prepregs is 20 to 100 cm 3 /cm 2 ·sec. Can be

さらにまた、本発明の第11の側面に係る積層体によれば、これらのプリプレグを積層して構成できる。   Furthermore, the laminate according to the eleventh aspect of the present invention can be configured by laminating these prepregs.

さらにまた、本発明の第12の側面に係る成形体によれば、これらのプリプレグを熱圧成形して構成できる。   Furthermore, according to the molded product of the twelfth aspect of the present invention, these prepregs can be formed by thermocompression molding.

さらにまた、本発明の第13の側面に係る炭素繊維シート材の製造方法によれば、複数本の炭素繊維を、該炭素繊維を結合するバインダ樹脂に混抄して、前記炭素繊維が長さ方向に対する断面視において束状に収束された状態で抄紙する炭素繊維シート材の製造方法であって、前記炭素繊維シート材を3枚重ねて測定した通気度を、60〜150cm3/cm2・secとできる。 Furthermore, according to the method for producing a carbon fiber sheet material according to the thirteenth aspect of the present invention, a plurality of carbon fibers are mixed with a binder resin that binds the carbon fibers, and the carbon fibers are lengthwise. Is a method for manufacturing a carbon fiber sheet material that is made into a bundle in a cross-sectional view, and has an air permeability of 60 to 150 cm 3 /cm 2 ·sec measured by stacking three carbon fiber sheet materials. Can be

さらにまた、本発明の第14の側面に係る炭素繊維シート材の製造方法によれば、複数本の炭素繊維を、該炭素繊維を結合するバインダ樹脂に混抄して、前記炭素繊維が長さ方向に対する断面視において束状に収束された状態で抄紙する炭素繊維シート材の製造方法であって、前記炭素繊維材に50kPaの圧力を印加した際の平均厚さを、前記炭素繊維の平均直径に対して10〜400倍とできる。   Furthermore, according to the method for producing a carbon fiber sheet material according to the fourteenth aspect of the present invention, a plurality of carbon fibers are mixed with a binder resin that binds the carbon fibers, and the carbon fibers are lengthwise. Is a method for producing a carbon fiber sheet material which is made into a bundle in a cross-sectional view in a cross-sectional view, wherein an average thickness when a pressure of 50 kPa is applied to the carbon fiber material is defined as an average diameter of the carbon fibers. It can be increased by 10 to 400 times.

さらにまた、本発明の第15の側面に係る成形体の製造方法によれば、複数本の炭素繊維を、該炭素繊維を結合するバインダ樹脂に混抄して、前記炭素繊維が長さ方向に対する断面視において束状に収束された状態で抄紙して炭素繊維シート材を作製する工程と、前記炭素繊維シート材に未硬化の熱硬化性樹脂を含浸させてプリプレグを作製する工程と、前記プリプレグの熱硬化性樹脂を硬化させて成形体を作製する工程とを含む、成形体の製造方法であって、前記炭素繊維シート材を3枚重ねて測定した通気度を、60〜150cm3/cm2・secとできる。 Furthermore, according to the method for producing a molded body according to the fifteenth aspect of the present invention, a plurality of carbon fibers are mixed with a binder resin that binds the carbon fibers, and the carbon fibers have a cross section in the longitudinal direction. A step of producing a carbon fiber sheet material by papermaking in a state of being converged into a bundle in view, a step of impregnating the carbon fiber sheet material with an uncured thermosetting resin to produce a prepreg, and the prepreg A method for producing a molded article, comprising the step of curing a thermosetting resin to produce a molded article, wherein the air permeability measured by stacking three carbon fiber sheet materials is 60 to 150 cm 3 /cm 2.・It can be sec.

さらにまた、本発明の第16の側面に係る成形体の製造方法によれば、複数本の炭素繊維を、該炭素繊維を結合するバインダ樹脂に混抄して、前記炭素繊維が長さ方向に対する断面視において束状に収束された状態で抄紙して炭素繊維シート材を作製する工程と、前記炭素繊維シート材に未硬化の熱硬化性樹脂を含浸させてプリプレグを作製する工程と、前記プリプレグの熱硬化性樹脂を硬化させて成形体を作製する工程とを含む、成形体の製造方法であって、前記炭素繊維シート材に50kPaの圧力を印加した際の平均厚さを、前記炭素繊維の平均直径に対して10〜400倍とできる。   Furthermore, according to the method for producing a molded body according to the sixteenth aspect of the present invention, a plurality of carbon fibers are mixed with a binder resin that binds the carbon fibers, and the carbon fibers have a cross section in the longitudinal direction. A step of producing a carbon fiber sheet material by papermaking in a state of being converged into a bundle in view, a step of impregnating the carbon fiber sheet material with an uncured thermosetting resin to produce a prepreg, and the prepreg A method for producing a molded body, comprising a step of curing a thermosetting resin to produce a molded body, wherein an average thickness when a pressure of 50 kPa is applied to the carbon fiber sheet material, It can be 10 to 400 times the average diameter.

さらにまた、本発明の第17の側面に係る成形体の製造方法によれば、複数本の炭素繊維と、前記炭素繊維を結合するバインダ樹脂と、熱可塑性樹脂繊維を混抄してプリプレグを作製する工程と、前記プリプレグを熱圧成形して成形体を作製する工程とを含む、成形体の製造方法であって、前記プリプレグを3枚重ねて測定した通気度を、20〜100cm3/cm2・secとできる。 Furthermore, according to the method for producing a molded body according to the seventeenth aspect of the present invention, a plurality of carbon fibers, a binder resin that binds the carbon fibers, and a thermoplastic resin fiber are mixed and made into a prepreg. A method of manufacturing a molded body, comprising: a step and a step of thermoforming the prepreg to produce a molded body, wherein an air permeability measured by stacking three prepregs is 20 to 100 cm 3 /cm 2.・It can be sec.

さらにまた、本発明の第18の側面に係る成形体の製造方法によれば、複数本の炭素繊維と、前記炭素繊維を結合するバインダ樹脂と、熱可塑性樹脂繊維を混抄してプリプレグを作製する工程と、前記プリプレグを熱圧成形して成形体を作製する工程とを含む、成形体の製造方法であって、前記プリプレグに50kPaの圧力を印加した際の平均厚さが、前記炭素繊維の平均直径に対して10〜400倍とできる。   Furthermore, according to the method for producing a molded body according to the eighteenth aspect of the present invention, a plurality of carbon fibers, a binder resin that binds the carbon fibers, and a thermoplastic resin fiber are mixed to prepare a prepreg. A method of manufacturing a molded body, which comprises a step and a step of thermoforming the prepreg to form a molded body, wherein an average thickness when a pressure of 50 kPa is applied to the prepreg is equal to that of the carbon fiber. It can be 10 to 400 times the average diameter.

炭素繊維を単繊維の状態で熱可塑性樹脂中に分散させた炭素繊維強化熱可塑性樹脂成形体の模式断面図である。FIG. 3 is a schematic cross-sectional view of a carbon fiber reinforced thermoplastic resin molded body in which carbon fibers are dispersed in a thermoplastic resin in a single fiber state. 本発明の一実施形態に係る炭素繊維シート材の模式断面図である。It is a schematic cross section of the carbon fiber sheet material concerning one embodiment of the present invention. 実施例1に係る炭素繊維シート材を示す写真である。1 is a photograph showing a carbon fiber sheet material according to Example 1. 比較例1に係る炭素繊維シート材を示す写真である。5 is a photograph showing a carbon fiber sheet material according to Comparative Example 1. バージンの炭素繊維を示すSEM写真である。It is a SEM photograph showing carbon fiber of virgin. 表面に凹凸を設けた炭素繊維を示すSEM写真である。It is a SEM photograph which shows the carbon fiber which provided the unevenness|corrugation on the surface.

以下、本発明の実施の形態について説明する。ただし、以下に示す実施の形態及び実施例は、本発明の技術思想を具体化するための炭素繊維シート材及びその製造方法を例示するものであって、本発明は炭素繊維シート材及びその製造方法を以下のものに限定するものではない。また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。   Hereinafter, embodiments of the present invention will be described. However, the following embodiments and examples exemplify a carbon fiber sheet material and a manufacturing method thereof for embodying the technical idea of the present invention, and the present invention is a carbon fiber sheet material and a manufacturing method thereof. The method is not limited to the following. In addition, the present specification does not specify the members described in the claims to the members of the embodiments. Unless otherwise specified, the dimensions, materials, shapes, relative positions, etc. of the components described in the embodiments are not intended to limit the scope of the present invention thereto, but are merely descriptions. It's just an example. The sizes and positional relationships of members shown in the drawings may be exaggerated for clarity of explanation. Further, in the following description, the same names and reference numerals indicate the same or similar members, and detailed description thereof will be appropriately omitted. Further, each element constituting the present invention may be configured such that a plurality of elements are configured by the same member and one member also serves as a plurality of elements, or conversely, the function of one member is performed by a plurality of members. It can be shared and realized.

本明細書において「シート材」とは、単体のシート材の他、これらを複数層に積層した積層体、マット状あるいは塊状の形態のものを含む意味で使用する。
(バインダ樹脂)
In the present specification, the term “sheet material” is used to mean a single sheet material, as well as a laminated body in which a plurality of these are laminated, a mat-like or lump-like one.
(Binder resin)

バインダ樹脂は、ポリビニルアルコール樹脂(PVA)や熱可塑性樹脂が利用できる。熱可塑性樹脂として、例えばポリエステル、ポリプロピレン、ポリエチレン、ポリアミド、ポリ酢酸ビニル、ポリフェニレンサルファイドが利用できる。特にポリビニルアルコール樹脂製とすることが好ましい。これによってバインダが繊維と繊維を点接着して固定化し、シートにドレープ性が維持できる。
(炭素繊維シート材の製造方法)
As the binder resin, polyvinyl alcohol resin (PVA) or thermoplastic resin can be used. As the thermoplastic resin, for example, polyester, polypropylene, polyethylene, polyamide, polyvinyl acetate, polyphenylene sulfide can be used. In particular, it is preferably made of polyvinyl alcohol resin. As a result, the binder fixes the fibers by point-bonding the fibers, and the drape property can be maintained on the sheet.
(Method for manufacturing carbon fiber sheet material)

次に、製造方法について説明する。まず、炭素繊維シート材の製造方法について説明する。
(抄紙工程)
Next, the manufacturing method will be described. First, a method for manufacturing a carbon fiber sheet material will be described.
(Papermaking process)

まず炭素繊維にバインダ樹脂を混抄して炭素繊維シート材を作製する。抄紙工程に際して、炭素繊維束を分散させずに収束させて抄紙するには、抄紙の際の濃度を濃くする。例えば濃度を0.1〜0.3%に調整する。次に、炭素繊維の表面にサイジング剤と呼ばれる樹脂を付ける。
(樹脂含浸工程)
First, a carbon fiber is mixed with a binder resin to prepare a carbon fiber sheet material. In the papermaking process, in order to make the carbon fiber bundles converge without being dispersed, the concentration at the time of papermaking is increased. For example, the concentration is adjusted to 0.1 to 0.3%. Next, a resin called a sizing agent is attached to the surface of the carbon fiber.
(Resin impregnation process)

次にプリプレグを得るには、この炭素繊維シート材に未硬化の熱硬化性樹脂を含浸させる。ここでは、未硬化状態の熱硬化性樹脂シートを熱転写する方法、あるいは液状の熱硬化性樹脂を含浸させる方法等が利用できる。なお熱硬化性樹脂には、例えばエポキシ樹脂、フェノール樹脂、メラミン樹脂、不飽和ポリエステル樹脂等を利用できる。
(成形工程)
Next, to obtain a prepreg, the carbon fiber sheet material is impregnated with an uncured thermosetting resin. Here, a method of thermally transferring an uncured thermosetting resin sheet, a method of impregnating a liquid thermosetting resin, or the like can be used. As the thermosetting resin, for example, epoxy resin, phenol resin, melamine resin, unsaturated polyester resin or the like can be used.
(Molding process)

さらに成形体を作製するには、プリプレグの熱硬化性樹脂を硬化させて成形体を作製する。成形工程においては、樹脂含浸工程で得られたプリプレグを1枚以上積層し、プリフォームを得ると共に、このプリフォームを加熱、加圧して炭素繊維強化樹脂成形体を製造する。硬化された熱硬化性樹脂がマトリックス樹脂となる。
(熱可塑性樹脂繊維)
Further, in order to produce a molded body, the thermosetting resin of the prepreg is cured to produce a molded body. In the molding step, one or more prepregs obtained in the resin impregnation step are laminated to obtain a preform, and the preform is heated and pressed to produce a carbon fiber reinforced resin molded body. The cured thermosetting resin becomes the matrix resin.
(Thermoplastic resin fiber)

また、熱硬化性樹脂に代えて、熱可塑性樹脂繊維を用いることもできる。この場合は、抄紙工程と樹脂含浸工程を同時に行うことができる。すなわち、炭素繊維とバインダ樹脂に加えて、熱可塑性樹脂繊維も同時に混抄しプリプレグを製造することができる。得られたプリプレグは、上記と同様に1又は複数を積層し、熱圧する成形工程を経て炭素繊維強化樹脂成形体を得ることができる。この熱可塑性樹脂繊維は、熱圧成形後にマトリックス樹脂となる。熱可塑性樹脂には、例えばポリエステル、ポリプロピレン、ポリエチレン、ポリアミド(ナイロン)、ポリカーボネート、ポリスチレアクリルニトリル−ブタジエン−スチレン系樹脂(ABS樹脂)、ポリ塩化ビニル系樹脂、ポリフェニレンサルファイドなどが利用できる。   Further, instead of the thermosetting resin, a thermoplastic resin fiber may be used. In this case, the papermaking process and the resin impregnation process can be performed simultaneously. That is, in addition to the carbon fiber and the binder resin, the thermoplastic resin fiber can be mixed and produced at the same time to produce the prepreg. One or more of the obtained prepregs are laminated in the same manner as described above, and a carbon fiber reinforced resin molding can be obtained through a molding step of hot pressing. This thermoplastic resin fiber becomes a matrix resin after thermocompression molding. Examples of the thermoplastic resin that can be used include polyester, polypropylene, polyethylene, polyamide (nylon), polycarbonate, polystyrene acrylonitrile-butadiene-styrene resin (ABS resin), polyvinyl chloride resin, and polyphenylene sulfide.

炭素繊維10〜60重量%と熱可塑樹脂繊維40〜90重量%を混抄させる。特に炭素繊維を40重量%以上とすることが好ましい。単繊維状の炭素繊維を均一に分散させると各炭素繊維の周囲に空間が発生することから、この空間を埋めるために母材となる樹脂の量が多く必要になる。そのため、炭素繊維比率を高く(例えば40重量%以上に)すると炭素繊維の周辺に発生する空間を樹脂で埋めることができず、空間(ボイド)が残るため、炭素繊維強化樹脂成形体の強度が低下する。それと比較し、本発明では炭素繊維を束状に収束させることで各炭素繊維の周辺に発生する空間を低減させることが可能となり、その結果、炭素繊維比率を多くし、少ない樹脂比率ででも空間(ボイド)をあまり発生させることなく炭素繊維強化樹脂成形体とすることができるため、強度が低下することなく、高強度の成形体となる。   Carbon fibers of 10 to 60% by weight and thermoplastic resin fibers of 40 to 90% by weight are mixed and made into paper. Particularly, it is preferable that the carbon fiber content is 40% by weight or more. When the monofilament-like carbon fibers are uniformly dispersed, a space is generated around each carbon fiber. Therefore, a large amount of resin as a base material is required to fill this space. Therefore, when the carbon fiber ratio is high (for example, 40% by weight or more), the space generated around the carbon fiber cannot be filled with the resin and the space (void) remains, so that the strength of the carbon fiber reinforced resin molded body is increased. descend. In comparison with this, in the present invention, it becomes possible to reduce the space generated around each carbon fiber by converging the carbon fibers into a bundle, and as a result, increase the carbon fiber ratio and reduce the space even with a small resin ratio. Since the carbon fiber reinforced resin molded body can be produced without generating much (void), the molded body has high strength without lowering the strength.

樹脂含浸工程においては、繊維基材の表面に、未硬化状態にある熱硬化性樹脂シートを積層して加熱し、熱硬化性樹脂シートを溶融させて未硬化状態にある熱硬化性樹脂を繊維基材の隙間に含浸させることができ、あるいは、繊維基材の表面に、未硬化状態にある液状の熱硬化性樹脂を含浸して繊維基材の隙間に含浸させることができる。   In the resin impregnation step, the uncured thermosetting resin sheet is laminated on the surface of the fiber base material and heated to melt the thermosetting resin sheet to form the uncured thermosetting resin into fibers. The interstices of the base material can be impregnated, or the surface of the fibrous base material can be impregnated with a liquid thermosetting resin in an uncured state to impregnate the interstices of the fibrous base material.

成形工程においては、プリプレグを1枚以上積層し、加熱、加圧してプリプレグに含まれる樹脂を軟化させた後に、硬化(熱可塑性樹脂の場合は固化)させて、炭素繊維強化脂成形体を成形する。   In the molding process, one or more prepregs are laminated, heated and pressed to soften the resin contained in the prepreg, and then cured (solidified in the case of a thermoplastic resin) to form a carbon fiber reinforced fat molded body. To do.

なお特許文献1にも抄紙工程が開示されているものの、またバッチ法であって連続法でない。これに対し本実施の形態によれば連続抄紙が可能であり、熱可塑性樹脂繊維との混抄であれば1段工程でプリプレグを作成でき、生産性に優れる。   Although Patent Document 1 discloses a papermaking process, it is a batch method and not a continuous method. On the other hand, according to the present embodiment, continuous papermaking is possible, and in the case of mixed papermaking with thermoplastic resin fibers, a prepreg can be prepared in a one-step process and is excellent in productivity.

本実施の形態に係る炭素繊維シート材100は、図2の模式断面図に示すように、炭素繊維を完全に開繊させた単繊維状とするよりも、寧ろ収束させた炭素繊維束10とする。このようにすることで、図1に示すような炭素繊維901が単繊維状に均一に分散させた状態のように、各炭素繊維の周囲に空間が生じて、この空間を埋めるためにマトリックス樹脂が充填される事態を抑制し、必要なマトリックス樹脂30の量を低減することで結果的に繊維体積含有率を増すことが可能となる。ここで、束状に収束された炭素繊維とは、単繊維に対する概念であり、複数本が束状に纏まった状態にある炭素繊維を指す。束状の炭素繊維は、例えば繊維束が未開繊の状態であったり、一旦開繊された炭素繊維が、再度凝集して束状となったもの等が挙げられる。なお、図2に示すようにすべての炭素繊維を炭素繊維束とする必要は無く、単繊維状の炭素繊維20よりも束状に収束された炭素繊維束10が支配的になるよう、炭素繊維束の比率を高くなるよう形成することで、強度の向上が図られる。   As shown in the schematic cross-sectional view of FIG. 2, the carbon fiber sheet material 100 according to the present embodiment has a carbon fiber bundle 10 that is rather converged rather than a single fiber shape in which carbon fibers are completely opened. To do. By doing so, as in the state where the carbon fibers 901 are uniformly dispersed in a single fiber shape as shown in FIG. 1, a space is created around each carbon fiber, and the matrix resin is used to fill this space. It is possible to increase the fiber volume content as a result by suppressing the situation of being filled and reducing the amount of the required matrix resin 30. Here, the carbon fiber bundled in a bundle is a concept of a single fiber, and refers to a carbon fiber in which a plurality of carbon fibers are bundled. Examples of the bundle-shaped carbon fibers include those in which the fiber bundle is in an unopened state, and carbon fibers that have been once opened are aggregated again to form a bundle. Note that it is not necessary to make all the carbon fibers into a carbon fiber bundle as shown in FIG. 2, and the carbon fiber bundle 10 converged into a bundle is more dominant than the carbon fiber 20 having a single fiber shape. By forming the bundle to have a high ratio, the strength can be improved.

炭素繊維がシート材中で束状に存在している状態を示す指標としては、通気度、透光性、一定圧力下での炭素繊維シート材の厚さ等のパラメータで表すことができる。すなわち、通気度や透光性が高いと、束状の炭素繊維が単繊維よりも支配的であることが判る。
(厚さ測定)
As an index showing the state in which the carbon fibers are present in a bundle form in the sheet material, parameters such as air permeability, translucency, and thickness of the carbon fiber sheet material under a constant pressure can be expressed. That is, when the air permeability and the translucency are high, it is found that the bundled carbon fibers are more dominant than the single fibers.
(Thickness measurement)

ここで、実施例1及び比較例1に係る炭素繊維シート材として湿式不織布を試作し、その平均厚さを測定した。まず、湿式不織布を作成するため、離解機に1Lの水を入れ、原料繊維を加え、回転数やスクリュー形状を揃えて同じ条件で同じ時間(20sec)撹拌した。作成したスラリーを20Lに希釈、均一分散させ、角型シートマシン(熊谷理機工業株式会社製)を用いて、ワイヤーメッシュ上で脱水し、サイズ250×250mmにシート化し、その後乾燥して不織布とした。   Here, a wet type nonwoven fabric was experimentally manufactured as a carbon fiber sheet material according to Example 1 and Comparative Example 1 and its average thickness was measured. First, in order to prepare a wet non-woven fabric, 1 L of water was put into a disintegrator, raw material fibers were added, and the number of revolutions and screw shapes were made uniform and stirred under the same conditions for the same time (20 sec). The prepared slurry was diluted to 20 L, uniformly dispersed, and dehydrated on a wire mesh using a square sheet machine (Kumagaya Riki Kogyo Co., Ltd.) to form a sheet having a size of 250×250 mm, and then dried to obtain a nonwoven fabric. did.

使用した原料の炭素繊維は、繊維長6mm、繊維径7μmとした。比較例1では、サイジング剤なしとして、分散しやすい条件とした。一方実施例1では、ナイロン系サイジング剤ありとして、分散し難い条件として、炭素繊維が束状で残るように調整した。その他、繊度1.1dtex、繊維長6mmのナイロン6繊維と、繊度1.1dtex、繊維長3mmのポリビニルアルコール繊維を用いた。   The raw material carbon fiber used had a fiber length of 6 mm and a fiber diameter of 7 μm. In Comparative Example 1, no sizing agent was used, and the conditions were such that dispersion was easy. On the other hand, in Example 1, the presence of the nylon sizing agent was adjusted so that the carbon fibers remained in a bundle state under the condition that it was difficult to disperse. In addition, a nylon 6 fiber having a fineness of 1.1 dtex and a fiber length of 6 mm and a polyvinyl alcohol fiber having a fineness of 1.1 dtex and a fiber length of 3 mm were used.

実施例1に係る炭素繊維シート材の写真を図3に、比較例1に係る炭素繊維シート材の写真を図4に、それぞれ示す。   A photograph of the carbon fiber sheet material according to Example 1 is shown in FIG. 3, and a photograph of the carbon fiber sheet material according to Comparative Example 1 is shown in FIG.

このようにして炭素繊維強化樹脂成形体の前駆体であるプリプレグを作製した。配合比率は、重量%で炭素繊維40.2%、ナイロン6繊維56.9%、ポリビニルアルコール繊維2.9%とした。坪量100g/m2を得た。 In this way, a prepreg, which is a precursor of the carbon fiber reinforced resin molding, was produced. The blending ratio was 40.2% by weight of carbon fiber, 56.9% of nylon 6 fiber, and 2.9% of polyvinyl alcohol fiber. A basis weight of 100 g/m 2 was obtained.

一方で、CFRTP(熱可塑性炭素繊維強化樹脂成形体)プリプレグとの比較のため、炭素繊維シートを作成した。炭素繊維シートの配合は、炭素繊維95%、ポリビニルアルコール繊維5%とし、坪量40g/m2の炭素繊維シートを得た。 On the other hand, a carbon fiber sheet was prepared for comparison with a CFRTP (thermoplastic carbon fiber reinforced resin molded product) prepreg. The composition of the carbon fiber sheet was 95% carbon fiber and 5% polyvinyl alcohol fiber to obtain a carbon fiber sheet having a basis weight of 40 g/m 2 .

このようにして得られたCFRTPプリプレグと炭素繊維シートの厚さを測定した。ここでは、測定方法として、シートを数枚重ね、紙用厚さ測定器(テスター産業株式会社製TH−101)を用いて測定を行った。測定条件として、ストローク10mm、圧力50±5kPa、加圧面寸法φ14.3mmで8点測定とした。測定手順として、ダイヤルゲージをゼロに合わせ、レバーを下げて試験片を測定子と試料台の間にセットし、その後レバーを静かに離し、数値が安定したところで数値を読み取った。またCFRTPプリプレグ、炭素繊維シートは3枚重ねとした。この結果として、CFRTPプリプレグの測定結果を表1に、炭素繊維シートの測定結果を表2に、それぞれ示す。   The thickness of the CFRTP prepreg and the carbon fiber sheet thus obtained was measured. Here, as a measuring method, several sheets were stacked and the measurement was performed using a paper thickness measuring instrument (TH-101 manufactured by Tester Sangyo Co., Ltd.). As the measurement conditions, a stroke of 10 mm, a pressure of 50±5 kPa, and a pressure surface dimension of φ14.3 mm were measured at 8 points. As a measurement procedure, the dial gauge was set to zero, the lever was lowered, the test piece was set between the probe and the sample stand, and then the lever was gently released, and when the value became stable, the value was read. Also, three CFRTP prepregs and carbon fiber sheets were stacked. Table 1 shows the measurement results of the CFRTP prepreg, and Table 2 shows the measurement results of the carbon fiber sheet.

以上の測定結果から、厚み測定の値が小さいほど薄い、すなわち密度が上がりやすいことが示され、本発明の優位性が確認された。
(通気性測定)
From the above measurement results, it was shown that the smaller the value of the thickness measurement, the thinner, that is, the density was likely to increase, and the superiority of the present invention was confirmed.
(Measurement of breathability)

次に、同じ条件で作成したCFRTPプリプレグと炭素繊維シートに対して、通気度を測定した。測定方法は、シートを数枚重ね、フラジール形通気度試験機(株式会社大栄科学精器製AP−200KZ)を用いて測定を行った。比較試験の条件及び手順は、 JIS L−1096(通気性A法、フラジール形法)に準じた。ただし、通気度が低すぎて測定不能となるため、3枚のサンプルを重ねて測定した。測定結果として、CFRTPプリプレグの測定結果を表3に、炭素繊維不織布の測定結果を表4に、それぞれ示す。   Next, the air permeability was measured for the CFRTP prepreg and the carbon fiber sheet prepared under the same conditions. The measurement method was performed by stacking several sheets and using a Frazier type air permeability tester (AP-200KZ manufactured by Daiei Kagaku Seiki Co., Ltd.). The conditions and procedure of the comparative test were in accordance with JIS L-1096 (breathability A method, Frazier type method). However, since the air permeability was too low to measure, measurement was performed by stacking three samples. Table 3 shows the measurement results of the CFRTP prepreg, and Table 4 shows the measurement results of the carbon fiber nonwoven fabric.

上記の結果から、通気度の値が大きいほど樹脂が流れやすい、すなわち流動性に優れ、炭素繊維樹脂成形体強度の向上に寄与することから、本発明の優位性が確認された。プリプレグの通気度は、3枚重ねて測定した値が20〜100cm3/cm2・secであることが好ましい。また炭素繊維シート材の通気度は、3枚重ねて測定した値が60〜150cm3/cm2・secとすることが好ましい。
(熱プレス成形)
From the above results, the higher the value of the air permeability, the easier the resin to flow, that is, the more excellent the fluidity is, which contributes to the improvement of the strength of the carbon fiber resin molded body, so that the superiority of the present invention was confirmed. The air permeability of the prepreg is preferably 20 to 100 cm 3 /cm 2 ·sec as a value measured by stacking three sheets. The air permeability of the carbon fiber sheet material is preferably 60 to 150 cm 3 /cm 2 ·sec as a value measured by stacking three sheets.
(Hot press molding)

さらに上記のCFRTPプリプレグを、ヒートアンドクールプレス成形によって成形体とした。具体的には、25枚積層させたCFRTPプリプレグを250℃に予熱した金型(280×250mm)にセットし、1分間予熱後に10MPaの圧力でプレスし、そのまま冷却、80℃以下となったところで取り出して成形板を得た。このようにして得られた実施例1と比較例1に係るCFRTP成形板の物性として、引張および曲げ強度試験を実施した。この結果を以下の表5に示す。   Further, the above CFRTP prepreg was formed into a molded body by heat and cool press molding. Specifically, 25 sheets of CFRTP prepreg are set in a mold (280×250 mm) preheated to 250° C., preheated for 1 minute, pressed at a pressure of 10 MPa, cooled as it is, and at a temperature of 80° C. or less. It was taken out to obtain a molded plate. Tensile and bending strength tests were carried out as the physical properties of the CFRTP molded plate according to Example 1 and Comparative Example 1 thus obtained. The results are shown in Table 5 below.

表5に示すように、実施例1に係る成形体が、比較例1よりも引張強度、引張弾性率、曲げ強度で優れた特性を示しており、強度が向上されることが確認された。
(炭素繊維表面の凹凸)
As shown in Table 5, the molded body according to Example 1 exhibited more excellent tensile strength, tensile elastic modulus, and bending strength than Comparative Example 1, and it was confirmed that the strength was improved.
(Asperity of carbon fiber surface)

さらに、炭素繊維の表面に、凹凸を設けることも好ましい。このようにすることで、炭素繊維の表面積を大きくしてマトリックス樹脂との界面接着面積を増やすことができ、強度向上に寄与しうる。また、凹凸は破断面を含むことが好ましい。これにより、接合部分を不連続として、機械的な接合強度の向上も期待できる。さらにこのような凹凸は、樹脂で構成することにより、マトリックス樹脂と同種として接着強度を有利とできる。図5に、通常の炭素繊維、図6に凹凸を設けた炭素繊維のSEM写真をそれぞれ示す。これらのSEM写真に見られるように、炭素繊維の表面に不連続な凹凸を形成することで、マトリックス樹脂との接合界面で物理的な係合を得やすくし、構造的にも有利となる。   Furthermore, it is also preferable to provide irregularities on the surface of the carbon fiber. By doing so, the surface area of the carbon fibers can be increased and the interfacial adhesion area with the matrix resin can be increased, which can contribute to the improvement of strength. Moreover, it is preferable that the unevenness includes a fractured surface. This makes it possible to discontinue the joint portion and improve the mechanical joint strength. Further, by forming such irregularities with a resin, the same adhesive strength as the matrix resin can be obtained. FIG. 5 shows an SEM photograph of ordinary carbon fiber and FIG. 6 shows an SEM photograph of carbon fiber having irregularities. As seen in these SEM photographs, by forming discontinuous irregularities on the surface of the carbon fiber, physical engagement can be easily obtained at the bonding interface with the matrix resin, which is also structurally advantageous.

このような凹凸は、バージンの炭素繊維に対して表面処理等により設ける。あるいは、炭素繊維強化プラスチックの廃材等より炭素繊維を回収(リサイクル炭素繊維化)する際に、表面に残留するマトリックス樹脂やサイジング剤を利用してもよい。この凹凸は、回収のための加熱時に残留した樹脂によって形成されている。図6はリサイクル炭素繊維を示しており、このようなリサイクル炭素繊維を用いることで、コスト的にも有利となり、また資源リサイクルの点でも環境に優しい、しかも強度的にも有利な成形体等を得ることができる。
(リサイクル炭素繊維)
Such unevenness is provided on the virgin carbon fiber by surface treatment or the like. Alternatively, when the carbon fibers are recovered (recycled carbon fibers) from the waste material of the carbon fiber reinforced plastic, the matrix resin or the sizing agent remaining on the surface may be used. The unevenness is formed by the resin remaining at the time of heating for recovery. FIG. 6 shows a recycled carbon fiber. By using such a recycled carbon fiber, it is possible to obtain a molded product which is advantageous in terms of cost, environmentally friendly in terms of resource recycling, and also advantageous in strength. Obtainable.
(Recycled carbon fiber)

リサイクル炭素繊維は、CFRPの廃材等より炭素繊維を回収して得られる。このリサイクル炭素繊維を用いて再度、炭素繊維シート材や炭素繊維強化樹脂成形体を得る。リサイクル炭素繊維を得る際には、条件の調整(例えば焼成温度)にて残留樹脂分(サイジング、マトリックス樹脂)をあえて残す。これによって、水中に分散させた際にも炭素繊維束状を得やすくできる。   Recycled carbon fiber is obtained by recovering carbon fiber from CFRP waste materials and the like. Using this recycled carbon fiber, a carbon fiber sheet material and a carbon fiber reinforced resin molding are obtained again. When obtaining recycled carbon fibers, the residual resin content (sizing, matrix resin) is intentionally left by adjusting the conditions (for example, firing temperature). This makes it easy to obtain a bundle of carbon fibers even when dispersed in water.

リサイクル炭素繊維を用いて抄紙した炭素繊維シート材を作成し、その分散性を評価した。また、リサイクル炭素繊維との比較のためバージン品の炭素繊維で抄紙した炭素繊維シート材を比較例2として作成した。バージン品の炭素繊維は、繊維長を6mmでカットしたものを使用した。実験結果から、通常の焼成条件で作成した炭素繊維シート材では、炭素繊維が分散されて収束が十分に得られていないことが判った。   A carbon fiber sheet material made from recycled carbon fiber was prepared and its dispersibility was evaluated. A carbon fiber sheet material made from virgin carbon fiber was prepared as Comparative Example 2 for comparison with recycled carbon fiber. The carbon fiber of the virgin product was obtained by cutting the fiber length to 6 mm. From the experimental results, it was found that the carbon fiber sheet material prepared under normal firing conditions was not sufficiently converged due to the dispersion of the carbon fibers.

次に、焼成温度を比較例3よりも高くした炭素繊維シート材を実施例2として作製した。この結果、分散性が改善されて、ある程度の収束性が得られていることが判明した。   Next, a carbon fiber sheet material having a firing temperature higher than that of Comparative Example 3 was produced as Example 2. As a result, it was found that the dispersibility was improved and a certain degree of convergence was obtained.

本発明に係る炭素繊維シート材、プリプレグ、積層体、成形体及びそれらの製造方法によれば、CFRTP(Carbon Fiber Reinforced Thermoplastics:炭素繊維強化熱可塑性樹脂)、CFRTS(Carbon Fiber Reinforced Thermosets:炭素繊維強化熱硬化性樹脂)等に好適に利用できる。また前駆体であるプリプレグの他、プリプレグから得られる各種製品に対しても好適に利用できる。例えば、電磁波吸収及びシールド材、断熱材、電極材料等に好適に利用できる。また炭素繊維強化樹脂成形体として、例えば乗物用の構成材料(例えば自動車、自転車、列車、航空機、ロケット、エレベーター等)、電子、電気部品の構成材料(例えばパソコン・携帯用の筐体部等)建築、土木構造体用材料、家具等において、好適に利用できる。   According to the carbon fiber sheet material, the prepreg, the laminate, the molded body and the manufacturing method thereof according to the present invention, CFRTP (Carbon Fiber Reinforced Thermoplastics) and CFRTS (Carbon Fiber Reinforced Thermosets) It can be suitably used as a thermosetting resin). In addition to the prepreg which is a precursor, it can be suitably used for various products obtained from the prepreg. For example, it can be suitably used as an electromagnetic wave absorbing and shielding material, a heat insulating material, an electrode material and the like. Further, as the carbon fiber reinforced resin molded body, for example, constituent materials for vehicles (for example, automobiles, bicycles, trains, aircraft, rockets, elevators, etc.), constituent materials for electronic and electric parts (for example, personal computer/portable housings, etc.) It can be preferably used in construction, materials for civil engineering structures, furniture and the like.

100…炭素繊維シート材
1…炭素繊維
10…炭素繊維束
20…単繊維状炭素繊維
30…バインダ樹脂
900…炭素繊維強化熱可塑性樹脂成形体
901…炭素繊維
930…熱可塑性樹脂
100... Carbon fiber sheet material 1... Carbon fiber 10... Carbon fiber bundle 20... Single fibrous carbon fiber 30... Binder resin 900... Carbon fiber reinforced thermoplastic resin molding 901... Carbon fiber 930... Thermoplastic resin

Claims (18)

複数本の炭素繊維と、
前記炭素繊維を結合するバインダ樹脂と
を備える炭素繊維シート材であって、
前記炭素繊維が長さ方向に対する断面視において束状に収束された状態で分散されており、
前記炭素繊維シート材を3枚重ねて測定した通気度が、60〜150cm3/cm2・secである炭素繊維シート材。
Multiple carbon fibers,
A carbon fiber sheet material comprising a binder resin for binding the carbon fibers,
The carbon fibers are dispersed in a bundled state in a cross-sectional view with respect to the length direction,
A carbon fiber sheet material having an air permeability of 60 to 150 cm 3 /cm 2 ·sec measured by stacking three carbon fiber sheet materials.
複数本の炭素繊維と、
前記炭素繊維を結合するバインダ樹脂と
を備える炭素繊維シート材であって、
前記炭素繊維が長さ方向に対する断面視において束状に収束された状態で分散されており、
前記炭素繊維シート材に50kPaの圧力を印加した際の平均厚さが、前記炭素繊維の平均直径に対して10〜400倍である炭素繊維シート材。
Multiple carbon fibers,
A carbon fiber sheet material comprising a binder resin for binding the carbon fibers,
The carbon fibers are dispersed in a bundled state in a cross-sectional view with respect to the length direction,
A carbon fiber sheet material having an average thickness of 10 to 400 times the average diameter of the carbon fiber when a pressure of 50 kPa is applied to the carbon fiber sheet material.
請求項1又は2に記載の炭素繊維シート材であって、
前記炭素繊維が、未開繊の状態で収束されてなる炭素繊維シート材。
The carbon fiber sheet material according to claim 1 or 2,
A carbon fiber sheet material obtained by bundling the carbon fibers in an unopened state.
請求項1〜3のいずれか一項に記載の炭素繊維シート材であって、
前記炭素繊維を、不連続炭素繊維としてなる炭素繊維シート材。
The carbon fiber sheet material according to any one of claims 1 to 3,
A carbon fiber sheet material, wherein the carbon fiber is a discontinuous carbon fiber.
請求項4に記載の炭素繊維シート材であって、
前記炭素繊維を、重量平均繊維長で0.2mm〜26mmとしてなる炭素繊維シート材。
The carbon fiber sheet material according to claim 4,
A carbon fiber sheet material in which the carbon fiber has a weight average fiber length of 0.2 mm to 26 mm.
請求項1〜5のいずれか一項に記載の炭素繊維シート材であって、
前記炭素繊維が、表面に凹凸を有してなる炭素繊維シート材。
The carbon fiber sheet material according to any one of claims 1 to 5,
A carbon fiber sheet material in which the carbon fibers have irregularities on the surface.
請求項1〜6のいずれか一項に記載の炭素繊維シート材であって、
前記炭素繊維が、表面に破断面を有してなる炭素繊維シート材。
The carbon fiber sheet material according to any one of claims 1 to 6,
A carbon fiber sheet material, wherein the carbon fiber has a fracture surface on the surface.
請求項1〜7のいずれか一項に記載の炭素繊維シート材であって、
前記炭素繊維が、マトリックス樹脂、及び/又はサイジング剤が残留、及び/又は一部が炭化された状態でリサイクルされた炭素繊維である炭素繊維シート材。
The carbon fiber sheet material according to any one of claims 1 to 7,
A carbon fiber sheet material, wherein the carbon fiber is a carbon fiber recycled in a state where a matrix resin and/or a sizing agent remains and/or a part thereof is carbonized.
請求項1〜8のいずれか一項に記載の炭素繊維シート材に、マトリックス樹脂となる熱硬化性樹脂を含浸してなるプリプレグ。   A prepreg obtained by impregnating the carbon fiber sheet material according to any one of claims 1 to 8 with a thermosetting resin serving as a matrix resin. 複数本の炭素繊維と、前記炭素繊維を結合するバインダ樹脂と、熱可塑性樹脂繊維を混抄してなるプリプレグであって、
前記炭素繊維が長さ方向に対する断面視において束状に収束された状態で、前記バインダ樹脂中に分散されており、
前記プリプレグを3枚重ねて測定した通気度が、20〜100cm3/cm2・secであるプリプレグ。
A prepreg obtained by mixing a plurality of carbon fibers, a binder resin that binds the carbon fibers, and a thermoplastic resin fiber,
The carbon fibers are dispersed in the binder resin in a state of being bundled in a cross-sectional view with respect to the length direction,
A prepreg having an air permeability of 20 to 100 cm 3 /cm 2 ·sec measured by stacking 3 of the above prepregs.
請求項9又は10に記載のプリプレグを積層してなる積層体。   A laminate obtained by laminating the prepreg according to claim 9 or 10. 請求項9又は10に記載のプリプレグを熱圧成形してなる成形体。
A molded body obtained by thermocompression molding the prepreg according to claim 9 or 10.
複数本の炭素繊維を、該炭素繊維を結合するバインダ樹脂に混抄して、前記炭素繊維が長さ方向に対する断面視において束状に収束された状態で抄紙する炭素繊維シート材の製造方法であって、
前記炭素繊維シート材を3枚重ねて測定した通気度が、60〜150cm3/cm2・secである炭素繊維シート材の製造方法。
A method for producing a carbon fiber sheet material, which comprises mixing a plurality of carbon fibers into a binder resin that binds the carbon fibers, and making the carbon fibers in a bundle in a cross-sectional view in the length direction. hand,
A method for producing a carbon fiber sheet material, wherein the air permeability measured by stacking three carbon fiber sheet materials is 60 to 150 cm 3 /cm 2 ·sec.
複数本の炭素繊維を、該炭素繊維を結合するバインダ樹脂に混抄して、前記炭素繊維が長さ方向に対する断面視において束状に収束された状態で抄紙する炭素繊維シート材の製造方法であって、
前記炭素繊維シート材に50kPaの圧力を印加した際の平均厚さが、前記炭素繊維の平均直径に対して10〜400倍である炭素繊維シート材の製造方法。
A method for producing a carbon fiber sheet material, which comprises mixing a plurality of carbon fibers into a binder resin that binds the carbon fibers, and making the carbon fibers in a bundle in a cross-sectional view in the length direction. hand,
The method for producing a carbon fiber sheet material, wherein the average thickness when a pressure of 50 kPa is applied to the carbon fiber sheet material is 10 to 400 times the average diameter of the carbon fibers.
複数本の炭素繊維を、該炭素繊維を結合するバインダ樹脂に混抄して、前記炭素繊維が長さ方向に対する断面視において束状に収束された状態で抄紙して炭素繊維シート材を作製する工程と、
前記炭素繊維シート材に未硬化の熱硬化性樹脂を含浸させてプリプレグを作製する工程と、
前記プリプレグの熱硬化性樹脂を硬化させて成形体を作製する工程と
を含む、成形体の製造方法であって、
前記炭素繊維シート材を3枚重ねて測定した通気度が、60〜150cm3/cm2・secである成形体の製造方法。
A step of preparing a carbon fiber sheet material by mixing a plurality of carbon fibers into a binder resin that binds the carbon fibers, and paper-making the carbon fibers in a bundled state in a cross-sectional view in the length direction. When,
A step of making a prepreg by impregnating an uncured thermosetting resin into the carbon fiber sheet material;
A method of manufacturing a molded body, comprising a step of curing a thermosetting resin of the prepreg to prepare a molded body,
A method for producing a molded product, wherein the air permeability measured by stacking three carbon fiber sheet materials is 60 to 150 cm 3 /cm 2 ·sec.
複数本の炭素繊維を、該炭素繊維を結合するバインダ樹脂に混抄して、前記炭素繊維が長さ方向に対する断面視において束状に収束された状態で抄紙して炭素繊維シート材を作製する工程と、
前記炭素繊維シート材に未硬化の熱硬化性樹脂を含浸させてプリプレグを作製する工程と、
前記プリプレグの熱硬化性樹脂を硬化させて成形体を作製する工程と
を含む、成形体の製造方法であって、
前記炭素繊維シート材に50kPaの圧力を印加した際の平均厚さが、前記炭素繊維の平均直径に対して10〜400倍である成形体の製造方法。
A step of preparing a carbon fiber sheet material by mixing a plurality of carbon fibers with a binder resin that binds the carbon fibers, and paper-making the carbon fibers in a bundled state in a cross-sectional view in the length direction. When,
A step of making a prepreg by impregnating an uncured thermosetting resin into the carbon fiber sheet material;
A method of manufacturing a molded body, comprising a step of curing a thermosetting resin of the prepreg to prepare a molded body,
A method for producing a molded body, wherein an average thickness when a pressure of 50 kPa is applied to the carbon fiber sheet material is 10 to 400 times the average diameter of the carbon fiber.
複数本の炭素繊維と、前記炭素繊維を結合するバインダ樹脂と、熱可塑性樹脂繊維を混抄してプリプレグを作製する工程と、
前記プリプレグを熱圧成形して成形体を作製する工程と
を含む、成形体の製造方法であって、
前記プリプレグを3枚重ねて測定した通気度が、20〜100cm3/cm2・secである成形体の製造方法。
A plurality of carbon fibers, a binder resin that binds the carbon fibers, and a step of producing a prepreg by mixing thermoplastic resin fibers
A method for producing a molded body, which comprises a step of thermoforming the prepreg to produce a molded body,
A method for producing a molded product, wherein the air permeability measured by stacking three prepregs is 20 to 100 cm 3 /cm 2 ·sec.
複数本の炭素繊維と、前記炭素繊維を結合するバインダ樹脂と、熱可塑性樹脂繊維を混抄してプリプレグを作製する工程と、
前記プリプレグを熱圧成形して成形体を作製する工程と
を含む、成形体の製造方法であって、
前記プリプレグに50kPaの圧力を印加した際の平均厚さが、前記炭素繊維の平均直径に対して10〜400倍である成形体の製造方法。
A plurality of carbon fibers, a binder resin for binding the carbon fibers, a step of preparing a prepreg by mixing thermoplastic resin fibers,
A method for producing a molded body, which comprises a step of thermoforming the prepreg to produce a molded body,
The method for producing a molded body, wherein the average thickness when a pressure of 50 kPa is applied to the prepreg is 10 to 400 times the average diameter of the carbon fiber.
JP2016011125A 2016-01-22 2016-01-22 Carbon fiber sheet material, prepreg, laminated body, molded body and manufacturing method thereof Active JP6700049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016011125A JP6700049B2 (en) 2016-01-22 2016-01-22 Carbon fiber sheet material, prepreg, laminated body, molded body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016011125A JP6700049B2 (en) 2016-01-22 2016-01-22 Carbon fiber sheet material, prepreg, laminated body, molded body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017128705A JP2017128705A (en) 2017-07-27
JP6700049B2 true JP6700049B2 (en) 2020-05-27

Family

ID=59395381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016011125A Active JP6700049B2 (en) 2016-01-22 2016-01-22 Carbon fiber sheet material, prepreg, laminated body, molded body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6700049B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6976767B2 (en) * 2017-08-04 2021-12-08 三菱製紙株式会社 Carbon short fiber wet non-woven fabric and carbon short fiber reinforced resin composition
JP7425732B2 (en) * 2018-08-24 2024-01-31 阿波製紙株式会社 Carbon fiber sheet material, prepreg, molded body, method for manufacturing carbon fiber sheet material, method for manufacturing prepreg, and method for manufacturing molded body
CN112638998A (en) * 2018-08-24 2021-04-09 阿波制纸株式会社 Carbon fiber sheet, prepreg, molded body, method for producing carbon fiber sheet, method for producing prepreg, and method for producing molded body
JP7211791B2 (en) * 2018-12-14 2023-01-24 三菱製紙株式会社 Short carbon fiber wet-laid nonwoven fabric and carbon fiber reinforced resin
JP6890141B2 (en) * 2019-02-19 2021-06-18 阿波製紙株式会社 Carbon fiber sheet material, molded body, carbon fiber sheet material manufacturing method and molded body manufacturing method
TWI828774B (en) * 2019-09-27 2024-01-11 日商阿波製紙股份有限公司 Carbon fiber sheet material, prepreg, molded body, method of producing carbon fiber sheet material, method of producing prepreg and method of producing molded body
JP7231126B1 (en) * 2021-06-18 2023-03-01 三菱ケミカル株式会社 Self-assembled carbon fiber bundle and its manufacturing method, and prepreg and its manufacturing method
WO2024128010A1 (en) * 2022-12-16 2024-06-20 三菱ケミカル株式会社 Method for producing sheet prepreg, method for supplying fiber starting material, and sheet prepreg

Also Published As

Publication number Publication date
JP2017128705A (en) 2017-07-27

Similar Documents

Publication Publication Date Title
JP6700049B2 (en) Carbon fiber sheet material, prepreg, laminated body, molded body and manufacturing method thereof
JP6481778B2 (en) Composite structure and manufacturing method thereof
JP5679089B1 (en) Carbon fiber reinforced thermoplastic resin composite material and molded body using the same
US20090004460A1 (en) Nanoparticle-Containing Thermoplastic Composites and Methods of Preparing Same
JP5841780B2 (en) Manufacturing method of prepreg and manufacturing method of fiber reinforced thermosetting resin molding
KR20150100607A (en) Fiber-reinforced resin sheet, integrated molded product and process for producing same
JP2008246981A (en) Manufacturing method of fiber-reinforced composite material
JP7425731B2 (en) Carbon fiber sheet material, prepreg, molded body, method for manufacturing carbon fiber sheet material, method for manufacturing prepreg, and method for manufacturing molded body
JPWO2014021366A1 (en) Heat-resistant paper and method for producing the same, fiber-reinforced heat-resistant resin molding and precursor thereof, and methods for producing the same
JPWO2015098470A1 (en) Preform, sheet material and integrated sheet material
CA3014638C (en) Thermoplastic bonded preforms and thermoset matrices formed therewith
KR20150093745A (en) Articles including untwisted fibers and methods of using them
CN107002365B (en) Carbon fiber felt, blank, sheet material, and molded article
JP2019510868A (en) Composite material comprising cellulose filaments and fillers and method for making the same
KR102366434B1 (en) Reinforced Fiber Composite Materials
RU2659855C1 (en) Heat insulating material and a method for manufacturing the same
JP7543913B2 (en) Fiber-reinforced composites and sandwich structures
WO2021106650A1 (en) Fiber-reinforced composite material and sandwich structure
JP2005262818A (en) Reinforcing fiber substrate, preform and reinforcing fiber substrate manufacturing method
WO2021106651A1 (en) Prepreg, preform, fiber-reinforced composite material, and method for producing said prepreg, said preform or said fiber-reinforced composite material
KR102291931B1 (en) Manufacturing method for molded article using fiber reinforcerd plastic waste comprising thermosetting plastics and molded article using the same
JP2017065181A (en) Method for producing fiber-reinforced sheet and method for producing structure
CN109677037A (en) Fibrous composite and its preparation method
JP6477114B2 (en) Fiber reinforced thermoplastic resin laminate and method for producing the same
JP7473416B2 (en) Method for producing fiber-reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200430

R150 Certificate of patent or registration of utility model

Ref document number: 6700049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250