JP2013206647A - 燃料電池システムおよびその制御方法、触媒被毒に起因する燃料電池の発電性能の低下の検出方法 - Google Patents

燃料電池システムおよびその制御方法、触媒被毒に起因する燃料電池の発電性能の低下の検出方法 Download PDF

Info

Publication number
JP2013206647A
JP2013206647A JP2012072774A JP2012072774A JP2013206647A JP 2013206647 A JP2013206647 A JP 2013206647A JP 2012072774 A JP2012072774 A JP 2012072774A JP 2012072774 A JP2012072774 A JP 2012072774A JP 2013206647 A JP2013206647 A JP 2013206647A
Authority
JP
Japan
Prior art keywords
fuel cell
current
catalyst poisoning
catalyst
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012072774A
Other languages
English (en)
Other versions
JP5742767B2 (ja
Inventor
Tsuyoshi Maruo
剛 丸尾
Hideyuki Kumei
秀之 久米井
Yoshifumi Hirao
佳史 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012072774A priority Critical patent/JP5742767B2/ja
Publication of JP2013206647A publication Critical patent/JP2013206647A/ja
Application granted granted Critical
Publication of JP5742767B2 publication Critical patent/JP5742767B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】触媒被毒に起因する燃料電池の発電性能の低下の検出精度を向上させる技術を提供する。
【解決手段】燃料電池システム100の触媒被毒対策処理部21は、燃料電池10の運転中に、所定のタイミングで、触媒被毒対策処理を実行する。触媒被毒対策処理部21は、燃料電池10に対する反応ガスの供給量を微量まで低減させた状態で、燃料電池10のI−V特性(極限I−V特性)を取得する。触媒被毒対策処理部21は、極限I−V特性において、所定の第1と第2の電流値I1,I2に対して取得できる第1と第2の電圧v1,v2の差ΔVを算出する。触媒被毒対策処理部21は、ΔVが所定の閾値Vthより大きいときに、触媒被毒に起因する燃料電池10の性能劣化が発生していると判定する。
【選択図】図6

Description

この発明は、燃料電池に関する。
燃料電池は、電解質膜の両面に配置された電極に、燃料電池反応を促進するための白金(Pt)などの触媒が配置されている(下記特許文献1等)。燃料電池では、触媒の表面に触媒毒が吸着されて、触媒活性が低下してしまう触媒被毒が発生する場合がある。触媒被毒は、燃料電池の発電性能を低下させる原因となる。一般に、触媒被毒による燃料電池の発電性能の低下は、触媒に吸着している触媒毒を除去することによって回復が可能である。
これに対して、燃料電池では、触媒が電極から溶出したり、触媒が凝集したりすることにより、不可逆的に発電性能が低下してしまう場合がある。燃料電池の発電性能の低下に対する適切なメンテナンス処理を実行するためにも、その発電性能の低下が触媒被毒の蓄積に起因するものであり、回復可能なものであるか否かを、的確に特定できることが望ましい。しかし、従来は、検出された燃料電池の発電性能の低下の原因が触媒被毒に起因するものであると特定するための十分な工夫がなされてこなかった。
特開2009−032568号公報 特開2006−351252号公報 特開2007−149595号公報 特開2007−141623号公報
本発明は、触媒被毒に起因する燃料電池の発電性能の低下の検出精度を向上させる技術を提供することを目的とする。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
[適用例1]
燃料電池システムであって、電解質膜と、前記電解質膜の両面に配置され、燃料電池反応を促進する触媒を含む電極と、を有する燃料電池と、前記燃料電池の電流と電圧との関係として表される前記燃料電池の発電特性を取得する発電特性検出部と、前記燃料電池の発電特性において、所定の電流の範囲内で検出される、電流の増大量に対する電圧の低下量が所定の閾値より大きいときに、アイオノマーの分解物による触媒被毒に起因する性能劣化を検出する制御部と、を備える、燃料電池システム。
この燃料電池システムであれば、触媒被毒に起因して燃料電池の発電性能が低下していることを高い精度で検出することができる。
[適用例2]
適用例1記載の燃料電池システムであって、前記制御部は、
(a)前記燃料電池の発電特性において、それ以上電流を増大させても電圧が低下しなくなる電流の最大値を検出できるように、前記燃料電池に対する前記反応ガスの供給量を調整するガス供給量制御を実行し、
(b)前記ガス供給量制御の実行後に、前記燃料電池の発電特性を取得し、
(c)前記燃料電池の発電特性において、前記電流の最大値に所定の第1と第2の比率をそれぞれ乗算した第1と第2電流値に対して取得できる、第1と第2の電圧値の差の大きさが所定の閾値より大きいときに前記性能劣化が発生していると判定する、第1の被毒劣化検出処理を実行する、燃料電池システム。
この燃料電池システムであれば、燃料電池に対する反応ガスの供給量が所定量に規定された条件下における燃料電池の発電特性を用いて、触媒被毒に起因して燃料電池の発電性能が低下していること高い精度で検出することができる。
[適用例3]
適用例1または適用例2記載の燃料電池システムであって、前記燃料電池の抵抗を検出する抵抗検出部を備え、前記制御部は、
(i)前記燃料電池の発電特性において、電圧が、前記所定の電流の範囲内において、所定の変化率よりも大きい変化率で略線形的に低下しており、かつ、
(ii)前記発電特性を検出する際の、前記所定の電流の範囲内における前記燃料電池の抵抗の変化が、所定の許容範囲内で収まっているときに、前記性能劣化が発生していると判定する、第2の被毒劣化検出処理を実行する、燃料電池システム。
この燃料電池システムであれば、燃料電池における電流と抵抗との関係が規定された条件下における燃料電池の発電特性を用いて、触媒被毒に起因して燃料電池の発電性能が低下していることを高い精度で検出することができる。
[適用例4]
適用例2および適用例3に記載の燃料電池システムであって、さらに、前記燃料電池の出力電力によって充電され、前記燃料電池とともに電力源として機能する二次電池と、前記二次電池の蓄電量を表す充電状態を検出する充電状態検出部と、を備え、前記制御部は、前記燃料電池の運転中に、前記第1または第2の被毒劣化検出処理を実行し、前記制御部は、前記二次電池の蓄電量に応じて、前記第1と第2の被毒劣化検出処理のうちのいずれを実行するかを選択する、燃料電池システム。
この燃料電池システムによれば、第1または第2の被毒劣化検出処理を、二次電池の充電状態に応じて適切に選択して実行するため、二次電池の充電状態が原因で、触媒被毒に起因する性能劣化を検出する処理の実行が阻害されてしまうことを抑制できる。
[適用例5]
適用例1から適用例4のいずれかひとつに記載の燃料電池システムであって、前記制御部は、前記性能劣化を検出した後に、前記触媒被毒を回復させるメンテナンス処理を実行する、燃料電池システム。
この燃料電池システムによれば、触媒被毒に起因する性能劣化が検出された後に、その触媒被毒を回復するための適切なメンテナンス処理を実行するため、確実に燃料電池の性能低下を抑制できる。
[適用例6]
適用例5記載の燃料電池システムであって、前記制御部は、外部負荷の要求に応じて前記燃料電池の出力電流を制御する第1の制御を実行し、前記制御部は、前記第1の制御の実行中に前記性能劣化を検出した場合には、前記外部負荷の要求に応じた出力電流よりも大きい電流を前記燃料電池に出力させる第2の制御を、前記メンテナンス処理として実行する、燃料電池システム。
この燃料電池システムによれば、燃料電池システムの運転を停止さることなく、触媒被毒による燃料電池の性能低下を回復させるためのメンテナンス処理を実行することができる。
[適用例7]
適用例5記載の燃料電池システムであって、前記燃料電池の排ガスを、前記燃料電池に循環供給できる排ガス循環部を備え、前記メンテナンス処理は、前記燃料電池の運転終了後に、前記排ガス循環部によって、前記燃料電池に前記排ガスを循環させて、前記燃料電池の内部をパージする処理を含む、燃料電池システム。
この燃料電池システムが実行するメンテナンス処理であれば、排ガスの循環によって、触媒被毒を回復させることができるため、効率的である。
[適用例8]
適用例5記載の燃料電池システムであって、前記燃料電池の内部に不活性ガスを供給する不活性ガス供給部を備え、前記メンテナンス処理は、前記燃料電池の運転終了後に、前記燃料電池に前記不活性ガスを供給し、前記燃料電池の内部をパージする処理を含む、燃料電池システム。
この燃料電池システムであれば、不活性ガスのパージによって触媒被毒を回復させることができる。
[適用例9]
電解質膜と、前記電解質膜の両面に配置され、燃料電池反応を促進する触媒を含む電極と、を有する燃料電池を備える、燃料電池システムの制御方法であって、
(a)前記燃料電池の電流と電圧との関係として表される前記燃料電池の発電特性を取得する工程と、
(b)前記燃料電池の発電特性において、所定の電流の範囲内で検出される、電流の増大量に対する電圧の低下量が所定の閾値より大きいときに、アイオノマーの分解物による触媒被毒に起因する性能劣化を検出する工程と、を備える、制御方法。
この燃料電池システムの制御方法であれば、触媒被毒に起因して燃料電池の発電性能が低下していることを高い精度で検出することができる。
[適用例10]
適用例9記載の燃料電池の制御方法であって、さらに、
(c)前記性能劣化の発生を検出した後に、前記触媒被毒を回復させるメンテナンス処理を実行する工程と、を備える、制御方法。
この燃料電池システムの制御方法によれば、触媒被毒に起因する性能劣化が検出された後に、その劣化を回復するための適切なメンテナンス処理を実行するため、燃料電池の性能低下を確実に抑制できる。
[適用例11]
電解質膜と、前記電解質膜の両面に配置され、燃料電池反応を促進する触媒を含む電極と、を有する燃料電池において、アイオノマーの分解物による触媒被毒に起因する性能劣化を検出する方法であって、
(a)前記燃料電池の電流と電圧との関係として表される、前記燃料電池の発電特性において、それ以上電流を増大させても電圧が低下しなくなる電流の最大値を検出できるように、前記燃料電池に対する前記反応ガスの供給量を制御する工程と、
(b)前記工程(a)の後に、前記燃料電池の発電特性を取得する工程と、
(c)前記燃料電池の発電特性において、前記電流の最大値に所定の第1と第2の比率をそれぞれ乗算した第1と第2電流値に対して取得できる、第1と第2の電圧値の差の大きさが所定の閾値より大きいときに前記性能劣化が発生していると判定する工程と、を備える、方法。
この方法によれば、触媒被毒に起因して燃料電池の発電性能が低下していることを的確に検出することができる。
[適用例12]
電解質膜と、前記電解質膜の両面に配置され、燃料電池反応を促進する触媒を含む電極と、を有する燃料電池において、アイオノマーの分解物による触媒被毒に起因する性能劣化を検出する方法であって、
(A)前記燃料電池の発電特性を検出するとともに、前記燃料電池の電流に対する抵抗の変化を検出する工程と、
(B)前記燃料電池の発電特性において、(i)電圧が、所定の電流の範囲内において、所定の変化率よりも大きい変化率で略線形的に低下しており、かつ、(ii)前記所定の電流の範囲内における前記燃料電池の抵抗の変化が、所定の許容範囲内で収まっているときに、前記性能劣化が発生していると判定する工程と、を備える、方法。
この方法によれば、触媒被毒に起因して燃料電池の発電性能が低下していることを的確に検出することができる。
なお、本発明は、種々の形態で実現することが可能であり、例えば、燃料電池システム、燃料電池システムの制御方法、触媒被毒に起因する燃料電池の性能劣化の検出方法、触媒被毒に起因する燃料電池の性能劣化の回復方法、それらの方法またはシステムの機能を実現するためのコンピュータプログラム、そのコンピュータプログラムを記録した記録媒体等の形態で実現することができる。
燃料電池システムの構成を示す概略図。 燃料電池システムの電気的構成を示す概略図。 制御部が実行する燃料電池の運転制御の制御手順を示す説明図。 制御部による燃料電池の通常出力制御を説明するための説明図。 触媒被毒対策処理部が実行する触媒被毒対策処理の処理手順を示す説明図。 触被毒劣化の判定処理を説明するための説明図。 低効率運転制御を説明するための説明図。 低効率運転制御による被毒劣化の回復効果を説明するための説明図。 第2実施例における触媒被毒対策処理の実行手順を示す説明図。 第2実施例における被毒劣化の判定処理を説明するための説明図。 第3実施例における触媒被毒対策処理の実行手順を示す説明図。 第4実施例の燃料電池システムの構成を示す概略図。 第4実施例における燃料電池の運転制御の制御手順を示す説明図。 第4実施例における被毒劣化検出処理の実行手順を示す説明図。 第4実施例の触媒被毒対策処理部が実行する触媒メンテナンス処理の処理手順を示す説明図。 パージ処理の実行時間と、被毒劣化の回復の度合いとの関係を説明するための説明図。 第5実施例としての燃料電池システムの構成を示す概略図。
A.第1実施例:
図1は本発明の一実施例としての燃料電池システムの構成を示す概略図である。この燃料電池システム100は、例えば、燃料電池車両に搭載され、運転者からの要求に応じて、燃料電池車両の動力源となる電力を出力する。
燃料電池システム100は、燃料電池10と、制御部20と、カソードガス供給系30と、カソードガス排出系40と、アノードガス供給系50と、アノードガス排出系60と、を備える。なお、燃料電池システム100は、さらに、燃料電池10に冷媒を供給して、その運転温度を調整する冷媒供給系を備えるが、その図示および説明は省略する。
燃料電池10は、反応ガスとして水素(アノードガス)と空気(カソードガス)の供給を受けて発電する固体高分子形燃料電池である。燃料電池10は、複数の単セル11が積層されたスタック構造を有する。なお、燃料電池10には、反応ガスや冷媒のためのマニホールドが積層方向に沿った貫通孔として形成されているが、その図示は省略してある。
各単セル11は、膜電極接合体5と、膜電極接合体5を狭持して反応ガスや冷媒の流路を形成するとともに、集電板としても機能する板状基材である2枚のセパレータ(図示せず)とを有する。膜電極接合体5は、電解質膜1と、電解質膜1の両面に配置された電極2,3とを有している。電解質膜1は、湿潤状態のときに良好なプロトン伝導性を示す固体高分子薄膜である。本実施例では、電解質膜1は、イオン交換基としてスルホン酸基(−SO3H)を有している。
電極2,3は、いわゆる触媒インクの塗布膜として形成することができる。ここで、「触媒インク」とは、発電反応を促進させるための触媒が担持された導電性粒子と、電解質膜1を構成するのと同種又は類似のアイオノマーと、を分散させた分散液を意味する。なお、触媒としては、例えば、白金(Pt)を採用することができ、導電性粒子としては、例えば、カーボン(C)粒子を採用することができる。
制御部20は、中央処理装置と主記憶装置とを備えるマイクロコンピュータによって構成することができる。制御部20は、以下に説明する各系30,40,50,60を制御して、システムに対する外部からの出力要求に応じた電力を燃料電池10に発電させる。制御部20による燃料電池10の運転制御については後述する。
また、制御部20は、燃料電池10における触媒被毒(後述)に起因する発電性能の低下を抑制するための触媒被毒対策処理を実行する触媒被毒対策処理部21としての機能を備える。制御部20は、燃料電池システム100の運転中に、定期的に、触媒被毒対策処理部21に触媒被毒対策処理を実行させる。触媒被毒対策処理部21による触媒被毒対策処理の具体的な処理内容については後述する。
カソードガス供給系30は、カソードガス配管31と、エアコンプレッサ32と、エアフロメータ33と、開閉弁34と、圧力計測部35とを備える。カソードガス配管31は、燃料電池10のカソード側の供給用マニホールドに接続された配管である。エアコンプレッサ32は、カソードガス配管31を介して燃料電池10と接続されており、外気を取り込んで圧縮した空気を、カソードガスとして燃料電池10に供給する。
エアフロメータ33は、エアコンプレッサ32の上流側において、エアコンプレッサ32が取り込む外気の量を計測し、制御部20に送信する。制御部20は、この計測値に基づいて、エアコンプレッサ32を駆動することにより、燃料電池10に対する空気の供給量を制御する。
開閉弁34は、エアコンプレッサ32と燃料電池10との間に設けられている。開閉弁34は、通常、閉じた状態であり、エアコンプレッサ32から所定の圧力を有する空気がカソードガス配管31に供給されたときに開く。圧力計測部35は、燃料電池10のカソード側の供給用マニホールドの入口近傍における空気の圧力を計測し、制御部20に出力する。
カソードガス排出系40は、カソード排ガス配管41と、調圧弁43と、圧力計測部44とを備える。カソード排ガス配管41は、燃料電池10のカソード側の排出用マニホールドに接続された配管である。カソード排ガスは、カソード排ガス配管41を介して、燃料電池システム100の外部へと排出される。
調圧弁43は、制御部20によって、その開度が制御されており、カソード排ガス配管41におけるカソード排ガスの圧力(燃料電池10のカソード側の背圧)を調整する。圧力計測部44は、調圧弁43の上流側に設けられており、カソード排ガスの圧力を計測し、その計測結果を制御部20に出力する。
アノードガス供給系50は、アノードガス配管51と、水素タンク52と、開閉弁53と、レギュレータ54と、水素供給装置55と、圧力計測部56とを備える。水素タンク52は、アノードガス配管51を介して燃料電池10のアノード側の供給用マニホールドと接続されており、タンク内に充填された水素を燃料電池10に供給する。
開閉弁53と、レギュレータ54と、水素供給装置55と、圧力計測部56とは、アノードガス配管51に、この順序で、上流側(水素タンク52側)から設けられている。開閉弁53は、制御部20からの指令により開閉し、水素タンク52から水素供給装置55の上流側への水素の流入を制御する。レギュレータ54は、水素供給装置55の上流側における水素の圧力を調整するための減圧弁であり、その開度が制御部20によって制御される。
水素供給装置55は、例えば、電磁駆動式の開閉弁であるインジェクタによって構成することができる。圧力計測部56は、水素供給装置55の下流側の水素の圧力を計測し、制御部20に送信する。制御部20は、圧力計測部56の計測値に基づき、水素供給装置55を制御することによって、燃料電池10に供給される水素の流量を制御する。
アノードガス排出系60は、アノード排ガス配管61と、開閉弁66と、圧力計測部67とを備える。アノード排ガス配管61は、燃料電池10のアノード側の排出用マニホールドに接続された配管である。発電反応に用いられることのなかった未反応ガス(水素や窒素など)を含むアノード排ガスは、アノード排ガス配管61を介して、燃料電池システム100の外部へと排出される。
開閉弁66は、アノード排ガス配管61に設けられており、制御部20からの指令に応じて開閉する。アノードガス排出系60の圧力計測部67は、アノード排ガス配管61に設けられている。圧力計測部67は、燃料電池10のアノード側の排出用マニホールドの近傍において、アノード排ガスの圧力(燃料電池10のアノード側の背圧)を計測し、制御部20に出力する。
図2は、燃料電池システム100の電気的構成を示す概略図である。燃料電池システム100は、二次電池81と、DC/DCコンバータ82と、DC/ACインバータ83と、電流計測部90と、セル電圧計測部91と、インピーダンス計測部92と、SOC検出部93と、を備える。
燃料電池10は、直流配線DCLを介してDC/ACインバータ83に接続されており、DC/ACインバータ83は、燃料電池車両の駆動力源であるモータ200に接続されている。二次電池81は、DC/DCコンバータ82を介して、直流配線DCLに接続されている。
二次電池81は、燃料電池10の出力電力や、モータ200の回生電力によって充電され、燃料電池10とともに電力源として機能する。二次電池81は、例えばリチウムイオン電池で構成することができる。
DC/DCコンバータ82は、制御部20の指令に基づいて、燃料電池10の電流・電圧を制御するとともに、二次電池81の充・放電を制御し、直流配線DCLの電圧レベルを可変に調整する。DC/ACインバータ83は、燃料電池10と二次電池81とから得られた直流電力を交流電力へと変換し、モータ200に供給する。また、モータ200によって回生電力が発生する場合には、その回生電力を直流電力に変換する。
電流計測部90は、直流配線DCLに接続されており、燃料電池10の出力する電流値を計測し、制御部20に出力する。セル電圧計測部91は、燃料電池10の各単セル11に接続されており、各単セル11ごとの電圧(以下、「セル電圧」とも呼ぶ)を計測し、制御部20に出力する。インピーダンス計測部92は、交流インピーダンス法を利用して、各単セル11ごとの抵抗(以下、単に「セル抵抗」とも呼ぶ)を計測する。
SOC検出部93は二次電池81に接続されている。SOC検出部93は、二次電池81の充電状態であるSOC(State of Charge)を検出し、制御部20に出力する。ここで、二次電池81のSOCとは、二次電池81の充電容量に対する二次電池81の充電残量(蓄電量)の比率を意味する。SOC検出部93は、二次電池81の温度や電力、電流を計測することにより、二次電池81のSOCを検出する。制御部20は、SOC検出部93の検出値に基づいて、二次電池81のSOCが、基準値を中心とする所定の範囲(二次電池81の劣化を抑制できる限界範囲)内に収まるように、二次電池81の充・放電を制御する。
図3は、制御部20が実行する燃料電池10の運転制御の制御手順を示すフローチャートである。ステップS10では、制御部20は、運転者によるアクセル操作等の運転操作に基づき、燃料電池システム100に対する出力要求を受け付ける。ステップS20では、制御部20は、出力要求に応じて燃料電池10の出力を制御する通常出力制御を実行する。
図4は、ステップS20における燃料電池10の通常出力制御を説明するための説明図である。図4には、燃料電池10の電流−電圧特性(I−P特性)を示すグラフGI-Pと、電流−電圧特性(I−V特性)を示すグラフGI-Vとを、左右の縦軸をそれぞれ電圧および電力とし、横軸を電流として示してある。
通常、燃料電池のI−P特性は、上に凸の曲線グラフとして表される(グラフGI-P)。また、燃料電池のI−V特性は、電流の増大に従って、電圧がなだらかに低下する横S字状の曲線グラフとして表される(グラフGI-V)。制御部20は、燃料電池10についてのI−P特性およびI−V特性を表す情報を、燃料電池10の制御用情報として予め記憶しており、その制御用情報に基づいて、燃料電池10の電流・電圧の指令値を取得する。
なお、燃料電池10のI−P特性およびI−V特性は、燃料電池10の運転温度など、その運転状態に応じて変化する。そのため、制御部20は、それらの運転状態ごとの制御用情報を予め記憶しており、現在の燃料電池10の運転状態に応じて、適宜、制御用情報を選択して用いることが好ましい。
制御部20は、ステップS10で取得した出力要求に応じて、燃料電池10が出力すべき電力(目標電力Pt)を決定する。そして、燃料電池10のI−P特性(グラフGI-P)に基づいて、目標電力Ptに対して燃料電池10が出力すべき電流の目標値(目標電流It)を取得する。さらに、制御部20は、燃料電池10のI−V特性(グラフGI-V)に基づいて、目標電流Itを出力するために必要な燃料電池10の電圧の目標値(目標電圧Vt)を取得する。
制御部20は、DC/DCコンバータ82を制御して、目標電圧Vtを燃料電池10に出力させる。これによって、燃料電池10に目標電流Itを出力させることができる。なお、燃料電池10の電圧が目標電圧Vtに到達するまでの間の不足電力は、二次電池81からの出力電力によって補償される。制御部20は、燃料電池システム100の運転が終了するまで、ステップS10,S20の運転制御を繰り返す(ステップS40)。
ところで、燃料電池10では、その運転中に、電解質膜1や電極2,3に含まれるアイオノマーが分解したイオンであるHSO4 -やSO4 2-が、触媒毒として触媒表面に吸着し、触媒活性が低下してしまう触媒被毒が発生する場合がある。触媒被毒が著しく蓄積されると、燃料電池10の発電性能が低下してしまう原因となる。そこで、制御部20は、運転制御の実行中において、所定の実行タイミングに到達したときには、触媒被毒対策処理部21に触媒被毒対策処理の実行を開始させ(ステップS30)、触媒被毒の蓄積に起因する燃料電池10の発電性能の低下(以下、単に「被毒劣化」と呼ぶ)を抑制する。
なお、触媒被毒対策処理の実行タイミングとしては、例えば、燃料電池システム100の起動後、所定の時間経過した後としても良いし、燃料電池車両が所定の走行距離を走行したときであるとしても良い。また、触媒被毒対策処理の実行頻度は、例えば1日に1回程度であっても良いし、1週間に1回程度、数ヶ月に1回程度であっても良い。
図5は、触媒被毒対策処理部21が実行する触媒被毒対策処理の処理手順を示すフローチャートである。ステップS110,S120では、触媒被毒対策処理部21は、特定の条件下で取得した燃料電池10のI−V特性に基づいて、燃料電池10における被毒劣化を検出する。
ここで、燃料電池のI−V特性は、燃料電池に対する反応ガスの供給量によっても変化する。燃料電池に対する反応ガスの供給量をある微小量まで低減させた状態で取得した燃料電池のI−V特性では、高電流領域において電圧がほぼ垂直に降下し、燃料電池の電圧をそれ以上低下させても、電流が増大しなくなる電流の限界値を取得することができる。
本明細書では、この電流の限界値を「限界電流値」と呼ぶ。また、反応ガスの供給量が微量な状態において取得され、限界電流値が現れている燃料電池のI−V特性を、「極限I−V特性」と呼ぶ。
ステップS110では、触媒被毒対策処理部21は、燃料電池10のI−V特性において限界電流値が検出できるように、所定量(例えば、燃料電池10が発電不能に陥る限界量に近い量)まで反応ガスの供給量を低減させる。触媒被毒対策処理部21は、この反応ガスの供給量が低減された状態で、DC/DCコンバータ82を制御して、燃料電池10の出力電流を挿引しつつセル電圧を計測することにより、燃料電池10の極限I−V特性を取得する。
なお、触媒被毒対策処理部21は、各単セル11ごとの、または、任意の単セル11のI−V特性を取得して、以下に説明する判定処理において、各単セル11ごとに、または、任意の単セル11について、被毒劣化を検出するものとしても良い。また、触媒被毒対策処理部21は、セル電圧の計測値に基づき、燃料電池10全体の電圧を取得し、燃料電池10全体のI−V特性を取得するものとしても良い。
図6は、ステップS120における被毒劣化の判定処理を説明するための説明図である。図6には、ステップS110において取得される燃料電池10の極限I−V特性を示すグラフSI-Vの一例を実線で図示してある。また、図5には、説明の便宜のため、工場出荷時などの燃料電池10の初期状態において、ステップS110と同じ条件で取得できる、燃料電池10の基準となる極限I−V特性を示すグラフMI-Vを一点鎖線で図示してある。
なお、図5の2つのグラフSI-V,MI-Vはそれぞれ、限界電流値Ilimを1として規格化(正規化)したものである。また、以下の説明における電流の値は、限界電流値Ilimを1として規格化したときの値である。
本発明の発明者は、限界電流値Ilimを基準に規格化した極限I−V特性には、被毒劣化の度合いに応じて以下のような特徴が現れることを見出した。極限I−V特性は、被毒劣化が著しい場合であっても、電流が0の近傍(0〜0.1)においては電流に対する電圧は、初期状態のときからほとんど低下しない。これに対して、電流が、少なくとも0.1より大きく、1より小さい領域においては、電流に対する電圧は、被毒劣化の度合いに応じて初期状態のときよりも低下する。特に、その低下量は、電圧の低下率が著しく大きくなる電流の領域(例えば、電流が0.6〜0.9の領域)において顕著になる。
そこで、ステップS120では、触媒被毒対策処理部21は、ステップS110で取得した極限I−V特性に基づいて、以下のように、触媒被毒に起因する燃料電池10の発電性能の低下を検出する。触媒被毒対策処理部21は、極限I−V特性において、初期状態に対して電流に対する電圧の低下がほとんどない領域における第1の電流I1に対する電圧v1を取得し、初期状態に対して電流に対する電圧の低下が顕著に現れる領域における第2の電流I2に対する電圧v2を取得する。具体的に、第1の電流I1は0.1とし、第2の電流I2は0.8としても良い。触媒被毒対策処理部21は、2つの電圧v1,v2の差ΔVを算出し、このΔVが所定の閾値Vthより大きいときに、触媒被毒に起因する燃料電池10の発電性能の低下を検出する。
なお、燃料電池10の発電性能の低下が、触媒被毒以外の原因によるものである場合(例えば、触媒の溶出などの不可逆的な劣化に起因するものである場合)には、通常、極限I−V特性において、第1の電流I1に対する電圧v1が初期状態よりも低下する。従って、この場合には、ΔVが所定の閾値より大きくはならない。このように、ΔVの変化は、触媒被毒の蓄積に起因して燃料電池10の発電性能が低下しているときに、極限I−V特性において現れる特徴的な変化であると言える。
また、上記のステップS120における処理は、限界電流値I1に所定の第1と第2の比率をそれぞれ乗算した第1と第2電流値I1,I2に対して取得できる、第1と第2の電圧値v1,v2の差ΔVの大きさが所定の閾値Vthより大きいときに被毒劣化が発生していると判定する処理であると解釈することができる。さらに、上記のステップS120における処理は、極限I−V特性において、所定の電流の範囲内で検出される、電流の増大量に対する電圧の低下量が所定の閾値より大きいときに被毒劣化が発生していると判定する処理であるとも解釈することができる。
触媒被毒対策処理部21は、ステップS120において、燃料電池10の被毒劣化を検出しなかった場合には、触媒被毒対策処理を終了する。この場合には、制御部20は、通常の運転制御(図3)を再開する。一方、被毒劣化を検出た場合には、触媒被毒対策処理部21は、触媒被毒を回復するためのメンテナンス処理として、以下に説明する運転制御を開始する(ステップS130,S140)。
ステップS130では、触媒被毒対策処理部21は、制御部20が実行する通常の運転制御におけるステップS10と同様に、外部からの出力要求を受け付ける。ステップS140では、触媒被毒対策処理部21は、受け付けた出力要求に基づいて、以下に説明する低効率運転制御によって、燃料電池10を運転する。
図7は、ステップS140における低効率運転制御を説明するための説明図である。図7には、両側の2本の縦軸をそれぞれ電圧とシステム効率とし、横軸を電流として、燃料電池10のI−V特性を示すグラフGI-Vの一例と、燃料電池10の出力電流に対する燃料電池システム100のシステム効率の変化を示すグラフGI-eの一例とを図示してある。なお、グラフGI-Vは、図4で説明したものと同様のグラフである。
燃料電池10の出力電流に対する燃料電池システム100のシステム効率は、そのピークが低電流領域に偏っている、上に凸の曲線グラフとして表される(グラフGI-e)。ここで、本明細書において、「燃料電池システムのシステム効率」とは、燃料電池の出力電流に対して、その出力電流を燃料電池に出力させるために消費されるエネルギー量の少なさを表す指標として算出される数値である。
また、本明細書では、システム効率が所定の閾値eth(例えば50%)以上となる領域で燃料電池10に電流を出力させる運転を「高効率運転」と呼ぶ。一方、システム効率が所定の閾値ethより低くなる領域で燃料電池10に電流を出力させる運転を「低効率運転」と呼ぶ。
図3で説明した制御部20による通常の運転制御では、燃料電池10に高負荷・高出力が要求される場合以外には、基本的に、高効率運転となる領域で、燃料電池10に電流を出力させる。これに対して、触媒被毒対策処理におけるステップS140では、燃料電池10に、要求出力に応じた出力電流より大きい電流を出力させることにより、あえて、低効率運転となる領域で、燃料電池10に電流を出力させる。具体的には、以下の通りである。
触媒被毒対策処理部21は、図3で説明した制御部20による制御手順と同様な手順で、要求出力に対して目標電力Ptを決定し、燃料電池10のI−P特性に基づき、目標電力Ptに対する目標電流Itを取得する。そして、触媒被毒対策処理部21は、目標電流Itに対して所定の電流増加量ΔI(ΔI>0)を加算して、低効率運転制御となる領域に含まれる低効率目標電流Itleを取得する(Itle=It+ΔI)。
触媒被毒対策処理部21は、燃料電池10のI−V特性(グラフGI-V)に基づいて、低効率目標電流Itleを出力するために必要な燃料電池10の目標電圧Vtleを取得する。触媒被毒対策処理部21は、DC/DCコンバータ82を制御して、目標電圧Vtleを燃料電池10に出力させ、燃料電池10に低効率目標電流Itleを出力させる。なお、要求出力に対して余る燃料電池10の出力電力が二次電池81に蓄電される。
触媒被毒対策処理部21は、ステップS130,S140の運転制御を、所定の時間だけ継続した後、再び、ステップS110,S120において燃料電池10の被毒劣化を検出する処理を実行する(破線矢印)。低効率運転制御によって、燃料電池10の被毒劣化が回復している場合には、触媒被毒対策処理部21は触媒被毒対策処理を終了し、制御部20が通常の運転制御(図3)を再開する。
一方、燃料電池10の被毒劣化が回復していない場合には、触媒被毒対策処理部21は再びステップS130,S140の運転制御を、所定の時間だけ継続する。なお、ステップS130,S140の運転制御が繰り返されている間には、触媒被毒対策処理部21は、運転者に、低効率運転制御であることが報知することが好ましい。
このように、低効率運転制御を実行することにより、通常の運転制御のときよりも、燃料電池10の出力電流を増大させることができ、燃料電池10の内部で生成される水分量を増大させることができる。従って、触媒に吸着している触媒毒を、その生成水により洗い流すことができ、触媒被毒の蓄積に起因して低下している燃料電池10の発電性能を回復させることができる。
図8は、低効率運転制御による被毒劣化の回復効果を説明するための説明図である。本発明の発明者は、所定の度合いの被毒劣化を生じている燃料電池に、一定の出力電流密度(回復処理電流密度)の電流を出力させる発電を所定の時間だけ継続させた後に、所定の電流に対する電圧(回復電圧)を計測する実験を、回復処理電流密度を変えて行った。図8には、その実験結果を示すグラフが、縦軸を回復電圧とし、横軸を回復処理電流密度として図示してある。なお、図8のグラフGaは、電流密度0.8A/cm2の電流に対して回復電圧を計測したときのグラフであり、グラフGbは、電流密度0.05A/cm2の電流に対して回復電圧を計測したときのグラフである。
このように、回復処理電流密度が大きいほど、低電流領域(グラフGb)においても高電流領域(グラフGa)においても、発電性能の回復の度合いが高くなった。これは、燃料電池における生成水量が多くなるほど、触媒被毒の解消効果がより高くなるためである。従って、触媒被毒対策処理(図5)における低効率運転制御(ステップS140)では、燃料電池10に、より高い電流を出力させることが好ましい。
以上のように、本実施例の燃料電池システム100であれば、燃料電池10における被毒劣化を、他の発電性能の低下と区別して検出することができる。従って、被毒劣化に対する適切なメンテナンス処理を実行することができ、燃料電池10の発電性能を確実に回復させることができる。
B.第2実施例:
図9は、本発明の第2実施例としての燃料電池システムにおいて、触媒被毒対策処理部21によって実行される触媒被毒対策処理の実行手順を示すフローチャートである。図9は、ステップS110に換えて、ステップS111が設けられている点と、ステップS125が追加されている点以外は、図5とほぼ同じである。
なお、第2実施例の燃料電池システムの構成は、第1実施例の燃料電池システムの構成と同様である(図1,図2)。また、第2実施例の燃料電池システムにおいて、制御部20が実行する通常の運転制御の制御手順は、第1実施例で説明した制御手順と同様である(図3)。
ステップS111では、燃料電池10における被毒劣化の検出に用いる燃料電池10のI−V特性と、燃料電池10における電流と抵抗との関係(I−R特性)とを検出する。具体的には、触媒被毒対策処理部21は、DC/DCコンバータ82を制御して、燃料電池10の出力電流を挿引しつつセル電圧を計測することにより、燃料電池10の現在のI−V特性を取得する。また、触媒被毒対策処理部21は、同時に燃料電池10におけるセル抵抗の変化を計測することにより、燃料電池10の現在のI−R特性を取得する。
図10は、ステップS120における被毒劣化の判定処理を説明するための説明図である。図10には、ステップS111において取得される燃料電池10のI−V特性を示すグラフSI-Vの一例を実線で示し、I−R特性を示すグラフSI-Rの一例を一点鎖線で図示してある。また、図10には、参考例として、工場出荷時などの燃料電池10の初期状態において取得される、燃料電池10のI−V特性を示すグラフMI-Vを二点鎖線で図示してある。
本発明の発明者は、被毒劣化による燃料電池の発電特性を調べる実験を行い、次のような知見を得た。即ち、燃料電池において被毒劣化が生じている場合には、電流の増大に対して抵抗がほぼ変動していないにもかかわらず、電流の増大に対して電圧が略線形的に低下する電流領域において、電流に対する電圧の低下率が大きくなる。
そこで、ステップS120では、触媒被毒対策処理部21は、以下の2つの条件(a),(b)のいずれもが満たされているときに、燃料電池10の被毒劣化を検出する。
(a)電流増大に対して電圧が略線形的に低下する電流領域(即ち、下記の式(1)が成立する電流領域)において、電流に対する電圧の低下率|γ|が所定の値|γth|より大きくなっている(|γ|>|γth|)。
V=γ・I+α…(1)
V:電圧,I:電流,γ:0未満の定数,α:定数
(b)前記の電流領域において、電流に対する抵抗の変動幅(Δr)が所定の許容範囲(r1〜r2)内に収まっている(r1≦Δr≦r2)。
ここで、燃料電池において触媒被毒以外の原因で発電性能の低下が生じている場合には、通常、燃料電池10のI−V特性を示すグラフは、全体がほぼ平行に低下したり、I−R特性の変化に応じて変化する。従って、上記の判定条件(a),(b)のいずれもが満たされているときには、燃料電池10の発電性能の低下が、触媒被毒に起因するものであると、特定することが可能である。
ところで、上記の判定条件(a)における「電流増加に対して電圧が略線形的に低下する電流領域」としては、具体的には、例えば、電流密度が0A/cm2に近い低電流領域(より具体的には、0〜0.2A/cm2の範囲の領域)であるものとしても良い。または、電流密度が1A/cm2以上の高電流領域(より具体的には、電流密度が1.0〜2.0A/cm2の範囲の領域)であるものとしても良い。
なお、触媒被毒対策処理に実行周期が比較的短い場合(例えば1日〜2日単位の実行周期である場合)には、高電流領域でのI−V特性を用いて判定することが好ましい。一方、実行周期が比較的長い場合(例えば週または月単位での実行周期である場合)には、低電流領域でのI−V特性を用いて判定することが好ましい。これによって、ステップS120の判定処理において、触媒被毒以外の原因による発電特性の変化の影響を低減することができ、判定精度を向上させることができる。
ステップS120(図9)において、燃料電池10の被毒劣化が検出されなかった場合には、触媒被毒対策処理部21は、触媒被毒対策処理を終了する。一方、燃料電池10の被毒劣化が検出された場合には、触媒被毒対策処理部21は、メンテナンス処理として、第1実施例で説明したのと同様な低効率運転制御を実行する(ステップS130,S140)。
ところで、燃料電池10では、経年劣化などによって、燃料電池10のセル抵抗が全体的に高くなるなど、I−R特性が不可逆的に変化してしまう場合がある。この場合には、I−R特性の不可逆的に変化によって、ステップS120の判定処理において、上記の判定条件(b)が満たされなくなってしまう可能性がある。
そこで、ステップS125では、I−R特性の変化が検出された場合には、その変化に応じて、判定条件(b)の許容範囲を更新する処理を実行する。これによって、より適切に、触媒被毒に起因する発電性能の低下を検出することが可能となる。
以上のように、第2実施例の燃料電池システムであっても、触媒被毒に起因する燃料電池10の発電性能の低下を的確に検出することができ、その触媒被毒を解消するための適切な処理を実行することができる。また、第2実施例の燃料電池システムであれば、第1実施例の燃料電池システム100とは異なり、I−V特性を取得する際に、反応ガスの供給量を調整する必要がないため、触媒被毒に起因する発電性能の低下をより簡易に検出することができる。
C.第3実施例:
図11は、本発明の第3実施例としての燃料電池システムにおいて、触媒被毒対策処理部21によって実行される触媒被毒対策処理の実行手順を示すフローチャートである。なお、第3実施例の燃料電池システムの構成は、第1実施例の燃料電池システム100の構成と同様である(図1,図2)。また、第3実施例の燃料電池システムにおいて、制御部20が実行する通常の運転制御の制御手順は、第1実施例で説明した制御手順と同様である(図3)。
第3実施例の燃料電池システムでは、触媒被毒対策処理部21は、第1実施例で説明したのと同様な第1の触媒被毒対策処理(図5)と、第2実施例で説明したのと同様な第2の触媒被毒対策処理(図9)とを、二次電池81のSOCに応じて適宜選択して実行する。二次電池81のSOCを基準として触媒被毒対策処理の種類を選択する理由は以下のためである。
燃料電池10のI−V特性を取得するためには、高電流(例えば2A程度)まで電流を挿引する必要がある場合もある。これに対して、第1実施例で説明した燃料電池10の極限I−V特性を取得するためには、比較的低い電流領域における電流の挿引によって取得が可能である。このように、極限I−V特性を用いた判定処理を実行する第1の触媒被毒対策処理と、通常のI−V特性を用いた判定処理を実行する第2の触媒被毒対策処理とでは、被毒劣化を検出する際に、燃料電池10が出力する電力に差がある。
そのため、二次電池81に十分な充電容量が確保できない場合には、燃料電池10の出力電力が少ない第1の触媒被毒対策処理を実行することが望ましい。一方、二次電池81に十分な充電容量が確保できる場合には、燃料電池10の出力電力が多いが、反応ガスの供給量の調整を必要とせず、簡易に実行できる、第2の触媒被毒対策処理を実行することが望ましい。
そこで、第3実施例の燃料電池システムでは、触媒被毒対策処理部21は、まず、SOC検出部93から現在の二次電池81のSOCを取得する(ステップS200)。そして、二次電池81のSOCが所定の閾値以上である場合には、第1の触媒被毒対策処理(図5)を実行する(ステップS220)。一方、二次電池81のSOCが所定の閾値以上である場合には、第2の触媒被毒対策処理(図9)を実行する(ステップS230)。
以上のように、第3実施例の燃料電池システムであれば、二次電池81のSOCが高い場合であっても、触媒被毒対策処理の実行を確保することができる。また、燃料電池10の被毒劣化を検出する際の燃料電池10の出力電力を、二次電池81に確実に蓄電することができ、システム効率が向上する。
D.第4実施例:
図12は、本発明の第4実施例としての燃料電池システム100Aの構成を示す概略図である。図12は、制御部20に時刻計測部22としての機能が設けられている点と、温度検出部94が設けられている点と、カソード排ガス循環系70が設けられている点以外は、図1とほぼ同じである。なお、第4実施例の燃料電池システム100Aの電気的構成は、第1実施例の燃料電池システム100とほぼ同じである(図2)。
時刻検出部22は、現在時刻を検出することができる。制御部20は、燃料電池システム100Aが起動されるたびに、時刻計測部22が検出する時刻を、起動開始時刻として記録する。温度検出部94は、燃料電池10の温度を検出して、制御部20に出力する。なお、温度検出部94は、燃料電池10から排出される冷媒の温度に基づいて、燃料電池10の温度を検出するものとしても良いし、燃料電池10の本体の温度を直接的に計測するものとしても良い。
カソード排ガス循環系70は、三方弁71と、バイパス配管72と、ポンプ73と、を備える。三方弁71は、カソード排ガス配管41の調圧弁43より上流側に取り付けられており、制御部20によって、その開閉状態が制御される。バイパス配管72は、三方弁71に接続されるとともに、開閉弁34の下流側において、カソードガス配管31に接続され、カソード排ガス配管41と、カソードガス配管31とを連結する。ポンプ73は、バイパス配管72に設けられており、触媒被毒対策処理部21の指令に応じて駆動する。
カソード排ガス循環系70は、燃料電池システム100Aの運転停止後に、触媒被毒を解消するために実行される燃料電池10のパージ処理に用いられる。パージ処理については後述する。なお、燃料電池システム100Aの運転中には、制御部20は、三方弁71によって、バイパス配管72と、カソード排ガス配管41との接続を遮断した状態に保持しておく。
図13は、制御部20が実行する燃料電池10の運転制御の制御手順を示すフローチャートである。図13は、ステップS50に換えて、ステップS51が設けられている点と、ステップS5,S70,S80が追加されている点以外は、図3とほぼ同じである。ステップS5では、制御部20は、上述したように、燃料電池システム100Aの起動開始時刻を記録する。
その後、制御部20は、第1実施例で説明したのと同様な燃料電池10の通常の運転制御(ステップS10,S20)を、燃料電池システム100Aの運転終了まで繰り返し実行する。そして、その運転制御の実行中に、所定のタイミングで、触媒被毒対策処理部21に、被毒劣化検出処理の実行を開始させる(ステップS51)。
図14は、第4実施例における被毒劣化検出処理の実行手順を示すフローチャートである。図14は、ステップS130,S140に換えて、ステップS150,S151が設けられている点以外は、図5とほぼ同じである。被毒劣化検出処理では、触媒被毒対策処理部21は、第1実施例における触媒被毒対策処理と同様に、極限I−R特性を取得し、その極限I−R特性を用いて、燃料電池10における被毒劣化を検出する(ステップS110,S120)。
ステップS150,S151では触媒被毒対策処理部21は、その検出結果を示す変数である触媒フラグを設定する。触媒被毒対策処理部21は、被毒劣化を検出したときには、触媒被毒フラグを「ON」に設定し(ステップS150)、被毒劣化を検出しなかったときには、触媒被毒フラグを「OFF」に設定する(ステップS151)。触媒被毒対策処理部21は、触媒フラグを設定すると、被毒劣化検出処理を終了する。
制御部20は、燃料電池システム100Aの運転終了時には、燃料電池10の運転を終了させた後に、触媒フラグについての判定を実行する(図13のステップS70)。制御部20は、触媒フラグが「OFF」に設定されていた場合には、そのまま燃料電池システム100Aの運転を終了する。制御部20は、触媒フラグが「ON」に設定されていた場合には、燃料電池10において触媒被毒が著しく蓄積されているものとして、触媒被毒を解消するための触媒メンテナンス処理を、触媒被毒対策処理部21に開始させる(ステップS80)。
図15は、触媒被毒対策処理部21が実行する触媒メンテナンス処理の処理手順を示すフローチャートである。触媒被毒対策処理部21は、燃料電池10の内部の残留水分が十分に凝縮して液水化するように、燃料電池10の温度が所定の温度(例えば40℃程度)まで低下するまで待機する(ステップS300)。触媒被毒対策処理部21は、燃料電池10の温度が所定の温度まで低下した場合には、ステップS320のパージ処理を開始する(ステップS310)。
また、触媒被毒対策処理部21は、燃料電池10の温度が所定の温度まで低下していない場合であっても、所定の時刻に到達したときには、ステップS320のパージ処理を開始する(ステップS310)。ここで、「所定の時刻」とは、システム起動のたびに記録されている起動開始時刻に基づいて算出した平均起動時刻までにステップS320のパージ処理が完了できるように、触媒被毒対策処理部21が、逆算して、予め設定した時刻である。
ステップS320では、触媒被毒対策処理部21は、カソード排ガス循環系70(図12)を用いたパージ処理を、所定の時間(例えば数時間)だけ実行する。具体的にパージ処理は以下のように実行される。触媒被毒対策処理部21は、三方弁71の開閉状態を制御して、カソードガス配管31とカソード排ガス配管41とが、バイパス配管72を介して接続された状態とする。これによって、燃料電池10のカソード側の供給用マニホールドと排出用マニホールドとが接続されたカソード排ガスの循環経路が形成される。
触媒被毒対策処理部21は、ポンプ73を駆動させることにより、燃料電池10に残留しているガスを燃料電池10のバイパス配管72を介して循環させて、燃料電池10の内部をパージする。このパージによって、燃料電池10のカソード側に残留している液水とともに、触媒毒を触媒から脱落させ、燃料電池10の外部へと排出させることができる。従って、燃料電池10における触媒被毒を解消することが可能である。
なお、燃料電池10の温度が十分に低下した状態(ステップS300)でパージ処理が実行された場合には、燃料電池10の内部の水分が液水化して、燃料電池10内部に十分な液水が存在する状態でパージ処理が実行されることになる。そのため、より確実に触媒毒を洗い流すことができ、触媒被毒の回復効果を向上させることができる。
図16は、パージ処理の実行時間と、被毒劣化の回復の度合いとの関係を説明するための説明図である。図16には、本発明の発明者が行った実験の実験結果を示すグラフを図示してある。本発明の発明者は、所定の度合いの被毒劣化を生じている燃料電池に対してパージ処理を行った後に、当該燃料電池に発電させ、所定の電圧に対する電流を計測する実験を、パージ処理の実行時間を変えて行った。なお、この実験におけるパージ処理では、カソード側に窒素ガスを供給し、アノード側に水素を供給した。
図16のグラフに示されるように、実行時間tdまでは、パージ処理の実行時間を長くするほど、燃料電池の性能回復の度合いが高くなった。しかし、実行時間tdより長い時間、パージ処理を実行した場合には、パージ処理の実行時間を長くしても、燃料電池の性能回復の度合いは上下に変動するのみで、著しい向上を示さなかった。この実験結果から、触媒性能を回復するためのパージ処理の実行時間は、時間tdに相当する時間に適切に設定することが好ましいことがわかる。
以上のように、第4実施例の燃料電池システム100Aであれば、燃料電池10の運転中に、燃料電池の被毒劣化が検出された場合には、その運転終了後に、触媒被毒を回復するための触媒メンテナンス処理が適切に実行される。従って、燃料電池10における被毒劣化によるシステム効率の低下が抑制される。
E.第5実施例:
図17は本発明の第5実施例としての燃料電池システム100Bの構成を示す概略図である。図17は、カソード排ガス循環系70が設けられていない点と、カソードガス供給系30に、窒素ガス供給系75が接続されている点以外は、図12とほぼ同じである。なお、第5実施例の燃料電池システム100Bの電気的構成は、第1実施例の燃料電池システム100と同様である(図2)。
窒素ガス供給系75は、窒素タンク76と、接続配管77と、三方弁78とを備える。三方弁78は、カソードガス配管31のエアコンプレッサ32の下流側に設けられている。窒素タンク76は窒素ガスが封入されており、接続配管77を介して三方弁78に接続されている。この構成により、第5実施例の燃料電池システム100Bでは、エアコンプレッサ32の駆動力を利用して、窒素タンク76の窒素ガスを、空気に換えて、燃料電池10のカソード側に供給することができる。
ここで、第5実施例の燃料電池システム100Bでは、制御部20は、第4実施例の燃料電池システム100Aと同様な運転制御(図13)を実行する。また、触媒被毒対策処理部21が、第4実施例で説明したのと同様な手順で、被毒劣化検出処理と、触媒メンテナンス処理(図14,図15)とを実行する。
ただし、触媒被毒対策処理部21は、触媒メンテナンス処理におけるパージ処理(図15のステップS320)では、燃料電池10の残留ガスの循環供給によるパージではなく、窒素ガス供給系75の窒素ガスを用いたパージを実行する。具体的には、触媒被毒対策処理部21は、燃料電池10のカソード側に窒素ガスを供給するとともに、アノード側に水素を供給して、パージを実行する。
以上のように、第5実施例の燃料電池システム100Bであっても、触媒性能を回復するための触媒メンテナンス処理が、燃料電池10の運転終了後に適切に実行されるため、燃料電池10の触媒被毒に起因する発電性能低下を回復させることができる。
F.変形例:
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
F1.変形例1:
上記第1実施例では、触媒被毒対策処理部21は、燃料電池システム100の運転中の所定のタイミングで、燃料電池10の反応ガスの供給量を調整した上で、燃料電池10の電流を挿引することにより、燃料電池10の極限I−V特性を取得していた(図5のステップS110)。しかし、触媒被毒対策処理部21は、極限I−V特性の取得のための反応ガスの供給量の調整処理や、燃料電池10の電流の挿引処理を実行することなく、極限I−V特性を取得するものとしても良い。例えば、触媒被毒対策処理部21は、燃料電池10に対する反応ガスの供給を間欠的にON/OFFする、いわゆる間欠運転の実行時における燃料電池10の電流・電圧(セル電圧)の計測値に基づいて、極限I−V特性を取得するものとしても良い。
F2.変形例2:
上記第1実施例では、触媒被毒対策処理部21は、初期状態に対して電流に対する電圧の低下がほとんどない領域における第1の電流I1に対する電圧v1と、初期状態に対して電流に対する電圧の低下が顕著に現れる領域における第2の電流I2に対する電圧v2との差ΔVを算出し、このΔVが所定の閾値より大きいときに、触媒被毒の蓄積に起因する燃料電池10の発電性能の低下を検出していた(ステップS120)。しかし、第1と第2の電流値I1,I2は、予め設定された任意の電流値であっても良い。ただし、第1の電流I1を初期状態に対して電流に対する電圧の低下がほとんどない領域における電流値に設定し、第2の電流I2を、初期状態に対して電流に対する電圧の低下が顕著に現れる領域における電流値に設定すれば、より高い精度で、被毒劣化を検出することができる。
F3.変形例3:
上記第2実施例では、触媒被毒対策処理部21は、燃料電池システムの運転中の所定のタイミングで、燃料電池10の電流を挿引することにより、燃料電池10のI−V特性およびI−R特性を取得していた(図9のステップS111)。しかし、触媒被毒対策処理部21は、燃料電池10の電流の挿引を実行することなく、燃料電池10の通常の運転中における電流・電圧(セル電圧)・抵抗(セル抵抗)の計測値から、I−V特性、I−R特性を取得するものとしても良い。
F4.変形例4:
上記第3実施例では、触媒被毒対策処理部21は、二次電池81のSOCに基づいて、第1の触媒被毒対策処理と、第2の触媒被毒対策処理とを適宜、選択して実行していた。しかし、触媒被毒対策処理部21は、他の基準に基づいて、第1の触媒被毒対策処理と、第2の触媒被毒対策処理とを適宜、選択して実行するものとしても良い。例えば、触媒被毒対策処理部21は、水素タンク52における水素の残量に基づいて、第1の触媒被毒対策処理と、第2の触媒被毒対策処理とを適宜、選択して実行するものとしても良い。
F5.変形例5:
上記第4実施例の燃料電池システム100Aでは、触媒被毒対策処理部21は、被毒劣化検出処理(図14)において、燃料電池10における被毒劣化の検出方法として、第1実施例と同様な、極限I−V特性を用いた方法を実行していた。しかし、第4実施例の被毒劣化検出処理における被毒劣化の検出方法としては、第2実施例で説明した方法を適用するものとしても良いし、第3実施例のように、第1実施例の方法と第2実施例の方法とを適宜選択して実行するものとしても良い。
F6.変形例6:
上記第5実施例では、触媒メンテナンス処理におけるパージ処理において、カソード側に窒素ガスを供給し、アノード側に水素ガスを供給していた。しかし、触媒メンテナンス処理におけるパージ処理では、アノード側の水素ガスの供給を省略するものとしても良い。
F7.変形例7:
上記第4実施例および第5実施例では、燃料電池システム100A,100Bの運転終了後に、触媒被毒対策処理部21が、触媒被毒フラグに応じて、自動的に、触媒メンテナンス処理を実行していた。しかし、触媒被毒対策処理部21による触媒メンテナンス処理は省略されるものとしても良い。この場合には、例えば、燃料電池システム100A,100Bの定期的なメンテナンス作業において、作業者が、触媒被毒フラグの設定値を読み取り、その設定値に基づいて、触媒メンテナンス処理を実行するものとしても良い。なお、作業者が触媒メンテナンス処理としてパージ処理を実行する場合には、燃料電池10のカソード側とアノード側に水素を供給するものとしても良い。この方法であれば、カソード側に供給された水素によってカソード電位を低下させることができ、効果的である。
1…電解質膜
2,3…電極
5…膜電極接合体
10…燃料電池
11…単セル
20…制御部
21…触媒被毒対策処理部
22…時刻計測部
30…カソードガス供給系
31…カソードガス配管
32…エアコンプレッサ
33…エアフロメータ
34…開閉弁
35…圧力計測部
40…カソードガス排出系
41…カソード排ガス配管
43…調圧弁
44…圧力計測部
50…アノードガス供給系
51…アノードガス配管
52…水素タンク
53…開閉弁
54…レギュレータ
55…水素供給装置
56…圧力計測部
60…アノードガス排出系
61…アノード排ガス配管
66…開閉弁
67…圧力計測部
70…カソード排ガス循環系
71…三方弁
72…バイパス配管
73…ポンプ
75…窒素ガス供給系
76…窒素タンク
77…接続配管
78…三方弁
81…二次電池
82…DC/DCコンバータ
83…DC/ACインバータ
90…電流計測部
91…セル電圧計測部
92…インピーダンス計測部
93…SOC検出部
94…温度検出部
100,100A,100B…燃料電池システム
200…モータ
DCL…直流配線

Claims (12)

  1. 燃料電池システムであって、
    電解質膜と、前記電解質膜の両面に配置され、燃料電池反応を促進する触媒を含む電極と、を有する燃料電池と、
    前記燃料電池の電流と電圧との関係として表される前記燃料電池の発電特性を取得する発電特性検出部と、
    前記燃料電池の発電特性において、所定の電流の範囲内で検出される、電流の増大量に対する電圧の低下量が所定の閾値より大きいときに、アイオノマーの分解物による触媒被毒に起因する性能劣化を検出する制御部と、
    を備える、燃料電池システム。
  2. 請求項1記載の燃料電池システムであって、
    前記制御部は、
    (a)前記燃料電池の発電特性において、それ以上電流を増大させても電圧が低下しなくなる電流の最大値を検出できるように、前記燃料電池に対する前記反応ガスの供給量を調整するガス供給量制御を実行し、
    (b)前記ガス供給量制御の実行後に、前記燃料電池の発電特性を取得し、
    (c)前記燃料電池の発電特性において、前記電流の最大値に所定の第1と第2の比率をそれぞれ乗算した第1と第2電流値に対して取得できる、第1と第2の電圧値の差の大きさが所定の閾値より大きいときに前記性能劣化が発生していると判定する、
    第1の被毒劣化検出処理を実行する、燃料電池システム。
  3. 請求項1または請求項2記載の燃料電池システムであって、
    前記燃料電池の抵抗を検出する抵抗検出部を備え、
    前記制御部は、
    (i)前記燃料電池の発電特性において、電圧が、前記所定の電流の範囲内において、所定の変化率よりも大きい変化率で略線形的に低下しており、かつ、
    (ii)前記発電特性を検出する際の、前記所定の電流の範囲内における前記燃料電池の抵抗の変化が、所定の許容範囲内で収まっているときに、前記性能劣化が発生していると判定する、
    第2の被毒劣化検出処理を実行する、燃料電池システム。
  4. 請求項2および請求項3に記載の燃料電池システムであって、さらに、
    前記燃料電池の出力電力によって充電され、前記燃料電池とともに電力源として機能する二次電池と、
    前記二次電池の蓄電量を表す充電状態を検出する充電状態検出部と、
    を備え、
    前記制御部は、前記燃料電池の運転中に、前記第1または第2の被毒劣化検出処理を実行し、
    前記制御部は、前記二次電池の蓄電量に応じて、前記第1と第2の被毒劣化検出処理のうちのいずれを実行するかを選択する、燃料電池システム。
  5. 請求項1から請求項4のいずれか一項に記載の燃料電池システムであって、
    前記制御部は、前記性能劣化を検出した後に、前記触媒被毒を回復させるメンテナンス処理を実行する、燃料電池システム。
  6. 請求項5記載の燃料電池システムであって、
    前記制御部は、外部負荷の要求に応じて前記燃料電池の出力電流を制御する第1の制御を実行し、
    前記制御部は、前記第1の制御の実行中に前記性能劣化を検出した場合には、前記外部負荷の要求に応じた出力電流よりも大きい電流を前記燃料電池に出力させる第2の制御を、前記メンテナンス処理として実行する、燃料電池システム。
  7. 請求項5記載の燃料電池システムであって、
    前記燃料電池の排ガスを、前記燃料電池に循環供給できる排ガス循環部を備え、
    前記メンテナンス処理は、前記燃料電池の運転終了後に、前記排ガス循環部によって、前記燃料電池に前記排ガスを循環させて、前記燃料電池の内部をパージする処理を含む、燃料電池システム。
  8. 請求項5記載の燃料電池システムであって、
    前記燃料電池の内部に不活性ガスを供給する不活性ガス供給部を備え、
    前記メンテナンス処理は、前記燃料電池の運転終了後に、前記燃料電池に前記不活性ガスを供給し、前記燃料電池の内部をパージする処理を含む、燃料電池システム。
  9. 電解質膜と、前記電解質膜の両面に配置され、燃料電池反応を促進する触媒を含む電極と、を有する燃料電池を備える、燃料電池システムの制御方法であって、
    (a)前記燃料電池の電流と電圧との関係として表される前記燃料電池の発電特性を取得する工程と、
    (b)前記燃料電池の発電特性において、所定の電流の範囲内で検出される、電流の増大量に対する電圧の低下量が所定の閾値より大きいときに、アイオノマーの分解物による触媒被毒に起因する性能劣化を検出する工程と、
    を備える、制御方法。
  10. 請求項9記載の燃料電池の制御方法であって、さらに、
    (c)前記性能劣化の発生を検出した後に、前記触媒被毒を回復させるメンテナンス処理を実行する工程と、
    を備える、制御方法。
  11. 電解質膜と、前記電解質膜の両面に配置され、燃料電池反応を促進する触媒を含む電極と、を有する燃料電池において、アイオノマーの分解物による触媒被毒に起因する性能劣化を検出する方法であって、
    (a)前記燃料電池の電流と電圧との関係として表される、前記燃料電池の発電特性において、それ以上電流を増大させても電圧が低下しなくなる電流の最大値を検出できるように、前記燃料電池に対する前記反応ガスの供給量を制御する工程と、
    (b)前記工程(a)の後に、前記燃料電池の発電特性を取得する工程と、
    (c)前記燃料電池の発電特性において、前記電流の最大値に所定の第1と第2の比率をそれぞれ乗算した第1と第2電流値に対して取得できる、第1と第2の電圧値の差の大きさが所定の閾値より大きいときに前記性能劣化が発生していると判定する工程と、
    を備える、方法。
  12. 電解質膜と、前記電解質膜の両面に配置され、燃料電池反応を促進する触媒を含む電極と、を有する燃料電池において、アイオノマーの分解物による触媒被毒に起因する性能劣化を検出する方法であって、
    (A)前記燃料電池の発電特性を検出するとともに、前記燃料電池の電流に対する抵抗の変化を検出する工程と、
    (B)前記燃料電池の発電特性において、
    (i)電圧が、所定の電流の範囲内において、所定の変化率よりも大きい変化率で略線形的に低下しており、かつ、
    (ii)前記所定の電流の範囲内における前記燃料電池の抵抗の変化が、所定の許容範囲内で収まっているときに、
    前記性能劣化が発生していると判定する工程と、
    を備える、方法。
JP2012072774A 2012-03-28 2012-03-28 燃料電池システムおよびその制御方法、触媒被毒に起因する燃料電池の発電性能の低下の検出方法 Active JP5742767B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012072774A JP5742767B2 (ja) 2012-03-28 2012-03-28 燃料電池システムおよびその制御方法、触媒被毒に起因する燃料電池の発電性能の低下の検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012072774A JP5742767B2 (ja) 2012-03-28 2012-03-28 燃料電池システムおよびその制御方法、触媒被毒に起因する燃料電池の発電性能の低下の検出方法

Publications (2)

Publication Number Publication Date
JP2013206647A true JP2013206647A (ja) 2013-10-07
JP5742767B2 JP5742767B2 (ja) 2015-07-01

Family

ID=49525543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012072774A Active JP5742767B2 (ja) 2012-03-28 2012-03-28 燃料電池システムおよびその制御方法、触媒被毒に起因する燃料電池の発電性能の低下の検出方法

Country Status (1)

Country Link
JP (1) JP5742767B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058294A (ja) * 2014-09-11 2016-04-21 トヨタ自動車株式会社 燃料電池システム
JP2017084451A (ja) * 2015-10-22 2017-05-18 日産自動車株式会社 燃料電池の触媒劣化判定方法及び触媒劣化判定装置
CN110082688A (zh) * 2019-06-25 2019-08-02 潍柴动力股份有限公司 一种燃料电池的性能检测方法及装置
JP2021077539A (ja) * 2019-11-11 2021-05-20 トヨタ自動車株式会社 燃料電池の触媒被毒再生方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004164909A (ja) * 2002-11-11 2004-06-10 Denso Corp 燃料電池システム
JP2008204669A (ja) * 2007-02-16 2008-09-04 Seiko Instruments Inc 燃料電池装置における燃料残量検出方法及び装置
JP2009070576A (ja) * 2007-09-10 2009-04-02 Toyota Motor Corp 燃料電池システム及び劣化検出装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004164909A (ja) * 2002-11-11 2004-06-10 Denso Corp 燃料電池システム
JP2008204669A (ja) * 2007-02-16 2008-09-04 Seiko Instruments Inc 燃料電池装置における燃料残量検出方法及び装置
JP2009070576A (ja) * 2007-09-10 2009-04-02 Toyota Motor Corp 燃料電池システム及び劣化検出装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058294A (ja) * 2014-09-11 2016-04-21 トヨタ自動車株式会社 燃料電池システム
JP2017084451A (ja) * 2015-10-22 2017-05-18 日産自動車株式会社 燃料電池の触媒劣化判定方法及び触媒劣化判定装置
CN110082688A (zh) * 2019-06-25 2019-08-02 潍柴动力股份有限公司 一种燃料电池的性能检测方法及装置
CN110082688B (zh) * 2019-06-25 2019-09-20 潍柴动力股份有限公司 一种燃料电池的性能检测方法及装置
JP2021077539A (ja) * 2019-11-11 2021-05-20 トヨタ自動車株式会社 燃料電池の触媒被毒再生方法

Also Published As

Publication number Publication date
JP5742767B2 (ja) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5817472B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP5146898B2 (ja) 燃料電池電源制御装置、燃料電池システム及び燃料電池電源制御方法
EP3038199B1 (en) Fuel cell system and method of controlling operation of fuel cell
JP5136945B2 (ja) 燃料電池システム
US8900768B2 (en) Fuel cell system, electrode catalyst degradation judgment method, and moving body
US8920995B2 (en) Systems and methods for predicting polarization curves in a fuel cell system
EP2793304A1 (en) Method for estimating amount of liquid water inside fuel cell, method for estimating amount of liquid water discharged from fuel cell, device for estimating amount of liquid water inside fuel cell, and fuel cell system
US8895200B2 (en) Fuel cell system
KR101719674B1 (ko) 연료전지 시스템
US10158134B2 (en) Fuel cell system and control method thereof
JP2013101844A (ja) 燃料電池システムおよび燃料電池システムの制御方法
CN108808039B (zh) 在低功率运行模式期间对燃料电池堆中电池电压的动态低功率控制
US20140272653A1 (en) Flow Battery System and Method of SOC Determination
CN102751518A (zh) 燃料电池系统以其控制方法
WO2016072026A1 (ja) 燃料電池の状態判定装置及び方法
JP5742767B2 (ja) 燃料電池システムおよびその制御方法、触媒被毒に起因する燃料電池の発電性能の低下の検出方法
CN109216737B (zh) 不纯燃料的检测和补救措施
JP5109316B2 (ja) 燃料電池システム及び燃料電池のインピーダンス測定方法
JP2014212018A (ja) 燃料電池システム、方法
US20190190046A1 (en) Fuel cell system and control method of fuel cell system
JP5720584B2 (ja) 燃料電池システムおよびその制御方法
EP3361540A1 (en) Fuel cell state determination method and state determination device
JP2013134866A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP5418872B2 (ja) 燃料電池システム
JP2015185338A (ja) 燃料電池システム、方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R151 Written notification of patent or utility model registration

Ref document number: 5742767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151