JP2013202655A - Method of manufacturing heat transfer member - Google Patents

Method of manufacturing heat transfer member Download PDF

Info

Publication number
JP2013202655A
JP2013202655A JP2012073895A JP2012073895A JP2013202655A JP 2013202655 A JP2013202655 A JP 2013202655A JP 2012073895 A JP2012073895 A JP 2012073895A JP 2012073895 A JP2012073895 A JP 2012073895A JP 2013202655 A JP2013202655 A JP 2013202655A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer member
electron beam
transfer surface
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012073895A
Other languages
Japanese (ja)
Inventor
Akira Tanaka
明 田中
Yoshihiro Hyodo
義浩 兵藤
Daigo Kikko
大悟 橘高
Akio Sayano
顕生 佐谷野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012073895A priority Critical patent/JP2013202655A/en
Publication of JP2013202655A publication Critical patent/JP2013202655A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily form a microstructure surface in a reentrant cavity shape on a heat transfer surface of a heat transfer member with high precision.SOLUTION: A projection/recess part 3 having a prescribed pitch is formed by irradiating a heat transfer surface 2 of a heat transfer member 9 with an electron beam, and bent parts 6 are formed by bending tips of projection parts 3a of the projection/recess part 3 so as to form a heat transfer surface 2 having reentrant cavities 1.

Description

本発明は電力用機器や熱交換器等に用いられる伝熱部材の製造方法に関する。   The present invention relates to a method for manufacturing a heat transfer member used in power equipment, heat exchangers, and the like.

電力用機器や熱交換器等に用いられている従来の伝熱部材は放熱面積を増加させて冷却効率を向上させるために、伝熱部材の伝熱面に放熱用のフィンを設置したり(特許文献1)、内外面に凹凸形状等を形成している。これらの放熱手段により熱伝達効率を向上させ、単位伝熱面積当たりでより多くの熱量を除去することが可能となる。   In order to increase the heat dissipation area and improve the cooling efficiency of conventional heat transfer members used in power equipment and heat exchangers, heat dissipation fins are installed on the heat transfer surface of the heat transfer member ( Patent Document 1), irregularities and the like are formed on the inner and outer surfaces. These heat dissipating means can improve the heat transfer efficiency and can remove more heat per unit heat transfer area.

熱伝達効率、特に沸騰熱伝達効率を向上させるためには伝熱面上に多数の沸騰気泡を発生させ、伝熱面が乾かないように発生した気泡を速やかに離脱させる必要がある。すなわち沸騰気泡を安定して生成しかつ速やかに離脱させる伝熱面が必要となる。   In order to improve the heat transfer efficiency, particularly the boiling heat transfer efficiency, it is necessary to generate a large number of boiling bubbles on the heat transfer surface and to quickly release the generated bubbles so that the heat transfer surface does not dry. That is, it is necessary to provide a heat transfer surface that stably generates boiling bubbles and quickly releases them.

この沸騰熱伝達効率の向上には多くの因子が影響するが、その主要パラメータとして伝熱面上の表面性状がある。沸騰熱伝達効率を向上させるためには、伝熱面に微細なピットやキャビティ等の凹部が形成されていることが望ましく、これらの凹部を起点として気泡発生核が形成されることによって気泡の発生が活発化され熱伝達が向上する。したがって、沸騰熱伝達効率の向上のために、伝熱面上に微小なピットやキャビティを人工的に付与すること提案されている。このような微細構造面は伝熱面の表面に金属粒子や繊維を層状に焼結、溶射又はめっき処理等を行うことにより得られる多孔質層から形成するか(特許文献2)、機械加工又は電子ビーム照射(特許文献3)によって形成される。   Many factors influence the improvement of the boiling heat transfer efficiency. The main parameter is the surface properties on the heat transfer surface. In order to improve boiling heat transfer efficiency, it is desirable that concave portions such as fine pits and cavities are formed on the heat transfer surface, and bubbles are generated by forming bubble generation nuclei starting from these concave portions. Is activated and heat transfer is improved. Therefore, it has been proposed to artificially provide minute pits and cavities on the heat transfer surface in order to improve boiling heat transfer efficiency. Such a microstructured surface is formed from a porous layer obtained by performing sintering, thermal spraying or plating treatment of metal particles or fibers in layers on the surface of the heat transfer surface (Patent Document 2), machining or It is formed by electron beam irradiation (Patent Document 3).

また、この微小なピットやキャビティを形成した伝熱面の例として、伝熱部材9の伝熱面2に図7に示すようなリエントラントキャビティ1を高密度で有する微細構造面を形成した伝熱部材が知られている。リエントラントキャビティ1からなる微細構造面は凹部で気泡を活発かつ安定的に発生させることができるため、平滑管と比較して沸騰熱伝達効率が大幅に向上する。
このリエントラントキャビティを有する微細構造面は、多孔質層から構成するか又は機械加工や転造加工によって形成される。
Further, as an example of the heat transfer surface in which the minute pits and cavities are formed, the heat transfer surface in which the fine structure surface having the reentrant cavities 1 as shown in FIG. Members are known. Since the microstructural surface formed of the reentrant cavity 1 can generate bubbles actively and stably in the concave portion, the boiling heat transfer efficiency is greatly improved as compared with the smooth tube.
The microstructure surface having the reentrant cavity is formed of a porous layer or formed by machining or rolling.

特開2000−346579号公報JP 2000-346579 A 特開2000−54159号公報JP 2000-54159 A 特開2012−13396号公報JP 2012-13396 A

上述したように、従来のリエントラントキャビティを有する微細構造面は多孔質層又は機械加工等によって形成されている。しかしながら、焼結や溶射等によって形成された多孔質層は、周囲の流体によって経年的な磨耗や剥離を生じるという問題がある。
また、機械加工等を用いる場合は、伝熱部材の材質によっては微細加工が困難なものがあり、微細加工に要する時間、コストが増大するという課題があった。
As described above, a microstructured surface having a conventional reentrant cavity is formed by a porous layer or machining. However, the porous layer formed by sintering, thermal spraying, or the like has a problem that the surrounding fluid causes wear or peeling over time.
Further, when machining or the like is used, there is a problem that fine machining is difficult depending on the material of the heat transfer member, and the time and cost required for the fine machining are increased.

本発明は上記課題を解決するためになされたものであり、伝熱部材の伝熱面にリエントラントキャビティを有する微細構造面を高精度でかつ簡便に形成することができる伝熱部材の製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problem, and provides a method for manufacturing a heat transfer member that can easily and accurately form a microstructured surface having a reentrant cavity on the heat transfer surface of the heat transfer member. The purpose is to provide.

上記課題を解決するために、本発明に係る伝熱部材の製造方法は、伝熱部材の伝熱面に電子ビームを照射することによって所定ピッチの凹凸部を形成し、次に前記凹凸部の凸部の先端を屈曲させることで屈曲部を形成することによりリエントラントキャビティを有する伝熱面を形成することを特徴とする。   In order to solve the above-described problem, a method for manufacturing a heat transfer member according to the present invention forms an uneven portion having a predetermined pitch by irradiating an electron beam onto a heat transfer surface of the heat transfer member, and then A heat transfer surface having a reentrant cavity is formed by forming a bent portion by bending the tip of the convex portion.

また、本発明に係る伝熱部材の製造方法は、伝熱部材の伝熱面に電子ビームを照射することによって所定ピッチの凹凸部を形成し、次に前記凹凸部の凸部を押圧することで平坦部を形成することによりリエントラントキャビティを有する伝熱面を形成することを特徴とする。   Moreover, the manufacturing method of the heat-transfer member which concerns on this invention forms an uneven | corrugated | grooved part of a predetermined pitch by irradiating an electron beam to the heat-transfer surface of a heat-transfer member, and then presses the convex part of the said uneven | corrugated | grooved part. A heat transfer surface having a reentrant cavity is formed by forming a flat portion.

また、本発明に係る伝熱部材の製造方法は、伝熱部材を所定角度傾けた状態で前記伝熱部材の伝熱面の垂直上方から電子ビームを照射することで所定ピッチの凹部を形成することによりリエントラントキャビティを有する伝熱面を形成することを特徴とする。   Moreover, the manufacturing method of the heat-transfer member which concerns on this invention forms a recessed part of predetermined pitch by irradiating an electron beam from the perpendicular | vertical upper direction of the heat-transfer surface of the said heat-transfer member in the state which inclined the heat-transfer member by the predetermined angle. Thus, a heat transfer surface having a reentrant cavity is formed.

また、本発明に係る伝熱部材の製造方法は、伝熱部材の一方の面に電子ビームを照射することによって所定ピッチの貫通孔を形成し、次に当該面に薄板を固着することによりリエントラントキャビティを有する伝熱面を形成することを特徴とする。   In addition, the method for manufacturing a heat transfer member according to the present invention forms a through hole having a predetermined pitch by irradiating one surface of the heat transfer member with an electron beam, and then fixes a thin plate on the surface to make the reentrant. A heat transfer surface having a cavity is formed.

本発明によれば伝熱部材の伝熱面にリエントラントキャビティを有する微細構造面を高精度でかつ簡便に形成することができる。   According to the present invention, a microstructure surface having a reentrant cavity on the heat transfer surface of a heat transfer member can be easily formed with high accuracy.

(a)は第1の実施形態に係る伝熱部材の製造方法の第1ステップを示す概略断面図、(b)は第2ステップを示す概略断面図。(A) is a schematic sectional drawing which shows the 1st step of the manufacturing method of the heat-transfer member which concerns on 1st Embodiment, (b) is a schematic sectional drawing which shows a 2nd step. 第2の実施形態に係る伝熱部材の製造方法を示す概略断面図。The schematic sectional drawing which shows the manufacturing method of the heat-transfer member which concerns on 2nd Embodiment. 第3の実施形態に係る伝熱部材の製造方法を示す概略断面図。The schematic sectional drawing which shows the manufacturing method of the heat-transfer member which concerns on 3rd Embodiment. 第4の実施形態に係る伝熱部材の製造方法を示す概略断面図。The schematic sectional drawing which shows the manufacturing method of the heat-transfer member which concerns on 4th Embodiment. (a)は第5の実施形態に係る伝熱部材の製造方法の第1ステップを示す概略断面図、(b)は第2ステップを示す概略断面図。(A) is a schematic sectional drawing which shows the 1st step of the manufacturing method of the heat-transfer member which concerns on 5th Embodiment, (b) is a schematic sectional drawing which shows a 2nd step. 一般的なリエトラントキャビティの構成図。The block diagram of a general Lietrant cavity.

以下、本発明に係る伝熱部材の製造方法の実施形態を、図面を参照して説明する。
(第1の実施形態)
本発明の第1の実施形態に係る伝熱部材の製造方法を図1(a)、(b)により説明する。
まず、図1(a)に示すように、伝熱部材9の伝熱面2に電子ビーム照射により所定ピッチの凹凸部3を形成する(第1ステップ)。
Hereinafter, an embodiment of a manufacturing method of a heat transfer member concerning the present invention is described with reference to drawings.
(First embodiment)
The manufacturing method of the heat-transfer member which concerns on the 1st Embodiment of this invention is demonstrated with FIG. 1 (a), (b).
First, as shown in FIG. 1A, the uneven portions 3 having a predetermined pitch are formed on the heat transfer surface 2 of the heat transfer member 9 by electron beam irradiation (first step).

次に凹凸部3が形成された伝熱面2に対して、図1(b)に示すように、ローラ5等を用いた機械加工等により凸部3aの先端を屈曲させて屈曲部6を形成し、これによりリエントラントキャビティ1を形成する(第2ステップ)。   Next, as shown in FIG. 1B, the tip of the convex portion 3a is bent by machining using a roller 5 or the like on the heat transfer surface 2 on which the concavo-convex portion 3 is formed, so that the bent portion 6 is formed. Then, the reentrant cavity 1 is formed (second step).

本実施形態では凹凸部3が形成された伝熱面2を、ローラのような機械加工用の転動部材5を回転移動させることによって凸部3aの先端を屈曲させ開口部4を有するリエントラントキャビティ1を形成している。   In the present embodiment, a reentrant cavity having an opening 4 by bending the tip of a convex portion 3 a by rotating a rolling member 5 for machining such as a roller on the heat transfer surface 2 on which the concave and convex portion 3 is formed. 1 is formed.

転動部材5を回転移動させる際、転動部材5と伝熱面2との間の距離、回転移動速度等は、凹凸部3のピッチ、凹部3bの深さ、伝熱部材の材質等によって所定の開口部4を有するリエントラントキャビティ1が形成されるように適切に設定される。
なお、リエントラントキャビティ1は、その内部に開口部4の断面積よりも大きい断面積の部分があればよい。
When the rolling member 5 is rotationally moved, the distance between the rolling member 5 and the heat transfer surface 2, the rotational movement speed, and the like depend on the pitch of the concave and convex portions 3, the depth of the concave portions 3b, the material of the heat transfer member, and the like. The reentrant cavity 1 having a predetermined opening 4 is appropriately set.
The reentrant cavity 1 only needs to have a cross-sectional area larger than the cross-sectional area of the opening 4 inside.

本実施形態によれば、電子ビームを用いて伝熱部材の表面に微細な凹凸部を形成し、次に機械加工等により凸部の先端を屈曲させるという簡便な製造方法によって、伝熱部材の伝熱面に所定ピッチのリエントラントキャビティを高精度でかつ効率的に形成することができる。これにより、伝熱部材の熱伝達特性を大幅に向上させることができる。   According to this embodiment, the heat transfer member is formed by a simple manufacturing method in which a fine uneven portion is formed on the surface of the heat transfer member using an electron beam, and then the tip of the protrusion is bent by machining or the like. A reentrant cavity having a predetermined pitch can be formed on the heat transfer surface with high accuracy and efficiency. Thereby, the heat transfer characteristic of a heat transfer member can be improved significantly.

(第2の実施形態)
本発明の第2の実施形態に係る伝熱部材の製造方法を図2により説明する。
まず、第1の実施形態と同様に伝熱面2に電子ビームを照射することによって、微細な所定ピッチの凹凸部3(図1(a))を形成させる(第1ステップ)。
(Second Embodiment)
A method for manufacturing a heat transfer member according to the second embodiment of the present invention will be described with reference to FIG.
First, similarly to the first embodiment, the heat transfer surface 2 is irradiated with an electron beam to form fine irregular portions 3 (FIG. 1A) having a predetermined pitch (first step).

次に、凹凸部3の凸部3aの先端部分に所定のプレス荷重等を加えて(図示せず)、図2に示すように、各先端部3aに平坦部7を形成する(第2ステップ)。
これにより開口部4を有するリエントラントキャビティ1aが形成される。
Next, a predetermined press load or the like is applied to the tip portion of the convex portion 3a of the concavo-convex portion 3 (not shown) to form a flat portion 7 on each tip portion 3a as shown in FIG. 2 (second step) ).
Thereby, the reentrant cavity 1a having the opening 4 is formed.

なお、上記第1及び第2の実施形態において、凸部3aの屈曲加工や押圧加工によってリエントラントキャビティ1を形成する際は、凹凸部3の深さをある程度大きくしないと、気泡確保が可能なリエントラントな凹部を形成することができない。実験等により確認したところ、気泡を活発かつ安定的に発生させることができるリエントラントキャビティ1を得るためには凹凸部3の凹部3bの深さを40μm以上とすればよいことが確認された。   In the first and second embodiments, when the reentrant cavity 1 is formed by bending or pressing the convex portion 3a, the reentrant capable of securing air bubbles is required unless the depth of the concave and convex portion 3 is increased to some extent. A concave portion cannot be formed. As a result of experiments, it has been confirmed that the depth of the concave portion 3b of the concave and convex portion 3 should be 40 μm or more in order to obtain the reentrant cavity 1 that can generate bubbles actively and stably.

以上説明したように、本実施形態によれば、電子ビームを用いて伝熱部材の表面に微細な凹凸部3を形成し、次に機械加工等により凸部3aの先端を平坦化させるという簡便な製造方法によって、伝熱部材の伝熱面に所定ピッチのリエントラントキャビティ1を高精度でかつ効率的に形成することができる。これにより、伝熱部材の熱伝達特性を大幅に向上させることができる。
また、凹部3bの深さを40μm以上とすることにより、気泡を活発かつ安定的に発生させることができるリエントラントキャビティ1を得ることができる。
As described above, according to the present embodiment, a simple uneven portion 3 is formed on the surface of the heat transfer member using an electron beam, and then the tip of the protruded portion 3a is flattened by machining or the like. With this manufacturing method, the reentrant cavities 1 having a predetermined pitch can be formed with high accuracy and efficiency on the heat transfer surface of the heat transfer member. Thereby, the heat transfer characteristic of a heat transfer member can be improved significantly.
Moreover, the reentrant cavity 1 which can generate a bubble actively and stably can be obtained by the depth of the recessed part 3b being 40 micrometers or more.

(第3の実施形態)
本発明の第3の実施形態に係る伝熱部材の製造方法を図3により説明する。
まず、上記実施形態と同様に伝熱面2に電子ビームを照射することによって、微細な所定ピッチの凹凸部3(図1(a))を形成させる(第1ステップ)。
(Third embodiment)
A method for manufacturing a heat transfer member according to the third embodiment of the present invention will be described with reference to FIG.
First, as in the above embodiment, the heat transfer surface 2 is irradiated with an electron beam to form fine uneven portions 3 (FIG. 1A) having a predetermined pitch (first step).

次に、凹凸部3の表面に、図3に示すように、メッシュ状の網板8を接着等で固着する(第2ステップ)。
この網板8として、網板8のピッチが凹凸部3のピッチと同等であり、網板8の空隙の幅が凸部3aのピッチよりも小さいものが用いられる。その際、凹凸部3は制御された電子ビーム加工によって規則的に配列しているため、精密位置合わせにより網板8を凸部3aに合致するように配置することができる。
Next, as shown in FIG. 3, the mesh net 8 is fixed to the surface of the concavo-convex portion 3 by adhesion or the like (second step).
As the net plate 8, a net plate 8 having a pitch equal to the pitch of the concavo-convex portion 3 and a gap width of the net plate 8 smaller than the pitch of the convex portions 3a is used. At that time, since the concavo-convex portions 3 are regularly arranged by controlled electron beam processing, the net plate 8 can be arranged so as to match the convex portions 3a by precise alignment.

これにより、網板8の網部分と各凸部3aとの間にリエントラントキャビティ1bが形成される。
また、伝熱部材が円筒である場合は、円筒状の伝熱面2に電子ビームを照射し凹凸部3を形成した後、メッシュ状の網板8を凹凸部3に巻いて接着等により固着することにより、リエントラントキャビティ1bを形成する(図示せず)。
Thereby, the reentrant cavity 1b is formed between the net part of the net plate 8 and each convex part 3a.
When the heat transfer member is a cylinder, the cylindrical heat transfer surface 2 is irradiated with an electron beam to form the concavo-convex portion 3, and then the mesh net 8 is wound around the concavo-convex portion 3 and fixed by adhesion or the like. By doing so, the reentrant cavity 1b is formed (not shown).

また、平板から円筒状の伝熱部材を製造する場合は、平板に電子ビームを照射して凹凸部3を形成し、平板状態の凹凸部3に網板8を接着等で固着した後、曲げ加工等によって円筒状に加工する(図示せず)。   Further, when a cylindrical heat transfer member is manufactured from a flat plate, the flat plate is irradiated with an electron beam to form the concavo-convex portion 3, and the net plate 8 is fixed to the flat concavo-convex portion 3 by bonding or the like, and then bent. It is processed into a cylindrical shape by processing or the like (not shown).

本実施形態によれば、電子ビームを用いて伝熱部材9の表面に微細な凹凸部3を形成し、次に網板8を凸部3aに固着させるという簡便な製造方法によって、伝熱部材9の伝熱面2に所定ピッチのリエントラントキャビティ1bを高精度でかつ効率的に形成することができる。   According to the present embodiment, the heat transfer member is formed by a simple manufacturing method in which fine uneven portions 3 are formed on the surface of the heat transfer member 9 using an electron beam, and then the net plate 8 is fixed to the protrusions 3a. The reentrant cavities 1b having a predetermined pitch can be formed with high accuracy and efficiency on the nine heat transfer surfaces 2.

(第4の実施形態)
本発明の第4の実施形態に係る伝熱部材の製造方法を図4により説明する。
本実施形態では、伝熱部材9を所定角度傾かせ、伝熱面2の垂直上方から電子ビーム10を照射する。
(Fourth embodiment)
A method for producing a heat transfer member according to the fourth embodiment of the present invention will be described with reference to FIG.
In the present embodiment, the heat transfer member 9 is tilted by a predetermined angle, and the electron beam 10 is irradiated from vertically above the heat transfer surface 2.

これにより図4に示すような伝熱面に2に凹凸部3が形成される。この凹凸部3が形成された伝熱面2は、その使用状態において凹部3bはリエントラントキャビティ1cとして機能する。   As a result, the uneven portion 3 is formed on the heat transfer surface 2 as shown in FIG. In the heat transfer surface 2 on which the concavo-convex portion 3 is formed, the concave portion 3b functions as a reentrant cavity 1c when in use.

このリエントラントキャビティ1cの形状は電子ビーム10の照射時における伝熱部材9の傾き角度によって異なる。この角度を調整することで、所望の形状を有するリエントラントキャビティ1cを得ることができる。   The shape of the reentrant cavity 1c differs depending on the inclination angle of the heat transfer member 9 when the electron beam 10 is irradiated. By adjusting this angle, a reentrant cavity 1c having a desired shape can be obtained.

なお、気泡核が発生しやすいリエントラントキャビティ1cの形状は表面側が小さく内部側が広い形状となることが望ましいことから、電子ビーム10の照射時における伝熱部材9の傾き角度を少なくとも30度以上とすることが望ましい。   Since the shape of the reentrant cavity 1c, in which bubble nuclei are likely to be generated, is desirably small on the surface side and wide on the inner side, the inclination angle of the heat transfer member 9 during irradiation with the electron beam 10 is at least 30 degrees or more. It is desirable.

本実施形態によれば、伝熱部材9を傾かせて電子ビーム10を照射させるという簡便な製造方法によって、伝熱部材9の伝熱面2に所定ピッチのリエントラントキャビティ1cを高精度でかつ効率的に形成することができる。   According to the present embodiment, the reentrant cavity 1c having a predetermined pitch is highly accurately and efficiently formed on the heat transfer surface 2 of the heat transfer member 9 by a simple manufacturing method in which the heat transfer member 9 is tilted and irradiated with the electron beam 10. Can be formed.

(第5の実施形態)
本発明の第5の実施形態に係る伝熱部材の製造方法を図5(a)、(b)により説明する。
電子ビーム10を伝熱部材9に照射すると、一般的に図5(a)に示すように逆円錐形状に近い貫通孔11が形成される。
(Fifth embodiment)
The manufacturing method of the heat-transfer member which concerns on the 5th Embodiment of this invention is demonstrated with FIG. 5 (a), (b).
When the heat transfer member 9 is irradiated with the electron beam 10, generally, a through hole 11 having an inverted conical shape is formed as shown in FIG.

本実施形態では、まず、図5(a)に示すように、伝熱部材9の板厚を貫通するように伝熱部材9の一方の面に電子ビーム10を照射し、所定ピッチの貫通孔11を形成する(第1ステップ)。   In this embodiment, first, as shown in FIG. 5A, one surface of the heat transfer member 9 is irradiated with an electron beam 10 so as to penetrate the plate thickness of the heat transfer member 9, and a through hole having a predetermined pitch is formed. 11 is formed (first step).

次に、図5(b)に示すように当該面に薄板12を接着等で固着する(第2ステップ)。これにより、貫通孔11をリエントラントキャビティ1dとして用いることができる。
また、伝熱部材9が円筒状の場合は、平板で上記ステップを実施した後、曲げ加工により円筒状の伝熱部材9を形成する。
Next, as shown in FIG. 5B, the thin plate 12 is fixed to the surface by adhesion or the like (second step). Thereby, the through-hole 11 can be used as the reentrant cavity 1d.
Moreover, when the heat transfer member 9 is cylindrical, after implementing the said step with a flat plate, the cylindrical heat transfer member 9 is formed by bending.

本実施形態によれば、伝熱面2に電子ビーム10を照射させて貫通させた後その裏面に薄板12を固着するという簡便な製造方法によって、伝熱部材9の伝熱面2に所定ピッチのリエントラントキャビティ1dを高精度でかつ効率的に形成することができる。
なお、上記実施形態では凹凸部等の形成手段として電子ビームを用いた例を説明したが、これ限定されずレーザ光等の他の照射手段を用いてもよい。
According to the present embodiment, the heat transfer surface 2 is irradiated with the electron beam 10 and penetrated, and then the thin plate 12 is fixed to the back surface of the heat transfer surface 2 by a predetermined pitch on the heat transfer surface 2 of the heat transfer member 9. The reentrant cavity 1d can be formed with high accuracy and efficiency.
In the above-described embodiment, an example in which an electron beam is used as a means for forming an uneven portion or the like has been described. However, the present invention is not limited to this, and other irradiation means such as laser light may be used.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、組み合わせ、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, combinations, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1,1a,1b,1c,1d…リエントラントキャビティ、2…伝熱面、3…凹凸部、3a…凸部、3b…凹部、4…開口部、5…転動部材、6…屈曲部、7…平坦部、8…網板、9…伝熱部材、10…電子ビーム、11…貫通孔、12…薄板。 1, 1a, 1b, 1c, 1d ... reentrant cavity, 2 ... heat transfer surface, 3 ... uneven portion, 3a ... convex portion, 3b ... concave portion, 4 ... opening, 5 ... rolling member, 6 ... bent portion, 7 ... Flat part, 8 ... Net plate, 9 ... Heat transfer member, 10 ... Electron beam, 11 ... Through hole, 12 ... Thin plate.

Claims (6)

伝熱部材の伝熱面に電子ビームを照射することによって所定ピッチの凹凸部を形成し、次に前記凹凸部の凸部の先端を屈曲させることで屈曲部を形成することによりリエントラントキャビティを有する伝熱面を形成することを特徴とする伝熱部材の製造方法。   Irradiation with an electron beam on the heat transfer surface of the heat transfer member forms a concavo-convex portion having a predetermined pitch, and then a bent portion is formed by bending the tip of the convex portion of the concavo-convex portion, thereby having a reentrant cavity. A method of manufacturing a heat transfer member, wherein a heat transfer surface is formed. 伝熱部材の伝熱面に電子ビームを照射することによって所定ピッチの凹凸部を形成し、次に前記凹凸部の凸部を押圧することで平坦部を形成することによりリエントラントキャビティを有する伝熱面を形成することを特徴とする伝熱部材の製造方法。   Heat transfer surface having a reentrant cavity by forming an uneven portion with a predetermined pitch by irradiating an electron beam onto the heat transfer surface of the heat transfer member, and then forming a flat portion by pressing the convex portion of the uneven portion A method of manufacturing a heat transfer member, comprising forming a surface. 伝熱部材を所定角度傾けた状態で前記伝熱部材の伝熱面の垂直上方から電子ビームを照射することで所定ピッチの凹部を形成することによりリエントラントキャビティを有する伝熱面を形成することを特徴とする伝熱部材の製造方法。   Forming a heat transfer surface having a reentrant cavity by forming a recess with a predetermined pitch by irradiating an electron beam from vertically above the heat transfer surface of the heat transfer member with the heat transfer member inclined at a predetermined angle. A method for manufacturing a heat transfer member. 前記電子ビームによって形成された凹部の深さを40μm以上とすることを特徴とする請求項1乃至3のいずれか1項に記載の伝熱部材の製造方法。   The depth of the recessed part formed of the said electron beam shall be 40 micrometers or more, The manufacturing method of the heat-transfer member of any one of Claim 1 thru | or 3 characterized by the above-mentioned. 前記伝熱部材を30度以上傾けることを特徴とする請求項3記載の伝熱部材の製造方法。   The method for manufacturing a heat transfer member according to claim 3, wherein the heat transfer member is inclined by 30 degrees or more. 伝熱部材の伝熱面に電子ビームを照射することによって所定ピッチの貫通孔を形成し、次に伝熱部材の伝熱面の反対側に薄板を固着することによりリエントラントキャビティを有する伝熱面を形成することを特徴とする伝熱部材の製造方法。   A heat transfer surface having a reentrant cavity by forming a through-hole with a predetermined pitch by irradiating the heat transfer surface of the heat transfer member with an electron beam and then fixing a thin plate on the opposite side of the heat transfer surface of the heat transfer member The manufacturing method of the heat-transfer member characterized by forming.
JP2012073895A 2012-03-28 2012-03-28 Method of manufacturing heat transfer member Pending JP2013202655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012073895A JP2013202655A (en) 2012-03-28 2012-03-28 Method of manufacturing heat transfer member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012073895A JP2013202655A (en) 2012-03-28 2012-03-28 Method of manufacturing heat transfer member

Publications (1)

Publication Number Publication Date
JP2013202655A true JP2013202655A (en) 2013-10-07

Family

ID=49522344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012073895A Pending JP2013202655A (en) 2012-03-28 2012-03-28 Method of manufacturing heat transfer member

Country Status (1)

Country Link
JP (1) JP2013202655A (en)

Similar Documents

Publication Publication Date Title
JP2020514070A (en) Method for providing at least one void in a material by electromagnetic radiation and a subsequent etching process
US20200338551A1 (en) Master for micro flow path creation, transfer copy, and method for producing master for micro flow path creation
JP2010024064A (en) Method for manufacturing structure and droplet ejection head
Dai et al. Micro-dimple array fabricated on surface of Ti6Al4V with a masked laser ablation method in air and water
JP2020146725A (en) Control method for wettability of metallic surface
JP7478255B2 (en) Method for creating recesses in a substrate - Patent application
JP2014067500A (en) Method of producing material for vapor deposition mask, method of manufacturing vapor deposition mask
JP2016043413A (en) Roughening method of metal molding
Choi et al. Performance evaluation of laser shock micro-patterning process on aluminum surface with various process parameters and loading schemes
US9156080B2 (en) Casting die
JP2013088004A (en) Method for manufacturing heat transfer tube and heat transfer tube
JP5981475B2 (en) Laminated shaped article manufacturing apparatus and laminated shaped article manufacturing method
JP2013202655A (en) Method of manufacturing heat transfer member
JP6506056B2 (en) Method of manufacturing ceramic member
JP2014088978A (en) Method of manufacturing heat transfer member, method of manufacturing heat transfer component, heat transfer member, and heat transfer component
JP2006083244A (en) Molded article having extremely water-repelling surface and method for producing the same
JP2016014190A5 (en)
JP2012013396A (en) Method of manufacturing heat transfer member, and heat transfer member
JP7091846B2 (en) A method of manufacturing a glass substrate having holes using a laser
JP2012233541A (en) Sliding surface structure
CN114141606A (en) Method for structuring a surface of a substrate body and substrate body
JP6987910B2 (en) A method for manufacturing a master for making a microchannel, a transcript, and a master for making a microchannel.
JPWO2017006447A1 (en) Stepped wafer and method of manufacturing the same
JP2014136304A (en) Molding die, manufacturing method of the same, structure, and manufacturing method of the same
Munaswamy et al. Multi-Scale Hierarchical Micro/Nano Surface Structures Induced by high Repetition rate femto-second Laser Pulses on Ti6Al4V in Ambient air