JP2013201873A - Thermoelectric power generation device and thermoelectric power generation system - Google Patents

Thermoelectric power generation device and thermoelectric power generation system Download PDF

Info

Publication number
JP2013201873A
JP2013201873A JP2012070074A JP2012070074A JP2013201873A JP 2013201873 A JP2013201873 A JP 2013201873A JP 2012070074 A JP2012070074 A JP 2012070074A JP 2012070074 A JP2012070074 A JP 2012070074A JP 2013201873 A JP2013201873 A JP 2013201873A
Authority
JP
Japan
Prior art keywords
flow path
thermoelectric
water
power generation
hot spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012070074A
Other languages
Japanese (ja)
Inventor
Keiichi Sasaki
恵一 佐々木
Takahiko Shindo
尊彦 新藤
Daisuke Horikawa
大介 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012070074A priority Critical patent/JP2013201873A/en
Publication of JP2013201873A publication Critical patent/JP2013201873A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enhance power generation efficiency.SOLUTION: A thermoelectric power generation system includes a thermoelectric power generation device which has a thermoelectric conversion module generating electric power by a temperature difference between both surfaces, and has a first flow path and a second flow path, through which fluids differing in temperature from each other flow, arranged on both the surfaces of the thermoelectric conversion module; a first supply path which supplies the first fluid flowing through the first flow path to the first flow path by utilizing the pressure of the first fluid or a difference of elevation; and a second supply path which supplies the second fluid flowing through the second flow path and having a lower temperature than the first fluid to the second flow path by utilizing a difference of elevation.

Description

本発明の実施形態は、熱電発電装置および熱電発電システムに関する。   Embodiments described herein relate generally to a thermoelectric power generation apparatus and a thermoelectric power generation system.

熱電発電装置は、熱電変換モジュールの両面に温度差をつけることで生じる電力を取り出す、非化石燃料による環境にやさしい発電機である。   The thermoelectric generator is an environment-friendly generator using non-fossil fuel that extracts electric power generated by making a temperature difference between both surfaces of the thermoelectric conversion module.

特許第3564274号公報Japanese Patent No. 3564274 特開平10−190073号公報Japanese Patent Laid-Open No. 10-190073 特開2009−247050号公報JP 2009-247050 A 特開2011−181767号公報JP 2011-181767 A

一般に、熱電発電装置に供給する熱源として、高温熱流体および低温熱流体を用いる場合、それらを流すための動力が必要となる。動力の生成のために、熱電発電装置にポンプ等の補機類を設けると、それを駆動するために電力消費が生じ、発電効率が低下する。   Generally, when a high-temperature heat fluid and a low-temperature heat fluid are used as a heat source to be supplied to the thermoelectric generator, power for flowing them is required. If an auxiliary machine such as a pump is provided in the thermoelectric generator for generating power, power is consumed to drive it and power generation efficiency is reduced.

発明が解決しようとする課題は、発電効率の高い熱電発電装置および熱電発電システムを提供することである。   The problem to be solved by the invention is to provide a thermoelectric power generation apparatus and a thermoelectric power generation system with high power generation efficiency.

実施形態による熱電発電システムは、両面の温度差により発電する熱電変換モジュールを備え、前記熱電変換モジュールの両面の各々に温度が互いに異なる流体を流す第1の流路と第2の流路とがそれぞれ配置される熱電発電装置と、前記第1の流路を流れる第1の流体を、前記第1の流体の圧力、もしくは高低差を利用して前記第1の流路に供給する第1の供給路と、前記第2の流路を流れる、前記第1の流体より温度が低い第2の流体を、高低差を利用して前記第2の流路に供給する第2供給路とを具備する。   The thermoelectric power generation system according to the embodiment includes a thermoelectric conversion module that generates power based on a temperature difference between both surfaces, and a first flow path and a second flow path that allow fluids having different temperatures to flow on both surfaces of the thermoelectric conversion module are provided. A first thermoelectric generator and a first fluid that flows through the first flow path are supplied to the first flow path using a pressure or height difference of the first fluid. A supply path; and a second supply path for supplying a second fluid flowing through the second flow path and having a temperature lower than that of the first fluid to the second flow path using a height difference. To do.

本発明の一実施形態に係る熱電発電システムの概略構成を示す概念図。The conceptual diagram which shows schematic structure of the thermoelectric power generation system which concerns on one Embodiment of this invention. 高温チャンバーと低温チャンバーとの間に設けられる複数の熱電変換モジュールの配置の一例を示す図。The figure which shows an example of arrangement | positioning of the several thermoelectric conversion module provided between a high temperature chamber and a low temperature chamber. 熱電発電装置を温泉地の温泉旅館近傍に設置した場合の熱電発電システムの概略構成の一例を示す図。The figure which shows an example of schematic structure of the thermoelectric power generation system at the time of installing a thermoelectric power generation apparatus in the hot spring inn vicinity of a hot spring area. 図3とは異なる熱電発電システムの概略構成の別の例を示す図。The figure which shows another example of schematic structure of the thermoelectric power generation system different from FIG. 第2の実施形態に係る熱電発電装置が適用される設備の概略構成の一例を示す図。The figure which shows an example of schematic structure of the installation with which the thermoelectric generator which concerns on 2nd Embodiment is applied. タービンの排気蒸気の流路に配置される熱電発電装置の構成例を示す図。The figure which shows the structural example of the thermoelectric power generator arrange | positioned in the flow path of the exhaust steam of a turbine. 余熱利用施設内に配置される熱電発電装置の構成例を示す図。The figure which shows the structural example of the thermoelectric power generating apparatus arrange | positioned in a residual heat utilization facility. 第3の実施形態に係る熱電発電装置が適用される設備の概略構成の一例を示す図。The figure which shows an example of schematic structure of the installation with which the thermoelectric generator which concerns on 3rd Embodiment is applied.

以下、図面を参照して、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施形態)
図1〜図4を参照して、第1の実施形態について説明する。
(First embodiment)
The first embodiment will be described with reference to FIGS.

図1は、第1の実施形態に係る熱電発電システムの概略構成を示す概念図である。   FIG. 1 is a conceptual diagram showing a schematic configuration of a thermoelectric power generation system according to the first embodiment.

第1の実施形態に係る熱電発電システムは、例えば温泉地など、熱電発電に好適な熱流体を得られる場所に設置されるものであり、基本的な要素として熱電発電装置1、切替装置2、および制御装置3を有する。制御装置3には、熱電発電システムから出力される電力を使用する機器として、例えばテレビ装置4、照明機器5、表示装置6などが接続される。   The thermoelectric power generation system according to the first embodiment is installed in a place where a thermal fluid suitable for thermoelectric power generation can be obtained, such as a hot spring area, and the thermoelectric power generation device 1, the switching device 2, And a control device 3. For example, a television device 4, a lighting device 5, and a display device 6 are connected to the control device 3 as devices that use power output from the thermoelectric power generation system.

熱電発電装置1は、高温熱流体を流す直方体形の高温チャンバー(チャンバー型流路)11Aと低温熱流体を流す直方体形の低温チャンバー(チャンバー型流路)11Bとを交互に複数台配置し、熱電変換モジュール収納部(スロット)12に収納される熱電変換モジュール(図示せず)を隣接するチャンバー間にそれぞれ挟んだ構造を有する。外気温に触れる面積の大きい最外側には、低温チャンバー11Bが配置される。   The thermoelectric generator 1 has a plurality of rectangular parallelepiped high-temperature chambers (chamber-type flow paths) 11A that flow high-temperature thermal fluid and rectangular parallelepiped low-temperature chambers (chamber-type flow paths) 11B that flow low-temperature thermal fluid alternately. A thermoelectric conversion module (not shown) housed in a thermoelectric conversion module housing portion (slot) 12 is sandwiched between adjacent chambers. The low temperature chamber 11B is disposed on the outermost side having a large area in contact with the outside air temperature.

なお、本例では、複数のチャンバーを水平方向に複数台設置しているが、さらに鉛直方向にも複数台設置するようにしてもよい。その場合、設置面積あたりの出力と発電量を増加させることができる。また、本例では、熱流体が水平方向に流れるように各チャンバーを設置しているが、熱流体が鉛直方向もしく一定の勾配をもって流れるように設置するようにしてもよい。その場合、設置面積をさらに小さくすることができる。   In this example, a plurality of chambers are installed in the horizontal direction, but a plurality of chambers may also be installed in the vertical direction. In that case, the output per installed area and the power generation amount can be increased. In this example, each chamber is installed so that the thermal fluid flows in the horizontal direction, but the thermal fluid may be installed so as to flow in the vertical direction or with a certain gradient. In that case, the installation area can be further reduced.

図1中の矢印は、熱電発電装置1内を流れる熱流体の流れの向きを示している。図1から分るように、高温チャンバー11A内を高温熱流体が流れる方向と、低温チャンバー11B内を低温熱流体が流れる方向とは、対向流を成している。   The arrows in FIG. 1 indicate the direction of the flow of the thermal fluid flowing in the thermoelectric generator 1. As can be seen from FIG. 1, the direction in which the high temperature thermal fluid flows in the high temperature chamber 11A and the direction in which the low temperature thermal fluid flows in the low temperature chamber 11B form an opposing flow.

高温チャンバー11Aの片方の端部下側には、高温熱流体を取り込むための配管31Aが設けられ、高温チャンバー11Aのもう片方の端部上側には、高温熱流体を排出するための配管41Aが設けられる。一方、低温チャンバー11Bの片方の端部下側には、低温熱流体を取り込むための配管31Bが設けられ、低温チャンバー11Bのもう片方の端部上側には、低温熱流体を排出するための配管41Bが設けられる。   A pipe 31A for taking in high-temperature hot fluid is provided below one end of the high-temperature chamber 11A, and a pipe 41A for discharging high-temperature hot fluid is provided above the other end of the high-temperature chamber 11A. It is done. On the other hand, a pipe 31B for taking in the low temperature thermal fluid is provided below one end of the low temperature chamber 11B, and a pipe 41B for discharging the low temperature thermal fluid is provided above the other end of the low temperature chamber 11B. Is provided.

このようにすると、各チャンバー内の熱流体が常に満杯の状態となるため、発電性能を向上させることができる。また、隣接するチャンバー内の熱流体の流れが対向流を構成していることから、熱電変換モジュールの両面の温度差が熱流体の供給側から排出側まで長手方向で極力均一になるようにすることができ、発電性能を向上させることができる。   If it does in this way, since the thermal fluid in each chamber will always be in a full state, power generation performance can be improved. In addition, since the flow of the thermal fluid in the adjacent chamber constitutes a counter flow, the temperature difference between both surfaces of the thermoelectric conversion module is made as uniform as possible in the longitudinal direction from the supply side to the discharge side of the thermal fluid. Power generation performance can be improved.

切替装置2は、所望の電流および電圧が得られるように熱電変換モジュールの各々を電気的に直列接続および並列接続する組合せの切り替えを行うためのリレー回路である。直接接続する熱電変換モジュールの数と並列接続する熱電変換モジュールの数とを切り替えることにより、出力される電流および電圧を変更することができる。   The switching device 2 is a relay circuit for switching the combination of electrically connecting the thermoelectric conversion modules in series and in parallel so that a desired current and voltage can be obtained. By switching the number of thermoelectric conversion modules directly connected and the number of thermoelectric conversion modules connected in parallel, the output current and voltage can be changed.

制御装置3は、切替装置2を通じて得られる電力の蓄電および直流/交流変換を行うための制御盤である。この制御装置3は、蓄電装置としてのバッテリや、バッテリに対する電力の充放電の制御を行うチャージコントローラ、直流から交流への変換を行うインバータなどを備えている。制御装置3の出力は、例えばテレビ装置4、照明機器5、表示装置6などの負荷に供給される。   The control device 3 is a control panel for storing electric power obtained through the switching device 2 and performing DC / AC conversion. The control device 3 includes a battery as a power storage device, a charge controller that controls charging / discharging of electric power to the battery, an inverter that performs conversion from direct current to alternating current, and the like. The output of the control device 3 is supplied to loads such as the television device 4, the lighting device 5, and the display device 6, for example.

このような構成により、熱電発電システムは、独立した電源として現場の照明や機器へ電力供給したり、停電時に備えたバックアップ電源への蓄電を行ったりする用途に用いることが可能となる。   With such a configuration, the thermoelectric power generation system can be used for applications such as supplying power to on-site lighting and equipment as an independent power source, or storing power to a backup power source in case of a power failure.

なお、第1の実施形態に係る熱電発電装置1の構成は、図1に示した構成に限らず、後述する第2の実施形態や第3の実施形態に示される構成であってもよい。   The configuration of the thermoelectric generator 1 according to the first embodiment is not limited to the configuration illustrated in FIG. 1, and may be a configuration illustrated in a second embodiment or a third embodiment described later.

図2は、高温チャンバー11Aと低温チャンバー11Bとの間に設けられる複数の熱電変換モジュールの配置の一例を示す図である。   FIG. 2 is a diagram illustrating an example of an arrangement of a plurality of thermoelectric conversion modules provided between the high temperature chamber 11A and the low temperature chamber 11B.

図2に示されるように、高温チャンバー11Aおよび低温チャンバー11Bの壁面には、複数の熱電変換モジュール13が所定の間隔で貼り付けられている。   As shown in FIG. 2, a plurality of thermoelectric conversion modules 13 are affixed to the wall surfaces of the high temperature chamber 11A and the low temperature chamber 11B at a predetermined interval.

熱電変換モジュール13は、配線14により、例えばチャンバー長手方向へ電気的に直列接続される。なお、直列接続される熱電変換モジュール13の個数は、所望の電圧が得られるよう事前に決定される。そして、直列接続される熱電変換モジュールの個数(占有長さ)とチャンバーの長さの関係で、1段当たりの直列回路数が決まる。配線14の4つの端部は切替装置2側のそれぞれの接点につながれ、切替装置2側での接点の操作により直接接続する熱電変換モジュールの数と並列接続する熱電変換モジュールの数とが決定される。図2の例では、切替装置2側につながれる配線14の端部が4つとなっているが、4つ以外の数となるように構成してもよい。   The thermoelectric conversion module 13 is electrically connected in series in the longitudinal direction of the chamber, for example, by the wiring 14. The number of thermoelectric conversion modules 13 connected in series is determined in advance so as to obtain a desired voltage. The number of series circuits per stage is determined by the relationship between the number of thermoelectric conversion modules connected in series (occupied length) and the length of the chamber. The four ends of the wiring 14 are connected to respective contacts on the switching device 2 side, and the number of thermoelectric conversion modules directly connected and the number of thermoelectric conversion modules connected in parallel are determined by operating the contacts on the switching device 2 side. The In the example of FIG. 2, there are four ends of the wiring 14 connected to the switching device 2 side, but it may be configured to have a number other than four.

また、図2の例では、熱電変換モジュール13の配列を2段としているが、段数は1段でも3段以上としてもよい。また、図2の例では、上段の熱電変換モジュール13と下段の熱電変換モジュール13とを電気的に分離させて2つの直列接続を構成しているが、分離させずに、上段と下段とを合わせて1つの直列接続を構成してもよい。また、図2の例では、チャンバー長手方向に隣接する熱電変換モジュール同士が接続されているが、上段と下段の隣接する熱電変換モジュール同士が接続される構成が含まれていてもよい。   In the example of FIG. 2, the arrangement of the thermoelectric conversion modules 13 is two, but the number of stages may be one or three or more. In the example of FIG. 2, the upper thermoelectric conversion module 13 and the lower thermoelectric conversion module 13 are electrically separated to form two series connections, but without separating the upper and lower stages. In combination, one series connection may be configured. In the example of FIG. 2, the thermoelectric conversion modules adjacent in the chamber longitudinal direction are connected to each other, but a configuration in which the upper and lower adjacent thermoelectric conversion modules are connected may be included.

図3は、熱電発電装置1を温泉地の温泉旅館近傍に設置した場合の熱電発電システムの概略構成の一例を示す図である。   FIG. 3 is a diagram illustrating an example of a schematic configuration of a thermoelectric power generation system when the thermoelectric power generation device 1 is installed in the vicinity of a hot spring inn in a hot spring area.

熱電発電装置1は、温熱源(源泉)50Aや冷熱源(山水、河川水、ダム貯水など)50Bよりも低い位置に、旅館の温泉タンク又は浴槽53Aや貯水槽53Bよりも高い位置に設置される。すなわち、本実施形態では、温泉の湧出力(圧力)や高低差(位置エネルギーの差)を利用することにより、ポンプ等の補機類を新設することなく、熱流体が重力によって熱電発電装置1に供給され、かつ、当該熱電発電装置1から排出されるように構成されている。   The thermoelectric generator 1 is installed at a position lower than the hot heat source (source) 50A and the cold heat source (mountain water, river water, dam water storage, etc.) 50B, and higher than the hot spring tank or bathtub 53A or water storage tank 53B of the inn. The That is, in this embodiment, the thermal fluid is generated by gravity by using the spring output (pressure) and the height difference (positional energy difference) of the hot spring without the need for newly installing auxiliary equipment such as a pump. And is discharged from the thermoelectric generator 1.

温熱源50Aからは高温熱流体である温泉水が流路(供給路)51Aを通じて配管31Aから熱電発電装置1に入り、熱交換を行った後、配管41Aから出て、流路(排出路)52Aを通じて温泉タンク又は浴槽53Aへ送られる。一方、冷熱源50Bからは低温熱流体である水が流路(供給路)51Bを通じて配管31Bから熱電発電装置1に入り、熱交換を行った後、配管41Bから出て、流路(排出路)52Bを通じて貯水槽53Bへ送られる。   Hot spring water, which is a high-temperature thermal fluid, enters the thermoelectric generator 1 from the pipe 31A through the flow path (supply path) 51A from the heat source 50A, and after exchanging heat, exits from the pipe 41A and flows into the flow path (discharge path). It is sent to hot spring tank or bathtub 53A through 52A. On the other hand, from the cold heat source 50B, water, which is a low-temperature thermal fluid, enters the thermoelectric generator 1 from the pipe 31B through the flow path (supply path) 51B and performs heat exchange, and then exits from the pipe 41B and flows through the flow path (discharge path). ) It is sent to the water storage tank 53B through 52B.

このように構成することにより、ポンプ等の補機類を新設しなくても、温泉の湧出力(圧力)や高低差(位置エネルギーの差)により、温泉水や山水を継続的に熱電発電装置1に供給し、かつ、熱電発電装置1から排出させることができる。また、旅館において停電により商用電源が使用できないときでも、熱電発電装置1から常に発電される電力を使用することができる。   By configuring in this way, even without installing auxiliary equipment such as pumps, the hot spring water and mountain water can be continuously generated by the hot spring water (pressure) and elevation difference (positional energy difference). 1 and can be discharged from the thermoelectric generator 1. Moreover, even when a commercial power source cannot be used due to a power outage at a ryokan, the electric power generated from the thermoelectric generator 1 can always be used.

図4は、図3とは異なる熱電発電システムの概略構成の別の例を示す図である。   FIG. 4 is a diagram illustrating another example of a schematic configuration of a thermoelectric power generation system different from that in FIG. 3.

図4の熱電発電システムは、高温熱流体を供給する部分の形態が図3の熱電発電システムと異なる。図4の熱電発電システムでは、温熱源(例えば100℃以上の蒸気泉)54Aから噴出する温泉ガスが熱交換器55Aへ送られて熱変換が行われ、新たな温熱源(温泉水等)56Aとして流路51Aに供給される。温熱源56Aは、温熱源54Aからの温泉ガスを凝縮して得られる温泉水でもよいが、当該温泉ガスと熱交換して温熱を得る別の水であってもよい。   The thermoelectric power generation system shown in FIG. 4 is different from the thermoelectric power generation system shown in FIG. In the thermoelectric power generation system of FIG. 4, hot spring gas ejected from a thermal source (for example, a steam spring of 100 ° C. or higher) 54A is sent to the heat exchanger 55A to perform heat conversion, and a new thermal source (hot spring water, etc.) 56A. Is supplied to the flow path 51A. The hot heat source 56A may be hot spring water obtained by condensing the hot spring gas from the hot heat source 54A, or may be other water that exchanges heat with the hot spring gas and obtains heat.

一方で、温熱源(例えば100℃以上の蒸気泉)54Aから噴出する温泉ガスそのものも、噴出力を利用して流路57Aを通じて流路51Aに供給され、温泉水等と混合される。流路51Aは、温泉ガスを温泉水又は熱交換水に混合させたものを熱電発電装置1に供給する。   On the other hand, the hot spring gas itself ejected from a heat source (for example, a steam spring of 100 ° C. or higher) 54A is also supplied to the flow path 51A through the flow path 57A using the jet power and mixed with hot spring water or the like. The channel 51A supplies the thermoelectric generator 1 with a mixture of hot spring gas and hot spring water or heat exchange water.

このように構成することにより、温泉水が湧出する源泉が無くても蒸気泉があれば、図3の熱電発電システムと同様の効果を得ることができる。また、温泉水に温泉ガスを混合させることにより、熱流体の体積が増し、流路51Aを流れる熱流体の圧力が増大し、流量が増加するため、発電効率を一層向上させることができる。   By configuring in this manner, even if there is no source from which hot spring water comes out, if there is a steam spring, the same effect as the thermoelectric power generation system of FIG. 3 can be obtained. Moreover, by mixing the hot spring gas with the hot spring water, the volume of the thermal fluid increases, the pressure of the thermal fluid flowing through the flow path 51A increases, and the flow rate increases, so that the power generation efficiency can be further improved.

なお、図4の例では、温泉ガスを温泉水又は熱交換水に混合させたものを熱電発電装置1に供給する場合を例示したが、熱交換器55Aや温熱源(温泉水等)56Aを用いずに、温熱源(例えば100℃以上の蒸気泉)54Aから噴出する温泉ガスのみを、その噴出力を利用して流路51Aを通じて熱電発電装置1に供給するようにしてもよい。   In the example of FIG. 4, the case where the hot spring gas mixed with the hot spring water or heat exchange water is supplied to the thermoelectric generator 1, but the heat exchanger 55 </ b> A and the heat source (hot spring water, etc.) 56 </ b> A are connected. You may make it supply only the hot spring gas which ejects from the thermal-heat source (for example, 100 degreeC or more steam spring) 54A to the thermoelectric generator 1 through the flow path 51A using the jet power, without using.

また、熱交換機55Aとして、熱電発電装置1と同様な別の熱電発電装置を設けるようにしてもよい。この場合、この熱電発電装置からも電力を得ることができ、システム全体のエネルギー効率を高めることができる。   Further, as the heat exchanger 55A, another thermoelectric generator similar to the thermoelectric generator 1 may be provided. In this case, electric power can also be obtained from the thermoelectric generator, and the energy efficiency of the entire system can be increased.

また、冷熱源50Bを、山水を最初に貯める主貯水槽とし、貯水槽53Bを、主貯水槽よりも低い位置で当該主貯水槽から流れてくる水を受けて貯める複数の中間貯水槽のうちの1つとして構成してもよい。この場合、流路51B−熱電発電装置1−流路52Bの経路は、主貯水槽と中間貯水槽とを結ぶ流路の一部を利用した構成となる。なお、熱電発電装置1は、主貯水槽と中間貯水槽とを結ぶ流路の間に設けられる限り、中間貯水槽よりも低い位置に設置されていても、位置エネルギーの関係により水は熱電発電装置1から中間貯水槽へと難なく届く。   Further, the cold heat source 50B is a main water tank that first stores mountain water, and the water tank 53B is a plurality of intermediate water tanks that receive and store water flowing from the main water tank at a position lower than the main water tank. You may comprise as one of these. In this case, the path of the flow path 51B-thermoelectric generator 1-flow path 52B is configured using a part of the flow path connecting the main water storage tank and the intermediate water storage tank. As long as the thermoelectric generator 1 is provided between the flow paths connecting the main water storage tank and the intermediate water storage tank, the thermoelectric power generation apparatus 1 is connected to the thermoelectric power generation due to potential energy even if it is installed at a position lower than the intermediate water storage tank. It reaches without difficulty from the device 1 to the intermediate water tank.

第1の実施形態によれば、ポンプ等の補機類を新設しなくても、温泉水の湧出力や温泉ガスの噴出力、高低差(位置エネルギーの差)などを利用することにより、温泉水や山水を継続的に熱電発電装置1に供給し、かつ、熱電発電装置1から排出させることができ、発電効率を向上させることができる。また、旅館において停電により商用電源が使用できないときでも、熱電発電装置1から常に発電される電力を使用することができる。   According to the first embodiment, a hot spring can be obtained by utilizing the spring output of hot spring water, the jet output of hot spring gas, the height difference (difference in potential energy), etc. without newly installing auxiliary equipment such as a pump. Water or mountain water can be continuously supplied to the thermoelectric generator 1 and discharged from the thermoelectric generator 1, thereby improving the power generation efficiency. Moreover, even when a commercial power source cannot be used due to a power outage at a ryokan, the electric power generated from the thermoelectric generator 1 can always be used.

(第2の実施形態)
図5〜図7を参照して、第2の実施形態について説明する。
(Second Embodiment)
The second embodiment will be described with reference to FIGS.

図5は、第2の実施形態に係る熱電発電装置が適用される設備の概略構成の一例を示す図である。   FIG. 5 is a diagram illustrating an example of a schematic configuration of equipment to which the thermoelectric power generation device according to the second embodiment is applied.

第2の実施形態に係る熱電発電装置1は、例えば清掃工場において熱電発電に好適な熱流体を得られる場所に設けられる。なお、第2の実施形態に係る熱電発電装置1の構成は、図1に示した構成に限らず、後述する別の構成であってもよい。   The thermoelectric generator 1 according to the second embodiment is provided in a place where a thermal fluid suitable for thermoelectric generation can be obtained, for example, in a cleaning factory. In addition, the structure of the thermoelectric generator 1 which concerns on 2nd Embodiment is not restricted to the structure shown in FIG. 1, The another structure mentioned later may be sufficient.

図5の例では、ごみピット60Aから適量のごみが焼却炉60Bに搬入されて焼却されると、ボイラー61の水から蒸気が発生し、発生した蒸気が蒸気ヘッダ62へ供給される。蒸気ヘッダ62からは、発電機Gを駆動するタービン63等へと蒸気が供給され、タービン63等に使用されない余剰蒸気は余熱利用施設64へ供給される。   In the example of FIG. 5, when an appropriate amount of waste is carried from the waste pit 60 </ b> A into the incinerator 60 </ b> B and incinerated, steam is generated from the water in the boiler 61, and the generated steam is supplied to the steam header 62. Steam is supplied from the steam header 62 to the turbine 63 or the like that drives the generator G, and surplus steam that is not used in the turbine 63 or the like is supplied to the remaining heat utilization facility 64.

ここで、余熱利用施設64内に熱電発電装置1が配置されていてもよい。この場合、熱電発電装置1の高温熱流体用の流路(図示せず)は、タービン63等に使用されない余剰蒸気が流れる余熱利用施設64内の流路64Aの一部を利用した形態をとる。なお、熱電発電装置1の低温熱流体用の流路(図示せず)は、空気もしくは水を流す構造を有するものとする。   Here, the thermoelectric generator 1 may be arranged in the remaining heat utilization facility 64. In this case, the flow path (not shown) for the high-temperature thermal fluid of the thermoelectric generator 1 takes a form using a part of the flow path 64A in the surplus heat utilization facility 64 through which surplus steam not used in the turbine 63 or the like flows. . In addition, the flow path (not shown) for the low-temperature thermal fluid of the thermoelectric generator 1 is assumed to have a structure for flowing air or water.

タービン63に供給される蒸気は、タービン63に動力を与えた後、排出され、復水器65(高圧コンデンサなど)へと供給される。   The steam supplied to the turbine 63 is discharged after being powered to the turbine 63 and supplied to a condenser 65 (such as a high-pressure condenser).

ここで、タービン63の駆動に使用された後の排気蒸気が流れる流路、例えばタービン63からの排気蒸気が復水器65へ供給される流路63A(パイプなど)に、熱電発電装置1が配置されていてもよい。この場合、熱電発電装置1の高温熱流体用の流路(図示せず)は、流路63Aの一部を利用した形態をとる。なお、熱電発電装置1の低温熱流体用の流路(図示せず)は、空気もしくは水を流す構造を有するものとする。   Here, the thermoelectric generator 1 is placed in a flow path in which exhaust steam after being used to drive the turbine 63 flows, for example, a flow path 63A (pipe or the like) in which exhaust steam from the turbine 63 is supplied to the condenser 65. It may be arranged. In this case, the flow path (not shown) for the high-temperature thermal fluid of the thermoelectric generator 1 takes a form using a part of the flow path 63A. In addition, the flow path (not shown) for the low-temperature thermal fluid of the thermoelectric generator 1 is assumed to have a structure for flowing air or water.

熱電発電装置1を通過した蒸気は、復水器65で水に戻されて、復水タンク66に溜り、適量の水が給水タンク67からボイラー61へ供給される。   The steam that has passed through the thermoelectric generator 1 is returned to water by the condenser 65, accumulated in the condensate tank 66, and an appropriate amount of water is supplied from the water supply tank 67 to the boiler 61.

ここで、流路63Aに熱電発電装置1を配置する代わりに(あるいは、流路63Aに熱電発電装置1を配置すると共に)、復水器65から復水タンク66に温水が流れる流路65A(パイプなど)に熱電発電装置1(図示せず)を配置するようにしてもよい。この場合、熱電発電装置1の高温熱流体用の流路(図示せず)は、流路65Aの一部を利用した形態をとる。なお、熱電発電装置1の低温熱流体用の流路(図示せず)は、空気もしくは水を流す構造を有するものとする。   Here, instead of disposing the thermoelectric power generator 1 in the flow path 63A (or arranging the thermoelectric power generation apparatus 1 in the flow path 63A), a flow path 65A in which hot water flows from the condenser 65 to the condensate tank 66 ( A thermoelectric generator 1 (not shown) may be disposed on a pipe or the like. In this case, the flow path (not shown) for the high-temperature thermal fluid of the thermoelectric generator 1 takes a form using a part of the flow path 65A. In addition, the flow path (not shown) for the low-temperature thermal fluid of the thermoelectric generator 1 is assumed to have a structure for flowing air or water.

図6は、流路63Aもしくは流路65A(パイプなど)に配置される熱電発電装置1の構成例を示す図である。   FIG. 6 is a diagram illustrating a configuration example of the thermoelectric generator 1 arranged in the flow path 63A or the flow path 65A (pipe or the like).

熱電発電装置1は、低温熱流体として大気(空気)を用いる空冷式として構成してもよいし、水を用いる水冷式として構成してもよい。   The thermoelectric generator 1 may be configured as an air-cooled type that uses the atmosphere (air) as a low-temperature thermal fluid, or may be configured as a water-cooled type that uses water.

空冷式の場合、熱電発電装置1を構成する熱電変換モジュール13の両面のうち、片方の面は、高温の蒸気が流れる流路63Aもしくは流路65Aの表面に貼り付けられ、もう片方の面は、空冷フィン71を備えた熱伝導材などに貼り付けられる。   In the case of the air cooling type, one of the two surfaces of the thermoelectric conversion module 13 constituting the thermoelectric generator 1 is attached to the surface of the flow path 63A or the flow path 65A through which high-temperature steam flows, and the other surface is It is affixed to a heat conductive material provided with air-cooling fins 71.

水冷式の場合、熱電発電装置1を構成する熱電変換モジュール13の両面のうち、片方の面は、高温の蒸気が流れる流路63Aもしくは流路65Aの表面に貼り付けられ、もう片方の面は、施設内で使用される冷却水を取り込む導入口72を備えた配管などに貼り付けられる。   In the case of the water-cooled type, one of the two surfaces of the thermoelectric conversion module 13 constituting the thermoelectric generator 1 is attached to the surface of the flow path 63A or the flow path 65A through which high-temperature steam flows, and the other surface is It is affixed to piping provided with an inlet 72 for taking in cooling water used in the facility.

図7は、余熱利用施設64内に配置される熱電発電装置1の構成例を示す図である。   FIG. 7 is a diagram illustrating a configuration example of the thermoelectric generator 1 arranged in the residual heat utilization facility 64.

熱電発電装置1は、例えば余熱利用施設64内の通路の脇に配置される。熱電発電装置1は、例えば図1に示したような構成を有し、高低差(位置エネルギーの差)を利用することにより、ポンプ等の補機類を新設することなく、熱流体が重力によって熱電発電装置1に供給され、かつ、当該熱電発電装置1から排出されるように構成されている。   The thermoelectric generator 1 is arranged beside a passage in the residual heat utilization facility 64, for example. The thermoelectric generator 1 has a configuration as shown in FIG. 1, for example, and by utilizing the difference in height (difference in potential energy), the thermal fluid is generated by gravity without newly installing auxiliary equipment such as a pump. It is configured to be supplied to the thermoelectric generator 1 and discharged from the thermoelectric generator 1.

図7の例では、余剰蒸気は余熱利用施設64内のコンプレッサ室80に設置されているボイラー用ブロータンク80Aに溜められる。ここで蒸気が水になった後は、そのまま排水ピット83Aに廃棄されるのではなく、高低差を利用して、流路81Aを通じて熱電発電装置1に入り、熱交換をした後、再び高低差を利用して、熱電発電装置1から流路82Aを通じて排水ピット83Aへ送られる。   In the example of FIG. 7, the surplus steam is stored in a boiler blow tank 80 </ b> A installed in the compressor chamber 80 in the surplus heat utilization facility 64. Here, after the steam becomes water, it is not discarded as it is in the drain pit 83A, but enters the thermoelectric generator 1 through the flow path 81A using the height difference, exchanges heat, and then returns to the height difference again. Is sent from the thermoelectric generator 1 to the drain pit 83A through the flow path 82A.

一方、この施設では冷水(井戸水)を場内で利用するために循環しており、冷水取出口80Bから冷水を取り出せるようになっている。冷水取出口80Bから取り出された冷水は、高低差を利用して、流路81Bを通じて熱電発電装置1に入り、熱交換をした後、再び高低差を利用して、熱電発電装置1から流路82Bを通じてマンホール83Bへ送られる。   On the other hand, in this facility, cold water (well water) is circulated for use in the field, and cold water can be taken out from the cold water outlet 80B. The cold water taken out from the cold water outlet 80B enters the thermoelectric generator 1 through the flow path 81B using the height difference, and after exchanging heat, the flow from the thermoelectric generator 1 is again utilized using the height difference. It is sent to the manhole 83B through 82B.

第2の実施形態によれば、清掃工場などの施設に設置されている既存の設備を利用することにより、ポンプ等の補機類を新設しなくても、高低差により高温熱流体や低温熱流体を継続的に熱電発電装置1に供給し、かつ、熱電発電装置1から排出させることができ、発電効率を向上させることができる。   According to the second embodiment, by using existing equipment installed in a facility such as a cleaning factory, a high temperature heat fluid or low temperature heat can be generated depending on the height difference without newly installing auxiliary equipment such as a pump. The fluid can be continuously supplied to the thermoelectric power generator 1 and discharged from the thermoelectric power generator 1, so that the power generation efficiency can be improved.

(第3の実施形態)
図8を参照して、第3の実施形態について説明する。
(Third embodiment)
A third embodiment will be described with reference to FIG.

図8は、第3の実施形態に係る熱電発電装置が適用される設備の概略構成の一例を示す図である。   FIG. 8 is a diagram illustrating an example of a schematic configuration of equipment to which the thermoelectric power generation device according to the third embodiment is applied.

第3の実施形態に係る熱電発電装置1は、例えば発酵槽で原料から発酵ガスを発生させるバイオガスプラントなどの施設において熱電発電に好適な熱流体を得られる場所に設けられる。この場合、熱電発電装置1の高温熱流体用の流路(図示せず)は、発酵ガスが流れる流路の一部を利用した形態をとる。なお、熱電発電装置1の低温熱流体用の流路(図示せず)は、空気もしくは水を流す構造を有するものとする。   The thermoelectric generator 1 according to the third embodiment is provided in a place where a thermal fluid suitable for thermoelectric power generation can be obtained in a facility such as a biogas plant that generates fermentation gas from raw materials in a fermenter, for example. In this case, the flow path (not shown) for the high-temperature thermal fluid of the thermoelectric generator 1 takes a form using a part of the flow path through which the fermentation gas flows. In addition, the flow path (not shown) for the low-temperature thermal fluid of the thermoelectric generator 1 is assumed to have a structure for flowing air or water.

図8の例では、発酵槽90で発酵する発酵ガスは、ブロワーBにより流路91を通じて高温熱流体として熱電発電装置1へ送り込まれ、熱交換を行った後、脱臭槽92へ供給された後、外部へ排出される。   In the example of FIG. 8, the fermentation gas fermented in the fermenter 90 is sent to the thermoelectric generator 1 as a high-temperature thermal fluid through the flow path 91 by the blower B, and after heat exchange, the fermented gas is supplied to the deodorization tank 92. , Discharged outside.

熱電発電装置1は、低温熱流体として大気(空気)を用いる空冷式として構成してもよいし、水を用いる水冷式として構成してもよい。空冷式の場合、熱電発電装置1は、流路91と繋がった円筒状の筒体を有し、その周囲に熱電変換モジュール13を備える。図8に示されるように熱電変換モジュール13の片方の面は、高温の蒸気が流れる流路91と繋がった筒体の表面に取り付けられ、もう片方の面には、空冷フィン93を備えた熱伝導材などが取り付けられる。   The thermoelectric generator 1 may be configured as an air-cooled type that uses the atmosphere (air) as a low-temperature thermal fluid, or may be configured as a water-cooled type that uses water. In the case of the air cooling type, the thermoelectric generator 1 has a cylindrical tube connected to the flow path 91, and includes the thermoelectric conversion module 13 around it. As shown in FIG. 8, one surface of the thermoelectric conversion module 13 is attached to the surface of a cylinder connected to the flow path 91 through which high-temperature steam flows, and the other surface is a heat provided with air cooling fins 93. Conductive material is attached.

第3の実施形態によれば、バイオガスプラントなどの施設に設置されている既存の設備を利用することにより、追加の補機類を新設しなくても、高温熱流体や低温熱流体を継続的に熱電発電装置1に供給し、かつ、熱電発電装置1から排出させることができ、発電効率を向上させることができる。   According to the third embodiment, by using existing equipment installed in a facility such as a biogas plant, high-temperature hot fluid and low-temperature hot fluid can be continued without installing additional auxiliary equipment. Therefore, the heat can be supplied to the thermoelectric generator 1 and discharged from the thermoelectric generator 1, and the power generation efficiency can be improved.

上述した各実施形態によれば、熱電発電装置の発電効率を高めることが可能となる。   According to each embodiment mentioned above, it becomes possible to raise the power generation efficiency of a thermoelectric power generator.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…熱電発電装置、2…切替装置、3…制御装置、4…テレビ装置、5…照明機器、6…表示装置、11A…高温チャンバー、11B…低温チャンバー、12…熱電変換モジュール収納部(スロット)、13…熱電変換モジュール、14…配線、31A,31B,41A,41B…配管、50A…温熱源、50B…冷熱源、51A,51B…流路(供給路)、52A,52B…流路(排出路)、53A…温泉タンク又は浴槽、53B…貯水槽、54A,56A…温熱源、55A…熱交換器、57…流路、60A…ごみピット、60B…焼却炉、61…ボイラー、62…蒸気ヘッダ、63…タービン、63A…流路、64…余熱利用施設、64A…流路、65…復水器、65A…流路、66…復水タンク、67…給水タンク、71…空冷フィン、72…導入口、80…コンプレッサ室、80A…ボイラー用ブロータンク、81A,81B,82A,82B…流路、83A…排水ピット、83B…マンホール、90…発酵槽、91…流路、92…脱臭槽、93…空冷フィン、B…ブロワー、G…発電機。   DESCRIPTION OF SYMBOLS 1 ... Thermoelectric power generation apparatus, 2 ... Switching apparatus, 3 ... Control apparatus, 4 ... Television apparatus, 5 ... Illumination equipment, 6 ... Display apparatus, 11A ... High temperature chamber, 11B ... Low temperature chamber, 12 ... Thermoelectric conversion module storage part (slot ), 13 ... thermoelectric conversion module, 14 ... wiring, 31A, 31B, 41A, 41B ... piping, 50A ... heat source, 50B ... cold heat source, 51A, 51B ... flow path (supply path), 52A, 52B ... flow path ( Discharge path), 53A ... hot spring tank or bathtub, 53B ... water tank, 54A, 56A ... heat source, 55A ... heat exchanger, 57 ... flow path, 60A ... garbage pit, 60B ... incinerator, 61 ... boiler, 62 ... Steam header, 63 ... turbine, 63A ... flow path, 64 ... residual heat utilization facility, 64A ... flow path, 65 ... condenser, 65A ... flow path, 66 ... condensate tank, 67 ... feed tank, 71 ... air cooling fin 72 ... Inlet port, 80 ... Compressor chamber, 80A ... Blow tank for boiler, 81A, 81B, 82A, 82B ... Channel, 83A ... Drain pit, 83B ... Manhole, 90 ... Fermenter, 91 ... Channel, 92 ... Deodorized Tank, 93 ... Air-cooled fin, B ... Blower, G ... Generator.

Claims (10)

両面の温度差により発電する熱電変換モジュールを備え、前記熱電変換モジュールの両面の各々に温度が互いに異なる流体を流す第1の流路と第2の流路とがそれぞれ配置される熱電発電装置と、
前記第1の流路を流れる第1の流体を、前記第1の流体の圧力、もしくは高低差を利用して前記第1の流路に供給する第1の供給路と、
前記第2の流路を流れる、前記第1の流体より温度が低い第2の流体を、高低差を利用して前記第2の流路に供給する第2供給路と
を具備することを特徴とする熱電発電システム。
A thermoelectric generator that includes a thermoelectric conversion module that generates electricity based on a temperature difference between the two surfaces, and a first flow path and a second flow path through which fluids having different temperatures are flowed on both surfaces of the thermoelectric conversion module; ,
A first supply path for supplying the first fluid flowing through the first flow path to the first flow path using the pressure or height difference of the first fluid;
A second supply path for supplying a second fluid flowing through the second flow path and having a temperature lower than that of the first fluid to the second flow path using a height difference. And thermoelectric power generation system.
前記第1の流体は、温泉ガス、温泉水、及び、温泉ガス又は温泉水と熱交換した熱交換水のうちの少なくともいずれか1つであり、
前記第1の流体の圧力は、温泉の噴出力、湧出力であり、
前記第2の流体は、山水、河川水、もしくは貯水であることを特徴とする請求項1に記載の熱電発電システム。
The first fluid is at least one of hot spring gas, hot spring water, and heat exchange water exchanged with hot spring gas or hot spring water,
The pressure of the first fluid is a hot spring jet output, a spring output,
The thermoelectric power generation system according to claim 1, wherein the second fluid is mountain water, river water, or water storage.
前記第1の供給路は、温泉ガスを温泉水に混合させたものを前記第1の流路に供給することを特徴とする請求項1に記載の熱電発電システム。   2. The thermoelectric power generation system according to claim 1, wherein the first supply path supplies a mixture of hot spring gas and hot spring water to the first flow path. 前記第1の供給路は、温泉ガスを、当該温泉ガスを凝縮して得られる温泉水に混合させたものを前記第1の流路に供給することを特徴とする請求項1に記載の熱電発電システム。   2. The thermoelectric device according to claim 1, wherein the first supply passage supplies the hot spring gas mixed with hot spring water obtained by condensing the hot spring gas to the first flow passage. Power generation system. 前記第1の供給路は、温泉ガスを当該温泉ガスと熱交換して温熱を得る別の水に混合させたものを前記第1の流路に供給することを特徴とする請求項1に記載の熱電発電システム。   The said 1st supply path supplies what mixed the hot spring gas with the other water which heat-exchanges with the said hot spring gas, and obtains heat to the said 1st flow path. Thermoelectric power generation system. 前記第2の供給路もしくは前記第2の流路は、水を貯める第1の貯水槽とこの第1の貯水槽よりも低い位置で水を貯める第2の貯水槽とを結ぶ流路の一部を利用していることを特徴とする請求項1乃至5のいずれか1項に記載の熱電発電システム。   The second supply path or the second flow path is one of flow paths connecting a first water storage tank for storing water and a second water storage tank for storing water at a position lower than the first water storage tank. The thermoelectric power generation system according to claim 1, wherein the thermoelectric power generation system is used. 両面の温度差により発電する熱電変換モジュールを備え、前記熱電変換モジュールの両面の各々に温度が互いに異なる流体を流す第1の流路と第2の流路とがそれぞれ配置される熱電発電装置であって、
前記第1の流路は、ボイラーを備えた施設において当該ボイラーから発生する余剰蒸気が流れる流路の一部もしくは排気蒸気が流れる流路の一部を利用したものであり、
前記第2の流路は、空気もしくは水を流す構造を有することを特徴とする熱電発電装置。
A thermoelectric generator that includes a thermoelectric conversion module that generates electricity based on a temperature difference between both surfaces, and includes a first flow path and a second flow path through which fluids having different temperatures are arranged on both surfaces of the thermoelectric conversion module. There,
The first flow path uses a part of a flow path through which excess steam generated from the boiler flows or a part of a flow path through which exhaust steam flows in a facility equipped with a boiler,
The thermoelectric generator according to claim 2, wherein the second flow path has a structure for flowing air or water.
前記第2の流路は、空冷フィンを用いて構成されることを特徴とする請求項7に記載の熱電発電装置。   The thermoelectric power generator according to claim 7, wherein the second flow path is configured using air-cooled fins. 前記第2の流路は、前記施設で循環する水を流すものであることを特徴とする請求項7に記載の熱電発電装置。   The thermoelectric power generator according to claim 7, wherein the second flow path is configured to flow water circulating in the facility. 両面の温度差により発電する熱電変換モジュールを備え、前記熱電変換モジュールの両面の各々に温度が互いに異なる流体を流す第1の流路と第2の流路とがそれぞれ配置される熱電発電装置であって、
前記第1の流路は、発酵槽で原料から発酵ガスを発生させる施設において当該発酵槽から発生する発酵ガスを別の槽へ供給する流路の一部を利用したものであり、
前記第2の流路は、空気もしくは水を流す構造を有することを特徴とする熱電発電装置。
A thermoelectric generator that includes a thermoelectric conversion module that generates electricity based on a temperature difference between both surfaces, and includes a first flow path and a second flow path through which fluids having different temperatures are arranged on both surfaces of the thermoelectric conversion module. There,
The first flow path uses a part of a flow path for supplying fermentation gas generated from the fermenter to another tank in a facility that generates fermentation gas from the raw material in the fermentor,
The thermoelectric generator according to claim 2, wherein the second flow path has a structure for flowing air or water.
JP2012070074A 2012-03-26 2012-03-26 Thermoelectric power generation device and thermoelectric power generation system Pending JP2013201873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012070074A JP2013201873A (en) 2012-03-26 2012-03-26 Thermoelectric power generation device and thermoelectric power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012070074A JP2013201873A (en) 2012-03-26 2012-03-26 Thermoelectric power generation device and thermoelectric power generation system

Publications (1)

Publication Number Publication Date
JP2013201873A true JP2013201873A (en) 2013-10-03

Family

ID=49521674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012070074A Pending JP2013201873A (en) 2012-03-26 2012-03-26 Thermoelectric power generation device and thermoelectric power generation system

Country Status (1)

Country Link
JP (1) JP2013201873A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9657600B2 (en) 2015-02-02 2017-05-23 Innovative Designs & Technology Inc. Heat exchanger, a purifier, an electrode-containing pipe, a power generation system, a control method for heat exchanger and a scale removing method
JP2020038045A (en) * 2018-09-05 2020-03-12 株式会社アステックス Hot spring steam power generation/hot-water generation system, hot spring steam power generation/hot-water generation device
CN112875981A (en) * 2021-01-04 2021-06-01 浙江华川实业集团有限公司 Comprehensive treatment process method for papermaking wastewater and printing and dyeing wastewater in energy-saving workshop

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632927A (en) * 1979-08-24 1981-04-02 Masataka Hanashima Greenhouse utilizing fermentation heat
JPS58205050A (en) * 1982-05-25 1983-11-29 Sumitomo Precision Prod Co Ltd Heat exchanger for geothermal water
JPH0560049A (en) * 1991-08-29 1993-03-09 Tsuguo Nagata Pumping device for hydraulic power generation using compressed air
JPH11247753A (en) * 1997-12-18 1999-09-14 Isamu Tofuji Temperature differrence electric generator using thermoelectric converting element
US6367261B1 (en) * 2000-10-30 2002-04-09 Motorola, Inc. Thermoelectric power generator and method of generating thermoelectric power in a steam power cycle utilizing latent steam heat
JP2003056441A (en) * 2001-08-10 2003-02-26 Kankyo Res Kk Rainwater power generation system
JP2004232537A (en) * 2003-01-30 2004-08-19 Japan Metals & Chem Co Ltd Geothermal generation method using multifunctional evaporator
JP2005204442A (en) * 2004-01-16 2005-07-28 Yutaka Fukuda Electric generator utilizing temperature difference
JP2006012739A (en) * 2004-06-29 2006-01-12 Sinanen Co Ltd Fuel cell exhaust heat utilization system capable of effectively utilizing exhaust heat of fuel cell and building
US20090217664A1 (en) * 2008-03-03 2009-09-03 Lockheed Martin Corporation Submerged Geo-Ocean Thermal Energy System
JP2009247050A (en) * 2008-03-28 2009-10-22 Toshiba Corp Thermoelectric generator
JP2009545716A (en) * 2006-07-31 2009-12-24 シムカ,パベル Thermal energy collection and transport system with modular air conditioning
JP2010505382A (en) * 2006-09-28 2010-02-18 ローズマウント インコーポレイテッド Pipeline thermoelectric generator assembly
JP2010255976A (en) * 2009-04-28 2010-11-11 Nishimatsu Constr Co Ltd Hot water supply system
JP2011004500A (en) * 2009-06-18 2011-01-06 Actree Corp Thermoelectric generation system using water vapor condensation latent heat
JP2011192759A (en) * 2010-03-12 2011-09-29 Toshiba Corp Thermoelectric generation system
JP2012023258A (en) * 2010-07-16 2012-02-02 Matsumoto Kenzai:Kk Temperature difference power generator and temperature difference power generation method

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632927A (en) * 1979-08-24 1981-04-02 Masataka Hanashima Greenhouse utilizing fermentation heat
JPS58205050A (en) * 1982-05-25 1983-11-29 Sumitomo Precision Prod Co Ltd Heat exchanger for geothermal water
JPH0560049A (en) * 1991-08-29 1993-03-09 Tsuguo Nagata Pumping device for hydraulic power generation using compressed air
JPH11247753A (en) * 1997-12-18 1999-09-14 Isamu Tofuji Temperature differrence electric generator using thermoelectric converting element
US6367261B1 (en) * 2000-10-30 2002-04-09 Motorola, Inc. Thermoelectric power generator and method of generating thermoelectric power in a steam power cycle utilizing latent steam heat
JP2003056441A (en) * 2001-08-10 2003-02-26 Kankyo Res Kk Rainwater power generation system
JP2004232537A (en) * 2003-01-30 2004-08-19 Japan Metals & Chem Co Ltd Geothermal generation method using multifunctional evaporator
JP2005204442A (en) * 2004-01-16 2005-07-28 Yutaka Fukuda Electric generator utilizing temperature difference
JP2006012739A (en) * 2004-06-29 2006-01-12 Sinanen Co Ltd Fuel cell exhaust heat utilization system capable of effectively utilizing exhaust heat of fuel cell and building
JP2009545716A (en) * 2006-07-31 2009-12-24 シムカ,パベル Thermal energy collection and transport system with modular air conditioning
JP2010505382A (en) * 2006-09-28 2010-02-18 ローズマウント インコーポレイテッド Pipeline thermoelectric generator assembly
US20090217664A1 (en) * 2008-03-03 2009-09-03 Lockheed Martin Corporation Submerged Geo-Ocean Thermal Energy System
JP2009247050A (en) * 2008-03-28 2009-10-22 Toshiba Corp Thermoelectric generator
JP2010255976A (en) * 2009-04-28 2010-11-11 Nishimatsu Constr Co Ltd Hot water supply system
JP2011004500A (en) * 2009-06-18 2011-01-06 Actree Corp Thermoelectric generation system using water vapor condensation latent heat
JP2011192759A (en) * 2010-03-12 2011-09-29 Toshiba Corp Thermoelectric generation system
JP2012023258A (en) * 2010-07-16 2012-02-02 Matsumoto Kenzai:Kk Temperature difference power generator and temperature difference power generation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9657600B2 (en) 2015-02-02 2017-05-23 Innovative Designs & Technology Inc. Heat exchanger, a purifier, an electrode-containing pipe, a power generation system, a control method for heat exchanger and a scale removing method
JP2020038045A (en) * 2018-09-05 2020-03-12 株式会社アステックス Hot spring steam power generation/hot-water generation system, hot spring steam power generation/hot-water generation device
CN112875981A (en) * 2021-01-04 2021-06-01 浙江华川实业集团有限公司 Comprehensive treatment process method for papermaking wastewater and printing and dyeing wastewater in energy-saving workshop
CN112875981B (en) * 2021-01-04 2022-09-13 浙江华川实业集团有限公司 Comprehensive treatment process method for papermaking wastewater and printing and dyeing wastewater in energy-saving workshop

Similar Documents

Publication Publication Date Title
CN1116511C (en) Waste heat recovery device of engine
KR101843380B1 (en) Cooling and heating device
KR101717160B1 (en) Hybrid system
JP2013128333A (en) Steam generator and energy supply system using the same
US10371013B2 (en) Thermal energy storage plant
KR20150063520A (en) Cogeneration power plant and method for operating a cogeneration power plant
KR101553446B1 (en) Fuel cell system with excellent eliminating effect on freezing material throughout air purging and method of controlling the same
JP2013201873A (en) Thermoelectric power generation device and thermoelectric power generation system
JP2013036456A (en) Temperature difference power generation apparatus
US20100227239A1 (en) Method and apparatus for operating a fuel cell in combination with an absorption chiller
JP2003214712A (en) Fuel cell cogeneration system
JP2016515190A (en) Heating equipment and method of operating heating equipment
KR101078964B1 (en) fuel cell system
JP4553365B2 (en) Hot water / steam combined heat exchanger
JP2013501142A (en) Electrolytic cell and power unit incorporating electrolytic cell
AU2013200564B2 (en) Steam generation apparatus
KR20100052788A (en) Vertical convection type multilayer thermoelectric generator system
KR101494241B1 (en) Waste heat recovery power generation system
KR102080867B1 (en) Heat exchanger for cooling IGBT module
JP5092960B2 (en) Fuel cell cogeneration system
KR101616201B1 (en) Fuel cell system with excellent output stability and durability and controlling method of purging the same
JP2012023258A (en) Temperature difference power generator and temperature difference power generation method
JP5092959B2 (en) Fuel cell cogeneration system
KR20110036284A (en) Operating method of compact cogeneration system
KR101612897B1 (en) Combined Heat and Power Co-generation System

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150515

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150525

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150717