JP4553365B2 - Hot water / steam combined heat exchanger - Google Patents

Hot water / steam combined heat exchanger Download PDF

Info

Publication number
JP4553365B2
JP4553365B2 JP2005088047A JP2005088047A JP4553365B2 JP 4553365 B2 JP4553365 B2 JP 4553365B2 JP 2005088047 A JP2005088047 A JP 2005088047A JP 2005088047 A JP2005088047 A JP 2005088047A JP 4553365 B2 JP4553365 B2 JP 4553365B2
Authority
JP
Japan
Prior art keywords
hot water
heat recovery
steam
exhaust
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005088047A
Other languages
Japanese (ja)
Other versions
JP2006266627A (en
Inventor
聡 柴田
健一郎 望月
梅夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2005088047A priority Critical patent/JP4553365B2/en
Publication of JP2006266627A publication Critical patent/JP2006266627A/en
Application granted granted Critical
Publication of JP4553365B2 publication Critical patent/JP4553365B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、排ガスの熱回収に用いる温水・蒸気兼用型熱交換器に関するものであり、マイクロガスタービン発電装置等を設備した施設への温水又は蒸気の供給、マイクロガスタービン発電装置の総合的な熱効率の向上、タービン発電機の電気出力の向上等に主として利用されるものである。   TECHNICAL FIELD The present invention relates to a hot water / steam combined heat exchanger used for heat recovery of exhaust gas, supply of hot water or steam to a facility equipped with a micro gas turbine power generator, etc. It is mainly used for improving thermal efficiency, improving the electrical output of a turbine generator, and the like.

近年、マイクロガスタービン発電装置が広く実用化されている。マイクロガスタービン発電装置は小型で経済性に優れ、しかも起動特性や負荷変動応答性が高いうえ、電力と並行して蒸気や温水の供給ができ、更に環境汚損も殆ど生じないからである。   In recent years, micro gas turbine power generators have been widely put into practical use. This is because the micro gas turbine power generator is small and excellent in economic efficiency, has high start-up characteristics and load fluctuation responsiveness, can supply steam and hot water in parallel with electric power, and hardly causes environmental pollution.

図5及び図6は、この種マイクロガスタービン発電装置の利用システムの一例を示すものであり、図5は排熱回収による温水の供給を、また図6は蒸気の供給を夫々可能としたものである。
尚、図5及び図6において、41は吸気フィルター、42は圧縮機、43はタービン、44は高速発電機、45は再生熱交換器、46は燃焼器、47は周波数変換装置、48はトランス、49は温水発生器、50は温水ポンプ、51は排熱ボイラ、52はバイパスバルブ、53は給水ポンプである。
FIGS. 5 and 6 show an example of a utilization system of this kind of micro gas turbine power generator. FIG. 5 enables supply of hot water by exhaust heat recovery, and FIG. 6 enables supply of steam. It is.
5 and 6, 41 is an intake filter, 42 is a compressor, 43 is a turbine, 44 is a high-speed generator, 45 is a regenerative heat exchanger, 46 is a combustor, 47 is a frequency converter, and 48 is a transformer. , 49 is a hot water generator, 50 is a hot water pump, 51 is an exhaust heat boiler, 52 is a bypass valve, and 53 is a water supply pump.

吸気フィルタ41を通して吸入された空気は圧縮機42で加圧圧縮され、その後この圧縮空気Ahは再生熱交換器45へ送られ、ここでタービン43からの高温の燃焼ガスによって加熱される。加熱された圧縮空気Ahは燃焼器46で燃料と混合燃焼され、発生した高温の燃焼ガスGhがタービン43へ送られて膨張することにより所謂タービン仕事が行われ、これによってタービン43に回転駆動力が与えられる。   The air sucked through the intake filter 41 is pressurized and compressed by the compressor 42, and then this compressed air Ah is sent to the regenerative heat exchanger 45 where it is heated by the high-temperature combustion gas from the turbine 43. The heated compressed air Ah is mixed and burned with fuel in the combustor 46, and the generated high-temperature combustion gas Gh is sent to the turbine 43 and expands, so that so-called turbine work is performed. Is given.

前記タービン43の回転駆動力は駆動軸を通して圧縮機43及び高速発電機44へ伝達され、高速発電機44からの発電電力は周波数変換装置47で商用周波数に変換されたあと、電力負荷へ供給される。また、再生熱交換器45から排出された排ガスGは温水発生器49(又は排熱ボイラ51)へ供給され、ここで排熱が回収されることにより温水(又は蒸気)が発生される。   The rotational driving force of the turbine 43 is transmitted to the compressor 43 and the high speed generator 44 through the drive shaft, and the generated power from the high speed generator 44 is converted into a commercial frequency by the frequency converter 47 and then supplied to the power load. The Further, the exhaust gas G discharged from the regenerative heat exchanger 45 is supplied to the hot water generator 49 (or the exhaust heat boiler 51), and hot water (or steam) is generated by recovering the exhaust heat here.

前記高速発電機44には永久磁石式発電機が多く使用されており、出力30〜300kw及び回転数65,000〜100,000RPM程度に選定されている。
尚、この種マイクロガスタービン発電装置そのものは既に公知であるため、ここではその詳細な説明は省略する(特開2002−4942、特開2002−4944等)。
Permanent magnet generators are often used for the high-speed generator 44, and are selected to have an output of 30 to 300 kW and a rotational speed of about 65,000 to 100,000 RPM.
In addition, since this kind of micro gas turbine power generator itself is already publicly known, detailed description thereof is omitted here (JP 2002-4942, JP 2002-4944, etc.).

而して、マイクロガスタービン発電装置は前述の通り多くの優れた実用的効用を具備しているが、出力30〜300kwの小型装置では発電効率が25〜30%程度であり、ディーゼル発電装置やガスエンジン発電装置に比較して発電効率が数%低いと云う難点がある。   Thus, although the micro gas turbine power generator has many excellent practical utilities as described above, the power generation efficiency is about 25 to 30% in a small device with an output of 30 to 300 kw. There is a difficulty that the power generation efficiency is several percent lower than that of the gas engine power generation device.

また、吸入する空気温度が上昇すると、所謂タービン仕事率が低下するために発電機出力が低下する。
図7は吸入空気温度と発電機出力の関係を実機(出力60kw、米国Capstone社製)を用いて測定した結果を示すものであり、吸入空気温度が20℃までであれば定格出力60kwを保持できるが、吸入空気温度が32℃まで上昇すれば、発電機出力は約51kw(約15%低下)に低下する(曲線A)。
そのため、夏期には吸入空気の冷却を行う等の対策が採られているが、設備費やランニングコストが上昇する等の問題が生ずることになる。
Further, when the temperature of the intake air rises, the so-called turbine power decreases, and the generator output decreases.
FIG. 7 shows the result of measuring the relationship between the intake air temperature and the generator output using an actual machine (output 60 kw, manufactured by Capstone, USA). If the intake air temperature is up to 20 ° C., the rated output 60 kw is maintained. However, if the intake air temperature rises to 32 ° C., the generator output decreases to about 51 kW (down about 15%) (curve A).
For this reason, measures such as cooling the intake air are taken in the summer, but problems such as an increase in equipment costs and running costs arise.

更に、ガスタービン発電装置を用いた設備では、熱効率の上昇を図るために温水発生器や排熱ボイラによるタービン排ガスの熱回収が行われている。
しかし、通常は温水又は蒸気の何れか一方を発生するシステムに構成されており、温水と蒸気の両方を必要とする場合には、排熱回収ボイラで発生した蒸気(又は排熱回収ボイラーからの排ガス)を利用して温水を発生するようにしている。
Furthermore, in equipment using a gas turbine power generator, heat recovery of turbine exhaust gas is performed by a hot water generator or a waste heat boiler in order to increase thermal efficiency.
However, it is usually configured in a system that generates either hot water or steam, and when both hot water and steam are required, steam generated in the exhaust heat recovery boiler (or from the exhaust heat recovery boiler) Hot water is generated using exhaust gas).

その結果、温水発生器のみを設けている場合には、後述するようにガスタービンの駆動用流体内へ蒸気を噴射することにより夏期の発電機出力の低下に対応することができず、また、逆に排熱ボイラのみを設置している場合には、発電機出力の低下には対応できるものの温水負荷の要求に対応することができない。
更に、蒸気と温水の両熱負荷に対応可能とする場合には、蒸気及び温水発生用の二種の機器・装置を設備することになり、設備費や保守管理費が嵩むだけでなく、熱回収率が低下すると云う難点がある。
As a result, when only the hot water generator is provided, it is not possible to cope with the decrease in the generator output in summer by injecting steam into the driving fluid of the gas turbine as described later, On the contrary, when only the exhaust heat boiler is installed, it is possible to cope with a decrease in the output of the generator, but it cannot meet the demand for the hot water load.
Furthermore, in order to be able to cope with both heat loads of steam and hot water, two types of equipment and devices for generating steam and hot water will be installed, which not only increases equipment costs and maintenance management costs, but also heat. There is a difficulty that the recovery rate decreases.

尚、ガスタービンにおいては、ガスタービンの駆動用流体(例えば図5の圧縮空気Ah又は燃焼ガスGh)内へ蒸気を噴射することにより、タービン出力即ち発電機出力を上昇させることが可能なことが判っている。
図7の曲線B及び曲線Cは、吸入空気温度が32℃の時(曲線B)と22℃の時(曲線C)の発電機出力の変化の状況を、噴射蒸気量/吸入空気量をパラメータにして表示したものであり、吸入空気温度が32℃のときには、約4〜6%の蒸気量を噴射することにより、発電機出力を定格(60kw)にまで上昇させることができる。又、このことは吸入空気温度が22℃の時も同様であり、2〜6%の蒸気量の噴射で、発電機出力を定格(60kw)に回復させることができる。
In the gas turbine, it is possible to increase the turbine output, that is, the generator output by injecting steam into the driving fluid of the gas turbine (for example, the compressed air Ah or the combustion gas Gh in FIG. 5). I understand.
Curves B and C in FIG. 7 show changes in the generator output when the intake air temperature is 32 ° C. (curve B) and 22 ° C. (curve C), and the amount of injected steam / intake air is a parameter. When the intake air temperature is 32 ° C., the generator output can be increased to the rated value (60 kW) by injecting a steam amount of about 4 to 6%. This is the same when the intake air temperature is 22 ° C., and the generator output can be restored to the rated value (60 kW) with the injection of the steam amount of 2 to 6%.

また、前記蒸気の噴射試験に供したマイクロガスタービン発電機は、最大出力を60kwに保持するように制御系が構成されており、蒸気噴射量を増加することにより発電機出力は60kwを超える値にまで上昇させることが可能であるが、タービンへの入力(燃焼ガスGhの熱量)が自動的に設定値以上に上昇しないように制御されるため、蒸気噴射によって発電機出力を60kw以上にまで上昇させることは出来ない。   The micro gas turbine generator used for the steam injection test has a control system configured to maintain the maximum output at 60 kw, and the generator output exceeds 60 kw by increasing the amount of steam injection. However, since the input to the turbine (the amount of heat of the combustion gas Gh) is controlled so as not to increase automatically beyond the set value, the generator output is increased to 60 kw or more by steam injection. It cannot be raised.

一方、ガスタービン発電装置を設備した施設、例えばコンビニエンスストアーや工場等では、一般に夏期に於いては温水負荷は減少するが、逆に電力負荷は増加する。また、冬期においては、温水負荷は増加する。   On the other hand, in facilities equipped with gas turbine power generators, such as convenience stores and factories, the hot water load generally decreases in summer, but the power load increases. In winter, the hot water load increases.

その結果、ガスタービン発電装置を使用する排熱回収用機器・装置を蒸気発生と温水発生とに切換え可能な型式とし、夏期のガスタービン発電機が出力・低下を来たすときには排熱回収用機器装置を排熱ボイラとして運転し、発生蒸気の一部をタービン駆動系へ噴射して発電機出力の増加を図ると共に、残部の蒸気でもって熱負荷に対応する。また、ガスタービン発電機が出力低下を起こさず且つ温水負荷の増加する冬期には、前記排熱回収用機器・装置を温水発生器として運転し、温水の供給を行う構成とするのが最も望ましいシステムであると云える。   As a result, the exhaust heat recovery equipment and devices that use the gas turbine power generator can be switched between steam generation and hot water generation. Is operated as an exhaust heat boiler, a part of the generated steam is injected into the turbine drive system to increase the generator output, and the remaining steam corresponds to the heat load. Further, it is most desirable to operate the exhaust heat recovery device / device as a hot water generator and supply hot water in winter when the gas turbine generator does not cause a decrease in output and the hot water load increases. It can be said that it is a system.

特開2002−4942号JP 20024942 特開2002−4944号JP 2002-4944

本願発明は、従前のガスタービン発電装置を備えた電力若しくは熱・電力供給システムにおける上述の如き問題、即ちイ.夏期の発電機出力の低下を防止するために吸入空気の冷却を行う場合には、設備費及びランニングコストの引下げが図れないこと、ロ.排熱回収が温水発生器のみにより行われている場合には、夏期の発電機出力の低下に対応することができないこと、ハ.排熱回収が排熱ボイラのみにより行われているときには、温水の要求に対応できないこと、ニ.排熱回収を温水発生器と排熱ボイラの両方により行う場合には、設備費やランニングコストが嵩むだけでなく、総合的な熱回収効率が低下すること等の問題を解決せんとするものであり、一基の排熱回収用機器・装置でもって蒸気の発生と温水の発生を簡単に切換えできるようにするとことにより、発電機出力の増加の要請にも対応できると共に冬期における温水の要求にも簡単に対応できるようにした、構造が簡単且つコンパクトで安価に製造できる温水・蒸気兼用型熱交換器を提供するものである。   The present invention relates to the above-described problems in the power or heat / power supply system provided with the conventional gas turbine power generator, namely, When cooling the intake air to prevent a decrease in generator output during the summer, the equipment and running costs cannot be reduced. When exhaust heat recovery is performed only with a hot water generator, it is impossible to cope with a decrease in generator output in the summer, and c. When the exhaust heat recovery is performed only by the exhaust heat boiler, the demand for hot water cannot be met; When exhaust heat recovery is performed using both a hot water generator and an exhaust heat boiler, not only will the equipment and running costs increase, but also the overall heat recovery efficiency will be reduced. Yes, with a single exhaust heat recovery device / equipment, it is possible to easily switch between steam generation and hot water generation, so that it is possible to meet the demand for increased generator output and meet the demand for hot water in winter. The present invention also provides a warm water / steam combined heat exchanger that can be easily manufactured, has a simple structure, is compact, and can be manufactured at low cost.

請求項1の発明は、排ガスGの排熱回収部2と、当該排熱回収部2と一体にした温水発生部3と、排熱回収部2と温水発生部3へ熱媒水Woを供給する給水ユニット部4とを備え、蒸気又は温水を適宜に切換え発生可能とした温水・蒸気兼用型熱交換器において、前記排熱回収部2を上部ヘッダ34と下部ヘッダ35間を複数の熱交換管36で連結した多管貫流型熱回収本体40と当該熱回収本体40の入口側へ連結した排ガス入口側ダクト31と前記熱回収本体40の出口側へ連結したエコノマイザ8及び排ガス出口側ダクト32とから、また前記温水発生部3を胴部37と当該胴部37内に設けた温水用熱交換管14と前記胴部37内に連通する蒸気取出弁9と前記温水用熱交換管14の両端部に連通する温水供給弁11及び温水リターン弁12とから夫々形成し、前記胴部37と上部ヘッダ34間を太径の主連通管27を介して、また胴部37と下部ヘッダ35間を連通管28を介して夫々連結することにより排熱回収部2と温水発生部3とを一体化すると共に、蒸気の発生時に前記温水発生部3の胴部37を気水分離器とする構成としたものである。 The invention of claim 1 is the exhaust heat recovery unit 2 for the exhaust gas G, the hot water generation unit 3 integrated with the exhaust heat recovery unit 2, and the heat transfer water Wo is supplied to the exhaust heat recovery unit 2 and the hot water generation unit 3. In the hot water / steam combined heat exchanger, which is provided with a water supply unit section 4 that can appropriately switch between steam and hot water, the exhaust heat recovery section 2 is used for a plurality of heat exchanges between the upper header 34 and the lower header 35. A multi-tube once-through heat recovery body 40 connected by a pipe 36, an exhaust gas inlet side duct 31 connected to the inlet side of the heat recovery body 40, an economizer 8 connected to the outlet side of the heat recovery body 40, and an exhaust gas outlet side duct 32 And the warm water generating section 3 of the body 37, the heat exchange pipe 14 for hot water provided in the body 37, the steam extraction valve 9 communicating with the body 37, and the heat exchange pipe 14 for hot water. Hot water supply valve 11 and hot water litter communicating with both ends Each is formed from the valve 12., between the barrel 37 and the upper header 34 via the main communicating pipe 27 of large diameter, also between the body portion 37 and a lower header 35 to each connected via a communication pipe 28 together to integrate the Lehigh heat recovery unit 2 and the hot water generator 3, in which the body portion 37 of the hot water generator 3 at the time of occurrence of the steam has a configuration to steam-water separator.

請求項2の発明は、排ガスGの排熱回収部2と、当該排熱回収部2と一体にした温水発生部3と、排熱回収部2と温水発生部3へ熱媒水Woを供給する給水ユニット部4とを備え、蒸気又は温水を適宜に切換え発生可能とした温水・蒸気兼用型熱交換器において、前記排熱回収部2を上部ヘッダ34と下部ヘッダ35間を複数の熱交換管36で連結した多管貫流型熱回収本体40と当該熱回収本体40の入口側へ連結した排ガス入口側ダクト31と前記熱回収本体40の出口側へ連結したエコノマイザ8及び排ガス出口側ダクト32とから、また前記温水発生部3を胴部37と当該胴部37内に設けた温水用熱交換管14と前記胴部37内に連通する蒸気取出弁9と前記温水用熱交換管14の両端部に連通する温水供給弁11及び温水リターン弁12とから夫々形成し、前記胴部37と上部ヘッダ34間を太径の主連通管27を介して、また胴部37と下部ヘッダ35間を連通管28を介して夫々連結することにより排熱回収部2と温水発生部3とを一体化すると共に、前記温水発生部3の胴部37に自動抽気装置33を設け、温水の発生時には、多管貫流熱回収本体40と胴部37内を大気圧以下に、熱媒水Woの水位を上部ヘッダ34の内部に、主給水弁38を閉鎖の状態に夫々保持する構成としたものである。 The invention of claim 2 is the exhaust heat recovery unit 2 of the exhaust gas G, the hot water generation unit 3 integrated with the exhaust heat recovery unit 2, and the heat transfer water Wo is supplied to the exhaust heat recovery unit 2 and the hot water generation unit 3 In the hot water / steam combined heat exchanger, which is provided with a water supply unit section 4 that can appropriately switch between steam and hot water, the exhaust heat recovery section 2 is used for a plurality of heat exchanges between the upper header 34 and the lower header 35. A multi-tube once-through heat recovery body 40 connected by a pipe 36, an exhaust gas inlet side duct 31 connected to the inlet side of the heat recovery body 40, an economizer 8 connected to the outlet side of the heat recovery body 40, and an exhaust gas outlet side duct 32 And the warm water generating section 3 of the body 37, the heat exchange pipe 14 for hot water provided in the body 37, the steam extraction valve 9 communicating with the body 37, and the heat exchange pipe 14 for hot water. Hot water supply valve 11 and hot water litter communicating with both ends By forming each from the valve 12, the body 37 and the upper header 34 are connected via a large diameter main communication pipe 27, and the body 37 and the lower header 35 are connected via a communication pipe 28. The exhaust heat recovery unit 2 and the hot water generation unit 3 are integrated, and an automatic bleeder 33 is provided in the body 37 of the hot water generation unit 3. When hot water is generated, the multi-pipe once-through heat recovery body 40 and the body 37 are provided. The inside is at atmospheric pressure or lower, the water level of the heat transfer water Wo is held inside the upper header 34, and the main water supply valve 38 is held in a closed state .

請求項3の発明は、請求項1又は請求項2の発明において、受け入れする高温の排ガスGをマイクロガスタービン発電装置からのタービン排ガスとすると共に、発生した蒸気をマイクロガスタービンの駆動用ガス内への噴射する構成としたものである。 The invention of claim 3 is the invention of claim 1 or 2, wherein the received high-temperature exhaust gas G is used as turbine exhaust gas from the micro gas turbine power generator, and the generated steam is contained in the driving gas for the micro gas turbine. It is set as the structure which injects into .

請求項4の発明は、請求項1又は請求項2の発明において、排ガス入口側ダクト31に排ガスGを加熱する補助バーナ部5を介設する構成としたものである。 According to a fourth aspect of the present invention, in the first or second aspect of the present invention, the auxiliary burner portion 5 for heating the exhaust gas G is interposed in the exhaust gas inlet side duct 31 .

本願発明においては、蒸気を発生する排熱回収部2と温水発生部3とを一体的に形成し、蒸気の発生と温水の発生とを切り換え自在な構成としている。
その結果、従前の蒸気発生用の排熱ボイラと温水発生用の熱交換器の二種の缶体を設ける場合に比較して、装置の製造コストの大幅な削減が可能になるだけでなく、熱回収効率をより高めることが可能となる。
In the present invention, the exhaust heat recovery section 2 that generates steam and the hot water generation section 3 are integrally formed so that the generation of steam and the generation of hot water can be switched.
As a result, compared to the conventional case of providing two types of cans, a waste heat boiler for generating steam and a heat exchanger for generating hot water, not only can the manufacturing cost of the device be greatly reduced, The heat recovery efficiency can be further increased.

また、マイクロガスタービン発電装置と本願発明とを組み合せ使用した場合には、発生蒸気の利用により夏期におけるタービン発電機の出力減を防止することができると共に、冬期に多くなる温水の要求に対しても円滑に対応することができる。   In addition, when the micro gas turbine power generator and the present invention are used in combination, it is possible to prevent a decrease in the output of the turbine generator in the summer by using the generated steam, and to meet the demand for hot water that increases in the winter. Can also respond smoothly.

更に、温水発生部3を真空式の温水発生部とした場合には、より効率的な温水供給が可能になるだけでなく、蒸気発生の停止後に熱回収本体40及び胴部37の内部を気密に保持することにより、両部40、37の自然冷却につれて内部の減圧が進行することになり、極めて好都合である。   Further, when the hot water generating unit 3 is a vacuum type hot water generating unit, not only the hot water can be supplied more efficiently, but also the inside of the heat recovery body 40 and the body part 37 are airtight after the steam generation is stopped. The internal pressure is reduced as the both parts 40 and 37 are naturally cooled, which is very convenient.

以下、図面に基づいて本発明に係る温水・蒸気兼用型熱交換器の実施形態を説明する。
図1は本発明の温水・蒸気兼用型熱交換器の斜面図であり、図2は、温水・蒸気兼用型熱交換器の全体構成を示す系統図である。
また、図3は、図1のイ−イ視概要図であり、図4は図1のローロ視概要図である。
Hereinafter, an embodiment of a hot water / steam combined heat exchanger according to the present invention will be described based on the drawings.
FIG. 1 is a perspective view of a hot water / steam combined heat exchanger according to the present invention, and FIG. 2 is a system diagram showing the overall configuration of the hot water / steam combined heat exchanger.
3 is a schematic diagram of the II view of FIG. 1, and FIG. 4 is a schematic diagram of the Loro view of FIG.

図1乃至図4において、1は温水・蒸気兼用型熱交換器、2は排熱回収部、3は温水発生部、4は給水ユニット部、5は補助バーナ部、6aは排ガス入口、6bは排ガス出口、7は燃料制御弁、8はエコノマイザ、9は蒸気取出弁、10は蒸気流量制御弁、11は温水供給弁、12は温水リターン弁、13は三方切換弁、14は温水用熱交換管、15は温度検出器、16は圧力検出器、17は圧力コントローラ、18は温度コントローラ、19は温水循環ポンプ、20はミストセパレータ、21は軟化器、22は給水タンク、23は薬剤注入装置(清缶剤)、24は給水ポンプ、25はブロー装置、26はコントロールボックス、27は主連通管、28は連通管、29はベース、30はケージング、31は入口側ダクト、32は出口側ダクト、33は自動抽気装置、34は上部ヘッダ、35は下部ヘッダ、36は熱交換管、37は胴部、38は主給水弁、39はブロー弁、40は多管貫流型熱回収本体、41は密閉式膨張タンク(又は安全弁)、Gは排ガス、Fは燃料ガス(都市ガス)、HW1 は高温温水、HW2 は低温温水、Sは蒸気、Wは原水(上水)、Woは熱媒水である。 1 to 4, 1 is a hot water / steam combined heat exchanger, 2 is an exhaust heat recovery unit, 3 is a hot water generation unit, 4 is a water supply unit unit, 5 is an auxiliary burner unit, 6a is an exhaust gas inlet, and 6b is Exhaust gas outlet, 7 is a fuel control valve, 8 is an economizer, 9 is a steam extraction valve, 10 is a steam flow control valve, 11 is a hot water supply valve, 12 is a hot water return valve, 13 is a three-way switching valve, and 14 is heat exchange for hot water Tube, 15 is a temperature detector, 16 is a pressure detector, 17 is a pressure controller, 18 is a temperature controller, 19 is a hot water circulation pump, 20 is a mist separator, 21 is a softener, 22 is a water supply tank, and 23 is a drug injection device (Cleaning can), 24 is a water supply pump, 25 is a blower, 26 is a control box, 27 is a main communication pipe, 28 is a communication pipe, 29 is a base, 30 is caging, 31 is an inlet duct, 32 is an outlet side duct 33 is an automatic bleeder, 34 is an upper header, 35 is a lower header, 36 is a heat exchange pipe, 37 is a trunk, 38 is a main water supply valve, 39 is a blow valve, 40 is a multi-tube once-through heat recovery body, 41 is Sealed expansion tank (or safety valve), G is exhaust gas, F is fuel gas (city gas), HW 1 is high temperature hot water, HW 2 is low temperature hot water, S is steam, W is raw water (clean water), Wo is a heat medium It is water.

前記温水・蒸気兼用型熱交換器1は、図1に示す如く排熱回収部2と温水発生部3と排熱回収部2への給水ユニット部4と補助バーナ部5等からその主要部が構成されている。   As shown in FIG. 1, the hot water / steam combined heat exchanger 1 is mainly composed of an exhaust heat recovery unit 2, a hot water generation unit 3, a water supply unit 4 to the exhaust heat recovery unit 2, an auxiliary burner unit 5, and the like. It is configured.

前記排熱回収部2は、図3及び図4に示す如く、上部ヘッダ34と下部ヘッダ35との間を多数の熱交換管36により連結することにより、所謂多管貫流型の熱回収本体40を主体として形成されており、その入口側には排ガス入口が、また出口側には排ガス出口が夫々設けられている。更に、本体40の外側面は断熱材を介してケージング30により保護されている。   As shown in FIGS. 3 and 4, the exhaust heat recovery unit 2 connects the upper header 34 and the lower header 35 with a large number of heat exchange tubes 36, so-called multi-tube flow-through heat recovery main body 40. The exhaust gas inlet is provided on the inlet side, and the exhaust gas outlet is provided on the outlet side. Further, the outer surface of the main body 40 is protected by the caging 30 through a heat insulating material.

前記温水発生部3は、筒状の胴部37とその内部に配置した熱交換管14と、胴部37内の排気を行う自動抽気装置33等から形成されており、前記排熱回収部2の上方位置に配設固定されている。
尚、後述するように、筒状の胴部37は蒸気の発生時には所謂気水分離器として機能することになり、また、温水の発生時には所謂減圧蒸発室の機能をする。
更に、前記自動抽気装置33は抽気ポンプ等を主体として形成されている。
The hot water generating unit 3 is formed of a cylindrical body 37, a heat exchange pipe 14 disposed therein, an automatic bleeder 33 for exhausting the body 37, and the like, and the exhaust heat recovery unit 2 It is arranged and fixed at an upper position.
As will be described later, the cylindrical body portion 37 functions as a so-called air-water separator when steam is generated, and functions as a so-called vacuum evaporation chamber when hot water is generated.
Further, the automatic bleeder 33 is formed mainly with a bleed pump or the like.

前記排熱回収部2と温水発生部3は、太径(本実施形態では100A)の主連結管27により上部ヘッダ34と胴部37間を、また連結管(本実施形態では50A)28により下部ヘッダ35と胴部37間を夫々連結することにより相互に連通されており、後述するように給水ユニット部4から排熱回収部2の熱交換管36、上・下ヘッダ34・35及び胴部37の底部へ注入された熱媒水Woが、排熱回収部2の熱回収本体40と温水発生部3の胴部37との間を循環流動することになる。   The exhaust heat recovery unit 2 and the hot water generation unit 3 are connected between the upper header 34 and the body portion 37 by a main connection pipe 27 having a large diameter (100A in this embodiment) and by a connection pipe (50A in this embodiment) 28. The lower header 35 and the body 37 are connected to each other by being connected to each other. As will be described later, the heat exchange pipe 36, the upper and lower headers 34 and 35 of the exhaust heat recovery unit 2 from the water supply unit 4 and the body The heat transfer water Wo injected into the bottom part of the part 37 circulates and flows between the heat recovery body 40 of the exhaust heat recovery part 2 and the body part 37 of the hot water generation part 3.

尚、本実施形態においては、前記排熱回収部2の熱回収本体40の伝熱面積を、所謂簡易ボイラの範疇に属する構造とするために5m2 以下に押えているが、必要に応じて伝熱面積を増加してもよいことは勿論である。 In the present embodiment, the heat transfer area of the heat recovery body 40 of the exhaust heat recovery unit 2 is suppressed to 5 m 2 or less so as to have a structure belonging to the category of so-called simple boilers. Of course, the heat transfer area may be increased.

前記給水ユニット部4は、軟化器21、給水タンク22、薬剤注入装置23、給水ポンプ24及びブロータンク25等から形成されており、排熱回収部2の熱回収本体40を形成する熱交換管36等内におけるスケール等の発生が有効に防止されている。
尚、この種多管貫流ボイラ用の給水ユニット部4の構成は公知であるため、ここではその詳細な説明を省略する。
The water supply unit 4 includes a softener 21, a water supply tank 22, a chemical injection device 23, a water supply pump 24, a blow tank 25, and the like, and a heat exchange pipe that forms a heat recovery main body 40 of the exhaust heat recovery unit 2. Generation of scales and the like in 36 etc. is effectively prevented.
In addition, since the structure of the water supply unit part 4 for this kind multi-tube once-through boiler is well-known, the detailed description is abbreviate | omitted here.

前記補助バーナ部5は、燃料制御弁7及びガスバーナ(図示省略)等から構成されており、排ガスGhの熱量が不足する際には、当該補助バーナ部5を作動させて排熱回収部2における熱回収量を増加させる。
尚、本実施形態では、都市ガス(13A)Fを燃料とする補助バーナ部5を入口側ダクト31に介設する構成としているが、当該補助バーナ部を削除してもよいことは勿論である。
The auxiliary burner unit 5 includes a fuel control valve 7, a gas burner (not shown), and the like. When the amount of heat of the exhaust gas Gh is insufficient, the auxiliary burner unit 5 is operated to operate the exhaust heat recovery unit 2. Increase heat recovery.
In the present embodiment, the auxiliary burner portion 5 that uses city gas (13A) F as fuel is interposed in the inlet duct 31. However, it goes without saying that the auxiliary burner portion may be omitted. .

図1乃至図4を参照して、本実施例に係る温水・蒸気兼用型熱交換器1は、60kw用のガスタービン発電装置からのタービン排ガスの熱回収を目的として製作されたものであり、ベース29の横幅及び縦幅は夫々約1200mmに選定されている。
また、排熱回収部2の横幅(長手方向)は約1200mmであり、且つ入口側ダクト31の外壁と出口側ダクト32の外壁との間の横幅寸法は約1650mmに選定されている。
更に排熱回収部2の縦幅寸法は約530mmに選定されてる。
加えて、高さ方向の寸法は、ベース29の下面と温水発生部3の胴部37の上面間が約1700mmに選定されている。尚、前記温水発生部3の胴部の外径は320mmφ、長さは650mmである。
With reference to FIG. 1 thru | or FIG. 4, the hot-water / steam combined type heat exchanger 1 which concerns on a present Example was manufactured for the purpose of the heat recovery of the turbine exhaust gas from the gas turbine power generator for 60 kw, The horizontal width and vertical width of the base 29 are each selected to be about 1200 mm.
Further, the horizontal width (longitudinal direction) of the exhaust heat recovery unit 2 is about 1200 mm, and the horizontal width between the outer wall of the inlet side duct 31 and the outer wall of the outlet side duct 32 is selected to be about 1650 mm.
Further, the vertical width dimension of the exhaust heat recovery unit 2 is selected to be about 530 mm.
In addition, the dimension in the height direction is selected to be about 1700 mm between the lower surface of the base 29 and the upper surface of the body portion 37 of the hot water generating unit 3. In addition, the outer diameter of the trunk | drum of the said warm water generation | occurrence | production part 3 is 320 mmphi, and length is 650 mm.

次に、本発明に係る温水・蒸気兼用型熱交換器1の作動について説明をする。
当該温水・蒸気兼用型熱交換器は通常マイクロガスタービン発電装置等の高温排ガスの排出源の近傍に設置され、発電装置等から排出された高温の排ガスGを排ガス入り口6a内へ受け入れする。
Next, the operation of the hot water / steam combined heat exchanger 1 according to the present invention will be described.
The hot water / steam combined heat exchanger is usually installed in the vicinity of a high temperature exhaust gas emission source such as a micro gas turbine power generation device, and receives the high temperature exhaust gas G discharged from the power generation device or the like into the exhaust gas inlet 6a.

夏期等の温水に対する要求が減少すると共にマイクロガスタービンへの蒸気噴射が要求されるような場合には、温水・蒸気兼用型熱交換器1を排熱ボイラとして作動させる。
即ち、蒸気Sを発生させる場合には、先ずコントロールボックス26に備えた作動切換スイッチ(図示省略)をボイラ作動側にセットする。これにより、温水発生部3の温水供給弁11及び温水リターン弁12が自動閉鎖され、温水供給系が完全に除外される。また、蒸気取出弁9等を含む蒸気供給系及び給水ユニット部4が、夫々自動的に作動状態にセットされる。
また、補助バーナ部5も蒸気負荷に応じて作動可能な状態にセットされ、更に、温水発生部3の自動抽気装置33も自動的に系統から除外される。
When the demand for hot water in summer or the like decreases and steam injection to the micro gas turbine is required, the hot water / steam combined heat exchanger 1 is operated as an exhaust heat boiler.
That is, when steam S is generated, first, an operation changeover switch (not shown) provided in the control box 26 is set to the boiler operation side. Thereby, the warm water supply valve 11 and the warm water return valve 12 of the warm water generator 3 are automatically closed, and the warm water supply system is completely excluded. In addition, the steam supply system including the steam extraction valve 9 and the water supply unit 4 are automatically set to the operating state.
Further, the auxiliary burner unit 5 is also set in an operable state according to the steam load, and the automatic bleeder 33 of the hot water generating unit 3 is also automatically excluded from the system.

排ガス入口6aから入口側ダクト31を通して多管貫流型の熱回収本体40のガス入口側へ供給された高温のタービンからの排ガスGは、熱交換管36と接触しつつ流通し、排ガス出口よりエコノマイザ8及び出口側ダクト32を通して大気中へ放出されて行く。
また、熱交換管36との接触により、熱交換管36内部の熱媒水Woへ排ガスGの熱が伝熱され、熱媒水Woの加熱・蒸発が行われる。
Exhaust gas G from the high-temperature turbine supplied from the exhaust gas inlet 6a through the inlet duct 31 to the gas inlet side of the multi-tube flow-through heat recovery body 40 is in contact with the heat exchange pipe 36 and is economized from the exhaust gas outlet. 8 and the outlet side duct 32 are discharged into the atmosphere.
Further, due to the contact with the heat exchange pipe 36, the heat of the exhaust gas G is transferred to the heat transfer water Wo inside the heat exchange pipe 36, and the heat transfer water Wo is heated and evaporated.

熱交換管36内で加熱・蒸発した蒸気及び水は、太径の主連結27を通して温水発生部3の胴部37内へ導入され、ここで気水分離が行われる。分離された熱媒水Woは連通管28を通して下部ヘッダ35へ戻される。また、蒸気Sは蒸気取出弁9及び蒸気流量制御弁10を通して蒸気負荷(例えば、マイクロガスタービンの圧縮空気内への噴射)へ供給される。
更に、タービンからの排ガスGの熱量が不足する場合には、適宜に補助バーナ部5が作動される。
Steam and water heated and evaporated in the heat exchange pipe 36 are introduced into the body 37 of the hot water generator 3 through the large-diameter main connection 27, where air-water separation is performed. The separated heat transfer water Wo is returned to the lower header 35 through the communication pipe 28. Further, the steam S is supplied to a steam load (for example, injection into compressed air of a micro gas turbine) through a steam extraction valve 9 and a steam flow control valve 10.
Further, when the amount of heat of the exhaust gas G from the turbine is insufficient, the auxiliary burner unit 5 is appropriately operated.

一方、冬期等の温水負荷が増大すると共にマイクロガスタービン等への蒸気噴射を必要としないような場合には、温水・蒸気兼用型熱交換器1を温水発生器として作動させる。
即ち、コントロールボックス26の作動切換スイッチを温水発生側へ設定することにより、温水発生部3の胴部37に設けた蒸気取出弁9が自動閉鎖され、蒸気供給系が自動的に除外されると共に、給水ユニット部4の主給水弁38及びブロータンク25のブロー弁39も自動的に閉鎖され給水ユニット部4及びブロータンク25の系統が排熱回収部2から除外される。
On the other hand, when the hot water load increases in winter and the like, and the steam injection to the micro gas turbine or the like is not required, the hot water / steam combined heat exchanger 1 is operated as a hot water generator.
That is, by setting the operation changeover switch of the control box 26 to the hot water generation side, the steam extraction valve 9 provided in the body portion 37 of the hot water generation unit 3 is automatically closed, and the steam supply system is automatically excluded. The main water supply valve 38 of the water supply unit 4 and the blow valve 39 of the blow tank 25 are also automatically closed, and the system of the water supply unit 4 and the blow tank 25 is excluded from the exhaust heat recovery unit 2.

また、温水発生部3の自動抽気装置33が作動状態に保持されると共に、温水供給弁11及び温水リターン弁12が開放され、温水負荷系が温水発生部3へ接続される。   In addition, the automatic bleeder 33 of the hot water generating unit 3 is maintained in an operating state, the hot water supply valve 11 and the hot water return valve 12 are opened, and the hot water load system is connected to the hot water generating unit 3.

前記蒸気発生状態から温水発生状態に切替えたあと、温水発生部3の胴部37等が自然冷却されると、胴部37内は自然に減圧された状態となる。また、減圧度が設定値に達しない場合には、自動抽気装置33が作動し、胴部37内が所定の真空度に保持される。   After the steam generation state is switched to the warm water generation state, when the body portion 37 and the like of the hot water generation unit 3 are naturally cooled, the inside of the body portion 37 is naturally decompressed. Further, when the degree of decompression does not reach the set value, the automatic bleeder 33 is activated, and the inside of the trunk portion 37 is maintained at a predetermined degree of vacuum.

タービンからの排ガスGの熱により熱交換管36内の熱媒水Woが加熱されると、熱媒水Woは上部ヘッダー34内で直ちに沸騰し、その時の熱媒水Woの温度に対応する蒸気圧の蒸気を発生する。
また、この熱媒水Woの蒸発により発生した蒸気は、胴部37内に配置した温水用熱交換管14内の低温温水HW2 と熱交換をして冷却されることにより凝集され、液滴となって胴部37の底面へ滴下する。
尚、熱媒水Woの水面は、運転時に排熱回収部2の上部ヘッダー34の上面近傍に位置するように設定されている。
When the heat transfer water Wo in the heat exchange pipe 36 is heated by the heat of the exhaust gas G from the turbine, the heat transfer water Wo immediately boils in the upper header 34 and steam corresponding to the temperature of the heat transfer water Wo at that time. Generate pressure steam.
Further, the steam generated by the evaporation of the heat transfer water Wo is aggregated by being cooled by exchanging heat with the low-temperature hot water HW 2 in the hot water heat exchange pipe 14 disposed in the body portion 37, thereby being dropped. And drops onto the bottom surface of the body portion 37.
The water surface of the heat transfer water Wo is set so as to be positioned near the upper surface of the upper header 34 of the exhaust heat recovery unit 2 during operation.

タービン発電機の発生電力60kw、都市ガス(13A)による熱入力214kwの運転条件下でマイクロガスタービン発電装置(回転数96000rpm)を運転した。
このとき、ガスタービンからの排ガスGの温度は約290℃となり、流量は約1500Nm3 /hであった。
The micro gas turbine power generator (revolution: 96000 rpm) was operated under the operating conditions of the generated power of the turbine generator 60 kw and the heat input 214 kw by city gas (13A).
At this time, the temperature of the exhaust gas G from the gas turbine was about 290 ° C., and the flow rate was about 1500 Nm 3 / h.

上記条件下で温水発生部3を作動させた場合には、約60℃の低温水HW2 を約70℃の高温水HW、として10000kg/h(熱出力116kw)の割合で取り出すことができた。尚、この時の出口側ダクト32から外部へ排出する排ガスGの温度は、約90℃であった。 When the hot water generating unit 3 was operated under the above conditions, the low temperature water HW 2 of about 60 ° C. could be taken out at a rate of 10,000 kg / h (heat output 116 kw) as the high temperature water HW of about 70 ° C. . At this time, the temperature of the exhaust gas G discharged from the outlet side duct 32 to the outside was about 90 ° C.

また、排熱回収部2を作動させた場合には、胴部37からの蒸気発生量89.1kg/h、飽和蒸気Sのエンタルピ661kcal/kg、排ガスGhの排出温度約150℃、蒸気圧力0.7〜0.8MPaであった。尚、より多量の蒸気を発生させる必要がある場合には、補助バーナ部5が作動されることは勿論である。   When the exhaust heat recovery unit 2 is operated, the amount of steam generated from the body 37 is 89.1 kg / h, the enthalpy 661 kcal / kg of the saturated steam S, the exhaust gas Gh is discharged at about 150 ° C., and the steam pressure is 0. 0.7 to 0.8 MPa. Of course, when it is necessary to generate a larger amount of steam, the auxiliary burner unit 5 is operated.

更に、前記温水発生時の排ガスGh内のCO2 は約1.5%、COは5〜10ppm、NOxは約5〜9ppm(0%O2 換算)、炭化水素略0%であった。 Furthermore, the CO 2 in the exhaust gas Gh when the hot water was generated was about 1.5%, CO was 5 to 10 ppm, NOx was about 5 to 9 ppm (converted to 0% O 2 ), and hydrocarbons were about 0%.

前記排熱回収部2を作動させ、発生蒸気Sをガスタービン発電装置へ噴射(吸気量1500kg/h、噴射蒸気量89.1kg/h、噴射蒸気比率5.8%)した場合、吸気温度が30〜32℃の条件下において、約14〜15%(8.4〜9.0kw)の発生電力の増加が得られた。
また、この時の排ガスGh内のNOx濃度は約5ppmから約1.5ppmに低下した。炭化水素及びCO2 は殆ど変化しなかった。COは若干増加する傾向を示したが、特に問題となるレベルではないことが判明した。
When the exhaust heat recovery unit 2 is operated and the generated steam S is injected into the gas turbine power generator (intake amount 1500 kg / h, injection steam amount 89.1 kg / h, injection steam ratio 5.8%), the intake air temperature is Under the condition of 30 to 32 ° C., an increase in generated power of about 14 to 15% (8.4 to 9.0 kw) was obtained.
Further, the NOx concentration in the exhaust gas Gh at this time decreased from about 5 ppm to about 1.5 ppm. Hydrocarbons and CO 2 remained almost unchanged. Although CO showed a tendency to increase slightly, it was found that the level was not particularly problematic.

上記実施例においては、本発明に係る温水・蒸気兼用型熱交換器1を小型マイクロガスタービン発電装置へ適用する場合について述べたが、本発明に係る温水・蒸気兼用型熱交換器1は、高温の排ガスGを排出するあらゆる機器・装置へ適用することができる。   In the above-described embodiment, the case where the hot water / steam combined heat exchanger 1 according to the present invention is applied to a small micro gas turbine power generator has been described. However, the hot water / steam combined heat exchanger 1 according to the present invention includes: The present invention can be applied to any device or apparatus that discharges high-temperature exhaust gas G.

本発明に係る温水・蒸気兼用型熱交換器の斜面図である。1 is a perspective view of a hot water / steam combined heat exchanger according to the present invention. 温水・蒸気兼用型熱交換器の構成を示す系統図である。It is a systematic diagram which shows the structure of a hot water / steam combined heat exchanger. 図1のイ−イ視概要図である。FIG. 2 is a schematic diagram illustrating the view of FIG. 図1のロ−ロ視概要図である。FIG. 2 is a schematic view of a view in FIG. 従前のマイクロガスタービン発電装置を備えた熱・電供給設備の系統図である。It is a systematic diagram of the heat and electricity supply equipment provided with the conventional micro gas turbine power generator. 従前のマイクロガスタービン発電装置を備えた他の熱・電供給設備の系統図である。It is a systematic diagram of the other heat and electricity supply equipment provided with the conventional micro gas turbine power generator. マイクロガスタービン発電装置における発電出力特性と蒸気噴射による発電機出力の増加特性を示す曲線である。It is a curve which shows the power generation output characteristic in a micro gas turbine power generator, and the increase characteristic of the generator output by steam injection.

符号の説明Explanation of symbols

Ahは 圧縮空気
Ghは 燃焼ガス
Gは 排ガス
Fは 燃料ガス(都市ガス)
Woは 熱媒水
HW1は 高温温水
HW2は 低温温水
Sは 蒸気
Wは 原水(上水)
Vは バルブ
Chは チャッキバルブ
STは ストレーナ
Pは ポンプ
Lは 流量計
TGは 温度計
PGは 圧力計
SVは 安全弁
1は 温水・蒸気兼用型熱交換器
2は 排熱回収部
3は 温水発生部
4は 給水ユニット部
5は 補助バーナ部
6aは 排ガス入口
6bは 排ガス出口
7は 燃料制御弁
8は エコノマイザ
9は 蒸気取出弁
10は 蒸気流量制御弁
11は 温水供給弁
12は 温水リターン弁
13は 三方切換弁
14は 温水用熱交換管
15は 温度検出器
16は 圧力検出器
17は 圧力コントローラ
18は 温度コントローラ
19は 温水循環ポンプ
20は ミストセパレータ
21は 軟化器
22は 給水タンク
23は 薬剤注入装置(清缶剤)
24は 給水ポンプ
25は ブロー装置
26は コントロールボックス
27は 主連通管
28は 連通管
29は ベース
30は ケージング
31は 入口側ダクト
32は 出口側ダクト
33は 自動抽気装置
34は 上部ヘッダ
35は 下部ヘッダ
36は 熱交換管
37は 胴部
38は 主給水弁
39は ブロー弁
40は 多管貫流型熱回収本体
41は 密閉式膨張タンク(又は安全弁)
Ah is compressed air Gh is combustion gas G is exhaust gas F is fuel gas (city gas)
Wo is heat transfer water HW 1 is high temperature hot water HW 2 is low temperature hot water S is steam W is raw water (clean water)
V is a valve Ch is a check valve ST is a strainer P is a pump L is a flow meter TG is a thermometer PG is a pressure gauge SV is a safety valve 1 is a hot water / steam combined heat exchanger 2 is an exhaust heat recovery unit 3 is a hot water generator 4 The water supply unit 5 is the auxiliary burner 6a is the exhaust gas inlet 6b is the exhaust gas outlet 7 is the fuel control valve 8 is the economizer 9 is the steam outlet valve 10 is the steam flow control valve 11 is the hot water supply valve 12 is the hot water return valve 13 is three-way switching The valve 14 is a hot water heat exchange pipe 15 is a temperature detector 16 is a pressure detector 17 is a pressure controller 18 is a temperature controller 19 is a hot water circulation pump 20 is a mist separator 21 is a softener 22 is a water supply tank 23 is a chemical injection device (cleaning device) Cans)
24 is a water supply pump 25 is a blow device 26 is a control box 27 is a main communication pipe 28 is a communication pipe 29 is a base 30 is a caging 31 is an inlet duct 32 is an outlet duct 33 is an automatic bleeder 34 is an upper header 35 is a lower header Reference numeral 36 denotes a heat exchange pipe 37, a body part 38, a main water supply valve 39, a blow valve 40, a multi-tube once-through heat recovery body 41, a sealed expansion tank (or safety valve)

Claims (4)

排ガス(G)の排熱回収部(2)と、当該排熱回収部(2)と一体にした温水発生部(3)と、排熱回収部(2)と温水発生部(3)へ熱媒水(Wo)を供給する給水ユニット部(4)とを備え、蒸気又は温水を適宜に切換え発生可能とした温水・蒸気兼用型熱交換器において、前記排熱回収部(2)を上部ヘッダ(34)と下部ヘッダ(35)間を複数の熱交換管(36)で連結した多管貫流型熱回収本体(40)と当該熱回収本体(40)の入口側へ連結した排ガス入口側ダクト(31)と前記熱回収本体(40)の出口側へ連結したエコノマイザ(8)及び排ガス出口側ダクト(32)とから、また前記温水発生部(3)を胴部(37)と当該胴部(37)内に設けた温水用熱交換管(14)と前記胴部(37)内に連通する蒸気取出弁(9)と前記温水用熱交換管(14)の両端部に連通する温水供給弁(11)及び温水リターン弁(12)とから夫々形成し、前記胴部(37)と上部ヘッダ(34)間を太径の主連通管(27)を介して、また胴部(37)と下部ヘッダ(35)間を連通管(28)を介して夫々連結することにより排熱回収部(2)と温水発生部(3)とを一体化すると共に、蒸気の発生時に前記温水発生部(3)の胴部(37)を気水分離器とする構成としたことを特徴とする温水・蒸気兼用型熱交換器。 Exhaust heat recovery unit (2) of exhaust gas (G), hot water generation unit (3) integrated with the exhaust heat recovery unit (2), heat to the exhaust heat recovery unit (2) and the hot water generation unit (3) And a water supply unit (4) for supplying water (Wo), wherein the exhaust heat recovery unit (2) is an upper header. (34) and the lower header (35) are connected to the inlet side of the heat recovery body (40) by a multi-tube once-through heat recovery body (40) connected by a plurality of heat exchange pipes (36). (31), the economizer (8) connected to the outlet side of the heat recovery body (40), and the exhaust gas outlet side duct (32), and the warm water generating part (3) is connected to the trunk part (37) and the trunk part. (37) Steam extraction for communicating with the heat exchange pipe (14) for hot water provided in the body (37) Hot water supply valve communicating with the end portions (9) and the hot water heat exchanger tubes (14) (11) and hot water return valve (12) because to each form, the body portion (37) and the upper header (34) during through the main communicating pipe of large diameter (27), and also body portion (37) and a lower header (35) communicating pipe between (28) Lehigh heat recovery unit by to each linked via a (2 ) And the hot water generating part (3), and the body (37) of the hot water generating part (3) is used as a steam-water separator when steam is generated. Combined heat exchanger. 排ガス(G)の排熱回収部(2)と、当該排熱回収部(2)と一体にした温水発生部(3)と、排熱回収部(2)と温水発生部(3)へ熱媒水(Wo)を供給する給水ユニット部(4)とを備え、蒸気又は温水を適宜に切換え発生可能とした温水・蒸気兼用型熱交換器において、前記排熱回収部(2)を上部ヘッダ(34)と下部ヘッダ(35)間を複数の熱交換管(36)で連結した多管貫流型熱回収本体(40)と当該熱回収本体(40)の入口側へ連結した排ガス入口側ダクト(31)と前記熱回収本体(40)の出口側へ連結したエコノマイザ(8)及び排ガス出口側ダクト(32)とから、また前記温水発生部(3)を胴部(37)と当該胴部(37)内に設けた温水用熱交換管(14)と前記胴部(37)内に連通する蒸気取出弁(9)と前記温水用熱交換管(14)の両端部に連通する温水供給弁(11)及び温水リターン弁(12)とから夫々形成し、前記胴部(37)と上部ヘッダ(34)間を太径の主連通管(27)を介して、また胴部(37)と下部ヘッダ(35)間を連通管(28)を介して夫々連結することにより排熱回収部(2)と温水発生部(3)とを一体化すると共に、前記温水発生部(3)の胴部(37)に自動抽気装置(33)を設け、温水の発生時には、多管貫流熱回収本体(40)と胴部(37)内を大気圧以下に、熱媒水(Wo)の水位を上部ヘッダ(34)の内部に、主給水弁(38)を閉鎖の状態に夫々保持する構成としたことを特徴とする温水・蒸気兼用型熱交換器。 Exhaust heat recovery unit (2) of exhaust gas (G), hot water generation unit (3) integrated with the exhaust heat recovery unit (2), heat to the exhaust heat recovery unit (2) and the hot water generation unit (3) And a water supply unit (4) for supplying water (Wo), wherein the exhaust heat recovery unit (2) is an upper header. (34) and the lower header (35) are connected to the inlet side of the heat recovery body (40) by a multi-tube once-through heat recovery body (40) connected by a plurality of heat exchange pipes (36). (31) and the economizer (8) connected to the outlet side of the heat recovery main body (40) and the exhaust gas outlet side duct (32), and the warm water generating part (3) is connected to the trunk part (37) and the trunk part. (37) Steam extraction for communicating with the heat exchange pipe (14) for hot water provided in the body (37) (9) and a hot water supply valve (11) and a hot water return valve (12) communicating with both ends of the hot water heat exchange pipe (14), respectively, and the body (37) and the upper header (34) The exhaust heat recovery section (2) is connected by connecting the main pipe (27) with a large diameter between them and the trunk section (37) and the lower header (35) via a communication pipe (28). The hot water generator (3) is integrated and an automatic bleeder (33) is provided in the body (37) of the hot water generator (3). When hot water is generated, a multi-tube once-through heat recovery body (40) is provided. The body (37) is kept at atmospheric pressure or lower, the water level of the heat transfer water (Wo) is kept inside the upper header (34), and the main water supply valve (38) is kept closed. Features a heat / steam combined heat exchanger. 受け入れする高温の排ガス(G)をマイクロガスタービン発電装置からのタービン排ガスとすると共に、発生した蒸気をマイクロガスタービンの駆動用ガス内への噴射する構成とした請求項1又は請求項2に記載の温水・蒸気兼用型熱交換器。 The high-temperature exhaust gas (G) to be received is used as turbine exhaust gas from the micro gas turbine power generator, and the generated steam is injected into the driving gas for the micro gas turbine. Hot water / steam combined heat exchanger. 排ガス入口側ダクト(31)に排ガス(G)を加熱する補助バーナ部(5)を介設する構成とした請求項1又は請求項2に記載の温水・蒸気兼用型熱交換器。 The hot water / steam combined heat exchanger according to claim 1 or 2, wherein an auxiliary burner portion (5) for heating the exhaust gas (G) is interposed in the exhaust gas inlet side duct (31) .
JP2005088047A 2005-03-25 2005-03-25 Hot water / steam combined heat exchanger Expired - Fee Related JP4553365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005088047A JP4553365B2 (en) 2005-03-25 2005-03-25 Hot water / steam combined heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005088047A JP4553365B2 (en) 2005-03-25 2005-03-25 Hot water / steam combined heat exchanger

Publications (2)

Publication Number Publication Date
JP2006266627A JP2006266627A (en) 2006-10-05
JP4553365B2 true JP4553365B2 (en) 2010-09-29

Family

ID=37202799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005088047A Expired - Fee Related JP4553365B2 (en) 2005-03-25 2005-03-25 Hot water / steam combined heat exchanger

Country Status (1)

Country Link
JP (1) JP4553365B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20100819A1 (en) * 2010-10-06 2012-04-07 Noema S R L ELECTRICITY GENERATOR GROUP
JP5580224B2 (en) * 2011-02-18 2014-08-27 株式会社日本サーモエナー Vacuum water heater
RU2544900C2 (en) * 2011-04-01 2015-03-20 Валентин Степанович Суворов Method to increase electrical efficiency of microturbine unit
KR101309000B1 (en) * 2011-06-08 2013-09-16 손연홍 The Device of recycling combustible wastes
JP6355377B2 (en) * 2014-03-24 2018-07-11 株式会社日本サーモエナー Vacuum water heater

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158705U (en) * 1980-04-28 1981-11-26
JPS61124834U (en) * 1985-01-21 1986-08-06
JP2000054856A (en) * 1998-08-07 2000-02-22 Ebara Corp External heating type gas turbine power generating system
JP2004108150A (en) * 2002-09-13 2004-04-08 Miura Co Ltd Cogeneration system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158705U (en) * 1980-04-28 1981-11-26
JPS61124834U (en) * 1985-01-21 1986-08-06
JP2000054856A (en) * 1998-08-07 2000-02-22 Ebara Corp External heating type gas turbine power generating system
JP2004108150A (en) * 2002-09-13 2004-04-08 Miura Co Ltd Cogeneration system

Also Published As

Publication number Publication date
JP2006266627A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
EP1691038A1 (en) Heat energy supply system and method, and reconstruction method of the system
JPH0339166B2 (en)
JP4553365B2 (en) Hot water / steam combined heat exchanger
JP3162640U (en) Steam turbine power generation system with latent heat recovery function
KR101196913B1 (en) Hot water storage type PID control condensing boiler
CN102016411A (en) High efficiency feedwater heater
JP5909429B2 (en) Moisture gas turbine system
JP4794229B2 (en) Gas turbine power generator and gas turbine combined power generation system
CA2470184C (en) Feedwater heater
CN106196229A (en) Air-introduced machine steam turbine low-vacuum-operating circulating water heating system and power-economizing method thereof
JP2008045807A (en) Steam generating system
CN103114881B (en) Multiple working medium backheating type Rankine cycle system
JP2003161164A (en) Combined-cycle power generation plant
JP4999992B2 (en) Gas turbine combined power generation system
JP4611969B2 (en) Air cooler for power plant and use of this air cooler
CN104406144A (en) Double-medium waste heat boiler
JP2013201873A (en) Thermoelectric power generation device and thermoelectric power generation system
KR101262669B1 (en) The structure of exhaust gas flow passage of supplementary boiler in micro combined heat and power unit
JP5766527B2 (en) Method and apparatus for controlling once-through boiler
CN105545386A (en) Extraction condensing and backpressure combined unit based on E-level ALSTOM combined cycle
CN219034829U (en) Combined operation system of gas boiler generator set and sintering waste heat generator set
CN104929707B (en) Power station exhaust steam latent heat and exhaust smoke waste heat combined generating system and optimizing running method
CN104727869A (en) Cogeneration unit and boiler starting and exhausted steam utilizing method thereof
CN219264242U (en) Waste heat utilization system of coal-fired generating set
CN114837808B (en) Waste heat flue gas utilization system of gas turbine generator set

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees