KR101262669B1 - The structure of exhaust gas flow passage of supplementary boiler in micro combined heat and power unit - Google Patents

The structure of exhaust gas flow passage of supplementary boiler in micro combined heat and power unit Download PDF

Info

Publication number
KR101262669B1
KR101262669B1 KR1020100079464A KR20100079464A KR101262669B1 KR 101262669 B1 KR101262669 B1 KR 101262669B1 KR 1020100079464 A KR1020100079464 A KR 1020100079464A KR 20100079464 A KR20100079464 A KR 20100079464A KR 101262669 B1 KR101262669 B1 KR 101262669B1
Authority
KR
South Korea
Prior art keywords
heat exchanger
exhaust gas
stirling engine
latent heat
engine
Prior art date
Application number
KR1020100079464A
Other languages
Korean (ko)
Other versions
KR20120016927A (en
Inventor
박대웅
장덕표
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Priority to KR1020100079464A priority Critical patent/KR101262669B1/en
Priority to AU2011202483A priority patent/AU2011202483B2/en
Priority to RU2011118723/06A priority patent/RU2473847C1/en
Priority to PCT/KR2011/000769 priority patent/WO2012023678A1/en
Priority to NZ592799A priority patent/NZ592799A/en
Priority to EP11003946.8A priority patent/EP2420756B1/en
Publication of KR20120016927A publication Critical patent/KR20120016927A/en
Application granted granted Critical
Publication of KR101262669B1 publication Critical patent/KR101262669B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0026Guiding means in combustion gas channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H2240/00Fluid heaters having electrical generators
    • F24H2240/02Fluid heaters having electrical generators with combustion engines
    • F24H2240/04External combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/17District heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

본 발명은 소형 열병합발전기의 배기가스 유로구조에 관한 것으로, 엔진버너로 가열되어 전기를 생산하는 스털링 엔진과, 상기 스털링 엔진 상부에 설치되고 현열 열교환기 및 잠열 열교환기를 구비하여 온수를 생산하는 보조보일러를 포함한 소형 열병합발전기에 있어서; 상기 스털링 엔진을 가열한 배기가스가 배출되는 엔진헤드와 상기 잠열 열교환기를 연결하는 유로를 형성하되, 상기 유로는 배출되는 배기가스가 잠열 열교환기의 상부에서 하부로 유동되면서 열교환하도록 구성된 것을 특징으로 하는 소형 열병합발전기의 보조보일러 배기구조를 제공한다.
본 발명에 따르면, 스털링 엔진의 배기가스를 보조보일러의 잠열 열교환기에 경유시킴으로써 배기가스에 포함된 고열을 회수하고 이를 통해 에너지 낭비를 줄이며, 회수된 열을 통해 난방수를 더 효율적으로 데울 수 있어 열효율을 향상시키며, 나아가 배기가스의 온도를 낮춘 상태로 배출하기 때문에 NOx 발생을 억제하고, 연료비를 줄이는 효과를 얻을 수 있다.
The present invention relates to an exhaust gas flow path structure of a small cogeneration generator, and includes a Stirling engine that is heated by an engine burner to produce electricity, and an auxiliary boiler that is installed on the Stirling engine and has a sensible heat exchanger and a latent heat exchanger. In a small cogeneration generator including; A flow path is formed between the engine head and the latent heat exchanger, through which the exhaust gas heated by the Stirling engine is discharged, wherein the flow path is configured to exchange heat while the discharged exhaust gas flows from the upper portion to the lower portion of the latent heat exchanger. It provides an auxiliary boiler exhaust structure of a small cogeneration generator.
According to the present invention, by passing the exhaust gas of the Stirling engine to the latent heat exchanger of the sub-boiler to recover the high heat contained in the exhaust gas, thereby reducing energy waste, it is possible to heat the heating water more efficiently through the heat recovered In addition, since the exhaust gas is discharged at a lower temperature, the generation of NOx can be suppressed and the fuel cost can be reduced.

Description

소형 열병합발전기의 보조보일러 배기구조{THE STRUCTURE OF EXHAUST GAS FLOW PASSAGE OF SUPPLEMENTARY BOILER IN MICRO COMBINED HEAT AND POWER UNIT}Auxiliary Boiler Exhaust Structure of Small Combined Heat and Power Cogeneration System {THE STRUCTURE OF EXHAUST GAS FLOW PASSAGE OF SUPPLEMENTARY BOILER IN MICRO COMBINED HEAT AND POWER UNIT}

본 발명은 소형 열병합발전기의 보조보일러 배기구조에 관한 것으로, 보다 상세하게는 하향식 버너 구조를 갖는 소형 열병합발전기의 스털링 엔진에서 배출되는 배기가스를 보조보일러의 잠열 열교환기를 거쳐 배출되게 함으로써 배기가스에 함유되어 버려지는 고열을 효율적으로 회수할 수 있도록 설계된 소형 열병합발전기의 보조보일러 배기구조에 관한 것이다.The present invention relates to an auxiliary boiler exhaust structure of a small cogeneration generator, and more particularly, by containing the exhaust gas discharged from the Stirling engine of the small cogeneration generator having a top-down burner structure through the latent heat exchanger of the auxiliary boiler. The present invention relates to a sub-boiler exhaust structure of a small cogeneration machine designed to efficiently recover high heat that has been discarded.

근래 새로운 에너지 원의 발굴에 대한 관심이 높아지면서, 산업의 거의 모든 분야에서 발생된다고 할 수 있는 중,저온의 배기가스 또는, 냉각수의 잠열을 회수 및 재이용하는 것 중요성이 높아지고 있다.Recently, with increasing interest in the discovery of new energy sources, the importance of recovering and reusing the latent heat of medium and low temperature exhaust gas or cooling water, which can be generated in almost all fields of the industry, is increasing.

이와 같은 중, 저온의 열에너지를 고급 에너지인 축동력으로 전환할 때 주로 유기 랭킨 사이클이 적용되고 있다.The organic Rankine cycle is mainly applied to convert low temperature heat energy to high energy energy.

이러한 유기 랭킨 사이클은 물보다 증기압이 높은 유기 열매체를 작동유체로 사용함으로써, 낮은 온도의 열원 조건하에서도 상대적으로 높은 열효율로 축동력을 얻는 것을 가능하게 하는 동력 사이클의 한 형태이다.Such an organic Rankine cycle is a form of power cycle that makes it possible to obtain a shaft force with relatively high thermal efficiency even under low temperature heat source conditions by using an organic heating medium having a higher vapor pressure than water as a working fluid.

예를 들어, 알려진 유기 랭킨 사이클은, 순환펌프, 터빈, 응축기 및 증발기 등의 독립된 구성 장치를 상호 연관구성한 것으로써, 작동유체가 증발기에서 기화된 후 터빈에서 팽창하면서 축동력을 발생시키며, 응축기에서 다시 액화된 다음 펌프에 의해서 증발기로 다시 공급되는 폐순환 사이클로 구성되게 된다.For example, known organic Rankine cycles correlate independent components such as circulating pumps, turbines, condensers and evaporators, where the working fluid evaporates in the evaporator and then expands in the turbine, generating axial force and then again in the condenser. It consists of a closed circulation cycle that is liquefied and then fed back to the evaporator by a pump.

그러나, 이와 같이 알려진 유기랭킨 시스템은 장치의 구성이 복잡하고 다량의 유기 열매체가 소요되는 것은 물론, 각 요소 장치에 대한 정밀한 제어가 요구되기 때문에 현재에는 기동 및 정지가 용이하지 않은 단점이 문제가 되어 왔다.However, the known organic Rankine system has a disadvantage that the start and stop is not easy at present because the configuration of the device is complicated, a large amount of organic heat medium is required, and precise control of each element device is required. come.

한편, 다른 예로 스털링 엔진(stirling Engine)이 있는데, 이는 동력사이클을 이루는 각 구성 요소가 하나의 엔진으로 집합되어 있고 작동유체로써 공기와 같은 기체를 사용하기 때문에, 장치가 매우 간단하고 운전이 용이한 이점을 제공한다.On the other hand, there is a stirling engine, which is a very simple and easy to operate device because each component of the power cycle is assembled into one engine and uses a gas such as air as a working fluid. Provide an advantage.

더욱이, 이와 같은 스털링 엔진은 동력 사이클 중 최고의 열효율을 가지기 때문에, 이를 이용하여 중저온 열에너지를 동력으로 전환할 경우 종래 유기 랭킨 시스템에 비하여 매우 구조가 간단한 반면에, 고효율적인 에너지의 전환을 가능하게 하는 이점을 제공한다.Moreover, since such a Stirling engine has the highest thermal efficiency during the power cycle, the use of the Stirling engine to convert low to low temperature thermal energy into power allows for the conversion of high efficiency energy while having a very simple structure compared to conventional organic Rankine systems. Provide an advantage.

최근에는 이를 이용하여 가정에서도 전기와 열을 동시에 생산하는 발전방식인 Micro CHP(Combined Heat and Power)가 개시된 바 있는데, 일 예로 공개특허 제2006-0013391호를 들 수 있다.Recently, Micro CHP (Combined Heat and Power), which is a power generation method for simultaneously producing electricity and heat at home, has been disclosed. For example, Korean Patent Application Publication No. 2006-0013391.

이때, 이러한 발전방식의 소형 열병합발전기는 스털링 엔진과, 보조보일러를 채용하여 스털링 엔진을 통해 교류전기를 생산하고, 보조보일러를 통해 난방을 할 수 있도록 구성된 가정용 보일러 설비의 일종이라고 볼 수 있다.In this case, the small cogeneration generator of the power generation method may be regarded as a kind of household boiler facility configured to produce an alternating current through a Stirling engine and a heating by using a Stirling engine and an auxiliary boiler.

그런데, 이와 같은 구조의 소형 열병합발전기에서는 스털링 엔진에 열을 공급하는 엔진버너 연소시 발생되는 배기가스가 곧바로 대기로 방출되는 구조로 구성되어 있기 때문에 고열이 함유된 배기가스 배출에 따른 에너지 낭비가 있었고, 또한 고열상태로 곧바로 배출되기 때문에 NOx 발생을 낮추기 어렵다는 문제도 있었다.However, in the small cogeneration system having such a structure, since the exhaust gas generated during combustion of the engine burner that supplies heat to the Stirling engine is immediately discharged to the atmosphere, there was energy waste due to the exhaust gas containing high heat. In addition, there is a problem that it is difficult to reduce the generation of NOx because it is discharged immediately in a high temperature state.

본 발명은 상술한 바와 같은 종래 기술상의 제반 문제점을 감안하여 이를 해결하고자 창출된 것으로, 스털링 엔진과 보조보일러를 포함하는 소형 열병합발전기에서 스털링 엔진 구동을 위해 열을 공급할 때 생기는 배기가스를 곧바로 배출하지 않고 보조보일러의 잠열 열교환기를 경유하여 충분히 열교환된 후 대기로 배출되게 함으로써 배기가스에 포함된 고열을 고효율적으로 회수함과 동시에 NOx 발생도 줄일 수 있도록 한 소형 열병합발전기의 보조보일러 배기구조를 제공함에 그 주된 목적이 있다.The present invention was created in view of the above-described problems in the prior art, and does not immediately discharge the exhaust gas generated when supplying heat for driving the Stirling engine in a small cogeneration generator including a Stirling engine and an auxiliary boiler. By providing a subsidiary boiler exhaust structure of a small cogeneration generator that can be efficiently exchanged through the latent heat exchanger of the auxiliary boiler and then discharged to the atmosphere to recover the high heat contained in the exhaust gas at high efficiency and reduce the generation of NOx. Its main purpose is.

본 발명은 상기한 목적을 달성하기 위한 수단으로, 엔진버너로 가열되어 전기를 생산하는 스털링 엔진과, 상기 스털링 엔진 상부에 설치되고 현열 열교환기 및 잠열 열교환기를 구비하여 온수를 생산하는 보조보일러를 포함한 소형 열병합발전기에 있어서; 상기 스털링 엔진을 가열한 배기가스가 배출되는 엔진헤드와 상기 잠열 열교환기를 연결하는 유로를 형성하되, 상기 유로는 배출되는 배기가스가 잠열 열교환기의 상부에서 하부로 유동되면서 열교환하도록 구성된 것을 특징으로 하는 소형 열병합발전기의 보조보일러 배기구조를 제공한다.The present invention is a means for achieving the above object, including a Stirling engine heated by an engine burner to produce electricity, and an auxiliary boiler installed on top of the Stirling engine and having a sensible heat exchanger and a latent heat exchanger to produce hot water In a small cogeneration machine; A flow path is formed between the engine head and the latent heat exchanger, through which the exhaust gas heated by the Stirling engine is discharged, wherein the flow path is configured to exchange heat while the discharged exhaust gas flows from the upper portion to the lower portion of the latent heat exchanger. It provides an auxiliary boiler exhaust structure of a small cogeneration generator.

이때, 상기 유로는 상기 잠열 열교환기를 고정하는 케이스에 조립되는 커버의 내부에 돌출된 유로 형성용 격벽과, 상기 격벽을 밀폐하여 유로를 형성하는 밀폐부재와, 상기 커버의 바닥면을 관통하여 형성된 구멍과, 상기 구멍과 스털링 엔진의 엔진헤드를 연결 접속하는 연통관을 통해 형성되는 것에도 그 특징이 있다.In this case, the flow path is a flow path forming partition wall projecting inside the cover assembled to the case for fixing the latent heat exchanger, a sealing member for sealing the partition wall to form a flow path, and a hole formed through the bottom surface of the cover And it is also characterized in that it is formed through a communication pipe connecting the hole and the engine head of the Stirling engine.

또한, 상기 격벽과 밀폐부재 사이에는 단열재가 개재된 것에도 그 특징이 있다.In addition, there is also a feature that the insulating material is interposed between the partition and the sealing member.

본 발명에 따르면, 스털링 엔진의 배기가스를 보조보일러의 잠열 열교환기에 경유시킴으로써 배기가스에 포함된 고열을 회수하고 이를 통해 에너지 낭비를 줄이며, 회수된 열을 통해 난방수를 더 효율적으로 데울 수 있어 열효율을 향상시키며, 나아가 배기가스의 온도를 낮춘 상태로 배출하기 때문에 NOx 발생을 억제하고, 연료비를 줄이는 효과를 얻을 수 있다.According to the present invention, by passing the exhaust gas of the Stirling engine to the latent heat exchanger of the sub-boiler to recover the high heat contained in the exhaust gas, thereby reducing energy waste, it is possible to heat the heating water more efficiently through the heat recovered In addition, since the exhaust gas is discharged at a lower temperature, the generation of NOx can be suppressed and the fuel cost can be reduced.

도 1은 본 발명에 따른 소형 열병합발전기의 스털링 엔진 배기가스 배기과정을 보인 모식도이다.
도 2는 본 발명에 따른 소형 열병합발전기의 보조보일러를 보인 예시적인 사시도이다.
도 3은 본 발명에 따른 보조보일러의 요부 개방 사시도이다.
도 4 및 도 5는 본 발명에 따른 보조보일러의 배기유로를 보인 정면도 및 요부 단면도이다.
도 6은 본 발명에 따른 보조보일러의 배기유로를 구성하는 커버의 예시도이다.
Figure 1 is a schematic diagram showing the exhaust gas of the Stirling engine exhaust gas of the small cogeneration generator according to the present invention.
2 is an exemplary perspective view showing an auxiliary boiler of a small cogeneration generator according to the present invention.
Figure 3 is a perspective view of the main opening of the auxiliary boiler according to the present invention.
4 and 5 are a front view and a main sectional view showing an exhaust flow path of the auxiliary boiler according to the present invention.
6 is an exemplary view of a cover constituting the exhaust passage of the auxiliary boiler according to the present invention.

이하에서는, 첨부도면을 참고하여 본 발명에 따른 바람직한 실시예를 보다 상세하게 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1 내지 도 3에 도시된 바와 같이, 본 발명에 따른 소형 열병합발전기는 하우징(100)을 포함하며, 상기 하우징(100) 내부에는 스털링 엔진(110)이 설치되고, 상기 스털링 엔진(110)의 상부에는 보조보일러(200)가 설치된다.As shown in FIGS. 1 to 3, the small cogeneration generator according to the present invention includes a housing 100, and a sterling engine 110 is installed inside the housing 100, and the sterling engine 110 of the The auxiliary boiler 200 is installed at the top.

이때, 상기 스털링 엔진(110)은 주보일러(미도시)에 의해 가동되는데, 주보일러에 구비된 엔진버너(120)가 스털링 엔진(110)의 엔진헤드(미도시)를 가열하면 내부에 밀봉된 작동유체가 온도차에 의해 팽창/수축하면서 작동하여 교류 전류를 생산하게 된다.At this time, the Stirling engine 110 is driven by a main boiler. When the engine burner 120 provided in the main boiler heats the engine head (not shown) of the Stirling engine 110, The working fluid is expanded and contracted by the temperature difference to produce an alternating current.

그리고, 상기 보조보일러(200)는 현열 열교환기(210)와 잠열 열교환기(220)를 갖추고 하향식 평판형 버너(B, 도 4 참조)를 통해 공급되는 고열의 열교환을 통해 온수를 생산하게 된다.In addition, the auxiliary boiler 200 is equipped with a sensible heat exchanger 210 and a latent heat exchanger 220 to produce hot water through a high temperature heat exchanger supplied through a top-down flat burner B (see FIG. 4).

이 과정에서 생산된 온수는 저장탱크(300)에 저장된 후 활용되게 되는데, 이 경우 상기 스털링 엔진(110)을 냉각하기 위해 냉각수관(130)이 스털링 엔진(110)을 경유한 후 상기 잠열 열교환기(220)와 현열 열교환기(210)를 순차로 거치도록 구성된다.In this case, the cooling water pipe 130 is passed through the Stirling engine 110 to cool the Stirling engine 110, and then the hot water produced in the latent heat heat exchanger (220) and the sensible heat exchanger (210).

한편, 상기 보조보일러(200)는 도 2 내지 도 5에 도시된 바와 같이, 케이스(230) 내부에 잠열 열교환기(220)가 내장되고, 상기 케이스(230)의 상부에는 현열 열교환기(210)가 조립된다.On the other hand, the auxiliary boiler 200, as shown in Figures 2 to 5, the latent heat exchanger 220 is built in the case 230, the sensible heat exchanger 210 on the upper portion of the case 230 Is assembled.

아울러, 상기 케이스(230)의 전방은 일부 개방되고, 개방된 부분에는 엔진 배기가스의 유로를 형성하는 커버(240)로 밀폐된다.In addition, a front portion of the case 230 is partially opened, and the opened portion is sealed by a cover 240 which forms a flow path of engine exhaust gas.

이때, 상기 커버(240)의 하면에는 구멍(미도시)이 형성되고, 상기 구멍에는 연통관(250)이 연결되며, 상기 연통관(250)은 스털링 엔진(110)의 엔진헤드에 접속되어 엔진버너(120)로부터 연소된 후 스털링 엔진(110)을 가열한 다음 배기되는 배기가스를 유도배출하는 기능을 수행한다.At this time, a hole (not shown) is formed in the lower surface of the cover 240, the communication tube 250 is connected to the hole, the communication tube 250 is connected to the engine head of the Stirling engine 110 to burn the engine burner ( After the combustion from the 120 to heat the Stirling engine 110 and performs the function of induction discharge the exhaust gas is exhausted.

이 경우, 상기 연통관(250)은 플랜지 형태로 구성되어 조립의 용이성을 확보하도록 하며, 필요한 경우 단열재를 사용하여 단열성을 높임으로써 열손실을 최소화하고, 이를 통해 배기가스와 잠열 열교환기(220) 간의 열교환 효율을 높이도록 함이 더욱 바람직하다.In this case, the communication tube 250 is configured in the form of a flange to ensure ease of assembly, and if necessary to minimize the heat loss by increasing the thermal insulation by using a heat insulating material, through which the exhaust gas and the latent heat exchanger 220 between It is more preferable to increase the heat exchange efficiency.

특히, 본 발명에서는 상기 연통관(250)의 상단을 통해 배출되는 배기가스를 잠열 열교환기(220)로 유도하는 유로를 형성할 수 있도록 커버(240) 내부에 도 5 및 도 6에서와 같이 격벽(260)을 형성하고, 상기 격벽(260)을 밀폐부재(280)로 막아 도 5에 도시된 바와 같은 배출가스의 배출 유동이 생기도록 구성된다.In particular, in the present invention, the partition wall as shown in FIGS. 5 and 6 so as to form a flow path for guiding the exhaust gas discharged through the upper end of the communication tube 250 to the latent heat exchanger 220 ( 260 is formed, and the barrier rib 260 is blocked by the sealing member 280 to generate a discharge flow of the exhaust gas as shown in FIG. 5.

즉, 엔진 배기가스를 곧바로 배출시키지 않고 잠열 열교환기(220) 상부로 유도한 다음 잠열 열교환기(220)를 거쳐 하부로 이동된 후 배기되도록 구성함으로써 배기가스에 포함된 버려지는 고열까지도 완벽하게 회수하여 열효율을 높이고, 배기가스의 온도를 낮춰 NOx 발생도 저감시킬 수 있도록 한 것이다.That is, the engine exhaust gas is directed to the upper portion of the latent heat exchanger 220 without being immediately discharged, and then moved downward through the latent heat exchanger 220 to exhaust the exhaust gas, thereby completely recovering even the high heat discarded in the exhaust gas. By increasing the thermal efficiency and lowering the temperature of the exhaust gas to reduce the generation of NOx.

이때, 도 6에서, 상기 격벽(260)과 밀폐부재(280) 사이에는 단열재(Insulator)(270)가 더 구비될 수도 있다.In this case, in FIG. 6, an insulator 270 may be further provided between the partition wall 260 and the sealing member 280.

이러한 구성으로 이루어진 본 발명은 다음과 같은 작동관계를 갖는다.The present invention having such a configuration has the following operational relationship.

가스를 열원으로 하여 본 발명에 따른 소형 열병합발전기가 가동되어 전기 및 온수를 생산하게 된다.A small cogeneration generator according to the present invention is operated using gas as a heat source to produce electricity and hot water.

즉, 가스의 일부는 엔진버너(120)를 통해 스털링 엔진(110)을 가열함으로써 전기를 생산하고, 가스의 나머지 일부는 콘덴싱보일러인 보조보일러(200)로 공급되어 평판형 하향식 버너(B)를 가열하고 그때 발생되는 고열로 2 개의 열교환기를 통과하는 찬물을 열교환시킴으로서 온수를 생산하게 된다.That is, a part of the gas produces electricity by heating the Stirling engine 110 through the engine burner 120, and the remaining part of the gas is supplied to the auxiliary boiler 200, which is a condensing boiler, to provide a flat-top burner B. Hot water is produced by heat-exchanging the cold water passing through the two heat exchangers with the high heat generated.

이 과정에서, 엔진버너(120)를 가동하여 가스를 연소시킬 때 발생되는 배기가스는 엔진헤드(미도시)에 직접 연결된 연통관(240)을 통해 상승되고, 상승된 고열을 함유한 배기가스는 연통관(240)과 연결된 커버(240) 내부의 격벽(260)과 밀폐부재(280)에 의해 형성된 유로를 타고 잠열 열교환기(220)와 분리된 채 상승하게 된다.In this process, the exhaust gas generated when the engine burner 120 is operated to burn the gas is raised through the communication pipe 240 directly connected to the engine head (not shown), and the exhaust gas containing the elevated high temperature is connected to the communication pipe. Rising apart from the latent heat exchanger 220, the flow path formed by the partition wall 260 and the sealing member 280 in the cover 240 connected to the 240 is separated.

이어, 유로의 최상단까지 상승되면 최상단에서 상기 잠열 열교환기(220)와 접촉할 수 있도록 유로가 개방되어 있기 때문에 상승유동된 배기가스는 잠열 열교환기(220) 사이 사이로 스며들고, 그 과정에서 열교환이 이루어지며, 열을 빼앗긴 배기가스는 잠열 열교환기(220)의 최하단에 구비된 배출유로(290)를 타고 상승된 후 대기중으로 배출되게 된다.Subsequently, since the flow path is opened so as to be in contact with the latent heat exchanger 220 at the top of the flow path, the upflowed exhaust gas permeates between the latent heat exchanger 220, and in the process, the heat exchange is performed. The exhaust gas, which is deprived of heat, is lifted up through the exhaust passage 290 provided at the lower end of the latent heat exchanger 220 and then discharged into the atmosphere.

이와 같이, 보조보일러(200)의 응축잠열을 흡수하는 잠열 열교환기(220)에서 스털링 엔진(110)을 통해 배출되는 배기가스에 포함된 고열도 함께 흡수하도록 함으로써 열교환 효율 및 열효율을 높여 열병합발전기의 성능을 향상시키게 된다.As described above, the latent heat exchanger 220 absorbing the latent heat of condensation of the auxiliary boiler 200 also absorbs the high heat contained in the exhaust gas discharged through the Stirling engine 110 to increase the heat exchange efficiency and thermal efficiency of the cogeneration generator. It will improve performance.

또한, 열효율이 높아져 연료소비를 줄일 수 있고, 배출되는 배기가스의 온도를 충분히 낮출 수 있어 NOx 저감에도 일조하게 된다.In addition, the thermal efficiency can be increased to reduce fuel consumption, and the temperature of the exhaust gas discharged can be sufficiently lowered, thus contributing to NOx reduction.

100 : 하우징 110 : 스털링 엔진
120 : 엔진버너 130 : 냉각수관
200 : 보조보일러 210 : 현열 열교환기
220 : 잠열 열교환기 230 : 케이스
240 : 커버 250 : 연통관
260 : 격벽 270 : 단열재
280 : 밀폐부재 290 : 배출유로
100: housing 110: Stirling engine
120: engine burner 130: cooling water pipe
200: auxiliary boiler 210: sensible heat exchanger
220: latent heat exchanger 230: case
240: cover 250: communicating tube
260: partition 270: insulation
280: sealing member 290: discharge passage

Claims (3)

엔진버너(120)로 가열되어 전기를 생산하는 스털링 엔진(110)과 상기 스털링 엔진(110)의 일측에 설치되고, 온수를 생산하는 현열 열교환기(210) 및 잠열 열교환기(220)를 구비하는 보조열교환기를 포함하여 이루어진 소형 열병합발전기의 배기구조에 있어서,
상기 잠열 교환기(220)는 상기 현열 열교환기(210)의 하부에 설치되어 상기 현열 열교환기(210)에서 열교환 된 배기가스가 잠열 열교환기에 형성된 열교환 유로를 상부에서 하부로 통과하면서 잠열 열교환 된 후 배출유로(290)를 통해 배출되도록 이루어짐과 아울러, 상기 스털링 엔진(110)의 상부에서 상기 스털링 엔진(110)과 연통관(250)으로 연결되어 상기 스털링 엔진(110)을 가열한 배기가스가 격벽(260)과 밀폐부재(280) 사이의 통로를 통해 잠열열교환기 상부로 유동된 후 상기 잠열 열교환기의 열교환 유로를 상부에서 하부로 통과하면서 배출유로(290)를 통해 배출되도록 형성되고,
상기 스털링 엔진(110)을 냉각하기 위해 스털링 엔진(110)을 경유하고, 상기 배기가스가 유동되는 잠열 열교환기(220)의 열교환 유로와 현열 열교환기(210)를 순차로 경유하여 가열된 온수는 저장탱크(300)에 저장되도록 구성되는 것을 특징으로 하는 소형 열병합발전기의 보조보일러 배기구조.
The Stirling engine 110 is heated by the engine burner 120 to produce electricity and is installed on one side of the Stirling engine 110, and includes a sensible heat exchanger 210 and a latent heat exchanger 220 for producing hot water. In the exhaust structure of a small cogeneration generator comprising an auxiliary heat exchanger,
The latent heat exchanger 220 is installed at the lower portion of the sensible heat exchanger 210 and discharged after the latent heat exchanger passes through a heat exchange passage formed in the latent heat exchanger from the upper portion to the lower portion. Exhaust gas that is made to be discharged through the flow path 290 and connected to the Stirling engine 110 and the communication tube 250 from the top of the Stirling engine 110 to heat the Stirling engine 110 is partition 260. After flowing through the passage between the sealing member 280 and the latent heat exchanger is formed to be discharged through the discharge passage 290 while passing through the heat exchange passage of the latent heat exchanger from top to bottom,
The hot water heated through the Stirling engine 110 to cool the Stirling engine 110 and sequentially through the heat exchange passage and the sensible heat exchanger 210 of the latent heat exchanger 220 through which the exhaust gas flows. A secondary boiler exhaust structure of a small cogeneration generator, characterized in that configured to be stored in the storage tank (300).
청구항 1에 있어서,
상기 유로는 상기 잠열 열교환기를 고정하는 케이스에 조립되는 커버의 내부에 돌출된 유로 형성용 격벽과, 상기 격벽을 밀폐하여 유로를 형성하는 밀폐부재와, 상기 커버의 바닥면을 관통하여 형성된 구멍과, 상기 구멍과 스털링 엔진의 엔진헤드를 연결 접속하는 연통관을 통해 형성되는 것을 특징으로 하는 소형 열병합발전기의 보조보일러 배기구조.
The method according to claim 1,
The flow path may include: a flow path forming partition wall protruding into a cover assembled to a case for fixing the latent heat exchanger; a sealing member for sealing the partition wall to form a flow path; and a hole formed through the bottom surface of the cover; The auxiliary boiler exhaust structure of a small cogeneration generator, characterized in that formed through a communication pipe connecting the hole and the engine head of the Stirling engine.
청구항 2에 있어서,
상기 격벽과 밀폐부재 사이에는 단열재가 개재된 것을 특징으로 하는 소형 열병합발전기의 보조보일러 배기구조.
The method according to claim 2,
A secondary boiler exhaust structure of a small cogeneration generator, characterized in that the insulating material is interposed between the partition and the sealing member.
KR1020100079464A 2010-08-17 2010-08-17 The structure of exhaust gas flow passage of supplementary boiler in micro combined heat and power unit KR101262669B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020100079464A KR101262669B1 (en) 2010-08-17 2010-08-17 The structure of exhaust gas flow passage of supplementary boiler in micro combined heat and power unit
AU2011202483A AU2011202483B2 (en) 2010-08-17 2011-02-07 Exhaust structure of sub-boiler of small cogenerator and cover assembly for exhaust channel of sub-boiler of small cogenerator
RU2011118723/06A RU2473847C1 (en) 2010-08-17 2011-02-07 Minor cogenerator secondary boiler discharge device and assembly of casing making minor cogenerator secondary boiler discharge channel
PCT/KR2011/000769 WO2012023678A1 (en) 2010-08-17 2011-02-07 Auxiliary boiler exhaust structure for a micro combined heat and power unit, and a cover assembly for forming an auxiliary boiler exhaust flow path for a micro combined heat and power unit
NZ592799A NZ592799A (en) 2010-08-17 2011-05-11 Exhaust structure of sub-boiler of small cogenerator and cover assembly for exhaust channel of sub-boiler of small cogenerator
EP11003946.8A EP2420756B1 (en) 2010-08-17 2011-05-12 Exhaust structure of sub-boiler of small cogenerator and cover assembly for exhaust channel of sub-boiler of small cogenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100079464A KR101262669B1 (en) 2010-08-17 2010-08-17 The structure of exhaust gas flow passage of supplementary boiler in micro combined heat and power unit

Publications (2)

Publication Number Publication Date
KR20120016927A KR20120016927A (en) 2012-02-27
KR101262669B1 true KR101262669B1 (en) 2013-05-15

Family

ID=45839049

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100079464A KR101262669B1 (en) 2010-08-17 2010-08-17 The structure of exhaust gas flow passage of supplementary boiler in micro combined heat and power unit

Country Status (1)

Country Link
KR (1) KR101262669B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107504679B (en) * 2017-09-22 2023-01-10 北京中科传能环保技术有限公司 Nitrogen reduction gas boiler
KR102303790B1 (en) * 2018-12-28 2021-09-23 주식회사 경동나비엔 Heat transfer fin and fin-tube type heat exchanger unit using the same

Also Published As

Publication number Publication date
KR20120016927A (en) 2012-02-27

Similar Documents

Publication Publication Date Title
KR101393315B1 (en) Cover of latent heat exchanger having cooling line
CN203626907U (en) Power generation station
KR101821315B1 (en) solar thermal and BIGCC-integrated combined power generation system
RU99128094A (en) EXHAUST GAS HEAT REGENERATION IN AN ORGANIC ENERGY CONVERTER USING THE INTERMEDIATE LIQUID CYCLE
RU2473847C1 (en) Minor cogenerator secondary boiler discharge device and assembly of casing making minor cogenerator secondary boiler discharge channel
TW200825280A (en) Power generating system driven by a heat pump
CN107514914A (en) New Type Coke Oven flue gas waste heat recovery apparatus
KR101183815B1 (en) The structure of exhaust gas flow passage of engine in micro combined heat and power unit
CN101201007A (en) Generating system driven by heat pump
JP2010190460A (en) Air conditioning system
CN102809144B (en) Device and method for using two-stage jet absorption heat pump to improve thermal cycle efficiency
KR101262669B1 (en) The structure of exhaust gas flow passage of supplementary boiler in micro combined heat and power unit
CN103161702A (en) Solar heat multistage power generation system
US20190186302A1 (en) Cogeneration system for integration into solar water heating systems
JPH11173109A (en) Power generation and hot water supply system
KR101191585B1 (en) Cover assembly for forming exhaust gas flow passage of supplementary boiler in micro combined heat and power unit
JP2006266627A (en) Warm water/steam combination type heat exchanger
KR101183777B1 (en) The structure of exhaust gas flow passage of engine in micro combined heat and power unit
KR101488656B1 (en) Power generation system for waste heat recovery
KR101612897B1 (en) Combined Heat and Power Co-generation System
KR20110036284A (en) Operating method of compact cogeneration system
JP2010096414A (en) Ammonia absorption refrigeration type power generating device
CN205477784U (en) Cogeneration of heat and power device
KR101405512B1 (en) an expander module for organic Rankine cycle
CN114251863B (en) Distributed energy supply system and operation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160304

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170502

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180416

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200309

Year of fee payment: 8