JP2012023258A - Temperature difference power generator and temperature difference power generation method - Google Patents

Temperature difference power generator and temperature difference power generation method Download PDF

Info

Publication number
JP2012023258A
JP2012023258A JP2010161222A JP2010161222A JP2012023258A JP 2012023258 A JP2012023258 A JP 2012023258A JP 2010161222 A JP2010161222 A JP 2010161222A JP 2010161222 A JP2010161222 A JP 2010161222A JP 2012023258 A JP2012023258 A JP 2012023258A
Authority
JP
Japan
Prior art keywords
temperature fluid
low
temperature
flow path
thermoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010161222A
Other languages
Japanese (ja)
Inventor
Toshihiro Matsumoto
敏博 松本
Yoshiaki Nakayama
佳明 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATSUMOTO KENZAI KK
Original Assignee
MATSUMOTO KENZAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATSUMOTO KENZAI KK filed Critical MATSUMOTO KENZAI KK
Priority to JP2010161222A priority Critical patent/JP2012023258A/en
Publication of JP2012023258A publication Critical patent/JP2012023258A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature difference power generator and a temperature difference power generation method for making it possible to sufficiently utilize a heat source and remarkably improve space efficiency.SOLUTION: A temperature difference power generator has a structure where a pair of high-temperature fluid passages 2a and 2b are connected mutually by communicating mutually a pipe 4b connected to other end of the one high-temperature fluid passage 2a with a pipe 5a connected to one end of the other high-temperature fluid passage 2b. Thereby, a high-temperature fluid is taken in from a pipe 4a being a high-temperature fluid taking-in port to the one high-temperature fluid passage 2a; the high-temperature fluid enters into the other high-temperature fluid passage 2b through the pipe 4b and the pipe 5a; and the high-temperature fluid is discharged from a pipe 5b of the other high-temperature fluid passage 2b into a high-temperature fluid discharge passage.

Description

本発明は、流体の温度差を利用して発電を行う温度差発電装置及び温度差発電方法に関するものである。   The present invention relates to a temperature difference power generation apparatus and a temperature difference power generation method for generating power using a temperature difference between fluids.

温度差発電は、エンジン、電気温水器、湯水混合装置等の機械からの廃熱を利用したもの等が提案されている。また、海洋の表層水と深層水の温度差を利用した装置(D.K.Benson et al, ”Thermoelectric Energy Conversion Economical Electric Power from Low Granded Heat”, Proc. 3rd ICTEC, Arlington, p27, 1980)や、地熱を利用した発電装置など、自然環境として存在する熱源を利用した装置も提案されている(特許文献1、特許文献2、特許文献3、特許文献4、特許文献5)。   As the temperature difference power generation, one utilizing waste heat from machines such as an engine, an electric water heater, and a hot water mixing apparatus has been proposed. In addition, a device using the temperature difference between the surface water and the deep water of the ocean (DK Benson et al, “Thermoelectric Energy Conversion Electric Power Low From Grand Heat,” 19 Proc. 3rd IC, Proc. 3rd. Devices using a heat source that exists as a natural environment, such as a power generation device using geothermal heat, have also been proposed (Patent Literature 1, Patent Literature 2, Patent Literature 3, Patent Literature 4, Patent Literature 5).

特許文献1〜特許文献4の温度差発電装置は、廃熱を利用すべき機械の存在を前提とし、エンジン内部の燃焼による発熱や、電気・ガスなどによる発熱を、熱源としている。つまり、熱源となりうる燃焼機械等が必要であった。
また特許文献5の装置は、自然環境から熱源を得ているため、熱源としての燃焼機械等は必要でない。しかしながら、深層海水を引き上げるための駆動源や、熱流体の存在する地下深くまで冷却水を供給して、回収するための駆動源が必要であり、大きな設備投資が必要であった。
The temperature difference power generation apparatus of Patent Documents 1 to 4 is based on the existence of a machine that should use waste heat, and uses heat generated by combustion inside the engine and heat generated by electricity / gas as a heat source. That is, a combustion machine that can be a heat source is required.
Moreover, since the apparatus of Patent Document 5 obtains a heat source from the natural environment, a combustion machine or the like as a heat source is not necessary. However, a drive source for pulling up deep seawater and a drive source for supplying and recovering cooling water to the deep underground where thermal fluid exists are necessary, which requires a large capital investment.

特許文献6にはこのような問題点を解決して、駆動源を必要としない、また、駆動源を有する温度差発電技術であっても、その効率を向上することができ、さらには、大きな設備投資を必要としない熱水流と冷水流の温度差を熱電変換素子に与えることによって発電を行う温度差発電装置が開示された。   Patent Document 6 solves such problems and does not require a drive source, and even a temperature difference power generation technology having a drive source can improve its efficiency, There has been disclosed a temperature difference power generation apparatus that generates power by providing a thermoelectric conversion element with a temperature difference between a hot water flow and a cold water flow that does not require capital investment.

特開昭63−111268号公報JP-A-63-1111268 特開昭64−74075号公報JP-A-64-74075 特開平5−126405号公報JP-A-5-126405 特開平2−119589号公報JP-A-2-119589 特公平1−20315号公報Japanese Patent Publication No. 1-20315 特許3163290号公報Japanese Patent No. 3163290

特許文献6の発電装置は自噴力または高低差を用いて、熱水流、冷水流を形成してポンプ等の駆動源を必要としないとしても、熱源である熱水流、冷水流を十分に活用しているということはできず、そのためスペース効率が悪く、汎用性に乏しいという問題があった。
本発明は以上の従来技術の問題に鑑み、熱源を十分に活用してスペース効率を格段に向上することができる温度差発電装置及び温度差発電方法を提供することを目的とする。
Even if the power generation device of Patent Document 6 uses a self-injection force or a height difference to form a hot water flow or a cold water flow and does not require a drive source such as a pump, it sufficiently utilizes the hot water flow or the cold water flow as a heat source. Therefore, there is a problem that space efficiency is poor and versatility is poor.
The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a temperature difference power generation apparatus and a temperature difference power generation method that can sufficiently improve space efficiency by fully utilizing a heat source.

本発明の温度差発電装置は、高温流体取込口より高温流体を取り込み、高温流体排出口より高温流体を排出する高温流体流路と、低温流体取込口より低温流体を取り込み、低温流体排出口より低温流体を排出する低温流体流路と、一部が高温流体流路に熱的に接続され、他部が低温流体流路に熱的に接続された熱電変換素子と、を備え、相互に平行に配設される少なくとも二の高温流体流路が、その二の高温流体流路のうち一方の高温流体流路の高温流体排出口が他方の高温流体流路の高温流体取込口となる関係で連通されていることを特徴とする。   The temperature difference power generation device of the present invention takes in a high-temperature fluid from the high-temperature fluid intake port, discharges the high-temperature fluid from the high-temperature fluid discharge port, takes in the low-temperature fluid from the low-temperature fluid intake port, and discharges the low-temperature fluid. A low-temperature fluid flow path that discharges the low-temperature fluid from the outlet, and a thermoelectric conversion element that is partly thermally connected to the high-temperature fluid flow path and the other part is thermally connected to the low-temperature fluid flow path. At least two high-temperature fluid flow paths disposed in parallel with each other, wherein the high-temperature fluid discharge port of one of the two high-temperature fluid flow paths is the high-temperature fluid intake port of the other high-temperature fluid flow path. It is characterized by being communicated in a relationship.

相互に平行に配設される少なくとも二の低温流体流路が、その二の低温流体流路のうち一方の低温流体流路の低温流体排出口が他方の低温流体流路の低温流体取込口となる関係で連通されているようにすることができる。   At least two cryogenic fluid flow paths arranged in parallel to each other, the cryogenic fluid discharge port of one cryogenic fluid channel of the two cryogenic fluid channels is the cryogenic fluid intake port of the other cryogenic fluid channel It can be made to communicate in the relationship.

さらに本発明の温度差発電装置は、高温流体取込口より高温流体を取り込み、高温流体排出口より高温流体を排出する高温流体流路と、低温流体取込口より低温流体を取り込み、低温流体排出口より低温流体を排出する低温流体流路と、一部が高温流体流路に熱的に接続され、他部が低温流体流路に熱的に接続された熱電変換素子と、を備え、同一の熱電変換素子に熱的に接続された一対の高温流体流路と低温流体流路とよりなる熱電変換ユニットを少なくとも二以上有し、一の熱電変換ユニットの高温流体流路に熱的に接続されると共に他の熱電変換ユニットの低温流体流路に熱的に接続された熱電変換素子を有すると共に、一の熱電変換ユニットの高温流体流路の高温流体排出口と他の熱電変換ユニットの高温流体流路の高温流体取込口が連通されていることを特徴とする。   Further, the temperature difference power generation device of the present invention takes in a high temperature fluid from the high temperature fluid intake port, discharges the high temperature fluid from the high temperature fluid discharge port, and takes in the low temperature fluid from the low temperature fluid intake port. A low-temperature fluid channel that discharges the low-temperature fluid from the discharge port, a thermoelectric conversion element that is partly thermally connected to the high-temperature fluid channel, and the other part is thermally connected to the low-temperature fluid channel, Having at least two thermoelectric conversion units each composed of a pair of high-temperature fluid flow paths and low-temperature fluid flow paths thermally connected to the same thermoelectric conversion element, and thermally connected to the high-temperature fluid flow path of one thermoelectric conversion unit A thermoelectric conversion element connected to and thermally connected to a low temperature fluid flow path of another thermoelectric conversion unit, and a high temperature fluid outlet of a high temperature fluid flow path of one thermoelectric conversion unit and another thermoelectric conversion unit High temperature fluid inlet for high temperature fluid flow path Characterized in that it communicates with.

一の熱電変換ユニットの低温流体流路の低温流体排出口と他の熱電変換ユニットの低温流体流路の低温流体取込口を連通してもよい。 The low-temperature fluid discharge port of the low-temperature fluid channel of one thermoelectric conversion unit may communicate with the low-temperature fluid intake port of the low-temperature fluid channel of another thermoelectric conversion unit.

高温流体流路及び低温流体流路の流体の進行方向と垂直な断面における外形が実質的に四角形若しくは三角形にされてなるようにしてもよい。   You may make it the external shape in the cross section perpendicular | vertical to the advancing direction of the fluid of a high-temperature fluid flow path and a low-temperature fluid flow path become substantially square or a triangle.

熱電変換素子が高温流体流路の外壁と低温流体流路の外壁との間に設けられるようにすることができる。   The thermoelectric conversion element can be provided between the outer wall of the high-temperature fluid channel and the outer wall of the low-temperature fluid channel.

高温流体流路及び低温流体流路の少なくとも一方の内側には、フィンが設けられてもよい。   A fin may be provided inside at least one of the high temperature fluid channel and the low temperature fluid channel.

高温流体流路または低温流体流路の少なくとも何れかの外周に、断熱手段を設けることもできる。   Thermal insulation means may be provided on the outer periphery of at least one of the high temperature fluid channel and the low temperature fluid channel.

本発明の温度差発電方法は、熱電変換素子を一部が高温流体流路に熱的に接続され、他部が低温流体流路に熱的に接続されるように配置し、高温流体流路の高温流体取込口より高温流体を取り込み、高温流体排出口より高温流体を排出する工程と、低温流体流路の低温流体取込口より低温流体を取り込み、低温流体排出口より低温流体を排出する工程とを同時に行う温度差発電方法であって、少なくとも二の高温流体流路を相互に平行に配設し、その二の高温流体流路のうち一方の高温流体流路の高温流体排出口から他方の高温流体流路の高温流体取込口に高温流体を流通させる工程を有することを特徴とする。   According to the temperature difference power generation method of the present invention, a thermoelectric conversion element is arranged so that a part thereof is thermally connected to a high-temperature fluid channel and the other part is thermally connected to a low-temperature fluid channel. The process of taking in the high temperature fluid from the high temperature fluid intake port, discharging the high temperature fluid from the high temperature fluid discharge port, taking in the low temperature fluid from the low temperature fluid intake port of the low temperature fluid flow path, and discharging the low temperature fluid from the low temperature fluid discharge port And a step of simultaneously generating at least two high-temperature fluid flow paths, the high-temperature fluid discharge port of one of the two high-temperature fluid paths being disposed in parallel with each other A flow of the high temperature fluid to the high temperature fluid intake port of the other high temperature fluid flow path.

少なくとも二の低温流体流路を相互に平行に配設し、その二の低温流体流路のうちの一方の低温流体流路の低温流体排出口から他方の低温流体流路の低温流体取込口に低温流体を流通させる工程を有するようにすることができる。   At least two cryogenic fluid channels are arranged in parallel to each other, and one of the two cryogenic fluid channels has a cryogenic fluid outlet to a cryogenic fluid inlet of the other cryogenic fluid channel. A step of circulating a low-temperature fluid.

さらに本発明の温度差発電方法は、熱電変換素子を一部が高温流体流路に熱的に接続され、他部が低温流体流路に熱的に接続されるように配置し、高温流体流路の高温流体取込口より高温流体を取り込み、高温流体排出口より高温流体を排出する工程と、低温流体流路の低温流体取込口より低温流体を取り込み、低温流体排出口より低温流体を排出する工程とを同時に行う温度差発電方法であって、同一の熱電変換素子を一の高温流体流路と一の低温流体流路とに熱的に接続した熱電変換ユニットを少なくとも二以上配置し、一の熱電変換ユニットの高温流体流路に熱的に接続されると共に他の熱電変換ユニットの低温流体流路に熱的に接続された熱電変換素子を設けると共に、前記一の熱電変換ユニットの高温流体流路の高温流体排出口と前記他の熱電変換ユニットの高温流体流路の高温流体取込口を連通することを特徴とする。   Furthermore, in the temperature difference power generation method of the present invention, the thermoelectric conversion element is arranged such that a part is thermally connected to the high temperature fluid flow path and the other part is thermally connected to the low temperature fluid flow path. The process of taking in high-temperature fluid from the high-temperature fluid inlet of the channel, discharging the high-temperature fluid from the high-temperature fluid outlet, taking in the low-temperature fluid from the low-temperature fluid inlet of the low-temperature fluid flow path, and receiving the low-temperature fluid from the low-temperature fluid outlet A temperature difference power generation method for simultaneously performing a discharging step, wherein at least two thermoelectric conversion units are arranged in which the same thermoelectric conversion element is thermally connected to one high-temperature fluid channel and one low-temperature fluid channel. A thermoelectric conversion element thermally connected to a high temperature fluid flow path of one thermoelectric conversion unit and thermally connected to a low temperature fluid flow path of another thermoelectric conversion unit; The high temperature fluid outlet of the high temperature fluid flow path and Serial and wherein the communicating hot fluid inlet of the hot fluid flow path of another thermoelectric conversion unit.

高温流体を温泉からの高温流体とし、高低差もしくは温泉の自噴力を用いて、少なくとも一の高温流体流路に温泉からの高温流体を取り込むようにすることができる。   The high-temperature fluid can be a high-temperature fluid from a hot spring, and the high-temperature fluid from the hot spring can be taken into at least one high-temperature fluid flow path by using a difference in elevation or the self-injection force of the hot spring.

低温流体を河川からの低温流体とし、一定方向に流れる水の流下方向に沿って水に浸漬される通水管を用いる無道力揚水装置によって河川からの低温流体を取り込むようにしてもよい。これにより、ポンプ等の駆動源を必要としない発電装置を得ることができる。   The cryogenic fluid from the river may be taken as a cryogenic fluid from the river, and the cryogenic fluid from the river may be taken in by a passive pumping device using a water pipe immersed in the water along the flowing down direction of the water flowing in a certain direction. Thereby, the electric power generating apparatus which does not require drive sources, such as a pump, can be obtained.

本発明の温度差発電装置及び温度差発電方法によれば、スペース効率を高め、スペースおよび材料費の低減に貢献でき、より安価で、少スペースに加え高能率な温度差発電装置及び温度差発電方法とすることができる。また必要に応じて温度差と流量を調整することによって、電圧、電流値の変更が可能で、柔軟な対応ができる温度差発電装置及び温度差発電方法である。またその出力は、昼夜を問わず、ほぼ一定して得られ、天候に左右される太陽電池に比べて、有利である。   According to the temperature difference power generation apparatus and the temperature difference power generation method of the present invention, the space efficiency can be improved, the space and material costs can be reduced. It can be a method. Further, the present invention is a temperature difference power generation apparatus and a temperature difference power generation method that can change the voltage and current values by adjusting the temperature difference and the flow rate as necessary, and can flexibly cope with them. In addition, the output is obtained almost constant day and night, which is advantageous compared to a solar cell that depends on the weather.

本発明の一実施の形態の温度差発電装置の斜視図である。It is a perspective view of the temperature difference power generation device of one embodiment of the present invention. 図1の温度差発電装置の断面図である。It is sectional drawing of the temperature difference electric power generating apparatus of FIG. 図1の温度差発電装置の部分拡大斜視図である。It is a partial expansion perspective view of the temperature difference power generation device of FIG. 図1の温度差発電装置の分解平面図である。FIG. 2 is an exploded plan view of the temperature difference power generation device of FIG. 1. 本発明の他の実施の形態の温度差発電装置の斜視図である。It is a perspective view of the temperature difference power generation device of other embodiments of the present invention. (a)本発明のさらに他の実施の形態の温度差発電装置に関する模式説明図である。(b)本発明のさらに別の実施の形態の温度差発電装置に関する模式説明図である。(A) It is a schematic explanatory drawing regarding the temperature difference power generation device of further another embodiment of this invention. (B) It is a schematic explanatory drawing regarding the temperature difference power generation device of another embodiment of this invention.

図1に、温度差発電装置1の外観を示す。
温度差発電装置1は、相互に連結された1対の高温流体流路2a、2bと、相互に連結された1対の低温流体流路3a、3bとを備えている。
In FIG. 1, the external appearance of the temperature difference power generation device 1 is shown.
The temperature difference power generation device 1 includes a pair of high-temperature fluid flow paths 2a and 2b connected to each other and a pair of low-temperature fluid flow paths 3a and 3b connected to each other.

図2に、温度差発電装置1の断面を示す。高温流体流路2、低温流体流路3の壁は、銅等の熱伝導性の高い材料を用いることが好ましい。ただし、高温流体流路2、低温流体流路3を流れる高温流体流、低温流体流が、腐食性の酸性、アルカリ性である場合には、耐腐食性を持つ材料(アルミニウム等)を用いることが好ましい。   FIG. 2 shows a cross section of the temperature difference power generation device 1. The walls of the high temperature fluid channel 2 and the low temperature fluid channel 3 are preferably made of a material having high thermal conductivity such as copper. However, when the high-temperature fluid flow and the low-temperature fluid flow that flow through the high-temperature fluid flow path 2 and the low-temperature fluid flow path 3 are corrosive acidic or alkaline, a material having corrosion resistance (such as aluminum) may be used. preferable.

一方の高温流体流路2aの一端にはパイプ4aが接続され、他端にはパイプ4bが接続される。他方の高温流体流路2bの一端にはパイプ5aが接続され、他端にはパイプ5bが接続される。一方の高温流体流路2aの一端に接続されたパイプ4aには高温流体取込路(図示せず)を接続し、他方の高温流体流路2bのパイプ5bには高温流体排出路(図示せず)が接続される。   A pipe 4a is connected to one end of one high-temperature fluid flow path 2a, and a pipe 4b is connected to the other end. A pipe 5a is connected to one end of the other high-temperature fluid flow path 2b, and a pipe 5b is connected to the other end. A high temperature fluid intake path (not shown) is connected to the pipe 4a connected to one end of one high temperature fluid flow path 2a, and a high temperature fluid discharge path (not shown) is connected to the pipe 5b of the other high temperature fluid flow path 2b. Connected).

而して一方の高温流体流路2aの他端に接続されたパイプ4bと他方の高温流体流路2bの一端に接続されたパイプ5aとを相互に連通することにより、一対の高温流体流路2a,2bは相互に連結される。
その結果、高温流体取込口であるパイプ4aから一方の高温流体流路2aに高温流体が取り込まれ、パイプ4b及びパイプ5aを介して他方の高温流体流路2b内に高温流体が流入し、他方の高温流体流路2bのパイプ5bから高温流体排出路に高温流体が排出される。
Thus, the pipe 4b connected to the other end of one of the high-temperature fluid flow paths 2a and the pipe 5a connected to one end of the other high-temperature fluid flow path 2b communicate with each other, thereby providing a pair of high-temperature fluid flow paths. 2a and 2b are connected to each other.
As a result, the high temperature fluid is taken into the one high temperature fluid passage 2a from the pipe 4a which is the high temperature fluid intake port, and the high temperature fluid flows into the other high temperature fluid passage 2b through the pipe 4b and the pipe 5a, The high temperature fluid is discharged from the pipe 5b of the other high temperature fluid flow path 2b to the high temperature fluid discharge path.

また一方の低温流体流路3aの一端にはパイプ6aが接続され、他端にはパイプ6bが接続される。他方の低温流体流路3bの一端にはパイプ7aが接続され、他端にはパイプ7bが接続される。一方の低温流体流路3aの一端に接続されたパイプ6aには低温流体取込路(図示せず)を接続し、他方の低温流体流路3bのパイプ7bには低温流体排出路(図示せず)が接続される。   Further, a pipe 6a is connected to one end of one low-temperature fluid flow path 3a, and a pipe 6b is connected to the other end. A pipe 7a is connected to one end of the other low-temperature fluid flow path 3b, and a pipe 7b is connected to the other end. A low temperature fluid intake path (not shown) is connected to the pipe 6a connected to one end of one low temperature fluid flow path 3a, and a low temperature fluid discharge path (not shown) is connected to the pipe 7b of the other low temperature fluid flow path 3b. Connected).

而して一方の低温流体流路3aの他端に接続されたパイプ6bと他方の低温流体流路3bの一端に接続されたパイプ7aとを相互に連通することにより、一対の低温流体流路3a,3bは相互に連結される。
その結果、低温流体取込口であるパイプ6aから一方の低温流体流路3aに低温流体が取り込まれ、パイプ6b及びパイプ7aを介して他方の低温流体流路3b内に低温流体が流入し、他方の低温流体流路3bのパイプ7bから低温流体排出路に低温流体が排出される。
Thus, the pipe 6b connected to the other end of one of the low-temperature fluid flow paths 3a and the pipe 7a connected to one end of the other low-temperature fluid flow path 3b communicate with each other, thereby providing a pair of low-temperature fluid flow paths. 3a and 3b are connected to each other.
As a result, the cryogenic fluid is taken into the one cryogenic fluid passage 3a from the pipe 6a which is the cryogenic fluid intake, and the cryogenic fluid flows into the other cryogenic fluid passage 3b through the pipe 6b and the pipe 7a. The low temperature fluid is discharged from the pipe 7b of the other low temperature fluid flow path 3b to the low temperature fluid discharge path.

1対の高温流体流路2a、2bのうちの一方の高温流体流路2aと、1対の低温流体流路3a、3bのうちの一方の低温流体流路3aの側面間及び他方の高温流体流路2bと他方の低温流体流路3bの側面間には複数の熱電変換素子8が貼り付けられる。
また一方の高温流体流路2aの下面と他方の低温流体流路3bの上面間及び他方の高温流体流路2bの上面と一方の低温流体流路3aの下面間には複数の熱電変換素子9が貼り付けられる。
One hot fluid channel 2a of the pair of hot fluid channels 2a, 2b and one side of the low temperature fluid channel 3a of the pair of cold fluid channels 3a, 3b and the other hot fluid A plurality of thermoelectric conversion elements 8 are attached between the side surfaces of the flow path 2b and the other low-temperature fluid flow path 3b.
A plurality of thermoelectric conversion elements 9 are provided between the lower surface of one high-temperature fluid channel 2a and the upper surface of the other low-temperature fluid channel 3b and between the upper surface of the other high-temperature fluid channel 2b and the lower surface of one low-temperature fluid channel 3a. Is pasted.

この実施形態では、図3に示すように熱電変換素子8及び熱電変換素子9は、ペルチェ素子10をセラミック板11a、11bで挟んでなり、セラミック板11aとセラミック板11bとの間の温度差に応じて、リード12a、12b間に起電力を生じる。図4に、高温流体流路2bと低温流体流路3bの上面に熱電変換素子9が貼り付けられた状態を示す。図4に示すように、熱電変換素子9を、複数個、高温流体流路2bと低温流体流路3bの上面に貼り付ける。さらに、この熱電変換素子9の上面に、低温流体流路3aと高温流体流路2aの下面を貼り付けている。   In this embodiment, as shown in FIG. 3, the thermoelectric conversion element 8 and the thermoelectric conversion element 9 are obtained by sandwiching the Peltier element 10 between the ceramic plates 11a and 11b, and the temperature difference between the ceramic plate 11a and the ceramic plate 11b. Accordingly, an electromotive force is generated between the leads 12a and 12b. FIG. 4 shows a state where the thermoelectric conversion element 9 is attached to the upper surfaces of the high temperature fluid channel 2b and the low temperature fluid channel 3b. As shown in FIG. 4, a plurality of thermoelectric conversion elements 9 are affixed to the upper surfaces of the high temperature fluid channel 2b and the low temperature fluid channel 3b. Further, the lower surface of the low-temperature fluid channel 3a and the high-temperature fluid channel 2a are attached to the upper surface of the thermoelectric conversion element 9.

なお、この実施形態では、複数個の熱電変換素子8及び熱電変換素子9を直列に接続し、発電出力をリード13、14(図4参照)の間に得るようにしている。   In this embodiment, a plurality of thermoelectric conversion elements 8 and thermoelectric conversion elements 9 are connected in series, and a power generation output is obtained between the leads 13 and 14 (see FIG. 4).

及び
したがって以上の温度差発電装置1は、高温流体流路2aと低温流体流路3aによって構成される一の熱電変換ユニットと、また高温流体流路2bと低温流体流路3bによって構成される他の熱電変換ユニットを有してなる。すなわち同一の熱電変換素子8に熱的に接続された一対の高温流体流路2aと低温流体流路3aとよりなる熱電変換ユニットと、他の一対の高温流体流路2bと低温流体流路3bとよりなる熱電変換ユニットを有し、一の熱電変換ユニットの高温流体流路2aに熱的に接続されると共に他の熱電変換ユニットの低温流体流路3bに熱的に接続された熱電変換素子9を有すると共に、一の熱電変換ユニットの高温流体流路2aの高温流体排出口であるパイプ4bと他の熱電変換ユニットの高温流体流路2bの高温流体取込口であるパイプ5aが連通されている温度差発電装置が構成される。
Therefore, the above-described temperature difference power generation device 1 includes one thermoelectric conversion unit constituted by the high-temperature fluid flow path 2a and the low-temperature fluid flow path 3a, and the other constituted by the high-temperature fluid flow path 2b and the low-temperature fluid flow path 3b. The thermoelectric conversion unit is provided. That is, a thermoelectric conversion unit including a pair of high-temperature fluid flow paths 2a and a low-temperature fluid flow path 3a thermally connected to the same thermoelectric conversion element 8, and another pair of high-temperature fluid flow paths 2b and low-temperature fluid flow paths 3b. And a thermoelectric conversion element thermally connected to the high-temperature fluid flow path 2a of one thermoelectric conversion unit and thermally connected to the low-temperature fluid flow path 3b of another thermoelectric conversion unit. 9, a pipe 4 b which is a high-temperature fluid discharge port of the high-temperature fluid flow path 2 a of one thermoelectric conversion unit and a pipe 5 a which is a high-temperature fluid intake port of the high-temperature fluid flow path 2 b of another thermoelectric conversion unit are communicated with each other. The temperature difference power generator is configured.

図5は他の実施形態の温度差発電装置1の断面を示す。この実施形態の温度差発電装置1においては、高温流体流の高温を効率よく熱電変換素子8及び熱電変換素子9に伝導するために、熱電変換素子8及び熱電変換素子9に対向する高温流体流路2の内壁に、フィン15を設けている。低温流体流路3においても、同様の目的で、フィン16が設けられている。フィン15、16の材料としては、銅など熱伝導性の高いものが好ましく、流体の性質によっては、耐腐食性に優れていることも必要である。   FIG. 5 shows a cross section of the temperature difference power generator 1 of another embodiment. In the temperature difference power generator 1 of this embodiment, in order to efficiently conduct the high temperature of the high temperature fluid flow to the thermoelectric conversion element 8 and the thermoelectric conversion element 9, the high temperature fluid flow facing the thermoelectric conversion element 8 and the thermoelectric conversion element 9 is used. Fins 15 are provided on the inner wall of the path 2. Also in the low temperature fluid flow path 3, the fin 16 is provided for the same purpose. The material of the fins 15 and 16 is preferably a material having high thermal conductivity such as copper, and depending on the properties of the fluid, it is necessary to have excellent corrosion resistance.

図6に、他の実施形態による温度差発電装置1の断面図を示す。
図6(a)は高温流体流路2、低温流体流路3共に断面四角形とされる点は先の実施の形態と同様であるが、温度差発電装置1をさらに4体積層してなる。この場合に、高温流体流路2の全体が連通されるようにすることも可能であり、また少なくとも一対の高温流体流路2a、2bが連通された温度差発電装置1をさらに4体積層してなるようにすることもできる。低温流体流路3についても同様である。
図6(b)は高温流体流路2、低温流体流路3共に断面三角形とされる点で先の実施の形態と異なる。この場合、1の高温流体流路2に対し3の低温流体流路3が熱電変換素子を介して隣接し、同時に1の低温流体流路3に対し3の高温流体流路2が熱電変換素子を介して隣接する関係となる。またその場合に、高温流体流路2の全体が連通されるようにすることも可能であり、また少なくとも一対の高温流体流路2a、2bが連通されてなるようにすることもできる。低温流体流路3についても同様である。
FIG. 6 shows a cross-sectional view of a temperature difference power generator 1 according to another embodiment.
FIG. 6A is the same as the previous embodiment in that both the high-temperature fluid flow path 2 and the low-temperature fluid flow path 3 are rectangular in cross section, but four temperature difference power generators 1 are further laminated. In this case, the entire high-temperature fluid flow path 2 can be communicated, and four more temperature difference power generators 1 having at least a pair of high-temperature fluid flow paths 2a, 2b communicated are stacked. It can also be made. The same applies to the low-temperature fluid flow path 3.
FIG. 6B differs from the previous embodiment in that both the high-temperature fluid passage 2 and the low-temperature fluid passage 3 are triangular in cross section. In this case, three low-temperature fluid flow paths 3 are adjacent to one high-temperature fluid flow path 2 via thermoelectric conversion elements, and at the same time, three high-temperature fluid flow paths 2 are connected to thermoelectric conversion elements for one low-temperature fluid flow path 3. It becomes a relation which adjoins via. In this case, the entire high-temperature fluid flow path 2 can be communicated, and at least a pair of high-temperature fluid flow paths 2a and 2b can be communicated. The same applies to the low-temperature fluid flow path 3.

表1に高温流体流路2、低温流体流路3のそれぞれに導入する高温流体、低温流体の組合わせを例示する。表1に示すように温、熱水と冷水、温、熱風と冷風、高温水蒸気と雪、氷、焼成物等の冷却排熱と冷排水、排ガス熱(自動車)と流入外気、微生物発酵熱と空気、摩擦熱と大気、焼却炉排熱と融解熱、太陽熱と放熱装置、の組み合わせが考えられ、熱源としてはその他に地熱、熱交換機の排熱等がある。

Figure 2012023258

Table 1 illustrates combinations of high-temperature fluid and low-temperature fluid introduced into the high-temperature fluid channel 2 and the low-temperature fluid channel 3, respectively. As shown in Table 1, the temperature, hot water and cold water, temperature, hot air and cold air, high temperature steam and snow, ice, cooling exhaust heat and cold drainage of fired products, exhaust gas heat (automobile) and inflow outside air, microbial fermentation heat and A combination of air, frictional heat and air, incinerator exhaust heat and melting heat, solar heat and heat radiating device can be considered, and other heat sources include geothermal heat and heat exchanger exhaust heat.

Figure 2012023258

図1の温度差発電装置1を用いて実験を行った。高温流体流路2、低温流体流路3は、60mm×60mm×1000mmのアルミニウム管を用いた。温度差発電装置1に対して、図4の熱電変換素子8を20個貼り付けた。高温流体の温度、低温流体の温度、起電力等を表2に示す。なお、パイプの幅や長さ、厚さ、パイプの組み合わせ本数を変える事により柔軟な対応が可能である。また温度差と流量によっても、電圧、電流値の配線変更可能である。また出力は、昼夜を問わず、ほぼ一定して得られた。この点、天候に左右される太陽電池に比べて、有利である。

Figure 2012023258
Experiments were performed using the temperature difference power generator 1 of FIG. The high-temperature fluid flow path 2 and the low-temperature fluid flow path 3 used 60 mm × 60 mm × 1000 mm aluminum tubes. Twenty thermoelectric conversion elements 8 in FIG. 4 were attached to the temperature difference power generator 1. Table 2 shows the temperature of the hot fluid, the temperature of the cold fluid, the electromotive force, and the like. In addition, a flexible response | compatibility is possible by changing the width and length of pipes, thickness, and the number of combinations of pipes. Also, voltage and current wiring can be changed depending on the temperature difference and flow rate. The output was almost constant regardless of day or night. This is an advantage over solar cells that are affected by the weather.
Figure 2012023258

1・・・温度差発電装置、2・・・高温流体流路、3・・・低温流体流路、4、5、6、7・・・パイプ、8,9・・・熱電変換素子、15,16・・・フィン。 DESCRIPTION OF SYMBOLS 1 ... Temperature difference power generation device, 2 ... High temperature fluid flow path, 3 ... Low temperature fluid flow path, 4, 5, 6, 7 ... Pipe, 8, 9 ... Thermoelectric conversion element, 15 , 16 ... fins.

Claims (12)

高温流体取込口より高温流体を取り込み、高温流体排出口より高温流体を排出する高温流体流路と、低温流体取込口より低温流体を取り込み、低温流体排出口より低温流体を排出する低温流体流路と、一部が高温流体流路に熱的に接続され、他部が低温流体流路に熱的に接続された熱電変換素子と、を備え、相互に平行に配設される少なくとも二の高温流体流路が、その二の高温流体流路のうち一方の高温流体流路の高温流体排出口と他方の高温流体流路の高温流体取込口が連通されていることを特徴とする温度差発電装置。 A high-temperature fluid flow path that takes in high-temperature fluid from the high-temperature fluid intake port, discharges high-temperature fluid from the high-temperature fluid discharge port, and a low-temperature fluid that takes in low-temperature fluid from the low-temperature fluid intake port and discharges low-temperature fluid from the low-temperature fluid discharge port And a thermoelectric conversion element, part of which is thermally connected to the high-temperature fluid flow path and the other part is thermally connected to the low-temperature fluid flow path. The high-temperature fluid flow path is characterized in that a high-temperature fluid discharge port of one of the two high-temperature fluid flow paths and a high-temperature fluid intake port of the other high-temperature fluid flow path are communicated with each other. Temperature difference generator. 相互に平行に配設される少なくとも二の低温流体流路が、その二の低温流体流路のうち一方の低温流体流路の低温流体排出口と他方の低温流体流路の低温流体取込口とが連通されていることを特徴とする請求項1記載の温度差発電装置。 At least two cryogenic fluid passages arranged in parallel to each other have a cryogenic fluid discharge port of one cryogenic fluid channel and a cryogenic fluid intake port of the other cryogenic fluid channel of the two cryogenic fluid channels. The temperature difference power generation device according to claim 1, wherein 高温流体取込口より高温流体を取り込み、高温流体排出口より高温流体を排出する高温流体流路と、低温流体取込口より低温流体を取り込み、低温流体排出口より低温流体を排出する低温流体流路と、一部が高温流体流路に熱的に接続され、他部が低温流体流路に熱的に接続された熱電変換素子と、を備え、同一の熱電変換素子に熱的に接続された一対の高温流体流路と低温流体流路とよりなる熱電変換ユニットを少なくとも二以上有し、一の熱電変換ユニットの高温流体流路に熱的に接続されると共に他の熱電変換ユニットの低温流体流路に熱的に接続された熱電変換素子を有すると共に、一の熱電変換ユニットの高温流体流路の高温流体排出口と他の熱電変換ユニットの高温流体流路の高温流体取込口が連通されていることを特徴とする温度差発電装置。 A high-temperature fluid flow path that takes in high-temperature fluid from the high-temperature fluid intake port, discharges high-temperature fluid from the high-temperature fluid discharge port, and a low-temperature fluid that takes in low-temperature fluid from the low-temperature fluid intake port and discharges low-temperature fluid from the low-temperature fluid discharge port And a thermoelectric conversion element partly thermally connected to the high-temperature fluid flow path and the other part thermally connected to the low-temperature fluid flow path, and thermally connected to the same thermoelectric conversion element Having at least two thermoelectric conversion units each composed of a pair of high-temperature fluid flow paths and low-temperature fluid flow paths, thermally connected to the high-temperature fluid flow paths of one thermoelectric conversion unit, and of other thermoelectric conversion units A thermoelectric conversion element thermally connected to the low-temperature fluid flow path, and a high-temperature fluid discharge port of the high-temperature fluid flow path of one thermoelectric conversion unit and a high-temperature fluid intake port of the high-temperature fluid flow path of another thermoelectric conversion unit Is characterized by being in communication Degree difference power generation equipment. 一の熱電変換ユニットの低温流体流路の低温流体排出口と他の熱電変換ユニットの低温流体流路の低温流体取込口が連通されている請求項3記載の温度差発電装置。 The temperature difference power generation device according to claim 3, wherein the low-temperature fluid discharge port of the low-temperature fluid channel of one thermoelectric conversion unit and the low-temperature fluid intake port of the low-temperature fluid channel of another thermoelectric conversion unit are communicated. 高温流体流路及び低温流体流路の流体の進行方向と垂直な断面における外形が実質的に四角形にされてなる請求項1〜請求項4のいずれか一に記載の温度差発電装置。 The temperature difference power generation device according to any one of claims 1 to 4, wherein an outer shape of the cross section perpendicular to the fluid traveling direction of the high-temperature fluid channel and the low-temperature fluid channel is substantially rectangular. 高温流体流路及び低温流体流路の流体の進行方向と垂直な断面における外形が実質的に三角形にされてなる請求項1〜請求項4のいずれか一に記載の温度差発電装置。 The temperature difference power generation device according to any one of claims 1 to 4, wherein the outer shape of the cross section perpendicular to the fluid traveling direction of the high-temperature fluid channel and the low-temperature fluid channel is substantially triangular. 熱電変換素子が高温流体流路の外壁と低温流体流路の外壁との間に設けられる請求項1〜請求項6のいずれか一に記載の温度差発電装置。 The temperature difference electric power generating apparatus as described in any one of Claims 1-6 with which a thermoelectric conversion element is provided between the outer wall of a high temperature fluid flow path, and the outer wall of a low temperature fluid flow path. 熱電変換素子を一部が高温流体流路に熱的に接続され、他部が低温流体流路に熱的に接続されるように配置し、高温流体流路の高温流体取込口より高温流体を取り込み、高温流体排出口より高温流体を排出する工程と、低温流体流路の低温流体取込口より低温流体を取り込み、低温流体排出口より低温流体を排出する工程とを同時に行う温度差発電方法であって、少なくとも二の高温流体流路を相互に平行に配設し、その二の高温流体流路のうち一方の高温流体流路の高温流体排出口から他方の高温流体流路の高温流体取込口に高温流体を流通させる工程を有することを特徴とする温度差発電方法。 The thermoelectric conversion element is arranged so that a part is thermally connected to the high-temperature fluid flow path and the other part is thermally connected to the low-temperature fluid flow path. Temperature difference power generation that simultaneously discharges high-temperature fluid from the high-temperature fluid discharge port, and draws low-temperature fluid from the low-temperature fluid intake port of the low-temperature fluid flow path and discharges low-temperature fluid from the low-temperature fluid discharge port A method in which at least two high-temperature fluid channels are arranged in parallel to each other, and one of the two high-temperature fluid channels has a high temperature of the other high-temperature fluid channel from a high-temperature fluid outlet. A temperature difference power generation method comprising a step of circulating a high-temperature fluid through a fluid intake port. 少なくとも二の低温流体流路を相互に平行に配設し、その二の低温流体流路のうちの一方の低温流体流路の低温流体排出口から他方の低温流体流路の低温流体取込口に低温流体を流通させる工程を有する請求項8に記載の温度差発電方法。 At least two cryogenic fluid channels are arranged in parallel to each other, and one of the two cryogenic fluid channels has a cryogenic fluid outlet to a cryogenic fluid inlet of the other cryogenic fluid channel. The temperature difference power generation method according to claim 8, further comprising a step of circulating a low temperature fluid. 熱電変換素子を一部が高温流体流路に熱的に接続され、他部が低温流体流路に熱的に接続されるように配置し、高温流体流路の高温流体取込口より高温流体を取り込み、高温流体排出口より高温流体を排出する工程と、低温流体流路の低温流体取込口より低温流体を取り込み、低温流体排出口より低温流体を排出する工程とを同時に行う温度差発電方法であって、同一の熱電変換素子を一の高温流体流路と一の低温流体流路とに熱的に接続した熱電変換ユニットを少なくとも二以上配置し、一の熱電変換ユニットの高温流体流路に熱的に接続されると共に他の熱電変換ユニットの低温流体流路に熱的に接続された熱電変換素子を設けると共に、前記一の熱電変換ユニットの高温流体流路の高温流体排出口と前記他の熱電変換ユニットの高温流体流路の高温流体取込口を連通することを特徴とする温度差発電方法。 The thermoelectric conversion element is arranged so that a part is thermally connected to the high-temperature fluid flow path and the other part is thermally connected to the low-temperature fluid flow path. Temperature difference power generation that simultaneously discharges high-temperature fluid from the high-temperature fluid discharge port, and draws low-temperature fluid from the low-temperature fluid intake port of the low-temperature fluid flow path and discharges low-temperature fluid from the low-temperature fluid discharge port A method comprising: arranging at least two thermoelectric conversion units in which the same thermoelectric conversion element is thermally connected to one high-temperature fluid channel and one low-temperature fluid channel; A thermoelectric conversion element thermally connected to the path and thermally connected to a low-temperature fluid flow path of another thermoelectric conversion unit; and a high-temperature fluid outlet of the high-temperature fluid flow path of the one thermoelectric conversion unit; High temperature flow of the other thermoelectric conversion unit Thermal energy conversion method characterized by communicating the hot fluid inlet of the flow channel. 高温流体を温泉からの高温流体とし、高低差もしくは温泉の自噴力を用いて、少なくとも一の高温流体流路に温泉からの高温流体を取り込む請求項8又は請求項9に記載の温度差発電方法。 The temperature difference power generation method according to claim 8 or 9, wherein the high-temperature fluid is a high-temperature fluid from a hot spring, and the high-temperature fluid from the hot spring is taken into at least one high-temperature fluid flow path using a difference in elevation or the self-injection force of the hot spring. . 低温流体を河川からの低温流体とする請求項8〜請求項11いずれか一に記載の温度差発電方法。

The temperature difference power generation method according to any one of claims 8 to 11, wherein the low-temperature fluid is a low-temperature fluid from a river.

JP2010161222A 2010-07-16 2010-07-16 Temperature difference power generator and temperature difference power generation method Pending JP2012023258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010161222A JP2012023258A (en) 2010-07-16 2010-07-16 Temperature difference power generator and temperature difference power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010161222A JP2012023258A (en) 2010-07-16 2010-07-16 Temperature difference power generator and temperature difference power generation method

Publications (1)

Publication Number Publication Date
JP2012023258A true JP2012023258A (en) 2012-02-02

Family

ID=45777256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010161222A Pending JP2012023258A (en) 2010-07-16 2010-07-16 Temperature difference power generator and temperature difference power generation method

Country Status (1)

Country Link
JP (1) JP2012023258A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201873A (en) * 2012-03-26 2013-10-03 Toshiba Corp Thermoelectric power generation device and thermoelectric power generation system
CN107888109A (en) * 2017-12-21 2018-04-06 广州威能机电有限公司 Thermo-electric generation system
JP2018530907A (en) * 2015-08-06 2018-10-18 サムスン ヘビー インダストリーズ カンパニー リミテッド Heat generator and waste heat recovery system for thermoelectric generator and fuel storage tank

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11247753A (en) * 1997-12-18 1999-09-14 Isamu Tofuji Temperature differrence electric generator using thermoelectric converting element
JP2003273412A (en) * 2002-03-14 2003-09-26 Nippon Telegr & Teleph Corp <Ntt> Thermoelectric conversion device
JP2006136188A (en) * 2004-10-08 2006-05-25 Ings Shinano:Kk Thermoelectric generator and thermoelectric generation system
JP2006345609A (en) * 2005-06-07 2006-12-21 North Techno Research Kk Thermal power generator and vaporizer mounting that generator
JP2009544929A (en) * 2006-07-28 2009-12-17 ビーエスエスティー エルエルシー Large capacity thermoelectric temperature control system
JP2009545929A (en) * 2006-08-01 2009-12-24 クゥアルコム・インコーポレイテッド Real-time acquisition and generation of stereoscopic images and videos on planar low power mobile devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11247753A (en) * 1997-12-18 1999-09-14 Isamu Tofuji Temperature differrence electric generator using thermoelectric converting element
JP2003273412A (en) * 2002-03-14 2003-09-26 Nippon Telegr & Teleph Corp <Ntt> Thermoelectric conversion device
JP2006136188A (en) * 2004-10-08 2006-05-25 Ings Shinano:Kk Thermoelectric generator and thermoelectric generation system
JP2006345609A (en) * 2005-06-07 2006-12-21 North Techno Research Kk Thermal power generator and vaporizer mounting that generator
JP2009544929A (en) * 2006-07-28 2009-12-17 ビーエスエスティー エルエルシー Large capacity thermoelectric temperature control system
JP2009545929A (en) * 2006-08-01 2009-12-24 クゥアルコム・インコーポレイテッド Real-time acquisition and generation of stereoscopic images and videos on planar low power mobile devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201873A (en) * 2012-03-26 2013-10-03 Toshiba Corp Thermoelectric power generation device and thermoelectric power generation system
JP2018530907A (en) * 2015-08-06 2018-10-18 サムスン ヘビー インダストリーズ カンパニー リミテッド Heat generator and waste heat recovery system for thermoelectric generator and fuel storage tank
CN107888109A (en) * 2017-12-21 2018-04-06 广州威能机电有限公司 Thermo-electric generation system

Similar Documents

Publication Publication Date Title
JP5358329B2 (en) Cogeneration equipment
BRPI0904073A2 (en) heat absorption or dissipation device with temperature difference fluids reversed across multiple channels
JP4861041B2 (en) Solar power generation and heat absorption system
CN107592035B (en) Tail gas waste heat utilization method based on thermoelectric power generation and pulsating heat pipe technology
ATE486376T1 (en) ELECTRICAL ENERGY GENERATOR BASED ON THE THERMOELECTRIC EFFECT
CN102427320B (en) Thermoelectric generator using superconducting fluid for heat transfer
CN106568341B (en) A kind of plate-fin heat power generation heat exchanger
US20140014153A1 (en) Thermoelectric electricity generating device
JP2009268282A (en) Method and device for generating power by using exhaust heat
JP2012023258A (en) Temperature difference power generator and temperature difference power generation method
JP5268605B2 (en) Thermoelectric conversion device, thermoelectric power generation system, and thermoelectric power generation method
KR101516396B1 (en) Apparatus for recovering exhaust heat
KR101183815B1 (en) The structure of exhaust gas flow passage of engine in micro combined heat and power unit
CN101499746A (en) Plate type semiconductor thermo-electric generation apparatus
CN204733097U (en) The hot temperature difference electricity generation device of solar energy liquid
KR101494241B1 (en) Waste heat recovery power generation system
JP2013201873A (en) Thermoelectric power generation device and thermoelectric power generation system
JP2015164391A (en) Thermoelectric power generator
JP2014212632A (en) Thermoelectric conversion module
CN207925521U (en) Thermoelectric module for waste heat recovery power generation
JP6132285B2 (en) Thermoelectric generator
Rebollo et al. Overall feasibility of low cost conversion from PV to PVTw
RU163311U1 (en) THERMOELECTRIC DEVICE FOR INTERNAL COMBUSTION ENGINE WITH FUNCTIONS OF COOLING RADIATOR AND HEATING ENERGY COOLING LIQUID IN ELECTRIC ENERGY
ITMI20110714A1 (en) HEAT EXCHANGER FOR A GEO-THERMAL SYSTEM, AND ITS RELATIVE PLANT, SUITABLE TO GUARANTEE THE EXPLOITATION OF RENEWABLE ENERGY SOURCES
KR20110042914A (en) Printed circuit heat exchanger type receiver of stirling engine for solar thermal power system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150806