JP2005204442A - Electric generator utilizing temperature difference - Google Patents

Electric generator utilizing temperature difference Download PDF

Info

Publication number
JP2005204442A
JP2005204442A JP2004009361A JP2004009361A JP2005204442A JP 2005204442 A JP2005204442 A JP 2005204442A JP 2004009361 A JP2004009361 A JP 2004009361A JP 2004009361 A JP2004009361 A JP 2004009361A JP 2005204442 A JP2005204442 A JP 2005204442A
Authority
JP
Japan
Prior art keywords
power generation
block
temperature difference
compost
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004009361A
Other languages
Japanese (ja)
Inventor
Yutaka Fukuda
豊 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004009361A priority Critical patent/JP2005204442A/en
Publication of JP2005204442A publication Critical patent/JP2005204442A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently generate electric power from a self fermenting heat organic material such as compost using an electric generator by means of a temperature difference, and drive a motor fan by the generated electric power to accelerate composting. <P>SOLUTION: The electric generator utilizing a temperature difference is buried deep in compost, and a thermoelectric transducer 8 is placed between a temperature sensitive member 9 and a cooling member 2. The cooling member is supplied with cooling water from above, and the upper face of the thermoelectric transducer 8 is thereby cooled. The motor fan 6 is driven by generated electric power to suck air from outside the compost through an air intake hose 5, and blow the air out of the deep portion of the compost. Thus, a compost bacteria is activated. As a result, composting can be accelerated, and the compost of proper quality can be prepared. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ペルチェ素子等の熱電変換発電素子を組み込んでなる温度差発電装置に関するものであり、殊に堆肥等の自己発酵熱誘起素材の中に、発電ブロックを埋設するようにした場合には自然資源の有効活用が図れる温度差発電装置の提供ができるものである。   The present invention relates to a temperature difference power generation device in which a thermoelectric conversion power generation element such as a Peltier element is incorporated, and particularly when a power generation block is embedded in a self-fermentation heat inducing material such as compost. It is possible to provide a temperature difference power generation device that can effectively use natural resources.

ペルチェ素子等の熱電変換発電素子を組み込んだ発電装置は、例えば、特許文献1に示されるように筒状の部材の間に多数の熱電変換発電素子を位置させたものが提案されている。また、特許文献2に示されるように堆肥等の自己発酵熱誘起素材を活用するものは、発酵に伴う有機ガスを利用して発電するものが一般的であった。
特許第3163290号公報 特許第3303905号公報
As a power generation device incorporating a thermoelectric conversion power generation element such as a Peltier element, for example, as shown in Patent Document 1, a device in which a number of thermoelectric conversion power generation elements are positioned between cylindrical members has been proposed. In addition, as shown in Patent Document 2, what uses a self-fermentation heat inducing material such as compost is generally generated using an organic gas accompanying fermentation.
Japanese Patent No. 3163290 Japanese Patent No. 3303905

特許文献1のものは発電効率に優れているが装置の組立加工性に相当の熟練と工夫を要する点があった。また特許文献2のものは装置が大型になり高価となる傾向にあった。
そこで、本特許出願人はこれらの課題を解決するために、堆肥等の自己発酵熱誘起素材を直接的に活用することを着想し、図7に示すように外枠7に収納した堆肥の発酵熱を伝達する筒状の伝達容器14内で温水を発生させ、該伝達容器14の上方にペルチェ素子等の熱電変換素子8を付設しその外方に冷却水貯水器15を重合するようにしたものを開発して実験に至った。このものは発酵熱により水を温水にして、該温水を温熱源とするもので、一応の発電作用は現出したものの温熱源を効率良く吸収して発電に変換するための発電効率向上のために更に工夫が必要であることが判明した。
Although the thing of patent document 1 is excellent in electric power generation efficiency, there existed a point which requires considerable skill and device for the assembly workability of an apparatus. Further, the device of Patent Document 2 tends to be expensive because the device becomes large.
Therefore, in order to solve these problems, the present applicant has conceived of directly utilizing a self-fermentation heat-inducing material such as compost, and fermenting compost stored in the outer frame 7 as shown in FIG. Hot water is generated in a cylindrical transmission container 14 for transmitting heat, and a thermoelectric conversion element 8 such as a Peltier element is provided above the transmission container 14 to superpose the cooling water reservoir 15 on the outside thereof. I developed something and led to an experiment. This water is made into warm water by fermentation heat, and the hot water is used as a heat source. Although the power generation action has appeared, it is necessary to improve the power generation efficiency to efficiently absorb the heat source and convert it into power generation. It was found that further improvements were necessary.

本発明が前述の状況に鑑み、解決しようとするところは、組立性に優れて且つどのような使用状況においても発電効率の良い温度差発電装置を提供する点にある。   In view of the above-described situation, the present invention intends to provide a temperature difference power generation device that is excellent in assemblability and has high power generation efficiency in any use situation.

本発明は、前述の課題解決のために、第一に、温熱源を授与される温感ブロックと冷熱源を供給される冷感ブロックとを接続分離可能に設け、該両ブロックの分離面のいずれかに熱電変換発電素子を埋め込んだ状態で、該両ブロックを接続して一体の発電ブロックに構成したことを特徴とし、発電ブロックの組立を簡単にしてコンパクトな構成にし、且つ熱電変換発電素子を埋め込んだ状態にすることで受熱効率を向上させて発生起電力の増大を図ることができる。
第二に、堆肥等の自己発酵熱誘起素材の中に、発電ブロックを埋設したことを特徴とし、堆肥等の熱源中を移動可能となり、熱伝導経路の距離を可及的に最小限とし、堆肥発酵熱を効率よく受熱可能として受熱効率を向上させた。
In order to solve the above-mentioned problems, the present invention firstly provides a warming sensation block to which a heat source is given and a cooling sensation block to which a cooling source is supplied so as to be connectable and separable. The thermoelectric conversion power generation element is characterized in that the two electric power generation elements are embedded in one of the two blocks and connected to form an integral power generation block. The assembly of the power generation block is simplified and the structure is compact, and the thermoelectric conversion power generation element As a result, the heat receiving efficiency can be improved and the generated electromotive force can be increased.
Second, self-fermentation heat-inducing material such as compost is characterized by the embedded power generation block, which can be moved through heat sources such as compost, minimizing the distance of the heat conduction path as much as possible, The heat receiving efficiency was improved by making it possible to efficiently receive the compost fermentation heat.

第三に、堆肥等の自己発酵熱誘起素材の中に、発電ブロックを埋設すると共に堆肥等の自己発酵熱の誘起を促進する外気供給ファンを設けたことを特徴とし、堆肥等の内部から空気の供給を行い、発酵の促進を可能とした。
第四に、ボイラー、ヒーター等の高熱源部材に温感ブロックを接触配置したことを特徴とし、温度計による温度測定に伴う発電量の定量的測定を可能とした。
第五に、温感ブロックに熱電変換発電素子を組み込み、冷感ブロックに冷却水を供給するようにしたことを特徴とし、冷却水量を水量調整機で調整可能とし位置エネルギー利用の自然落下方式とした。
Third, it is characterized by the fact that a power generation block is embedded in the self-fermenting heat-inducing material such as compost and an outside air supply fan is provided to promote the induction of self-fermenting heat such as compost. It was possible to promote fermentation.
The fourth feature is that a warm block is placed in contact with a high heat source member such as a boiler or a heater, and quantitative measurement of the amount of power generated by temperature measurement with a thermometer is possible.
Fifth, a thermoelectric conversion power generation element is incorporated in the thermal sensation block, and cooling water is supplied to the cooling sensation block. did.

第六に、冷感ブロックの冷却水の入口側を高く出口側を低くしたことを特徴とし、冷却水の流れを位置エネルギーの落差を利用する事でスムーズにした。
第七に、冷感ブロック内において冷却水の流れを斜め横断若しくは迂回するようにして所定時間に亘って冷却滞留するように構成したことを特徴とし、冷却効率を上昇させた。
第八に、温感ブロックを天然ゼオライトの焼成物で形成したことを特徴とし、堆肥発酵熱を熱源とする遠赤外線効果による放射エネルギーを利用し、堆肥等の温度上昇を助長し、発酵促進を可能にした。
第九に、温感ブロックを透水性の多孔質部材で形成したことを特徴とし、堆肥からの熱伝導性を向上させた。
Sixth, the cooling water inlet side of the cooling sensation block is high and the outlet side is low, and the flow of cooling water is made smooth by using the potential energy drop.
Seventh, it is characterized in that the cooling water stays in the cooling sensation block for a predetermined time so as to obliquely cross or bypass the flow of the cooling water, and the cooling efficiency is increased.
Eighth, it is characterized by the formation of a warm block made of burned natural zeolite, using the radiant energy from the far-infrared effect using compost fermentation heat as a heat source, promoting the temperature rise of compost, etc. Made possible.
Ninth, the warm block was formed of a water-permeable porous member, and the thermal conductivity from compost was improved.

請求項1の発明によれば、構成が簡単で組立性に優れたコンパクトな発電ブロックを得て温熱源を効率よく吸収して電気に変換するための発電効率の向上を可能にした。
請求項2の発明によれば、発電ブロックを埋設する事により、堆肥等の断熱効果を利用するため、断熱材が不必要となり、発電効率の向上を可能にした。
請求項3の発明によれば、発電ブロックを埋設し、発電した電気により外気供給ファンを設ける事により、空気を堆肥内に外部から取り入れ、堆肥の発酵促進を可能にした。
According to the first aspect of the present invention, it is possible to obtain a compact power generation block having a simple configuration and excellent assemblability, and to improve the power generation efficiency for efficiently absorbing the heat source and converting it into electricity.
According to invention of Claim 2, since the heat insulation effect, such as compost, was utilized by burying a power generation block, a heat insulating material became unnecessary and it enabled improvement in power generation efficiency.
According to the invention of claim 3, by embedding the power generation block and providing the outside air supply fan by the generated electricity, the air is taken into the compost from the outside and the compost fermentation can be promoted.

請求項4の発明によれば、ボイラー・ヒーター等の高熱源部材に温感ブロックを接触配置したことで、多種の熱源を利用できる事を確認し、使用形態の多様性を示した。
請求項5の発明によれば、温感ブロックは熱源を吸収し、一方の冷感ブロックへは貯水タンク内の冷却水を水量調整機により調整可能とし、ペルチェ素子の上面に冷却水を通過させ、冷却効率の上昇を可能とした。
請求項6の発明によれば、冷感ブロック内の冷却水貯水部を移動する冷却水に対し、入口と出口に高低落差を設け、冷却水の滞留防止を可能とした。
According to the invention of claim 4, it was confirmed that various heat sources can be used by arranging the thermal block in contact with a high heat source member such as a boiler / heater, and a variety of usage forms was shown.
According to the invention of claim 5, the thermal sensation block absorbs the heat source, and the cooling water in the water storage tank can be adjusted to the one sensation block by the water amount adjuster, and the cooling water is passed through the upper surface of the Peltier element. The cooling efficiency can be increased.
According to the sixth aspect of the present invention, the cooling water moving in the cooling water reservoir in the cooling sensation block is provided with a high and low drop at the inlet and outlet to prevent the cooling water from staying.

請求項7の発明によれば、冷却水がペルチェ素子上面の冷却部を斜め横断する事で、冷却水の通過面積を大きくし、冷却効果の向上を可能とした。
請求項8の説明によれば、温感ブロックを天然ゼオライトの焼成物で形成した事により、天然ゼオライトの遠赤外線効果を利用し、堆肥温度の上昇に寄与する事を可能とした。
請求項9の発明によれば、温感ブロックを透水性の多孔質部材で形成したことで、温熱源が水又は水蒸気である場合の感受性の向上を可能とした。
According to the invention of claim 7, the cooling water obliquely crosses the cooling part on the upper surface of the Peltier element, thereby increasing the passage area of the cooling water and improving the cooling effect.
According to the explanation of claim 8, by forming the warm block with the burned product of natural zeolite, it is possible to utilize the far infrared effect of natural zeolite and contribute to the increase of the compost temperature.
According to the ninth aspect of the present invention, it is possible to improve the sensitivity when the thermal source is water or water vapor because the thermal block is formed of a water-permeable porous member.

以下、本発明の実施形態を図面に基づいて説明する。図1に示すものは本発明に係る温度差発電装置の全体構成を示すものであり、温熱源を授与される平板状の受熱ブロック9と冷熱源を供給される箱形形状の冷感ブロック2とをボルトB等を介して接続分離可能に設け、該冷感ブロック2の分離面側に熱電変換発電素子8を嵌合係止できる埋設空間部Kを形成し、該埋設空間部Kに熱電変換発電素子8を組み込んで埋め込んだ状態にして、該両ブロック2、9を合わせてボルトBを締めこんで接続して一体の発電ブロックHに構成されている。熱電変換発電素子8は埋設空間部Kに嵌合するだけで熱電変換発電素子8の周辺が摩擦係止される構成であるので組み込みが容易であると共に、発電ブロックHの接続組立時に不用意に熱電変換発電素子8が脱落することがなく作業が確実にできる。
上記熱電変換発電素子8の埋設空間部Kは、冷感ブロック2側に代えて受熱ブロック9側に構成してもよいものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an overall configuration of a temperature difference power generation device according to the present invention. A flat heat receiving block 9 to which a heat source is given and a box-shaped cooling sensation block 2 to which a cold source is supplied. Are formed so as to be separable via bolts B or the like, and an embedded space portion K in which the thermoelectric conversion power generation element 8 can be fitted and locked is formed on the separation surface side of the cooling sensation block 2. The conversion power generation element 8 is assembled and embedded, and the blocks 2 and 9 are joined together by tightening the bolt B and connected to form an integrated power generation block H. Since the thermoelectric conversion power generation element 8 is configured to be frictionally locked around the thermoelectric conversion power generation element 8 simply by fitting in the embedded space K, it is easy to incorporate and carelessly when the power generation block H is connected and assembled. The operation can be performed reliably without the thermoelectric conversion power generation element 8 falling off.
The embedded space K of the thermoelectric conversion power generation element 8 may be configured on the heat receiving block 9 side instead of the cooling sensation block 2 side.

温度差発電装置の受熱ブロック9は金属、セラミックス等からなり平板状に形成されており、畜糞等から生成される堆肥Tの深部に埋設し、堆肥Tの発酵熱(約摂氏80度程度)を吸収する。一方、ペルチェ素子からなる熱電変換発電素子8上面には冷却部となる金属、樹脂、セラミックス等からなる冷感ブロック2が配置され、該冷感ブロック2には水槽の吊り下げ台1に取り付けた水槽1Aより開閉バルブ等の水量調整機1Bで調整された冷却水が冷却水ホース3を通り、冷感ブロック2の冷却水入口10Aから冷却水貯水室10に至り、熱電変換発電素子8の上面を通って、熱電変換発電素子8の片面を冷却しながら冷却水出口10Bから冷却水出口ホース4を通り外部に放出される。
該冷却水貯水室10は前記の熱電変換発電素子8を嵌合係止できる埋設空間部Kの背面に空間形成されており、熱電変換発電素子8の組み込みを容易にしながら熱電変換発電素子8片面の冷却を効率よく行うことができるものである。
また、熱電変換発電素子8に発生した電気により配線8Aを介してモーターファン6を駆動し、堆肥外の空気(外気)が空気吸入ホース5を通り、堆肥外枠7に囲まれた堆肥Tの深部に引き込まれ、堆肥菌に空気を供給する事で堆肥Tの発酵活性化を促進するシステムである。これにより温感ブロック9周辺の温度をより高熱に維持できるものである。
尚、上記の冷却水は水道水、井戸水、河川水等を循環利用するようにしても良い。
The heat receiving block 9 of the temperature difference power generation device is made of metal, ceramics, etc., and is formed in a flat plate shape. The heat receiving block 9 is buried in the deep part of the compost T generated from livestock excrement and the like, and the fermentation heat of the compost T (about 80 degrees Celsius) Absorb. On the other hand, a cooling sensation block 2 made of metal, resin, ceramics or the like serving as a cooling unit is disposed on the upper surface of the thermoelectric conversion power generation element 8 made of a Peltier element, and the cooling sensation block 2 is attached to a suspension base 1 of a water tank. Cooling water adjusted by a water amount adjuster 1B such as an opening / closing valve from the water tank 1A passes through the cooling water hose 3 and reaches the cooling water storage chamber 10 from the cooling water inlet 10A of the cooling sensation block 2, and the upper surface of the thermoelectric conversion power generation element 8 It passes through the cooling water outlet hose 4 from the cooling water outlet 10B and is discharged to the outside while cooling one side of the thermoelectric conversion power generation element 8.
The cooling water storage chamber 10 is formed in the back surface of the embedded space K where the thermoelectric conversion power generation element 8 can be fitted and locked, and the thermoelectric conversion power generation element 8 is provided on one side while facilitating the incorporation of the thermoelectric conversion power generation element 8. Can be efficiently cooled.
Further, the motor fan 6 is driven by the electricity generated in the thermoelectric conversion power generation element 8 via the wiring 8 </ b> A so that the air outside the compost (outside air) passes through the air suction hose 5 and is surrounded by the compost outer frame 7. It is a system that promotes the fermentation activation of compost T by being pulled deep and supplying air to compost. As a result, the temperature around the warm block 9 can be maintained at a higher temperature.
The cooling water may be circulated using tap water, well water, river water or the like.

図2は温度差発電装置の外観斜視図である。図3は熱電変換発電素子8上面の冷却水室10の平面図であり、冷却水が斜め横断して通過するために多くの面積を冷却可能とした。図4はゼオライトの焼成物で形成した受熱ブロック9と熱電変換発電素子8の上面に接する冷感ブロック2の断面図である。冷感ブロック2の中央部に位置する冷却水貯水室10は冷却水入口10Aと冷却水出口10Bに位置落差hを設け、冷却水の回遊移動をスムーズにし熱電変換素子8の冷却を効率良くした。   FIG. 2 is an external perspective view of the temperature difference power generation device. FIG. 3 is a plan view of the cooling water chamber 10 on the upper surface of the thermoelectric conversion power generation element 8. Since the cooling water passes obliquely across, a large area can be cooled. FIG. 4 is a cross-sectional view of the heat receiving block 9 formed of a baked product of zeolite and the cooling sensation block 2 in contact with the upper surface of the thermoelectric conversion power generation element 8. The cooling water storage chamber 10 located in the center of the cooling sensation block 2 has a position drop h at the cooling water inlet 10A and the cooling water outlet 10B, and the cooling water is made to move smoothly and the thermoelectric conversion element 8 is efficiently cooled. .

図5はモーターファン6により、堆肥T外からの空気(外気)を吸収し、堆肥深部から空気を噴出する装置である。ペルチェ素子からなる熱電変換発電素子8に発生した電気でモーターファン6のファンFがモータ11で駆動回転され空気吸入ホース5から導入された空気は堆肥深部に埋設した部分から空気噴出口12より堆肥菌に空気を供給し、堆肥の発酵化を促進し高熱を誘起する。 FIG. 5 shows a device that absorbs air (outside air) from outside the compost T and ejects air from the deep portion of the compost by the motor fan 6. The electric air generated in the thermoelectric conversion power generation element 8 composed of Peltier elements is driven by the motor 11 and the air introduced from the air suction hose 5 by the motor 11 is combusted from the air outlet 12 through the portion buried in the deep compost. Air is supplied to the fungus to promote fermenting of compost and induce high heat.

図6は本発明の他の実施態様を示し、例えば調理用ヒーター、ストーブ、ボイラー等の高熱源部材Kに受熱ブロック9を接触配置したものである。高熱源部材Kの上面に水の貯水器13を載置し、該貯水器13に貯水した水を熱して高熱源とし、温度差発電装置を機能させ、モーターファン6を駆動するシステムである。水を熱することにより高熱源の温度を摂氏100度前後に維持できて熱電変換発電素子8の構成部品の超高熱による劣化損傷等を防止しながら一定電力の発電ができる利点がある。
図7は本特許出願の発明者が本出願に至るまでに手掛けていた温度差発電システムの開発経緯であり、堆肥発酵熱の伝達容器14に貯水した水が堆肥の発酵熱で温まる事で高熱源とした。一方の冷却水貯水器15に水を蓄え冷熱源として高熱源と冷熱源の間にペルチェ素子からなる熱電変換発電素子8を配置した結果、一応の発電作用は現出したものの発電効率向上のために、さらに工夫が必要であることが判明した。
FIG. 6 shows another embodiment of the present invention, in which a heat receiving block 9 is disposed in contact with a high heat source member K such as a cooking heater, a stove, or a boiler. This is a system in which a water reservoir 13 is placed on the upper surface of the high heat source member K, the water stored in the reservoir 13 is heated to become a high heat source, the temperature difference power generation device is functioned, and the motor fan 6 is driven. By heating water, the temperature of the high heat source can be maintained at around 100 degrees Celsius, and there is an advantage that power generation at a constant power can be performed while preventing deterioration of the components of the thermoelectric conversion power generation element 8 due to super high heat.
FIG. 7 shows the development process of the temperature difference power generation system that the inventor of the present patent application worked on until reaching the present application. The water stored in the compost fermentation heat transfer container 14 is heated by the compost fermentation heat. A heat source was used. Water is stored in one of the cooling water reservoirs 15 and a thermoelectric conversion power generation element 8 composed of a Peltier element is arranged between the high heat source and the cold heat source as a cold heat source. Furthermore, it has been found that further ingenuity is necessary.

堆肥の発酵熱を利用して発電する発電ブロックの埋設により効率よく発電した。発電した電気を用いてモーターファンを回転させ、堆肥中に堆肥外から空気を引き込む事で堆肥発酵菌の活性を促し、良質堆肥製造に関しての効率の向上を可能とした。   Power was generated efficiently by embedding a power generation block that generates power using the fermentation heat of compost. The motor fan was rotated using the generated electricity, and air was drawn into the compost from outside the compost to promote the activity of the compost fermenting bacteria, making it possible to improve the efficiency of producing high-quality compost.

本発明は、堆肥等の自己発酵熱誘起素材の中に、発電ブロックを埋設するものを主体にして説明したが、焼却炉のボイラー、暖房用のストーブや調理用ヒーター等の高熱源部材に温感ブロックを接触配置したものでも良く同様の類似思想の高熱源を利用することは本発明の技術思想の範囲内にて変更可能なものであり、温度差発電装置の使用形態は、本発明実施形態のものに限定されるものではない。   The present invention has been described mainly with a self-fermentation heat-inducing material such as compost, in which a power generation block is embedded, but a high heat source member such as an incinerator boiler, a heating stove, or a cooking heater is used for heating. It is possible to change the use of a high-temperature heat source having a similar concept, which may be a contact block arranged in contact with each other, within the scope of the technical idea of the present invention. It is not limited to the form.

温度差発電システムの全体構成を示す側面図である。It is a side view which shows the whole structure of a temperature difference power generation system. 温度差発電装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of a temperature difference electric power generating apparatus. 熱電変換素子上側の冷感ブロック内の冷却水室の平面図である。It is a top view of the cooling water chamber in the cooling sensation block above a thermoelectric conversion element. 温度差発電システムの側面図である。It is a side view of a temperature difference power generation system. モーターファンによる吸入空気の噴出装置を示す側面図である。It is a side view which shows the ejection apparatus of the intake air by a motor fan. 一般の熱源として水の温度上昇に伴う温度差発電装置を示す側面図である。It is a side view which shows the temperature difference power generation apparatus accompanying the temperature rise of water as a general heat source. 温度差発電システムの開発初期の側面図である。It is a side view of the early stage of development of a temperature difference power generation system.

符号の説明Explanation of symbols

1 水槽の吊り下げ台
2 冷感ブロック
3 冷却水入口ホース
4 冷却水出口ホース
5 空気の吸入ホース
6 モーターファン
7 堆肥の外枠
8 熱電変換素子
9 受熱ブロック
10 冷却水貯水室
11 モーター
12 空気噴出口
13 水の貯水器
14 堆肥発酵熱の伝達容器
15 冷却水貯水器













1 Water tank suspension 2 Cooling block 3 Cooling water inlet hose 4 Cooling water outlet hose
5 Air Suction Hose 6 Motor Fan 7 Compost Outer Frame 8 Thermoelectric Conversion Element 9 Heat Receiving Block 10 Cooling Water Reservoir 11 Motor 12 Air Jet 13 Water Reservoir 14 Compost Fermentation Heat Transfer Vessel 15 Cooling Water Reservoir













Claims (9)

温熱源を授与される受熱ブロックと冷熱源を供給される冷感ブロックとを接続分離可能に設け、該両ブロックの分離面のいずれかに熱電変換発電素子を埋め込んだ状態で、該両ブロックを接続して一体の発電ブロックに構成したことを特徴とする温度差発電装置。   A heat receiving block to which a heat source is given and a cooling sensation block to which a heat source is supplied are provided so as to be connectable and separable, and the thermoelectric conversion power generation element is embedded in one of the separation surfaces of the both blocks, A temperature difference power generator characterized in that it is connected to form an integrated power generation block. 堆肥等の自己発酵熱誘起素材の中に、発電ブロックを埋設したことを特徴とする請求項1記載の温度差発電装置。   The temperature difference power generation device according to claim 1, wherein a power generation block is embedded in a self-fermentation heat inducing material such as compost. 堆肥等の自己発酵熱誘起素材の中に、発電ブロックを埋設すると共に堆肥等の自己発酵熱の誘起を促進する外気供給ファンを設けたことを特徴とする請求項2記載の温度差発電装置。   The temperature difference power generation device according to claim 2, wherein an external air supply fan that embeds a power generation block and promotes induction of self-fermentation heat such as compost is provided in a self-fermentation heat induction material such as compost. ボイラー、ヒーター等の高熱源部材に温感ブロックを接触配置したことを特徴とする請求項1記載の温度差発電装置。   The temperature difference power generator according to claim 1, wherein the thermal sensation block is disposed in contact with a high heat source member such as a boiler or a heater. 温感ブロックに熱電変換発電素子を組み込み、冷感ブロックに冷却水を供給するようにしたことを特徴とする請求項1記載の温度差発電装置。   2. The temperature difference power generation device according to claim 1, wherein a thermoelectric conversion power generation element is incorporated in the thermal sensation block, and cooling water is supplied to the cooling sensation block. 冷感ブロックの冷却水の入り口側を高く出口側を低くしたことを特徴とする請求項5記載の温度差発電装置。   6. The temperature difference power generator according to claim 5, wherein the cooling water inlet side of the cooling sensation block is raised and the outlet side is lowered. 冷感ブロック内において冷却水の流れを斜め横断若しくは迂回するようにして所定時間に亘って冷却滞留するように構成したことを特徴とする請求項5記載の温度差発電装置。   6. The temperature difference power generation device according to claim 5, wherein the cooling water stays in the cooling sensation block for a predetermined time so as to obliquely cross or bypass the flow of the cooling water. 温感ブロックを天然ゼオライトの焼成物で形成したことを特徴とする請求項1記載の温度差発電装置。   2. The temperature difference power generation device according to claim 1, wherein the warm feeling block is formed of a fired product of natural zeolite. 温感ブロックを透水性の多孔質部材で形成したことを特徴とする請求項1記載の温度差発電装置。








The temperature difference power generator according to claim 1, wherein the warm feeling block is formed of a water-permeable porous member.








JP2004009361A 2004-01-16 2004-01-16 Electric generator utilizing temperature difference Pending JP2005204442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004009361A JP2005204442A (en) 2004-01-16 2004-01-16 Electric generator utilizing temperature difference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004009361A JP2005204442A (en) 2004-01-16 2004-01-16 Electric generator utilizing temperature difference

Publications (1)

Publication Number Publication Date
JP2005204442A true JP2005204442A (en) 2005-07-28

Family

ID=34822430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004009361A Pending JP2005204442A (en) 2004-01-16 2004-01-16 Electric generator utilizing temperature difference

Country Status (1)

Country Link
JP (1) JP2005204442A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186870A (en) * 2011-03-03 2012-09-27 Shigetaka Yamahashi Complex power generation device utilizing sunlight
CN101413492B (en) * 2008-11-24 2012-10-03 杨艺明 Atmospheric temperature difference electric generator
JP2013201873A (en) * 2012-03-26 2013-10-03 Toshiba Corp Thermoelectric power generation device and thermoelectric power generation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101413492B (en) * 2008-11-24 2012-10-03 杨艺明 Atmospheric temperature difference electric generator
JP2012186870A (en) * 2011-03-03 2012-09-27 Shigetaka Yamahashi Complex power generation device utilizing sunlight
JP2013201873A (en) * 2012-03-26 2013-10-03 Toshiba Corp Thermoelectric power generation device and thermoelectric power generation system

Similar Documents

Publication Publication Date Title
KR20100011810A (en) Floor heating system
KR101235567B1 (en) The hot air blower using microwave
JP2005204442A (en) Electric generator utilizing temperature difference
JPH06123486A (en) Induction water heater
KR20100067187A (en) A heating apparatus using carbon-heater
PL1862734T3 (en) Steam generator
JP2010223539A (en) Wood stove device and wood stove heating system
KR20090070462A (en) A boiler using heat transfer fluid
ATE271678T1 (en) GAS POWERED GENERATOR THERM
JP2010127575A (en) Heat generating device, warm air boiler device, warm water boiler device and steam boiler device
KR101197371B1 (en) Portable Device to Supply Warm Water
JPS58102053A (en) Heat pipe type water heater
KR100700313B1 (en) Portable Steam Heating System
EP3112772B1 (en) Fan device with a preheat circulation channel
KR100700637B1 (en) Warm Mat
KR102141530B1 (en) Portable hot water mat of forced circulation type
KR102578161B1 (en) System for heating air and mat using gas fuel and method thereof
CN202303867U (en) Fan heater
KR100701969B1 (en) Warm water supply apparatus of heating medium boiler
KR20090006046U (en) A hot air of ceramics elcecric-heater
KR20110050892A (en) Small stove with heat pipe for body
KR20100135357A (en) Portable heating
KR200206409Y1 (en) Ocher Soil Bed Mat Using Portable Small Electric Boiler
US7113696B1 (en) System and method for generating steam for a steam bath
JPH09310921A (en) Heat storage type hot-water device