JP2013036456A - Temperature difference power generation apparatus - Google Patents

Temperature difference power generation apparatus Download PDF

Info

Publication number
JP2013036456A
JP2013036456A JP2011179937A JP2011179937A JP2013036456A JP 2013036456 A JP2013036456 A JP 2013036456A JP 2011179937 A JP2011179937 A JP 2011179937A JP 2011179937 A JP2011179937 A JP 2011179937A JP 2013036456 A JP2013036456 A JP 2013036456A
Authority
JP
Japan
Prior art keywords
working medium
ejector
heat
medium
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011179937A
Other languages
Japanese (ja)
Inventor
Wasaku Horii
和作 堀居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAGUMO ENGINEERING KK
Original Assignee
YAGUMO ENGINEERING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAGUMO ENGINEERING KK filed Critical YAGUMO ENGINEERING KK
Priority to JP2011179937A priority Critical patent/JP2013036456A/en
Publication of JP2013036456A publication Critical patent/JP2013036456A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Landscapes

  • Jet Pumps And Other Pumps (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature difference power generation apparatus capable of suppressing an equipment initial cost low by improving the efficiency of thermal energy and the output of power generation and miniaturizing an apparatus.SOLUTION: An actuation medium 3 heated by a heat source fluid 1 is separated into a gaseous actuation medium 5 comprising a low boiling point component and a high-temperature solution 6 comprising a high boiling point component with a gas-liquid separator 4. In a thermal system which guides the actuation medium 5 to a power generator driving device 7 and rotates a power generator 8, the high-temperature solution 6 separated by the gas-liquid separator 4 is thermally exchanged with an actuation medium 13 on the low temperature side by a thermal recovery device 14, and thereafter, used for a driving source of an ejector 9. An actuation medium 5b exhausted by the power generator driving device 7 is mixed with the high-temperature solution 6 at an inner part of the ejector 9, and while the pressure is elevated, sent to a condenser 11. An actuation medium 10 sucked by a heat medium solution sending pump 12 is pressurized to become an actuation medium 13 and is led to an evaporator 2 through the thermal recovery device 14. Such a thermal cycle is repeated and energy held by the heat source fluid 1 is converted into electric power.

Description

本発明は、海水の温度差、太陽熱あるいは工場廃熱など比較的低温な熱源流体より沸点の異なる二種類以上の熱媒体を混合して使用することによりエネルギーを効果的に取り出しし、また取り出したエネルギーを有効に使用して蒸気タービン、スクリュータービンあるいはロータリータービンなどの回転機器を回して高効率に発電するシステムに関する。  The present invention effectively takes out and takes out energy by using a mixture of two or more kinds of heat media having different boiling points from a relatively low temperature heat source fluid such as seawater temperature difference, solar heat or factory waste heat. The present invention relates to a system that efficiently uses energy and rotates a rotating device such as a steam turbine, a screw turbine, or a rotary turbine to generate power with high efficiency.

比較的低温な熱源流体より効果的にエネルギーを取り出す温度差発電方式としては、例えばアンモニアと水を混合熱媒体として使用するカリーナサイクルが基本的な熱サイクルとして、またこのカリーナサイクルを改良したウエハラサイクル(例えば下記の特許文献参照)が海水温度差発電や産業廃熱回収分野で利用されている。
以下、このカリーナサイクルとウエハラサイクルを引用して説明する。
As a temperature difference power generation method that effectively extracts energy from a relatively low-temperature heat source fluid, for example, a carina cycle that uses ammonia and water as a mixed heat medium is a basic heat cycle, and a waferra cycle that improves this carina cycle. (See, for example, the following patent document) is used in the seawater temperature difference power generation and industrial waste heat recovery fields.
Hereinafter, the carina cycle and the wafer racer will be described with reference.

上記のカリーナサイクルやウエハラサイクルでは、熱源流体により蒸発させたアンモニアガスを作動媒体として蒸気タービンなどの回転機器に供給し、その後この回転機器で膨張した低圧低温のアンモニアガスを水に溶解させることで熱サイクル低温側圧力の低減を促進して熱サイクルの効率を高めることや、回転機器には供給されない気液分離器で分離した高温溶液の持つ熱エネルギーを、蒸気タービンなどの回転機器で膨張し終えた低温側の熱媒体と熱交換させることにより熱サイクルの効率を高めている。  In the above-mentioned Carina cycle and Uehara cycle, the ammonia gas evaporated by the heat source fluid is supplied as a working medium to a rotating device such as a steam turbine, and then the low-pressure and low-temperature ammonia gas expanded by the rotating device is dissolved in water. Increase the efficiency of the thermal cycle by promoting the reduction of the low temperature side pressure of the thermal cycle, and expand the thermal energy of the high temperature solution separated by the gas-liquid separator that is not supplied to the rotating equipment in the rotating equipment such as a steam turbine. The heat cycle efficiency is enhanced by exchanging heat with the finished low-temperature heat medium.

また、ウエハラサイクルでは蒸気タービンを高圧側と低圧側の二段に分割して直列に配置し、高圧側蒸気タービンで膨張したアンモニアガスの一部分を抽気して凝縮器で凝縮するアンモニアガスの総量を減少させること、更にこの抽気を利用する熱交換器を設置することにより熱サイクルの効率を高めている。  In the Uehara cycle, the steam turbine is divided into two stages, the high-pressure side and the low-pressure side, and arranged in series, and the total amount of ammonia gas extracted from the ammonia gas expanded by the high-pressure side steam turbine and condensed by the condenser is calculated. The efficiency of the thermal cycle is increased by reducing the temperature and installing a heat exchanger that uses the extracted air.

特許公報 特公平7−94815  Patent Publication No. 7-94815

技術開発促進事業終了報告書(低温廃熱回収発電装置の実用化開発、公開版、平成18年3月)、I−35 RITE−大阪大正第2研究室  Technical Development Promotion Project Completion Report (Practical Development of Low Temperature Waste Heat Recovery Power Generation Equipment, Public Version, March 2006), I-35 RITE-Osaka Taisho 2nd Laboratory

前記のカリーナサイクルやウエハラサイクルでは、作動媒体の保有するエネルギーの有効利用を一層高めて発電出力の向上を図ることが重要なテーマとなっている。また、ウエハラサイクルではカリーナサイクルより効率は高いが装置構成が複雑であり装置の簡素化が求められている。  In the above-described Carina cycle and Uehara cycle, it is an important theme to improve the power generation output by further increasing the effective use of energy held by the working medium. Further, although the efficiency of the wafer la cycle is higher than that of the carina cycle, the apparatus configuration is complicated, and simplification of the apparatus is required.

前記のカリーナサイクルやウエハラサイクルの熱サイクル効率を現行以上に高めるには、発電機やこれを駆動する回転機器あるいは熱交換器などの効率をそれぞれ高めるなど各構成機器個々の性能向上が求められる。また、ウエハラサイクルでは、更に抽気段数を増加し、また熱交換段数を増加すれば熱サイクル効率が増加することは公知のことである。しかしこの方法では効率の上昇には限度があること、並びにサイクルを構成する機器が高性能なため高価になること、加えて装置構成が非常に複雑になることより設備初期費用の問題があり実現には限度がある。また、装置構成が複雑になることは運転操作が複雑になるので、特に中小ビルや家庭などこの種の装置を取り扱う専門技術者が不在の施設への導入は取り扱い面の問題があり導入が阻害されている。  In order to increase the thermal cycle efficiency of the above-described carina cycle and wafer racer cycle, it is necessary to improve the performance of each component device, such as increasing the efficiency of a generator, a rotating device or a heat exchanger that drives the generator, and the like. In addition, it is well known that in the wafer cycle, the thermal cycle efficiency increases if the number of extraction stages is further increased and the number of heat exchange stages is increased. However, with this method, there is a limit to the increase in efficiency, and it is expensive due to the high performance of the equipment that makes up the cycle. In addition, the equipment configuration is very complicated, so there is a problem of initial equipment cost. Has a limit. In addition, the complicated configuration of the equipment complicates the operation, so the introduction to facilities where there are no specialists who handle this type of equipment, such as small and medium-sized buildings and homes, has a handling problem and hinders the introduction. Has been.

また、特に産業排熱や温泉余剰熱などのように従来利用されずに廃棄されていた比較的低温なエネルギーを回収して発電を行う発電システムでは、設備導入費用対エネルギー回収効果の面で設備初期費用の低減が重要な課題である。また太陽熱発電を中小ビルや各家庭に導入する場合は発電装置の設置スペースなどが制限を受けるので、このような小規模施設で使用する発電設備では、設備初期費用の低減化と同時に設備の簡素化や小型化が望まれている。  In addition, especially in power generation systems that generate power by recovering relatively low-temperature energy that has been discarded without being used in the past, such as industrial waste heat and hot spring surplus heat, facilities are installed in terms of equipment installation costs and energy recovery effects. Reduction of initial costs is an important issue. In addition, when solar thermal power generation is introduced into small and medium-sized buildings and households, the installation space for power generation equipment is limited, so the power generation equipment used in such small-scale facilities can reduce equipment initial costs and simplify equipment. Downsizing and downsizing are desired.

そこで、本発明は、カリーナサイクルやウエハラサイクルではまだ有効に利用されていない気液分離後の高温溶液が保有するエネルギーを有効利用することにより、熱媒体の低圧側圧力を一層低下させて熱サイクル効率を高めること、更にこの熱サイクルを構成する機器や配管を減らしてシステム構成を簡素化することにより、装置の小型化や設備初期費用の低減が可能な温度差発電装置を提供することにある。  Therefore, the present invention further reduces the low-pressure side pressure of the heat medium by effectively using the energy held by the high-temperature solution after gas-liquid separation that has not yet been effectively used in the carina cycle or the wafer cycle. An object is to provide a temperature difference power generator capable of reducing the size of the apparatus and reducing the initial cost of equipment by increasing efficiency and further simplifying the system configuration by reducing the equipment and piping that make up this thermal cycle. .

前記の有効に利用されていない気液分離後の高温溶液が保有するエネルギーを有効利用するため、現行は単に減圧して低圧側に供給しているこの高温溶液を本発明により新規に設置するエジェクターの駆動源として利用し、この高温溶液の噴出により低圧になったエジェクター低圧部に発電機駆動装置から排気される作動媒体を吸引させることにより、発電機駆動装置の低温側圧力が下がるので熱サイクル効率が高まり発電出力を向上させることができる。  In order to make effective use of the energy held by the high-temperature solution after gas-liquid separation that is not effectively used, the ejector that newly installs this high-temperature solution that is simply depressurized and supplied to the low-pressure side according to the present invention The low-pressure side pressure of the generator drive unit is lowered by sucking the working medium exhausted from the generator drive unit into the ejector low-pressure part, which has become a low pressure due to the ejection of this high-temperature solution. Efficiency increases and power generation output can be improved.

また、このエジェクターは熱媒体の移送や混合のための機能も備えており装置内の気体成分や溶液成分の移送や混合が容易に実現できるので、本来この移送や混合のために別途必要になるポンプ類やタンク類の設置を省くことが可能となる。従って構成機器台数の削減や配管の簡素化が可能となり、熱サイクルの継続に必要な装置内所要動力を低く抑えられるのでその分発電出力を向上させることができる。また装置全体を小型化できるので設置スペースの低減化や設備初期費用の低減化も達成できる。  This ejector also has a function for transferring and mixing the heat medium, and can easily transfer and mix the gas component and solution component in the apparatus. Installation of pumps and tanks can be omitted. Therefore, the number of components can be reduced and piping can be simplified, and the required power in the apparatus necessary for continuing the heat cycle can be kept low, so that the power generation output can be improved accordingly. In addition, since the entire apparatus can be reduced in size, it is possible to reduce the installation space and the initial equipment cost.

また、エジェクターは遠心式ポンプなどに比べて構造が極めてシンプルで取り扱いも容易なので設備の運転操作の簡略化や保守整備の簡略化にも寄与できる。特にウエハラサイクルのように抽気方式を採用していて機器構成が複雑な装置にはこのエジェクター方式を採用する効果は一層大きくなる。  In addition, the ejector has a very simple structure and is easy to handle compared to a centrifugal pump, etc., so that it can contribute to simplification of operation and maintenance of facilities. In particular, the effect of adopting this ejector method is further increased in an apparatus that employs a bleed method such as Uehara cycle and has a complicated equipment configuration.

本発明の実施例1のエジェクターを利用した基本的な装置系統図Basic system diagram of the ejector according to the first embodiment of the present invention 本発明の図1、図3、図4におけるエジェクターの内部構造概要図Outline diagram of the internal structure of the ejector in FIGS. 1, 3 and 4 of the present invention 本発明の実施例2の一段抽気方式の装置系統図Device system diagram of single stage bleed system of embodiment 2 of the present invention 本発明の実施例3の熱媒体送液方式を改良した装置系統図System diagram of the improved heat medium feeding system according to the third embodiment of the present invention 本発明の実施例3における蓄液タンク交互切換状態を示す装置系統図Device system diagram showing liquid storage tank alternate switching state in Embodiment 3 of the present invention

発明を実施するため形態Mode for carrying out the invention

以下、この発明の実施の形態を、図示した実施例1から3に基づいて説明する。  Hereinafter, embodiments of the present invention will be described based on illustrated Examples 1 to 3.

まず、本発明の請求項1、2に対応する実施例を図1に示す。また、この実施例1で使用されているエジェクター内部構造の概要を図2に示す。  First, an embodiment corresponding to claims 1 and 2 of the present invention is shown in FIG. Moreover, the outline | summary of the ejector internal structure used by this Example 1 is shown in FIG.

熱源流体1により加熱された作動媒体3は気液分離器4で主としてアンモニアガスからなる作動媒体5とアンモニア成分と水成分からなる高温溶液6に分離され、作動媒体5は蒸気タービン、スクリュータービンあるいはロータリータービンなどで構成される発電機駆動装置7に供給され発電機8を回転させることにより、熱源流体1の保有する熱エネルギーを電気エネルギーに変換する。  The working medium 3 heated by the heat source fluid 1 is separated by a gas-liquid separator 4 into a working medium 5 mainly composed of ammonia gas and a high temperature solution 6 composed of an ammonia component and a water component. By supplying the generator drive device 7 composed of a rotary turbine or the like and rotating the generator 8, the heat energy held by the heat source fluid 1 is converted into electric energy.

気液分離器4で分離された高温溶液6は気液分離器4に設けられている自動液面調節弁4aを経て熱回収器14で低温側の作動媒体13と熱交換された後にエジェクター9の駆動源として供給され、エジェクター低圧部9aのノズルより噴出してエジェクター9の内部に低圧部を形成する。  The high-temperature solution 6 separated by the gas-liquid separator 4 passes through an automatic liquid level control valve 4 a provided in the gas-liquid separator 4 and is heat-exchanged with the low-temperature working medium 13 by the heat recovery unit 14. And is ejected from the nozzle of the ejector low-pressure part 9 a to form a low-pressure part inside the ejector 9.

発電機駆動装置7より排気された作動媒体5bはエジェクター低圧部9aに吸引された後に、エジェクター混合部9bにおいてエジェクター駆動源として供給された高温溶液6と混合される。更にこの混合された作動媒体はエジェクター圧力回復部9cで圧力を高められて作動流体10となり、凝縮器11に送られて冷却媒体22により更に凝縮・冷却される。エジェクター内部における機能を調節するためエジェクターの駆動源となる高温溶液6は冷却器21により冷却媒体22で冷却される場合もある。The working medium 5b exhausted from the generator driving device 7 is sucked into the ejector low-pressure part 9a, and then mixed with the high-temperature solution 6 supplied as an ejector driving source in the ejector mixing part 9b. Further, the mixed working medium is increased in pressure by the ejector pressure recovery section 9 c to become the working fluid 10, sent to the condenser 11, and further condensed and cooled by the cooling medium 22. In order to adjust the function inside the ejector, the high temperature solution 6 serving as the drive source of the ejector may be cooled by the cooling medium 22 by the cooler 21.

凝縮器11を出た作動媒体10は、電動機などで構成されるポンプ駆動装置12aで駆動される熱媒体送液ポンプ12に吸引され高圧側の圧力に抗して送液できる圧力にまで昇圧されて作動媒体13となり熱回収器14を経て蒸発器2に至る。この熱サイクルが連続して繰り返され熱源流体1の保有するエネルギーが電力に変換される。  The working medium 10 exiting the condenser 11 is sucked by a heat medium feeding pump 12 driven by a pump driving device 12a composed of an electric motor or the like, and is boosted to a pressure at which liquid can be fed against the high-pressure side pressure. Thus, the working medium 13 is reached through the heat recovery device 14 and the evaporator 2. This heat cycle is continuously repeated, and the energy held by the heat source fluid 1 is converted into electric power.

上記の通りエジェクター9を採用することにより、発電機駆動装置7から排出される作動媒体5bの圧力を下げることができること、並びにエジェクター9の内部で作動媒体6と作動媒体5bを効果的に混合できることによりエジェクター9から排出される作動媒体10の圧力を下げることができるので、熱サイクルの効率は高まり発電出力が向上する。  By adopting the ejector 9 as described above, the pressure of the working medium 5b discharged from the generator driving device 7 can be lowered, and the working medium 6 and the working medium 5b can be effectively mixed inside the ejector 9. Thus, the pressure of the working medium 10 discharged from the ejector 9 can be lowered, so that the efficiency of the heat cycle is increased and the power generation output is improved.

なお、現行のカリーナサイクルやウエハラサイクルにおいては、本発明に示すエジェクター9は設置されておらず、これらのサイクルにおいてはいずれも高温溶液は減圧弁を通して単に低圧側に供給されるだけであり、この高温溶液6の保有するエネルギーは有効に利用されていない。  In the current Carina cycle and Uehara cycle, the ejector 9 shown in the present invention is not installed, and in each of these cycles, the high temperature solution is simply supplied to the low pressure side through the pressure reducing valve. The energy stored in the high temperature solution 6 is not effectively used.

次に、この発明の請求項1、2及び3に対応する実施例を図3に示す。また、この実施例2で使用されているエジェクター内部構造の概要を図2に示す。  Next, an embodiment corresponding to claims 1, 2 and 3 of the present invention is shown in FIG. Moreover, the outline | summary of the ejector internal structure used by this Example 2 is shown in FIG.

熱源流体1により加熱された作動媒体3は気液分離器4で主としてアンモニアガスからなる作動媒体5とアンモニア成分と水成分からなる高温溶液6に分離され、この作動媒体5は蒸気タービンなどで構成される発電機駆動装置7に供給され発電機8を回転させることにより、熱源流体1の保有する熱エネルギーを電気エネルギーに変換する。  The working medium 3 heated by the heat source fluid 1 is separated by a gas-liquid separator 4 into a working medium 5 mainly composed of ammonia gas and a high-temperature solution 6 composed of ammonia and water components. The working medium 5 is composed of a steam turbine or the like. The heat energy held by the heat source fluid 1 is converted into electric energy by rotating the generator 8 that is supplied to the generator driving device 7 that is operated.

気液分離器4で分離された高温溶液6は、気液分離器4に設けられている自動液面調節弁4aを経て熱回収器14Bで低温側の作動媒体13と熱交換された後に、エジェクター9に供給されエジェクター低圧部9aのノズルより噴出してエジェクター9の内部に低圧部を形成する。エジェクター内部における機能を調節するためエジェクターの駆動源となる高温溶液6は冷却器21により冷却媒体22で冷却される場合もある。  The high-temperature solution 6 separated by the gas-liquid separator 4 is subjected to heat exchange with the low-temperature working medium 13 by the heat recovery device 14B via the automatic liquid level control valve 4a provided in the gas-liquid separator 4, It is supplied to the ejector 9 and ejected from the nozzle of the ejector low pressure portion 9 a to form a low pressure portion inside the ejector 9. In order to adjust the function inside the ejector, the high temperature solution 6 serving as the drive source of the ejector may be cooled by the cooling medium 22 by the cooler 21.

発電機駆動装置7の膨張行程の途中から抽気された作動媒体5cは、熱回収器14Aに導かれて作動媒体13と熱交換した後に混合タンク20に導かれる。混合タンク上部に滞留した気体はオリフィス20aを経て適当な量が混合タンクベント23としてエジェクター低圧部9aに吸引される。  The working medium 5 c extracted from the middle of the expansion stroke of the generator driving device 7 is led to the heat recovery unit 14 </ b> A, exchanges heat with the working medium 13, and then led to the mixing tank 20. An appropriate amount of the gas staying in the upper part of the mixing tank is sucked into the ejector low-pressure part 9a as the mixing tank vent 23 through the orifice 20a.

発電機駆動装置7より排気された作動媒体5bはエジェクター低圧部9aに吸引された後に、エジェクター混合部9bにおいてエジェクター駆動源として供給された高温溶液6及び混合タンクベント23と混合される。更にこの作動媒体はエジェクター圧力回復部9cで圧力を高められ作動媒体10となり凝縮器11に送られ、冷却媒体22により更に凝縮・冷却されて混合タンク20に送られて抽気系の作動媒体5cと混合される。  The working medium 5b exhausted from the generator driving device 7 is sucked into the ejector low-pressure part 9a and then mixed with the high-temperature solution 6 and the mixing tank vent 23 supplied as the ejector driving source in the ejector mixing part 9b. Further, this working medium is increased in pressure by the ejector pressure recovery section 9c, becomes the working medium 10, is sent to the condenser 11, is further condensed and cooled by the cooling medium 22, is sent to the mixing tank 20, and is sent to the working system 5c of the extraction system. Mixed.

混合タンク20で混合された上記の作動媒体は、電動機などで構成されるポンプ駆動装置12aで駆動される熱媒体送液ポンプ12に吸引され高圧側の圧力に抗して送液できる圧力にまで昇圧され作動媒体13となり熱回収器14A及び熱回収器14Bを経て蒸発器2に至る。この熱サイクルが連続して繰り返され熱源流体の保有するエネルギーが電力に変換される。  The working medium mixed in the mixing tank 20 is sucked by the heat medium feeding pump 12 driven by a pump driving device 12a constituted by an electric motor or the like, and reaches a pressure at which liquid can be fed against the pressure on the high pressure side. The pressure is increased to become the working medium 13 and reach the evaporator 2 through the heat recovery device 14A and the heat recovery device 14B. This heat cycle is continuously repeated, and the energy held by the heat source fluid is converted into electric power.

この実施例2においては発電機駆動装置7の膨張行程の途中より抽気した作動媒体5cを熱回収器14Aで熱交換させた後に混合タンク20に導くことにより熱サイクル効率を高めることができる。更にこの抽気方式を実現するために必要な装置構成は本発明のエジェクター9を設置することにより現行のサイクル構成機器の配置を簡素化できるので設備の小型化と設備初期費用の低減化を実現できる。  In the second embodiment, the heat cycle efficiency can be improved by guiding the working medium 5c extracted from the middle of the expansion stroke of the generator driving device 7 to the mixing tank 20 after exchanging heat with the heat recovery unit 14A. Furthermore, since the arrangement of the current cycle component equipment can be simplified by installing the ejector 9 of the present invention as the apparatus configuration necessary for realizing this bleed system, the equipment can be downsized and the equipment initial cost can be reduced. .

なお、現行のウエハラサイクルにおいては、抽気方式は採用されているが高温溶液6は減圧弁を通して単に低圧側に供給されるだけであり、この高温溶液6の保有するエネルギーは有効に利用されていないし、構成機器の配置も本発明より複雑である。  In the current Uehara cycle, the extraction method is adopted, but the high temperature solution 6 is simply supplied to the low pressure side through the pressure reducing valve, and the energy held by the high temperature solution 6 is not effectively used. The arrangement of the constituent devices is also more complicated than that of the present invention.

次に、この発明の請求項1,2及び4に対応する実施例を図4に示す。また、この実施例3で使用されているエジェクター内部構造の概要を図2に示す。  Next, an embodiment corresponding to claims 1, 2 and 4 of the present invention is shown in FIG. Moreover, the outline | summary of the ejector internal structure used in this Example 3 is shown in FIG.

熱源流体1により加熱された作動媒体3は気液分離器4で主としてアンモニアガスからなる作動媒体5とアンモニア成分と水成分からなる高温溶液6に分離され、この作動媒体5は蒸気タービンなどで構成される発電機駆動装置7に供給され発電機8を回転させることにより、熱源流体1の保有する熱エネルギーを電気エネルギーに変換する。  The working medium 3 heated by the heat source fluid 1 is separated by a gas-liquid separator 4 into a working medium 5 mainly composed of ammonia gas and a high-temperature solution 6 composed of ammonia and water components. The working medium 5 is composed of a steam turbine or the like. The heat energy held by the heat source fluid 1 is converted into electric energy by rotating the generator 8 that is supplied to the generator driving device 7 that is operated.

気液分離器4で分離された高温溶液6は、気液分離器4に設けられている自動液面調節弁4aを経て熱回収器14で低温側の作動媒体13と熱交換された後に、エジェクター9に供給されエジェクター低圧部9aのノズルより噴出してエジェクター9の内部に低圧部を形成する。エジェクター内部における機能を調節するためエジェクターの駆動源となる高温溶液6は冷却器21により冷却媒体22で冷却される場合もある。  The high-temperature solution 6 separated by the gas-liquid separator 4 is subjected to heat exchange with the working medium 13 on the low-temperature side by the heat recovery device 14 via the automatic liquid level control valve 4 a provided in the gas-liquid separator 4. It is supplied to the ejector 9 and ejected from the nozzle of the ejector low pressure portion 9 a to form a low pressure portion inside the ejector 9. In order to adjust the function inside the ejector, the high temperature solution 6 serving as the drive source of the ejector may be cooled by the cooling medium 22 by the cooler 21.

発電機駆動装置7より排気された作動媒体5bは、エジェクター低圧部9aに吸引されエジェクター混合部9bで駆動源として供給された高温溶液6と混合される。更にこの作動媒体はエジェクター圧力回復部9cで圧力を高められ作動媒体10となり凝縮器11に送られて冷却媒体22により更に凝縮・冷却される。  The working medium 5b exhausted from the generator driving device 7 is sucked into the ejector low-pressure part 9a and mixed with the high-temperature solution 6 supplied as a drive source in the ejector mixing part 9b. Further, the pressure of the working medium is increased by the ejector pressure recovery unit 9 c to become the working medium 10, which is sent to the condenser 11 and further condensed and cooled by the cooling medium 22.

凝縮器11を出た作動媒体10は蓄液タンク15Aまたは15Bに交互に蓄液されるが、図4で示すある時点の事例では蓄液タンク15Aの内部圧力は切換弁(排気用)16を介して蓄液タンク排気19としてエジェクター低圧部9a吸引されて低圧になっており、作動媒体10は蓄液タンク15Aのこの低圧に吸引され蓄液タンク15Aに順次蓄液される。  The working medium 10 exiting the condenser 11 is alternately stored in the liquid storage tank 15A or 15B. However, in a case at a certain time point shown in FIG. 4, the internal pressure of the liquid storage tank 15A is controlled by a switching valve (for exhaust) 16. Thus, the ejector low-pressure part 9a is sucked as the liquid storage tank exhaust 19 to become a low pressure, and the working medium 10 is sucked to this low pressure in the liquid storage tank 15A and sequentially stored in the liquid storage tank 15A.

また、上記の蓄液行程とは逆に、蓄液タンク15Bに吸引・蓄液されていた作動媒体10には切換弁(加圧用)17を介して高圧側の作動媒体5より分岐した作動媒体5aの圧力が印加されることにより、蓄液タンク15Bに蓄液されていた作動媒体10は切換弁(送液用)18を介して電動機などで構成されるポンプ駆動装置12aで駆動される熱媒体送液ポンプ12に吸引され高圧側の熱媒体13となり熱回収器14を経て蒸発器2に至る。Contrary to the above liquid storage process, the working medium 10 sucked and stored in the liquid storage tank 15B is branched from the working medium 5 on the high pressure side via the switching valve (for pressurization) 17. When the pressure of 5a is applied, the working medium 10 stored in the liquid storage tank 15B is heated by a pump driving device 12a constituted by an electric motor or the like via a switching valve (for liquid feeding) 18. It is sucked by the medium feed pump 12 to become a high-pressure side heat medium 13 and reaches the evaporator 2 through the heat recovery device 14.

蓄液タンク15B内部の熱媒体10が熱媒体送液ポンプ12により送液され蓄液タンク15Bが空になると、蓄液タンク15Bの液面低下を検出(但し図4では液面検出装置は記載を省略)して切換弁(排気用)16、切換弁(加圧用)17、切換弁(送液用)18はそれぞれ図4で示す作動位置から図5に示す作動位置に切り換えられる。この結果作動媒体10は蓄液タンク15Bに吸引・蓄液され始め、また同時に満液となっている蓄液タンク15Aの作動媒体10には切換弁(加圧用)17を介して高圧側の作動媒体5より分岐した作動媒体5aの圧力が印加され蓄液タンク15A内部の作動媒体10は切換弁(送液用)18を介して熱媒体送液ポンプ12に吸引される。以降蓄液タンク15Aと15Bは交互に同様な切換動作を繰り返して作動媒体10は低圧側より高圧側に移送される。このサイクルが連続して繰り返され熱源流体の保有するエネルギーが電力に変換される。  When the heat medium 10 inside the liquid storage tank 15B is fed by the heat medium liquid feed pump 12 and the liquid storage tank 15B becomes empty, a drop in the liquid level in the liquid storage tank 15B is detected (however, the liquid level detection device is described in FIG. 4). The switching valve (for exhaust) 16, the switching valve (for pressurization) 17, and the switching valve (for liquid feeding) 18 are each switched from the operating position shown in FIG. 4 to the operating position shown in FIG. As a result, the working medium 10 starts to be sucked and stored in the liquid storage tank 15B, and at the same time, the working medium 10 of the liquid storage tank 15A that is full is operated via a switching valve (for pressurization) 17 on the high pressure side. The pressure of the working medium 5a branched from the medium 5 is applied, and the working medium 10 inside the liquid storage tank 15A is sucked into the heat medium liquid feeding pump 12 via the switching valve (for liquid feeding) 18. Thereafter, the storage tanks 15A and 15B alternately repeat the same switching operation, and the working medium 10 is transferred from the low pressure side to the high pressure side. This cycle is continuously repeated to convert the energy held by the heat source fluid into electric power.

図4に示すある時点の事例においては、蓄液タンク15Bに蓄液されている熱媒体10には前記の通り切換弁(加圧用)17を介して高圧側の圧力が印加されているので、熱媒体送液ポンプ12に吸引された熱媒体10は本熱サイクルの低圧側から高圧側まで昇圧させる必要はなく、ポンプ駆動装置12aの所要動力は作動媒体13が熱媒体送液ポンプ12の出口から気液分離器4に至るまでの概ね配管抵抗分に相当する動力しか必要としない。従って本発明によりポンプ駆動装置12aの所要動力は熱サイクルの低圧側から高圧側に直接送液している現行のカリーナサイクルやウエハラサイクルに比べれば極めて少なくて済むのでその結果発電出力を向上させることができる。  In the case at a certain time point shown in FIG. 4, the pressure on the high pressure side is applied to the heat medium 10 stored in the liquid storage tank 15 </ b> B via the switching valve (for pressurization) 17 as described above. The heat medium 10 sucked by the heat medium feeding pump 12 does not need to be boosted from the low pressure side to the high pressure side of the main heat cycle, and the required power of the pump drive device 12a is that the working medium 13 is the outlet of the heat medium feeding pump 12. Only the power corresponding to the resistance of the pipe from the gas to the gas-liquid separator 4 is required. Therefore, according to the present invention, the required power of the pump drive unit 12a is very small compared with the current carina cycle or wafer balance cycle in which liquid is directly fed from the low pressure side to the high pressure side of the thermal cycle, and as a result, the power generation output is improved. Can do.

また、現行のカリーナサイクルやウエハラサイクルにおいては、本発明に示すエジェクター9は設置されておらず、従ってこれらのサイクルにおいてはいずれも高温溶液6は減圧弁を通して低圧側に単に供給されるだけでありこの高温液の保有するエネルギーは有効に利用されていない。  Further, in the current carina cycle and the weirer cycle, the ejector 9 shown in the present invention is not installed. Therefore, in each of these cycles, the high temperature solution 6 is simply supplied to the low pressure side through the pressure reducing valve. The energy held by this high-temperature liquid is not used effectively.

本発明は以上の実施例1から3に示す実施形態に限定されるものではなく、エジェクターに吸引させる熱媒体の種別は本発明の機能を適用できる物質であればアンモニアと水の混合溶液以外の物質も使用できる。また発電機駆動装置から抽気する作動媒体の抽気位置や抽気段数も本実施例以外の段数とすることもできる。また、エジェクターを含む構成機器配置や配管系統は実際の情況に合わせて適宜設計変更できるものである。  The present invention is not limited to the embodiments shown in Examples 1 to 3 above, and the type of the heat medium sucked by the ejector is a substance other than the mixed solution of ammonia and water as long as it is a substance to which the function of the present invention can be applied. Substances can also be used. Further, the extraction position and the number of extraction stages of the working medium extracted from the generator driving device can also be set to a number other than this embodiment. In addition, the arrangement of components including the ejector and the piping system can be appropriately changed in design according to the actual situation.

1 熱源流体
2 蒸発器
3 作動媒体
4 気液分離器
4a 液面自動調節弁
5 作動媒体
5a 作動媒体
5b 作動媒体
6 高温溶液
7 発電機駆動装置
8 発電機
9 エジェクター
9a エジェクター低圧部
9b エジェクター混合部
9c エジェクター圧力回復部
10 作動媒体
11 凝縮器
12 熱媒体送液ポンプ
12a ポンプ駆動装置
13 作動媒体
14 熱回収器
14A 熱回収器
14B 熱回収器
15A 蓄液タンク
15B 蓄液タンク
16 切換弁(排気用)
17 切換弁(加圧用)
18 切換弁(送液用)
19 蓄液タンク排気
20 混合タンク
20a オリフィス
21 冷却器
22 冷却媒体
23 混合タンクベント
DESCRIPTION OF SYMBOLS 1 Heat source fluid 2 Evaporator 3 Working medium 4 Gas-liquid separator 4a Liquid level automatic control valve 5 Working medium 5a Working medium 5b Working medium 6 High temperature solution 7 Generator drive device 8 Generator 9 Ejector 9a Ejector low pressure part 9b Ejector mixing part 9c Ejector pressure recovery unit 10 Working medium 11 Condenser 12 Heat medium feed pump 12a Pump drive unit 13 Working medium 14 Heat recovery unit 14A Heat recovery unit 14B Heat recovery unit 15A Storage tank 15B Storage tank 16 Switching valve (for exhaust )
17 Switching valve (for pressurization)
18 Switching valve (for liquid feeding)
19 Storage tank exhaust 20 Mixing tank 20a Orifice 21 Cooler 22 Cooling medium 23 Mixing tank vent

Claims (4)

熱源流体と熱交換により蒸発した低沸点作動媒体の蒸気を、蒸気タービンなどの発電機駆動装置に供給して発電するバイナリー発電システムであり、熱源流体を加熱源とする蒸発器、加熱された作動媒体を溶液分と気体分に分離する気液分離器、蒸気タービンなどの発電機駆動装置、凝縮器、熱媒体送液ポンプ、熱回収器などの各機器を直列に組み合わせた閉ループで作動媒体の熱サイクルを構成したものにおいて、前記気液分離器で分離した溶液分を駆動源とするエジェクターを設置し、発電機駆動装置から排気された作動媒体をこのエジェクターで吸引するように構成したことを特徴とする温度差発電装置。  It is a binary power generation system that generates power by supplying steam from a low boiling point working medium evaporated by heat exchange with the heat source fluid to a generator drive device such as a steam turbine, an evaporator using the heat source fluid as a heating source, and heated operation The working medium is a closed loop that combines a gas-liquid separator that separates the medium into a solution and a gas, a generator drive unit such as a steam turbine, a condenser, a heat medium feed pump, and a heat recovery unit in series. In a thermal cycle configuration, an ejector having a solution source separated by the gas-liquid separator as a driving source is installed, and the working medium exhausted from the generator driving device is sucked by this ejector. A temperature difference power generation device. 請求項1に記載の温度差発電装置において、前記エジェクターで吸引した発電機駆動装置から排気された作動媒体と、前記気液分離器で分離した溶液分をエジェクター内部で混合し、更にこの混合された作動媒体をエジェクター内部で昇圧して凝縮器に送る機能を持つ前記エジェクターで構成したことを特徴とする温度差発電装置。  2. The temperature difference power generator according to claim 1, wherein the working medium exhausted from the generator driving device sucked by the ejector and the solution separated by the gas-liquid separator are mixed inside the ejector, and further mixed. A temperature difference power generator comprising the ejector having a function of increasing the pressure of the working medium inside the ejector and sending it to a condenser. 請求項1及び2に記載の温度差発電装置において、発電機駆動装置内の作動媒体膨張行程の途中より作動媒体の一部を抽気し、その作動媒体を熱回収器で低温作動媒体と熱交換させた後に、その抽気から生ずる気体分を前記エジェクターに吸引させるように構成したことを特徴とする温度差発電装置。  3. The temperature difference power generator according to claim 1, wherein a part of the working medium is extracted from the middle of the working medium expansion process in the generator driving device, and the working medium is heat-exchanged with a low-temperature working medium by a heat recovery device. After that, a temperature difference power generator is configured to cause the ejector to suck a gas component generated from the bleed air. 請求項1、2及び3のいずれかの項に記載の温度差発電装置において、エジェクター低圧部を利用して凝縮器を出た作動媒体を蓄液タンクに吸引させ、この蓄液タンクに高圧側の作動媒体の圧力を印加して低圧側から高圧側へ作動媒体の移送を低動力で行えるよう構成したことを特徴とする温度差発電装置。  The temperature difference power generation device according to any one of claims 1, 2, and 3, wherein the working medium exiting the condenser using the ejector low-pressure part is sucked into the liquid storage tank, and the liquid storage tank is supplied with the high-pressure side. A temperature difference power generation apparatus configured to apply the pressure of the working medium and to transfer the working medium from the low pressure side to the high pressure side with low power.
JP2011179937A 2011-08-04 2011-08-04 Temperature difference power generation apparatus Withdrawn JP2013036456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011179937A JP2013036456A (en) 2011-08-04 2011-08-04 Temperature difference power generation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011179937A JP2013036456A (en) 2011-08-04 2011-08-04 Temperature difference power generation apparatus

Publications (1)

Publication Number Publication Date
JP2013036456A true JP2013036456A (en) 2013-02-21

Family

ID=47886274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011179937A Withdrawn JP2013036456A (en) 2011-08-04 2011-08-04 Temperature difference power generation apparatus

Country Status (1)

Country Link
JP (1) JP2013036456A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013174145A (en) * 2012-02-23 2013-09-05 Miura Co Ltd Binary power generation system
KR101522710B1 (en) * 2013-12-27 2015-05-22 한국해양과학기술원 High efficiency steam ejector ocean temperature difference between the splitter and power systems
KR101556914B1 (en) 2014-10-01 2015-10-13 한국해양과학기술원 High efficiency OTEC system using re-open and liquid ejector - steam
WO2016098949A1 (en) * 2014-12-17 2016-06-23 한국해양과학기술원 High-efficiency ocean thermal energy conversion power system using liquid-vapor ejector and motive pump
JP2019100291A (en) * 2017-12-06 2019-06-24 株式会社東芝 Power generation device and power generation method
JP2019183811A (en) * 2018-04-17 2019-10-24 株式会社東芝 Power generator and power generating method
WO2022069906A1 (en) * 2020-10-02 2022-04-07 Transvac Systems Limited Apparatus and method for condensing a gas
WO2023042742A1 (en) * 2021-09-17 2023-03-23 三菱重工マリンマシナリ株式会社 Power recovery system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013174145A (en) * 2012-02-23 2013-09-05 Miura Co Ltd Binary power generation system
KR101522710B1 (en) * 2013-12-27 2015-05-22 한국해양과학기술원 High efficiency steam ejector ocean temperature difference between the splitter and power systems
KR101556914B1 (en) 2014-10-01 2015-10-13 한국해양과학기술원 High efficiency OTEC system using re-open and liquid ejector - steam
US9957955B2 (en) 2014-12-17 2018-05-01 Korea Institute Of Ocean Science & Technology High efficiency ocean thermal difference power generating system using liquid-vapor ejector and motive pump
US20160341184A1 (en) * 2014-12-17 2016-11-24 Korea Institute Of Ocean Science & Technology High efficiency ocean thermal difference power generating system using liquid-vapor ejector and motive pump
JP2017505407A (en) * 2014-12-17 2017-02-16 コリア インスティチュート オブ オーシャン サイエンス アンド テクノロジー High-efficiency ocean thermal energy conversion (OTEC) applying a liquid-vapor ejector and a pump with a liquid-steam ejector and a working part pump
WO2016098949A1 (en) * 2014-12-17 2016-06-23 한국해양과학기술원 High-efficiency ocean thermal energy conversion power system using liquid-vapor ejector and motive pump
JP2019100291A (en) * 2017-12-06 2019-06-24 株式会社東芝 Power generation device and power generation method
JP2019183811A (en) * 2018-04-17 2019-10-24 株式会社東芝 Power generator and power generating method
JP6997667B2 (en) 2018-04-17 2022-01-17 株式会社東芝 Power generation equipment and power generation method
WO2022069906A1 (en) * 2020-10-02 2022-04-07 Transvac Systems Limited Apparatus and method for condensing a gas
GB2615038A (en) * 2020-10-02 2023-07-26 Transvac Systems Ltd Apparatus and method for condensing a gas
WO2023042742A1 (en) * 2021-09-17 2023-03-23 三菱重工マリンマシナリ株式会社 Power recovery system

Similar Documents

Publication Publication Date Title
JP2013036456A (en) Temperature difference power generation apparatus
KR101835915B1 (en) Parallel cycle heat engines
KR101784553B1 (en) Hybrid power generation system using a supercritical CO2 cycle
US8857186B2 (en) Heat engine cycles for high ambient conditions
JP5462939B2 (en) Power generation and seawater desalination complex plant
RU2673959C2 (en) System and method for energy regeneration of wasted heat
US10400636B2 (en) Supercritical CO2 generation system applying plural heat sources
CN102650235A (en) Gas turbine intercooler with tri-lateral flash cycle
US9879885B2 (en) Cooling water supply system and binary cycle power plant including same
JP2007255349A (en) Exhaust heat recovery power generation method and exhaust heat recovery power generation system
US20150377075A1 (en) Recovery system using fluid coupling on power generating system
US9284856B2 (en) Gas turbine combined cycle power plant with distillation unit to distill a light oil fraction
JP5261473B2 (en) Medium temperature engine
KR20140085001A (en) Energy saving system for using waste heat of ship
JP2007263084A (en) Cogeneration system
KR101678829B1 (en) High-efficiency ocean thermal energy conversion (OTEC) applying a liquid-vapor ejector and a motive pump
JP4666641B2 (en) Energy supply system, energy supply method, and energy supply system remodeling method
JP5713824B2 (en) Power generation system
CN101881189B (en) Steam turbine power system and method of assembling the same
KR20210104067A (en) District heating network including heat pump unit and heat pump unit
JP2013170553A (en) Geothermal power generation device
RU159686U1 (en) THERMAL SCHEME OF TRIGENERATION MINI-CHP
CN109790760B (en) Plant and method with thermal power plant and process compressor
EP2638336A1 (en) Method for converting low temperature thermal energy into high temperature thermal energy and mechanical energy and a heat pump device for such conversion
RU2504666C1 (en) Power plant

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007