JP2013199016A - Method of producing fiber reinforced plastic - Google Patents

Method of producing fiber reinforced plastic Download PDF

Info

Publication number
JP2013199016A
JP2013199016A JP2012067499A JP2012067499A JP2013199016A JP 2013199016 A JP2013199016 A JP 2013199016A JP 2012067499 A JP2012067499 A JP 2012067499A JP 2012067499 A JP2012067499 A JP 2012067499A JP 2013199016 A JP2013199016 A JP 2013199016A
Authority
JP
Japan
Prior art keywords
resin
laminate
reinforced plastic
suction
diffusion medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012067499A
Other languages
Japanese (ja)
Inventor
Nobuyuki Komatsu
信幸 小松
Hiroshi Ochi
寛 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2012067499A priority Critical patent/JP2013199016A/en
Publication of JP2013199016A publication Critical patent/JP2013199016A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a FRP (Fiber Reinforced Plastic) which improves a quality level of an end face shape of a FRP molded product having a thickness ranging from 10 mm to several ten mm and contributes to the improvement of material yield in a RTM (Resin Transfer Molding) or VaRTM (Vacuum assisted Resin Transfer Molding) method.SOLUTION: A method of producing a fiber reinforced plastic is provided in which a laminate comprising a reinforcing fiber base material is arranged in a mold, resin diffusion media having resin flow resistance lower than that of the reinforced fiber base material extended from a resin injection port are arranged on both surfaces of the laminate, the inside of mold is evacuated through a resin suction medium to reduce the pressure and after that, the resin is injected through the resin diffusion medium into the mold to impregnate the laminated with the resin, In the method, a smooth supporting member is arranged to be along the side wall formed by the thickness of the laminate and a through hole for sucking the resin is provided in the supporting member arranged along the side wall formed by the thickness of the laminate in a position on the opposed side to the resin injection port.

Description

本発明は、繊維強化プラスチック(以下、FRP(Fiber Reinforced Plasticの略)と略称することもある。)の製造方法に関し、特に厚みが10mmから数十mmの厚いFRP成形品の端面形状の品位の向上が可能であり、かつ、材料収率の向上に寄与するFRPの製造方法に関する。   The present invention relates to a method for producing a fiber reinforced plastic (hereinafter sometimes abbreviated as FRP (abbreviation of Fiber Reinforced Plastic)), and in particular, the end face shape of a thick FRP molded product having a thickness of 10 mm to several tens of mm. The present invention relates to a method for producing FRP that can be improved and contributes to an improvement in material yield.

繊維強化プラスチックの製造方法には、強化繊維基材に予め樹脂を含浸させたプリプレグを、オートクレーブにより加熱および加圧して成形するオートクレーブ成形法や樹脂の含浸していない強化繊維基材を上型と下型で形成される空隙に配置し、油圧プレスなどを用いて型を加圧した状態にて、該空隙に加圧した樹脂を注入した後、加熱硬化して成形するRTM(Resin Transfer Molding)法が挙げられる。   The fiber reinforced plastic manufacturing method includes an autoclave molding method in which a prepreg impregnated with a resin in advance to a reinforcing fiber base is heated and pressurized by an autoclave, or a reinforcing fiber base not impregnated with a resin as an upper mold. RTM (Resin Transfer Molding), which is placed in the gap formed by the lower mold and injects the pressurized resin into the gap in a state where the mold is pressurized using a hydraulic press, etc., and then heat cures and molds Law.

また、VaRTM(Vacuum assisted Resin Transfer Molding)法は、上型の代わりに、バギングフィルムを利用し、バギングフィルムで密閉した内部を真空吸引することにより減圧し、大気圧との差圧を利用して、樹脂を強化繊維基材に注入した後、加熱硬化して成形する方法であり、油圧プレスなどの加圧装置を使用しないため、低コストにて成形可能な成形法として、広く実用化されている。   In addition, VaRTM (Vacuum Assisted Resin Transfer Molding) method uses a bagging film instead of the upper mold, depressurizes the inside sealed with the bagging film by vacuum suction, and uses the pressure difference from the atmospheric pressure. This is a method in which a resin is injected into a reinforcing fiber base and then cured by heating and is not practically used as a molding method that can be molded at low cost because it does not use a pressurizing device such as a hydraulic press. Yes.

RTM法やVaRTM法における強化繊維基材への樹脂の含浸は、ダルシー則に従うと仮定すれば、樹脂の流速v(m/s)は、強化繊維基材への樹脂の含浸しやすさ(値が大きいほど含浸しやすい)を示す指標であるパーミアビリティーK(m)、樹脂の圧力P(Pa)、樹脂の粘度μ(Pa・s)を用いて、
v=−K・∇P/μ ・・・・・(1)
で表される。
If it is assumed that the resin impregnation into the reinforcing fiber base in the RTM method or the VaRTM method follows Darcy's law, the flow velocity v (m / s) of the resin is the ease of impregnation of the resin into the reinforcing fiber base (value) Permeability K (m), resin pressure P (Pa), and resin viscosity μ (Pa · s), which are indicators of indicating greater impregnation)
v = −K · ∇P / μ (1)
It is represented by

つまり樹脂の含浸距離は強化繊維基材のパーミアビリティーK(m)と樹脂の圧力P(Pa)に比例し、樹脂の粘度μ(Pa・s)に反比例する。   That is, the impregnation distance of the resin is proportional to the permeability K (m) of the reinforcing fiber base and the pressure P (Pa) of the resin, and inversely proportional to the viscosity μ (Pa · s) of the resin.

そのため所定の強化繊維基材(パーミアビリティーK(m)を有する)を用いた厚い部材に樹脂を含浸させるためには、樹脂の注入圧力P(Pa)を高くするかもしくは粘度の低い樹脂を使用する必要があるが、樹脂の粘度を低減することは限界があるため、実質的には樹脂の注入圧力P(Pa)を高くすることが必要となる。   Therefore, in order to impregnate a thick member using a predetermined reinforcing fiber base (having permeability K (m)), the resin injection pressure P (Pa) is increased or a resin having a low viscosity is used. However, since there is a limit to reducing the viscosity of the resin, it is necessary to substantially increase the injection pressure P (Pa) of the resin.

樹脂の注入圧力P(Pa)を高くするためには、成形型の空隙に樹脂が注入された場合にも型が開くことなく、所定の空隙を保持することができるように、油圧プレス装置などの加圧装置を用いて、型を加圧プレスする必要がある。   In order to increase the resin injection pressure P (Pa), a hydraulic press device or the like can be used to maintain a predetermined gap without opening the mold even when resin is injected into the gap of the mold. It is necessary to press the mold using the pressurizing apparatus.

一方、VaRTM法は大気圧を利用するため、加圧装置は必要ないが、樹脂の注入圧力は大気圧に制限されるため、含浸厚みに限界がある課題があった(特許文献1、2)。この課題を解決する手段として、積層体の両面に樹脂拡散媒体もしくは樹脂通路を設け、樹脂を両面から含浸させることにより、含浸できる厚みを増加する方法が提案されている(特許文献3、4)。   On the other hand, since the VaRTM method uses atmospheric pressure, no pressurizing device is required, but the resin injection pressure is limited to atmospheric pressure, so there is a problem that impregnation thickness is limited (Patent Documents 1 and 2). . As a means for solving this problem, a method has been proposed in which a resin diffusion medium or a resin passage is provided on both surfaces of a laminate, and the impregnated thickness is increased by impregnating the resin from both surfaces (Patent Documents 3 and 4). .

しかしながら、特許文献3、4はともに、樹脂拡散媒体もしくは樹脂通路から注入された樹脂が強化繊維基材に含浸する前にショートパスして真空吸引口から排出されることを防止する方法は記載されておらず、樹脂が強化繊維基材に含浸する前に真空吸引口から排出されることにより、未含浸が生じる懸念があった。   However, both Patent Documents 3 and 4 describe a method for preventing the resin injected from the resin diffusion medium or the resin passage from being discharged through the vacuum suction port by short-passing before the reinforcing fiber base material is impregnated. However, there is a concern that unimpregnation may occur due to the resin being discharged from the vacuum suction port before impregnating the reinforcing fiber base.

また、特許文献3、4はともに、積層体の両面から含浸してくる樹脂の間にボイドが閉じ込められることを防止する方法は記載されていないため、成形した繊維強化プラスチックの中にボイドが生じる懸念があった。   Further, since Patent Documents 3 and 4 do not describe a method for preventing a void from being trapped between resins impregnated from both sides of the laminate, voids are generated in the molded fiber-reinforced plastic. There was concern.

特許文献5には、真空RTM成形法において、樹脂の吸引口へのショートパスの形成を防止して、樹脂の未含浸部の発生を無くすことに関するFRPの成形方法に関する記載はあるものの、積層体の片面側からの樹脂の注入に関する記載しかなく、本発明で開示しているような厚板への含浸を可能とするための積層体の両面からの樹脂注入、含浸に関する記載はなく、ショートパスによる樹脂の未含浸はないものの、厚板への含浸ができずに未含浸が発生する懸念があった。   In Patent Document 5, there is a description on a FRP molding method for preventing the formation of a short path to the resin suction port and eliminating the occurrence of an unimpregnated portion of the resin in the vacuum RTM molding method. There is no description relating to resin injection from one side of the laminate, there is no description relating to resin injection and impregnation from both sides of the laminate to enable impregnation into a thick plate as disclosed in the present invention, and short path Although there was no unimpregnation of the resin due to, there was a concern that the impregnation of the thick plate could not be performed and the unimpregnation occurred.

また、上記成形方法における別の問題点として、成形品の端部形状について良好な平滑性を得にくいという問題があった。すなわち、特に厚物(厚板)を成形する場合、成形品の端部は大気圧によって加圧されたフィルムまたはゴムシートなどのバギング材により凹凸が形成されてしまい、成形後のトリミングが必要になるため材料収率が低下する問題があった。   Another problem with the above molding method is that it is difficult to obtain good smoothness for the end shape of the molded product. In other words, when molding thick materials (thick plates), the edges of the molded product are uneven due to bagging material such as a film or rubber sheet pressed by atmospheric pressure, and trimming after molding is necessary. Therefore, there is a problem that the material yield is lowered.

このような問題に対処するために、下型に凹状の型を使用することが考えられるが、そうすると型のコストが掛かるだけでなく、成形品の脱型に多大な時間と労力を要することになる。また、成形型内に樹脂を注入する前に樹脂拡散媒体を介して真空吸引することにより減圧するが、この工程では積層体の側面と型側面との間が十分に密着しないため、ショートパスを形成して樹脂が強化繊維に含浸する前に真空吸引口から排出されることにより、未含浸が生じる懸念がある。   In order to cope with such a problem, it is conceivable to use a concave mold as the lower mold, but in this case, not only the cost of the mold is increased, but it takes a lot of time and labor to demold the molded product. Become. In addition, the pressure is reduced by vacuum suction through the resin diffusion medium before injecting the resin into the mold, but in this step, the side surface of the laminate and the side surface of the mold are not sufficiently adhered. There is a concern that non-impregnation may occur by being discharged from the vacuum suction port before the resin is formed and impregnated into the reinforcing fiber.

特表2005−527410号公報JP 2005-527410 A 特開2009−45924号公報JP 2009-45924 特開2004−181627号公報JP 2004-181627 A 特開2006−130733号公報JP 2006-130733 A 特開2005−271248号公報JP 2005-271248 A

本発明の課題は、上記従来技術における上記のような問題点を解決し、特に厚みが10mmから数十mmの厚いFRP成形品の端面形状の品位を向上させるとともに、材料収率の向上に寄与するFRPの製造方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems in the above-mentioned conventional technology, and in particular to improve the quality of the end face shape of a thick FRP molded product having a thickness of 10 mm to several tens of mm, and contribute to the improvement of the material yield. An object of the present invention is to provide a method for manufacturing FRP.

上記の課題を達成するために、本発明の繊維強化プラスチックの製造方法は、成形型内に強化繊維基材からなる積層体を配置し、該積層体の両面に樹脂注入口から延在する前記強化繊維基材よりも樹脂流動抵抗が低い樹脂拡散媒体を配置し、該樹脂吸引媒体を介して前記成形型内を真空吸引することにより減圧した後、該成形型内に前記樹脂拡散媒体を介して樹脂を注入し、前記積層体に樹脂を含浸させる繊維強化プラスチックの製造方法において、該積層体の厚みによって形成される側壁に沿うように支持部材が配置され、樹脂注入口と反対側に位置する該積層体の厚みによって形成される側壁に沿って配置される前記支持部材に樹脂吸引用貫通孔を有しており、樹脂を当該積層体の両面から注入、含浸させ、該樹脂吸引用貫通孔から樹脂を吸引するものである。   In order to achieve the above object, a method for producing a fiber reinforced plastic according to the present invention includes a laminate comprising a reinforcing fiber substrate disposed in a mold, and extending from both sides of the laminate from a resin injection port. A resin diffusion medium having a resin flow resistance lower than that of the reinforcing fiber substrate is disposed, and the pressure inside the mold is reduced by vacuum suction through the resin suction medium, and then the resin diffusion medium is inserted into the mold. In the fiber reinforced plastic manufacturing method of injecting resin and impregnating the laminate with resin, a support member is disposed along the side wall formed by the thickness of the laminate, and is positioned on the side opposite to the resin injection port. The support member arranged along the side wall formed by the thickness of the laminated body has a resin suction through hole, and the resin is injected and impregnated from both sides of the laminated body, and the resin suction through Resin from hole It is intended to suction.

このように積層体の両面から樹脂を含浸させる方法により、一方の面のみから樹脂を注入、含浸する方法に比べて、樹脂の含浸厚みを大幅に向上することができると共に、樹脂を積層体の樹脂注入口側から樹脂吸引口側に向かって厚み方向に含浸させた後、積層体の厚み方向に含浸した樹脂を該樹脂吸引用貫通孔から吸引することが可能となり、樹脂のショートパスの形成による未含浸の発生を抑制することができる。また、積層体の厚みによって形成される側壁に沿うように平滑な支持部材が配置されることにより、大気圧によって加圧されたフィルムまたはゴムシートなどのバギング材が積層体の側面に押さえつけられることを防止し、成形品端部の凹凸の形成を抑制することができる。   In this way, the method of impregnating the resin from both sides of the laminate can greatly improve the impregnation thickness of the resin as compared with the method of injecting and impregnating the resin from only one surface, and the resin can be added to the laminate. After impregnating in the thickness direction from the resin injection port side to the resin suction port side, the resin impregnated in the thickness direction of the laminate can be sucked from the resin suction through hole, thereby forming a resin short path The occurrence of non-impregnation due to can be suppressed. Also, by placing a smooth support member along the side wall formed by the thickness of the laminate, a bagging material such as a film or a rubber sheet pressed by atmospheric pressure is pressed against the side of the laminate. And the formation of irregularities at the end of the molded product can be suppressed.

なお、本発明において積層体の両面とは、積層体の厚み方向の上下面を指す。また、本発明の説明においては、積層体の上面を(表)、下面を(裏)と称する場合がある。   In addition, in this invention, the both surfaces of a laminated body refer to the upper and lower surfaces of the thickness direction of a laminated body. In the description of the present invention, the upper surface of the laminate may be referred to as (front) and the lower surface as (back).

ここで樹脂拡散媒体は、樹脂を効率よく拡散、吸引できる材料であれば特に限定するものではなく、成形に使用する強化繊維基材、樹脂や成形条件により、適切に選定することができる。例えば、形態はメッシュ、パンチング、不織布などが挙げられ、特に網目の一辺の長さが2〜10mm程度のメッシュは樹脂の拡散、吸引の能力に優れるため好ましい。2mmよりも小さいと樹脂の拡散、吸引能力が小さくなる傾向にあり、10mmよりも大きいと、樹脂拡散媒体の上に配置するバギングフィルムなどが当該網目の空隙内部に入り込み、空隙を減少させやすくなるおそれがある。   Here, the resin diffusion medium is not particularly limited as long as it is a material capable of efficiently diffusing and sucking the resin, and can be appropriately selected depending on the reinforcing fiber base used for molding, the resin, and the molding conditions. For example, the form may be mesh, punching, non-woven fabric, etc. Particularly, a mesh having a mesh side length of about 2 to 10 mm is preferable because it has excellent resin diffusion and suction capabilities. If it is smaller than 2 mm, the resin diffusion and suction ability tends to be small, and if it is larger than 10 mm, a bagging film or the like disposed on the resin diffusion medium enters the voids of the mesh and tends to reduce the voids. There is a fear.

樹脂拡散媒体の材質はナイロン、ポリエステルなどの樹脂、ステンレスなどの金属を好適に使用することが可能であり、注入する樹脂に対する耐性、成形温度の耐熱性、成形に要する圧力に対する耐圧性を有していれば特に限定するものではない。厚みは0.5〜2mmが好ましい。0.5mmよりも小さいと樹脂の拡散能力が小さくなる傾向にあり、2mmよりも大きいと樹脂拡散媒体中に保持される樹脂の量が多くなり、樹脂の収率が低下するおそれがある。   The resin diffusion medium can be made of a resin such as nylon or polyester, or a metal such as stainless steel. It has resistance to the injected resin, heat resistance of the molding temperature, and pressure resistance to the pressure required for molding. If it is, it will not specifically limit. The thickness is preferably 0.5 to 2 mm. If it is smaller than 0.5 mm, the resin diffusing ability tends to be small, and if it is larger than 2 mm, the amount of the resin held in the resin diffusing medium increases, and the yield of the resin may decrease.

バギングフィルムの材質はナイロン、ポリエステルなどの樹脂であり、厚みが50〜100μm程度のものを好適に用いることができ、注入する樹脂に対する耐性、成形温度の耐熱性、成形にようする圧力に対する耐圧性を有していれば特に限定するものではない。   The bagging film is made of a resin such as nylon or polyester, and can be suitably used with a thickness of about 50 to 100 μm. The resistance to the injected resin, the heat resistance of the molding temperature, and the pressure resistance to the pressure of molding. If it has, it will not specifically limit.

さらに樹脂注入口と反対側に位置する該積層体の厚みによって形成される側壁に沿って配置される支持部材の樹脂吸引用貫通孔は、前記積層体の両面から積層体内に含浸した樹脂が合流する層間を含むように配置することにより、積層体の両面に配置した樹脂拡散媒体から注入された樹脂が積層体の両面から厚み方向に含浸し、樹脂が合流して、厚み方向への樹脂の含浸が完了した後、樹脂吸引媒体により吸引することができるため、より未含浸の発生を抑制して、樹脂の含浸厚みを向上することができるため好ましい。   Furthermore, the resin suction through-holes of the support member arranged along the side wall formed by the thickness of the laminate located on the side opposite to the resin injection port join the resin impregnated into the laminate from both sides of the laminate. The resin injected from the resin diffusion medium disposed on both sides of the laminate is impregnated in the thickness direction from both sides of the laminate, and the resin is merged to dispose the resin in the thickness direction. After the impregnation is completed, the resin can be sucked by a resin suction medium, which is preferable because the occurrence of non-impregnation can be suppressed and the resin impregnation thickness can be improved.

樹脂注入口と反対側に位置する該積層体の厚みによって形成される側壁に沿って配置される支持部材に設けられる樹脂吸引用貫通孔の大きさは、高さが0.1〜5mm、幅は0.1〜50mmであることが好ましく、孔の形状は特に限定されるものではない。   The size of the through hole for resin suction provided in the support member arranged along the side wall formed by the thickness of the laminate located on the side opposite to the resin injection port is 0.1 to 5 mm in height and width Is preferably 0.1 to 50 mm, and the shape of the hole is not particularly limited.

吸引側の支持部材の材質は、よりシール性を高めるためにシリコンなどの弾性材料を使用することが好ましい。また、弾性材料を使用する場合は、剛性を高めるために、厚みは10mm以上であることが好ましいが、弾性材料と金属またはプラスチック等の剛性のある材料と併用することで、弾性材料を薄くすることもできる。また、支持部材は表面から反射した光が目視で大きく歪まない程度の平滑性があることが好ましい。   As the material of the support member on the suction side, it is preferable to use an elastic material such as silicon in order to further improve the sealing performance. In addition, when an elastic material is used, the thickness is preferably 10 mm or more in order to increase rigidity. However, the elastic material is thinned by using the elastic material in combination with a rigid material such as metal or plastic. You can also. Moreover, it is preferable that the support member has such smoothness that the light reflected from the surface is not significantly distorted by visual observation.

樹脂拡散媒体は、樹脂注入口側に位置する該積層体の厚みによって形成される側壁に沿って接触するように配置することにより、注入された樹脂は積層体の両面から厚み方向に含浸するとともに、注入口側の層間からも含浸が進むことで積層体の両面から含浸してくる樹脂の間にボイドが閉じ込められることを防止することができる。   The resin diffusion medium is disposed so as to contact along the side wall formed by the thickness of the laminate positioned on the resin injection port side, so that the injected resin is impregnated in the thickness direction from both sides of the laminate. Further, since the impregnation proceeds from the interlayer on the injection port side, it is possible to prevent a void from being confined between the resins impregnated from both surfaces of the laminate.

樹脂吸引側に位置する支持部材の樹脂吸引用貫通孔を含むように樹脂吸引ゲートが配置されることにより、最短経路で樹脂を吸引することが可能となり、樹脂の収率を向上することができる。また、複雑な樹脂吸引機構を必要としないため、作業時間の短縮ができる。   By arranging the resin suction gate so as to include the resin suction through-hole of the support member located on the resin suction side, it is possible to suck the resin through the shortest path and improve the resin yield. . Moreover, since a complicated resin suction mechanism is not required, the working time can be shortened.

注入された樹脂は積層体の両面から厚み方向に含浸するため、積層体の断面形状としては、矩形のものを用いることが好ましい。   Since the injected resin is impregnated in the thickness direction from both surfaces of the laminate, it is preferable to use a rectangular cross-sectional shape.

樹脂拡散媒体が配置される積層体の面上において、樹脂吸引側に位置する支持部材が配置されている側壁との間に樹脂拡散媒体の配置されていない隙間を有することが好ましい。このような隙間を設けることにより、樹脂は、樹脂拡散媒体を配置した箇所における積層体の厚み方向に含浸しながら、樹脂拡散媒体の無い箇所へも徐々に樹脂は面内方向への拡散が進む。さらに、樹脂拡散媒体の無い箇所における積層体内部にまで樹脂が含浸してはじめて、樹脂吸引用貫通孔から吸引される。そのため、当該隙間の長さを調整することにより、注入した樹脂が樹脂吸引媒体から吸引されるまでの時間を調整することができる。   On the surface of the laminate on which the resin diffusion medium is arranged, it is preferable to have a gap where the resin diffusion medium is not arranged between the side wall on which the support member located on the resin suction side is arranged. By providing such a gap, the resin gradually impregnates in the in-plane direction even in a position where the resin diffusion medium is not present, while the resin is impregnated in the thickness direction of the laminate at the position where the resin diffusion medium is disposed. . Furthermore, it is sucked from the resin suction through-hole only after the resin is impregnated into the laminated body in a place where there is no resin diffusion medium. Therefore, the time until the injected resin is sucked from the resin suction medium can be adjusted by adjusting the length of the gap.

より具体的には、樹脂拡散媒体を配置した箇所における積層体の厚み方向に樹脂が含浸完了したとしても、隙間の部分に樹脂が含浸されていなければ、すぐには樹脂吸引用貫通孔から吸引されない。特に、樹脂注入、含浸中に想定外の未含浸部が発生した場合であっても、上記隙間により、樹脂が吸引されるまでに十分な時間を確保できるため、樹脂は該未含浸部を含浸した後、樹脂吸引媒体から樹脂を吸引することができる。   More specifically, even if the resin is impregnated in the thickness direction of the laminate at the place where the resin diffusion medium is disposed, if the resin is not impregnated in the gap portion, the resin is immediately sucked from the through hole for resin suction. Not. In particular, even when an unexpected unimpregnated part occurs during resin injection and impregnation, the gap allows sufficient time for the resin to be sucked in, so the resin impregnates the unimpregnated part. After that, the resin can be sucked from the resin suction medium.

樹脂拡散媒体が配置される積層体の面上において、樹脂吸引側に位置する支持部材が配置されている側壁との間に樹脂拡散媒体の配置されていない隙間の長さは、1〜30mmが好ましい。1mmよりも短いと上記の効果がほとんど期待できない。一方、30mmよりも長いと当該隙間部分が未含浸となる懸念が生じる。また、この隙間の長さは、積層体の幅方向にわたってほぼ一定幅に設けられていることが好ましい。   On the surface of the laminate on which the resin diffusion medium is arranged, the length of the gap in which the resin diffusion medium is not arranged between the side wall on which the support member located on the resin suction side is arranged is 1 to 30 mm. preferable. If it is shorter than 1 mm, the above-mentioned effect can hardly be expected. On the other hand, when it is longer than 30 mm, there is a concern that the gap portion is not impregnated. Moreover, it is preferable that the length of this clearance gap is provided in the substantially constant width over the width direction of a laminated body.

樹脂拡散媒体の樹脂流動抵抗は低いほうが好ましく、樹脂流動抵抗は強化繊維基材の樹脂流動抵抗の1/3以下であることが好ましい。樹脂拡散媒体の樹脂流動媒体は、強化繊維基材の通気抵抗に比べて十分に低ければ、積層体内部の真空度が下がることを抑制することができるため、厚い積層体に対しても樹脂含浸性を損なうことがないため好ましい。   The resin flow resistance of the resin diffusion medium is preferably low, and the resin flow resistance is preferably 1/3 or less of the resin flow resistance of the reinforcing fiber substrate. If the resin flow medium of the resin diffusion medium is sufficiently lower than the ventilation resistance of the reinforcing fiber base material, it can suppress the vacuum degree inside the laminate, so that even thick laminates are impregnated with resin. It is preferable because it does not impair the performance.

より好ましくは強化繊維基材の樹脂流動抵抗の1/10以下であることが好ましい。このように流動抵抗が低ければ、樹脂拡散媒体に注入された樹脂の強化繊維基材の面方向への拡散性が十分に確保され、樹脂拡散媒体中に注入された樹脂は、強化繊維基材表面に沿う方向に迅速に拡散されつつ、強化繊維基材の厚み方向にも迅速に含浸されていくことになる。   More preferably, it is 1/10 or less of the resin flow resistance of the reinforcing fiber substrate. Thus, if the flow resistance is low, the diffusibility of the resin injected into the resin diffusion medium in the surface direction of the reinforcing fiber base is sufficiently ensured, and the resin injected into the resin diffusion medium is the reinforcing fiber base. While rapidly diffusing in the direction along the surface, the reinforcing fiber base material is also rapidly impregnated in the thickness direction.

樹脂拡散媒体は、成形後に繊維強化プラスチックから取り除くことが好ましい。樹脂拡散媒体は多くの場合、繊維強化プラスチックとして用いられる部材ではないために取り除かれる。積層体との間に剥離用のピールプライなどを介して積層体の厚みによって形成される側壁に沿って接触するように配置することにより、成形後に容易に剥がして、取り除くことができる。   The resin diffusion medium is preferably removed from the fiber reinforced plastic after molding. Resin diffusion media are often removed because they are not members used as fiber reinforced plastics. By disposing the laminated body so as to be in contact with the side wall formed by the thickness of the laminated body through a peel ply for peeling, etc., it can be easily peeled off and removed after molding.

また本発明は、積層体が実質的に強化繊維が一方向にのみ配列している場合に、顕著な効果が期待できるため好ましい。強化繊維が一方向にのみ配列している積層体は、強化繊維が異なる角度に積層された積層体(例;厚み方向に積層した4層が対称となる8層の積層体:[45°/0°/−45°/90°]など)に比べて、強化繊維をより密に配列することができるものの、トレードオフの関係で樹脂の含浸性は低下する傾向にある。このため、従来は樹脂を含浸できる厚みが大幅に制限されていた。これに対し、本発明による成形方法を用いれば、強化繊維が一方向に配列した積層体であっても、未含浸部分を発生させることなく本発明による効率よい樹脂含浸の効果をより顕著に発現できるため、好ましい。 In addition, the present invention is preferable because a remarkable effect can be expected when the reinforcing fibers are substantially arranged in only one direction. A laminated body in which reinforcing fibers are arranged in only one direction is a laminated body in which reinforcing fibers are laminated at different angles (for example, an 8-layer laminated body in which four layers laminated in the thickness direction are symmetrical: [45 ° / [0 ° / −45 ° / 90 °] S )), the reinforcing fibers can be arranged more densely, but the resin impregnation tends to be reduced due to the trade-off relationship. For this reason, conventionally, the thickness that can be impregnated with a resin has been greatly limited. On the other hand, if the molding method according to the present invention is used, the effect of the efficient resin impregnation according to the present invention can be exhibited more significantly without generating an unimpregnated portion even in a laminate in which reinforcing fibers are arranged in one direction. This is preferable because it is possible.

上記説明したように、本発明の繊維強化プラスチックの製造方法によれば、特に厚みが10mm以上である厚い部材の端面形状の品位を向上させるとともに、材料収率を向上することができる。   As described above, according to the method for producing a fiber-reinforced plastic of the present invention, it is possible to improve the quality of the end face shape of a thick member having a thickness of 10 mm or more, and to improve the material yield.

本発明における繊維強化プラスチックのRTM成形において、積層体の真空吸引口側に支持部材を配置したものの断面模式図を示した図である。In RTM shaping | molding of the fiber reinforced plastics in this invention, it is the figure which showed the cross-sectional schematic diagram of what has arrange | positioned the supporting member to the vacuum suction port side of a laminated body. 本発明における繊維強化プラスチックのRTM成形において、積層体の真空吸引口側に第2の支持部材を配置したものの断面模式図を示した図である。In RTM shaping | molding of the fiber reinforced plastics in this invention, it is the figure which showed the cross-sectional schematic diagram of what has arrange | positioned the 2nd supporting member to the vacuum suction port side of a laminated body. 本発明における繊維強化プラスチックのRTM成形において、積層体の真空吸引口側に剛性を有する材料で支持したものの断面模式図を示した図である。It is the figure which showed the cross-sectional schematic diagram of what was supported by the material which has rigidity in the vacuum suction port side of a laminated body in the RTM shaping | molding of the fiber reinforced plastics in this invention. 本発明における繊維強化プラスチックのRTM成形において、両面型を使用した断面模式図である。It is a cross-sectional schematic diagram using a double-sided mold in the RTM molding of the fiber reinforced plastic in the present invention. 従来技術における繊維強化プラスチックのRTM成形の断面模式図を示した図である。It is the figure which showed the cross-sectional schematic diagram of the RTM shaping | molding of the fiber reinforced plastic in a prior art.

以下に、本発明の望ましい実施の形態を、図面を参照しながら説明する。なお、本発明が、以下に説明する具体的な実施態様に限定される訳ではない。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the specific embodiments described below.

本発明に先立ち、従来技術のRTM成形技術について説明する。図3は、従来技術の繊維強化プラスチックのRTM成形仕様の断面の模式図を示す。   Prior to the present invention, a conventional RTM molding technique will be described. FIG. 3 shows a schematic cross-sectional view of a prior art fiber reinforced plastic RTM molding specification.

図3では、成形型1の上に樹脂注入口2に繋がる樹脂拡散媒体(裏)3を配置し、その上に積層体4を配置する。さらに積層体4の上に樹脂拡散媒体(表)5を配置し、バギングフィルム9で密閉した内部を真空吸引により減圧するために、真空吸引口7に繋がる樹脂吸引媒体11を配置する。バギングフィルム9で全体を覆い、シール材8で成形型1との間を密閉する。バギングフィルム9を成形型の上型とすれば、バギングフィルム9と成形型1で形成される成形型内部を、真空吸引口7から真空ポンプなどにより、真空吸引することにより、減圧し、樹脂注入口2から樹脂を注入する。   In FIG. 3, a resin diffusion medium (back) 3 connected to the resin injection port 2 is disposed on the mold 1, and the laminate 4 is disposed thereon. Further, a resin diffusion medium (table) 5 is disposed on the laminate 4, and a resin suction medium 11 connected to the vacuum suction port 7 is disposed in order to depressurize the inside sealed with the bagging film 9 by vacuum suction. The whole is covered with a bagging film 9, and the space between the mold 1 is sealed with a sealing material 8. If the bagging film 9 is the upper mold of the mold, the inside of the mold formed by the bagging film 9 and the mold 1 is decompressed by vacuum suction from the vacuum suction port 7 using a vacuum pump, etc. Resin is injected from the inlet 2.

注入された樹脂は、樹脂拡散媒体(裏)3と樹脂拡散媒体(表)5に拡散しながら、積層体の厚み方向にも含浸しはじめる。樹脂吸引媒体11が積層体の厚みによって形成される側壁の中央部に配置されているため、樹脂拡散媒体3、5を通じて厚み方向に含浸した樹脂は樹脂吸引媒体11の吸引により、面内方向に含浸が進み、樹脂拡散媒体3、5の配置されていない箇所にも樹脂を含浸することができ、未含浸部の発生を抑制することができる。   The injected resin begins to impregnate in the thickness direction of the laminate while diffusing into the resin diffusion medium (back) 3 and the resin diffusion medium (front) 5. Since the resin suction medium 11 is disposed at the central portion of the side wall formed by the thickness of the laminated body, the resin impregnated in the thickness direction through the resin diffusion media 3 and 5 is attracted by the resin suction medium 11 in the in-plane direction. The impregnation progresses, and the resin diffusion media 3 and 5 can be impregnated with the resin, and generation of unimpregnated portions can be suppressed.

しかしながら、バギングフィルム9と成形型1で形成される成形型内部を真空吸引する際、バギングフィルム9を境界にして、圧力差により、バギングフィルム9外からバギングフィルム9と成形型1で形成される成形型内部に向けて圧力が発生するが、積層体の厚みによって形成される側壁には樹脂拡散媒体5やバギングフィルム9といった外力により変形し易い材料しか配置していないため、樹脂拡散媒体5が潰れて折れ曲がり積層体の厚みによって形成される側壁に凹凸が形成される懸念があった。また、吸引側の支持部材6がシリコン等の弾性材料で厚みが小さい場合には、外力により支持部材が湾曲するため、積層体の厚みによって形成される側壁に湾曲面が形成される懸念があった。   However, when the inside of the mold formed by the bagging film 9 and the mold 1 is vacuum-sucked, the bagging film 9 and the mold 1 are formed from the outside of the bagging film 9 due to a pressure difference with the bagging film 9 as a boundary. Although pressure is generated toward the inside of the mold, only the material that is easily deformed by an external force such as the resin diffusion medium 5 and the bagging film 9 is disposed on the side wall formed by the thickness of the laminate. There was a concern that the side wall formed by the thickness of the laminated body was crushed and bent, and irregularities were formed. In addition, when the support member 6 on the suction side is made of an elastic material such as silicon and has a small thickness, the support member is curved by an external force, so that there is a concern that a curved surface is formed on the side wall formed by the thickness of the laminate. It was.

以下、上述した従来技術を克服した本発明について詳細に述べる。図1−aは、本発明の一実施態様に係る繊維強化プラスチックのRTM成形仕様の断面模式図を示す。なお、図1−aで用いられる部材と同じ部材には、共通の符号を付してある。   The present invention overcoming the above-described prior art will be described in detail below. 1-a shows a schematic cross-sectional view of an RTM molding specification of a fiber-reinforced plastic according to an embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same member as the member used by FIG.

本発明は、成形型1の上に樹脂注入口2に繋がる樹脂拡散媒体(裏)3を配置し、その上に積層体4を配置する。さらに積層体4の上に樹脂拡散媒体(表)5を配置するとともに、平滑な支持部材6は、樹脂注入口2と反対側に位置する積層体4の厚みによって形成される側壁に沿って接触するように配置する。支持部材6には樹脂を吸引するための貫通孔Xを有している。   In the present invention, a resin diffusion medium (back) 3 connected to a resin injection port 2 is disposed on a mold 1, and a laminate 4 is disposed thereon. Further, the resin diffusion medium (table) 5 is arranged on the laminate 4 and the smooth support member 6 contacts along the side wall formed by the thickness of the laminate 4 located on the opposite side to the resin injection port 2. Arrange to do. The support member 6 has a through hole X for sucking resin.

樹脂吸引用貫通孔Xを含むように真空吸引口7を配置し、バギングフィルム9で全体を覆い、シール材8でバギングフィルム9と成形型1との間を密閉し、真空吸引口7から図示しない真空ポンプなどを利用して、バギングフィルム9で密閉した内部を真空吸引して減圧する。   The vacuum suction port 7 is arranged so as to include the resin suction through-hole X, the whole is covered with the bagging film 9, the gap between the bagging film 9 and the mold 1 is sealed with the sealing material 8, and the vacuum suction port 7 is illustrated. Using a vacuum pump or the like, the inside sealed with the bagging film 9 is vacuumed to reduce the pressure.

ここで、樹脂吸引用貫通孔Xは、積層体4の両面から積層体内に含浸した樹脂が合流する層間を含むように配置される。   Here, the resin suction through-hole X is disposed so as to include an interlayer where the resin impregnated in the laminated body joins from both sides of the laminated body 4.

この状態において、樹脂注入口2から樹脂を注入すると、樹脂は、樹脂拡散媒体(裏)3と樹脂拡散媒体(表)5に拡散しながら、積層体の厚み方向にも含浸しはじめる。樹脂吸引用貫通孔Xは積層体の厚みによって形成される側壁の中央部に配置されているため、樹脂拡散媒体3、5を通じて厚み方向に含浸した樹脂は樹脂吸引用貫通孔Xの吸引により、面内方向に含浸が進み、樹脂拡散媒体3、5の配置されていない箇所にも樹脂を含浸することができ、未含浸部の発生を抑制することができる。   In this state, when the resin is injected from the resin injection port 2, the resin begins to be impregnated in the thickness direction of the laminate while diffusing into the resin diffusion medium (back) 3 and the resin diffusion medium (front) 5. Since the resin suction through hole X is disposed at the center of the side wall formed by the thickness of the laminate, the resin impregnated in the thickness direction through the resin diffusion media 3 and 5 is sucked by the resin suction through hole X. The impregnation proceeds in the in-plane direction, and the resin diffusion media 3 and 5 can be impregnated with the resin, and the occurrence of the unimpregnated portion can be suppressed.

積層体を構成している強化繊維基材が同一であり、積層構成が厚み方向に対して対称であれば、積層体の厚み方向に含浸した樹脂の合流は厚み中央となるため、樹脂吸引用貫通孔Xの配置は積層体の厚み中央とすることが好ましい。   If the reinforcing fiber bases constituting the laminate are the same and the laminate configuration is symmetric with respect to the thickness direction, the merge of the resin impregnated in the thickness direction of the laminate is the center of the thickness. The arrangement of the through holes X is preferably at the thickness center of the laminate.

一方、例えば強化繊維の種類、目付け、織組織が異なるなどの複数の種類の強化繊維基材を用いて積層体が構成されており、積層構成が厚み方向に対して対称ではない場合は、樹脂の厚み方向への含浸速度は、積層体を構成する各強化繊維基材の含浸性に依存するため、必ずしも同じとはならず、結果として、積層体に含浸した樹脂の合流する箇所は、必ずしも積層体の厚み中央になるとは限らない。   On the other hand, for example, if the laminate is configured using a plurality of types of reinforcing fiber bases such as different types of reinforcing fibers, basis weight, and woven structure, and the laminated configuration is not symmetrical with respect to the thickness direction, the resin Since the impregnation speed in the thickness direction of the fiber depends on the impregnation property of each reinforcing fiber base constituting the laminate, it is not necessarily the same. As a result, the location where the resin impregnated in the laminate is merged is not necessarily It does not necessarily become the thickness center of a laminated body.

そのため、このような非対称の場合には、樹脂吸引媒体7は含浸試験などにより、樹脂の含浸が合流する箇所を予め確認する、もしくは含浸計算またはFEM(Finite Element Method)を利用した含浸シミュレーションなどの解析結果をもとに見積もった樹脂の合流箇所を確認して、樹脂の合流する層間を包含するように配置することが好ましい。   Therefore, in the case of such asymmetry, the resin suction medium 7 is checked in advance by the impregnation test or the like where the impregnation of the resin is joined, or impregnation calculation or impregnation simulation using FEM (Finite Element Method) is used. It is preferable to arrange the resin so as to include the layers where the resin merges by confirming the merged portions of the resin estimated based on the analysis results.

樹脂拡散媒体(裏)3は、樹脂注入口2側に位置する積層体4の厚みによって形成される側壁に沿って接触するように配置する。したがって、樹脂拡散媒体に拡散した樹脂が積層体の厚み方向に含浸すると共に、樹脂注入口2側に位置する積層体4の厚みによって形成される側壁からも層間に沿って含浸することができるため、積層体4の両側から含浸してきた樹脂の間にボイドが閉じ込められることを抑制することができる。また、樹脂拡散媒体(裏)3は、成形型1と積層体4とによって固定されるため、樹脂拡散媒体(裏)3の折れを防止することができ、樹脂が短絡することなく積層体4の裏側にまで、樹脂拡散媒体(裏)3を介して樹脂が拡散することができ、積層体4の裏面からも、樹脂の未含浸部を生じさせることなく含浸することができる。   The resin diffusion medium (back) 3 is arranged so as to contact along the side wall formed by the thickness of the laminate 4 located on the resin injection port 2 side. Therefore, the resin diffused in the resin diffusion medium is impregnated in the thickness direction of the laminate, and can also be impregnated along the layers from the side wall formed by the thickness of the laminate 4 located on the resin inlet 2 side. It is possible to prevent the voids from being confined between the resins impregnated from both sides of the laminate 4. Further, since the resin diffusion medium (back) 3 is fixed by the mold 1 and the laminate 4, the resin diffusion medium (back) 3 can be prevented from being broken, and the laminate 4 can be prevented from short-circuiting the resin. The resin can diffuse through the resin diffusion medium (back) 3 to the back side of the laminate, and can be impregnated from the back surface of the laminated body 4 without causing an unimpregnated portion of the resin.

樹脂吸引口7は、樹脂吸引側に位置する支持部材6の樹脂吸引用貫通孔Xを含むように配置される。したがって、最短経路で樹脂を吸引することが可能となり、樹脂の収率を向上することができる。   The resin suction port 7 is disposed so as to include the resin suction through hole X of the support member 6 located on the resin suction side. Therefore, the resin can be sucked by the shortest path, and the yield of the resin can be improved.

注入された樹脂は積層体4の両面から厚み方向に含浸するため、積層体4の断面形状としては、矩形のものを用いることが好ましい。   Since the injected resin is impregnated in the thickness direction from both surfaces of the laminate 4, it is preferable to use a rectangular cross section as the laminate 4.

樹脂拡散媒体3、5を配置した箇所における積層体4の厚み方向に樹脂が含浸完了したとしても、隙間Yの部分に樹脂が含浸されていなければ、すぐには樹脂吸引用貫通孔Xから吸引されない。特に、樹脂注入、含浸中に想定外の未含浸部が発生した場合であっても、上記隙間Yにより、樹脂が吸引されるまでに十分な時間を確保できるため、樹脂は該未含浸部を含浸した後、樹脂吸引用貫通孔Xから樹脂を吸引することができる。   Even if the resin is impregnated in the thickness direction of the laminated body 4 at the place where the resin diffusion media 3 and 5 are arranged, if the resin is not impregnated in the gap Y, the resin is immediately sucked from the through hole X for sucking the resin. Not. In particular, even when an unexpected unimpregnated portion occurs during resin injection and impregnation, the gap Y can secure a sufficient time until the resin is sucked. After impregnation, the resin can be sucked from the resin suction through hole X.

つまり、積層体4の内部において、強化繊維基材の厚み方向の含浸性や厚みなどの品質のばらつきにより、樹脂の厚み方向の含浸時間にばらつきが生じ、必ずしも積層体4の樹脂注入口2の側から順次含浸が完了していくとは限らない。そのため、積層体4の内部に未含浸部を残した状態で、樹脂が樹脂吸引用貫通孔Xに到達して、吸引されてしまうことも起こり得る。ここで、当該隙間Yを設けることにより、樹脂は樹脂拡散媒体3、5から積層体の厚み方向に含浸して合流した後、面内方向に当該隙間Yだけ含浸した後に吸引される。そのため、想定外に樹脂が合流した後に、積層体4の内部に未含浸部が発生した場合であっても、樹脂が合流した後に樹脂吸引用貫通孔Xに到達するまでの時間を利用して、未含浸部の含浸を完了することができる。   That is, in the laminate 4, the impregnation time in the thickness direction of the resin varies due to variations in quality such as the impregnation property and thickness in the thickness direction of the reinforcing fiber base, and the resin injection port 2 of the laminate 4 does not necessarily have a variation. The impregnation is not always completed sequentially from the side. Therefore, it is possible that the resin reaches the resin suction through-hole X and is sucked in a state where an unimpregnated portion is left inside the laminate 4. Here, by providing the gap Y, the resin is impregnated from the resin diffusion media 3 and 5 in the thickness direction of the laminated body and merged, and then the resin is sucked after impregnating only the gap Y in the in-plane direction. Therefore, even when an unimpregnated portion is generated inside the laminated body 4 after the resin has joined unexpectedly, the time until the resin suction through hole X is reached after the resin has joined is utilized. The impregnation of the unimpregnated portion can be completed.

また、積層体側面に支持部材6、第2の支持部材10を積層体4の厚みによって形成される側壁に固定することにより、支持部材6の湾曲を抑えることができるため、隙間Yを短絡した樹脂があったとしても、積層体4の厚みによって形成される側壁と支持部材6の間を樹脂が流入することはない。また、支持部材6の湾曲を抑えることは、積層体4を理想的な矩形断面形状に近づけることができ、積層体4の厚み方向の含浸性や厚みなどの品質のばらつきをなくすことができるため、樹脂の厚み方向の含浸が安定する。   Moreover, since the curvature of the support member 6 can be suppressed by fixing the support member 6 and the second support member 10 to the side wall formed by the thickness of the laminate 4, the gap Y is short-circuited. Even if there is resin, the resin does not flow between the side wall formed by the thickness of the laminate 4 and the support member 6. In addition, suppressing the bending of the support member 6 can bring the laminate 4 close to an ideal rectangular cross-sectional shape, and can eliminate variations in quality such as impregnation property and thickness in the thickness direction of the laminate 4. The impregnation in the resin thickness direction is stable.

図1−bは、本発明の別の実施態様に係る繊維強化プラスチックのRTM成形仕様の断面模式図を示す。なお、図1−aで用いられる部材と同じ部材には、共通の符号を付してある。   FIG. 1-b shows a schematic cross-sectional view of a fiber-reinforced plastic RTM molding specification according to another embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same member as the member used by FIG.

図1−bのように支持部材6を10mmより小さくする場合、真空圧からの曲げ変形を抑えるために、真空吸引口側に金属またはプラスチック等の剛性のある材料である第2の支持部材10と併用することが好ましい。   When the support member 6 is made smaller than 10 mm as shown in FIG. 1-b, the second support member 10 made of a rigid material such as metal or plastic is provided on the vacuum suction port side in order to suppress bending deformation from the vacuum pressure. It is preferable to use together.

図1−cは、本発明の別の実施態様に係る繊維強化プラスチックのRTM成形仕様の断面模式図を示す。なお、図1−aで用いられる部材と同じ部材には、共通の符号を付してある。   FIG. 1-c shows a schematic cross-sectional view of an RTM molding specification of a fiber reinforced plastic according to another embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same member as the member used by FIG.

図1−cのように支持部材6を10mmより小さくする場合、真空圧からの曲げ変形を抑えるために、支持部材6の面全体に渡って金属またはプラスチック等の剛性のある材料である真空吸引口7を配置することが好ましい。   When the support member 6 is made smaller than 10 mm as shown in FIG. 1-c, vacuum suction, which is a rigid material such as metal or plastic, over the entire surface of the support member 6 in order to suppress bending deformation from the vacuum pressure. It is preferable to arrange the mouth 7.

図2は、本発明の別の実施態様に係わる繊維強化プラスチックのRTM成型仕様の断面図模式図を示す。なお、図1−aで用いられる部材と同じ部材には、共通の符号を付してある。   FIG. 2 shows a schematic cross-sectional view of a fiber reinforced plastic RTM molding specification according to another embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same member as the member used by FIG.

図2のように両面型を仕様する場合、成形型には、積層体4の側壁に接する樹脂拡散媒体3側に樹脂注入口2を、支持部材6側に樹脂吸引用貫通孔の高さに合わせた真空吸引口7を配置することが好ましい。   When the double-sided mold is specified as shown in FIG. 2, the molding mold has a resin injection port 2 on the resin diffusion medium 3 side contacting the side wall of the laminate 4 and a resin suction through hole on the support member 6 side. It is preferable to arrange the combined vacuum suction port 7.

(実施例1)
東レ(株)製炭素繊維(T620SC−24000)を一方向に配列し、炭素繊維の目付けが600g/mである炭素繊維基材を使用し、この炭素繊維基材を一方向に引き揃えて56枚を積層した積層体を準備した。この積層体を図1−aに示すように、成形型1の上に配置した。
Example 1
Toray Industries, Inc. carbon fiber (T620SC-24000) is arranged in one direction, and a carbon fiber base material having a carbon fiber basis weight of 600 g / m 2 is used, and the carbon fiber base material is aligned in one direction. A laminate in which 56 sheets were laminated was prepared. This laminated body was arrange | positioned on the shaping | molding die 1 as shown to FIG.

樹脂拡散媒体(表)5および樹脂拡散媒体(裏)3は、すべて同一のポリプロピレン製のメッシュであり、各空隙の形状は一辺が2.5mm、厚みが約0.6mmのものを使用した。樹脂拡散媒体(裏)3と樹脂拡散媒体(表)5は、図1−aに記載の隙間Yが共に10mmとなるように配置した。   The resin diffusion medium (front) 5 and the resin diffusion medium (back) 3 were all made of the same polypropylene mesh, and the shape of each gap was 2.5 mm on a side and about 0.6 mm in thickness. The resin diffusion medium (back) 3 and the resin diffusion medium (front) 5 were arranged so that the gap Y shown in FIG.

樹脂吸引用貫通孔Xを有する支持部材6は、図1aに示すように積層体4の厚みが形成する側壁の全長に渡って配置し、ショアA硬さはHS50のシリコン材を使用した。また、樹脂吸引用貫通孔X部分は穴径を3mmとし、20mm間隔で配置した。   The support member 6 having the resin suction through-hole X was disposed over the entire length of the side wall formed by the thickness of the laminate 4 as shown in FIG. 1a, and a silicon material having a Shore A hardness of HS50 was used. In addition, the resin suction through-holes X were arranged at 20 mm intervals with a hole diameter of 3 mm.

樹脂注入口2、真空吸引口6として、幅12mm、高さ10mm、厚み1mmのアルミ製チャンネルを使用して、図1aに示すように、樹脂注入口2を樹脂拡散媒体(表)5および樹脂拡散媒体(裏)3の上に配置し、真空吸引口7を支持部材6の樹脂吸引用貫通孔Xを含むように配置した後、外径8mm、内径6mmのナイロン製チューブ(図示せず)を樹脂注入口2、真空吸引口7に挿入した。   An aluminum channel having a width of 12 mm, a height of 10 mm, and a thickness of 1 mm is used as the resin injection port 2 and the vacuum suction port 6, and the resin injection port 2 is connected to the resin diffusion medium (table) 5 and the resin as shown in FIG. After arranging the vacuum suction port 7 on the diffusion medium (back) 3 so as to include the resin suction through hole X of the support member 6, a nylon tube (not shown) having an outer diameter of 8 mm and an inner diameter of 6 mm. Was inserted into the resin injection port 2 and the vacuum suction port 7.

さらにその上から、全体をバギングフィルム9で覆い、成形型1との間でシール材8を用いて密閉した。   Further, from above, the whole was covered with a bagging film 9 and sealed with a molding material 1 using a sealing material 8.

樹脂注入口2に挿入したナイロン製チューブを閉じた状態で、真空吸引口7に挿入したナイロン製チューブを真空ポンプ(図示せず)につなげて、バギングフィルム9で密閉した内部を真空吸引することにより減圧した。この状態における積層体4の厚みTは約30mmであった。   With the nylon tube inserted into the resin injection port 2 closed, the nylon tube inserted into the vacuum suction port 7 is connected to a vacuum pump (not shown), and the inside sealed with the bagging film 9 is vacuumed. Reduced pressure. The thickness T of the laminate 4 in this state was about 30 mm.

バギングフィルム9の内部を真空吸引により減圧した状態において、液状のエポキシ樹脂を、大気圧を利用して、樹脂注入口2に挿入してあるナイロン製チューブを通って注入し、樹脂拡散媒体(表)5、樹脂拡散媒体(裏)3を用いて積層体4に拡散、含浸した。   In a state where the inside of the bagging film 9 is depressurized by vacuum suction, a liquid epoxy resin is injected through a nylon tube inserted into the resin injection port 2 using atmospheric pressure, and a resin diffusion medium (table 5) The laminate 4 was diffused and impregnated using the resin diffusion medium (back) 3.

エポキシ樹脂は、主剤と硬化剤の2液混合の樹脂であり、樹脂の粘度は初期粘度が約160mPas、60分後に約2倍に増粘する傾向を有するものであった。   The epoxy resin is a resin of a two-component mixture of a main agent and a curing agent, and the viscosity of the resin has an initial viscosity of about 160 mPas and has a tendency to increase by about 2 times after 60 minutes.

この結果、積層体4に含浸した樹脂は、注入開始から約60分後に、真空吸引口7に挿入したナイロン製チューブに染み出してくるのが観察された。この樹脂の染み出しにより、樹脂の積層体4への含浸は完了したと判断し、真空吸引口7を閉じて、真空吸引を中止した後、樹脂注入口2を閉じて、樹脂の注入を中止した。   As a result, it was observed that the resin impregnated in the laminate 4 oozed out into the nylon tube inserted into the vacuum suction port 7 about 60 minutes after the start of injection. It is judged that the resin impregnation into the laminate 4 has been completed by the seepage of the resin, the vacuum suction port 7 is closed, the vacuum suction is stopped, the resin injection port 2 is closed, and the resin injection is stopped. did.

樹脂の含浸した積層体4は、樹脂注入口2と真空吸引口6を閉じた状態で、室温にて24時間およびオーブンを用いて60℃にて15時間の加熱を行い、樹脂を硬化した。樹脂の硬化を完了した後、成形体を成形型1から脱型した。   The laminate 4 impregnated with the resin was heated for 24 hours at room temperature and 15 hours at 60 ° C. using an oven with the resin inlet 2 and the vacuum suction port 6 closed to cure the resin. After the resin was completely cured, the molded body was removed from the mold 1.

成形体を幅方向の中央にて、全長にわたり切断して、切断面を観察した結果、未含浸箇所のないことが確認できた。また、成形体端部には凹凸や湾曲面が形成されず、平滑な面が形成された。   As a result of observing the cut surface by cutting the molded body over the entire length at the center in the width direction, it was confirmed that there was no unimpregnated portion. Moreover, the unevenness | corrugation and the curved surface were not formed in the molded object edge part, but the smooth surface was formed.

(比較例1)
図3に記載のように成形型は平板を使用し、吸引側には、厚み2mmのシリコン材である支持部材6を配置し、樹脂吸引媒体11と気密材料12を使用したこと以外は、実施例1と同様にして成形した。
(Comparative Example 1)
As shown in FIG. 3, a flat plate is used as the mold, and a support member 6 made of a silicon material having a thickness of 2 mm is arranged on the suction side, and the resin suction medium 11 and the airtight material 12 are used. Molded in the same manner as in Example 1.

成形体の端面を観察した結果、樹脂拡散媒体5の潰れによる凹凸や吸引側支持部材6湾曲による湾曲面を有することが観察できた。   As a result of observing the end face of the molded body, it was observed that the resin diffusion medium 5 had an uneven surface due to crushing and a curved surface due to the suction side support member 6 curve.

1 成形型
2 樹脂注入口
3、5 樹脂拡散媒体
4 積層体
6 支持部材
7 真空吸引口
8 シール材
9 バギングフィルム
10 第2の支持部材
11 樹脂吸引媒体
12 気密材料
DESCRIPTION OF SYMBOLS 1 Mold 2 Resin injection port 3, 5 Resin diffusion medium 4 Laminated body 6 Support member 7 Vacuum suction port 8 Sealing material 9 Bagging film 10 Second support member 11 Resin suction medium 12 Airtight material

Claims (10)

成形型内に強化繊維基材からなる積層体を配置し、該積層体の両面に樹脂注入口から延在する前記強化繊維基材よりも樹脂流動抵抗が低い樹脂拡散媒体を配置し、該樹脂吸引媒体を介して前記成形型内を真空吸引することにより減圧した後、該成形型内に前記樹脂拡散媒体を介して樹脂を注入し、前記積層体に樹脂を含浸させる繊維強化プラスチックの製造方法において、該積層体の厚みによって形成される側壁に沿うように支持部材が配置され、樹脂注入口と反対側に位置する該側壁に沿って配置される前記支持部材に樹脂吸引用貫通孔を有していることを特徴とする繊維強化プラスチックの製造方法。   A laminate comprising a reinforcing fiber substrate is disposed in a mold, and a resin diffusion medium having a resin flow resistance lower than that of the reinforcing fiber substrate extending from a resin injection port is disposed on both surfaces of the laminate. A method for producing a fiber reinforced plastic in which after the pressure inside the mold is reduced by vacuum suction through a suction medium, a resin is injected into the mold through the resin diffusion medium, and the laminate is impregnated with the resin. The support member is disposed along the side wall formed by the thickness of the laminate, and the support member disposed along the side wall located on the side opposite to the resin injection port has a through hole for resin suction. A method for producing a fiber-reinforced plastic, characterized in that: 樹脂注入口と反対側に位置する該側壁に沿って配置される前記支持部材の樹脂吸引用貫通孔は、前記積層体の両面から積層体内に含浸した樹脂が合流する層間を含むように配置されることを特徴とする請求項1に記載の繊維強化プラスチックの製造方法。   The through holes for resin suction of the support member arranged along the side wall located on the side opposite to the resin injection port are arranged so as to include an interlayer where the resin impregnated in the laminated body merges from both sides of the laminated body. The method for producing a fiber-reinforced plastic according to claim 1. 前記樹脂拡散媒体は、樹脂注入口側に位置する該側壁に沿って接触するように配置することを特徴とする請求項1または2に記載の繊維強化プラスチックの製造方法。   The method for producing a fiber-reinforced plastic according to claim 1, wherein the resin diffusion medium is disposed so as to contact along the side wall located on the resin injection port side. 樹脂吸引側に位置する前記支持部材の樹脂吸引用貫通孔を含むように樹脂吸引口が配置されることを特徴とする請求項1〜3のいずれかに記載の繊維強化プラスチックの製造方法。   The method for producing a fiber reinforced plastic according to any one of claims 1 to 3, wherein a resin suction port is disposed so as to include a through hole for resin suction of the support member positioned on the resin suction side. 該積層体の断面形状として、矩形のものを用いることを特徴とする請求項1〜4のいずれかに記載の繊維強化プラスチックの製造方法。   The method for producing a fiber-reinforced plastic according to any one of claims 1 to 4, wherein a rectangular shape is used as a cross-sectional shape of the laminate. 前記樹脂拡散媒体が配置される積層体の面上において、前記樹脂吸引側に位置する前記支持部材が配置されている側壁との間に樹脂拡散媒体の配置されていない隙間を有することを特徴する請求項1〜5のいずれかに記載の繊維強化プラスチックの製造方法。   On the surface of the laminate on which the resin diffusion medium is arranged, there is a gap where the resin diffusion medium is not arranged between the side wall on which the support member located on the resin suction side is arranged. The manufacturing method of the fiber reinforced plastic in any one of Claims 1-5. 前記樹脂拡散媒体の樹脂流動抵抗は前記強化繊維基材の樹脂流動抵抗の1/3以下であることを特徴とする請求項1〜6のいずれかに記載の繊維強化プラスチックの製造方法。   The resin flow resistance of the resin diffusion medium is 1/3 or less of the resin flow resistance of the reinforcing fiber substrate, The method for producing a fiber reinforced plastic according to any one of claims 1 to 6. 前記樹脂拡散媒体の樹脂流動抵抗は前記強化繊維基材の樹脂流動抵抗の1/10以下であることを特徴とする請求項1〜7のいずれかに記載の繊維強化プラスチックの製造方法。   The resin flow resistance of the resin diffusion medium is 1/10 or less of the resin flow resistance of the reinforcing fiber substrate, The method for producing a fiber reinforced plastic according to any one of claims 1 to 7. 樹脂拡散媒体を、成形後の繊維強化プラスチックから取り除くことを特徴とする請求項1〜8のいずれかに記載の繊維強化プラスチックの製造方法。   The method for producing a fiber reinforced plastic according to any one of claims 1 to 8, wherein the resin diffusion medium is removed from the fiber reinforced plastic after molding. 前記積層体は、実質的に強化繊維が一方向にのみ配列していることを特徴とする請求項1〜9のいずれかに記載の繊維強化プラスチックの製造方法。   The method for producing a fiber-reinforced plastic according to any one of claims 1 to 9, wherein the laminated body has reinforcing fibers arranged substantially only in one direction.
JP2012067499A 2012-03-23 2012-03-23 Method of producing fiber reinforced plastic Pending JP2013199016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012067499A JP2013199016A (en) 2012-03-23 2012-03-23 Method of producing fiber reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012067499A JP2013199016A (en) 2012-03-23 2012-03-23 Method of producing fiber reinforced plastic

Publications (1)

Publication Number Publication Date
JP2013199016A true JP2013199016A (en) 2013-10-03

Family

ID=49519646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012067499A Pending JP2013199016A (en) 2012-03-23 2012-03-23 Method of producing fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP2013199016A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5972499B1 (en) * 2014-11-28 2016-08-17 熈 栗栖 FRP molding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5972499B1 (en) * 2014-11-28 2016-08-17 熈 栗栖 FRP molding method

Similar Documents

Publication Publication Date Title
JP5533743B2 (en) Manufacturing method of fiber reinforced plastic
EP2682247B1 (en) Rtm molding device, rtm molding method, and semi-molded body
CA2959476C (en) Bonding apparatus and bonding method
JP5476916B2 (en) Manufacturing method of fiber reinforced plastic
US8591796B2 (en) Methods and apparatus for molding and curing of composites
JP2009509796A (en) Method and apparatus for adhering components to composite molded bodies
JP2007118598A (en) Method and apparatus for manufacturing preform
JP6154670B2 (en) Method and apparatus for molding fiber reinforced plastic member
US9421717B2 (en) Manufacturing a composite
US11225942B2 (en) Enhanced through-thickness resin infusion for a wind turbine composite laminate
JP2009179065A (en) Method of manufacturing frp structure
JP6717105B2 (en) Method for producing fiber-reinforced resin molding
JP2013199016A (en) Method of producing fiber reinforced plastic
JP2012245623A (en) Method and device of molding composite material using porous mold
JP2005212383A (en) Resin transfer forming method and manufacturing method for sandwich laminate
JP6750735B2 (en) Composite material molding method and composite material molding apparatus
JP2007168428A (en) Molding method of composite materials
JP2022534400A (en) Controlled shear vacuum forming for forming preforms
JP2004090349A (en) Method for manufacturing fiber-reinforced resin structure and its manufacturing device
JP2009045927A (en) Method of manufacturing fiber reinforced plastic
JP2010131846A (en) Method of manufacturing fiber-reinforced plastic
JPH06190957A (en) Honeycomb sandwich panel and production thereof
JP5906082B2 (en) Method for producing resin impregnated material
JP2012228824A (en) Method and apparatus for manufacturing frp structure
JP5738061B2 (en) FRP structure manufacturing method and manufacturing apparatus