JP6717105B2 - Method for producing fiber-reinforced resin molding - Google Patents

Method for producing fiber-reinforced resin molding Download PDF

Info

Publication number
JP6717105B2
JP6717105B2 JP2016155124A JP2016155124A JP6717105B2 JP 6717105 B2 JP6717105 B2 JP 6717105B2 JP 2016155124 A JP2016155124 A JP 2016155124A JP 2016155124 A JP2016155124 A JP 2016155124A JP 6717105 B2 JP6717105 B2 JP 6717105B2
Authority
JP
Japan
Prior art keywords
fiber
reinforced resin
intermediate material
molding
resin intermediate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016155124A
Other languages
Japanese (ja)
Other versions
JP2018024097A (en
Inventor
喜春 沼田
喜春 沼田
敦 野原
敦 野原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2016155124A priority Critical patent/JP6717105B2/en
Publication of JP2018024097A publication Critical patent/JP2018024097A/en
Application granted granted Critical
Publication of JP6717105B2 publication Critical patent/JP6717105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

本発明は、繊維強化樹脂成形体の製造方法に関する。 The present invention relates to a method for producing a fiber-reinforced resin molded body.

強化繊維とマトリックス樹脂とからなる繊維強化複合材料は、軽量で優れた機械特性を有するため、航空宇宙用途、自動車用途、スポーツ用途、一般産業用途等に広く用いられている。繊維強化複合材料は、中間材料である繊維強化複合材料用プリプレグを成形することによって得られる。 A fiber-reinforced composite material composed of a reinforcing fiber and a matrix resin is lightweight and has excellent mechanical properties, and is therefore widely used for aerospace applications, automobile applications, sports applications, general industrial applications and the like. The fiber-reinforced composite material is obtained by molding a prepreg for a fiber-reinforced composite material, which is an intermediate material.

プリプレグは、強化繊維に熱硬化性樹脂または熱可塑性樹脂を含浸させたものである。プリプレグ用の樹脂としては、繊維強化複合材料の耐熱性等の点から、主として熱硬化性樹脂が用いられ、耐熱性、弾性率、低硬化収縮性、耐薬品性等に優れた繊維強化複合材料が得られる点から、エポキシ樹脂が最もよく用いられる。 A prepreg is a reinforcing fiber impregnated with a thermosetting resin or a thermoplastic resin. As the resin for prepreg, a thermosetting resin is mainly used from the viewpoint of heat resistance of the fiber-reinforced composite material, and the fiber-reinforced composite material is excellent in heat resistance, elastic modulus, low curing shrinkage, chemical resistance, etc. The epoxy resin is most often used from the viewpoint of obtaining

プリプレグを所望の形状を有する型に沿って様々な繊維方向、枚数を積層した後、例えば、熱プレスや高温高圧釜(オートクレーブ)を用いて加熱硬化させることによって、繊維強化樹脂成形体を得ることができる。 Obtaining a fiber-reinforced resin molded product by stacking prepregs in various fiber directions and numbers along a mold having a desired shape, and then heat-curing them using, for example, a hot press or a high-temperature high-pressure oven (autoclave). You can

オートクレーブを使用する場合には、例えば特許文献1に示されるような、アルミニウムやステンレス製台板から構成される成形下型の上に、プリプレグを所望の繊維方向、枚数を積層した後、その上部に離型フィルムを介して、成形上型やプレッシャープレートと呼ばれる、台板と同様、アルミニウムやステンレス製等の金属板を積載した上で、通気性を有するブリーザークロスを重ね、最後に通気性の無い、伸張性のあるシリコーンやポリアミド等のプラスチック製のシート(真空バッグフィルム)を重ね、真空吸引することで該バッグフィルムの内側を密閉し、オートクレーブ内で積層体に外圧を加えた状態下で加熱硬化させるという方法によって、成形物を製造することができる。 In the case of using an autoclave, for example, as shown in Patent Document 1, a prepreg is laminated on a lower molding die made of aluminum or a stainless steel base plate in a desired fiber direction and in a desired number of sheets, and then the upper portion thereof is formed. Like a base plate, which is called a molding upper mold or pressure plate, through a release film, a metal plate made of aluminum, stainless steel, etc. is loaded, and a breathable breather cloth is overlaid, and finally the breathable In the state of stacking sheets of non-stretchable plastic such as silicone or polyamide (vacuum bag film), sealing the inside of the bag film by vacuum suction, and applying external pressure to the laminate in the autoclave. A molded product can be produced by the method of heat curing.

しかしながら、上記のような方法で製造する場合、加圧性能に優れたオートクレーブを用いた場合であっても、内部に空隙(ボイド)の無い繊維強化樹脂成形体を得ることは難しかった。 However, in the case of manufacturing by the above-mentioned method, it is difficult to obtain a fiber-reinforced resin molded body having no voids (voids) inside even if an autoclave excellent in pressurizing performance is used.

特許文献2には、微細孔を有するグラファイト製の上下型を用いることで、積層されたプリプレグ内やプリプレグ間に存在する空気を効果的に除去することによって、ボイドを低減させることが提案されている。 Patent Document 2 proposes that the upper and lower molds made of graphite having fine pores are used to effectively remove the air existing in and between the prepregs that have been laminated to reduce voids. There is.

しかし、この方法では、高価で微細孔を有するグラファイトを用いる必要があり、成形コストが高価になってしまう。 However, in this method, it is necessary to use expensive graphite having fine pores, and the molding cost becomes high.

特開平8−336890号公報JP-A-8-336890 特開平4−004111号公報JP-A-4-004111

本発明は、上記方法による成形に際して、空隙(ボイド)の少ない高品質の成形体を簡便な方法で得ることを目的とする。 It is an object of the present invention to obtain a high-quality molded product with few voids (voids) by a simple method when molding by the above method.

本発明は、下記の態様を有する。
[1]繊維強化樹脂中間材を成形下型の上に配置し、該繊維強化樹脂中間材の上に、成形上型をその外縁が該繊維強化樹脂中間材の外縁より内側に位置するように積載し、これらの上に通気性のないシートを被せ、該シートの該繊維強化樹脂中間材側を減圧した状態下にて、該繊維強化樹脂中間材を加熱硬化する、繊維強化樹脂成形体の製造方法。
[2]前記成形上型の全ての外縁が、前記繊維強化樹脂中間材の外縁より内側に位置する、[1]記載の繊維強化樹脂成形体の製造方法。
[3]前記繊維強化樹脂中間材の外縁の任意の点から前記成形上型の外縁までの最短距離が5〜20mmの範囲である、[2]記載の繊維強化樹脂成形体の製造方法。
[4]前記繊維強化樹脂中間材と前記成形上型のそれぞれの重心を結ぶ直線と、該繊維強化樹脂中間材と該成形上型の積載方向とが略平行の関係となっている、[1]〜[3]のいずれかに記載の繊維強化樹脂成形体の製造方法。
[5]前記成形上型の厚みが0.5〜10mmの範囲である、[1]〜[4]のいずれかに記載の繊維強化樹脂成形体の製造方法。
[6]前記成形上型の材質が金属である、[1]〜[5]のいずれかに記載の繊維強化樹脂成形体の製造方法。
[7]前記繊維強化樹脂中間材と前記成形上型の間に離形フィルムを配置する、[1]〜[6]のいずれかに記載の繊維強化樹脂成形体の製造方法。
The present invention has the following aspects.
[1] A fiber-reinforced resin intermediate material is placed on a molding lower die, and the molding upper die is positioned on the fiber-reinforced resin intermediate material such that the outer edge of the molding upper die is located inside the outer edge of the fiber-reinforced resin intermediate material. A fiber-reinforced resin molded product, which is loaded and covered with a non-breathable sheet, and the fiber-reinforced resin intermediate material is heated and cured under reduced pressure on the fiber-reinforced resin intermediate material side. Production method.
[2] The method for producing a fiber-reinforced resin molded product according to [1], wherein all the outer edges of the upper molding die are located inside the outer edges of the fiber-reinforced resin intermediate material.
[3] The method for producing a fiber-reinforced resin molded product according to [2], wherein the shortest distance from an arbitrary point on the outer edge of the fiber-reinforced resin intermediate material to the outer edge of the upper molding die is in the range of 5 to 20 mm.
[4] A straight line connecting the center of gravity of each of the fiber reinforced resin intermediate material and the molding upper die and a loading direction of the fiber reinforced resin intermediate material and the molding upper die are substantially parallel to each other. ] The manufacturing method of the fiber reinforced resin molding in any one of [3].
[5] The method for producing a fiber-reinforced resin molded product according to any one of [1] to [4], wherein the thickness of the upper molding die is in the range of 0.5 to 10 mm.
[6] The method for producing a fiber-reinforced resin molded product according to any one of [1] to [5], wherein the material of the upper molding die is metal.
[7] The method for producing a fiber-reinforced resin molded product according to any one of [1] to [6], wherein a release film is arranged between the fiber-reinforced resin intermediate material and the molding upper die.

本発明により、繊維強化複合材料の加熱加圧成形に際して、プリプレグ積層体のような繊維強化樹脂中間材から空気を短時間で十分に排出し、空隙(ボイド)の少ない高品質の成形体を簡便な方法で得ることができる。 According to the present invention, when heat-pressurizing a fiber-reinforced composite material, air can be sufficiently discharged from a fiber-reinforced resin intermediate material such as a prepreg laminate in a short time, and a high-quality molded body with few voids can be easily prepared Can be obtained in various ways.

(繊維強化樹脂中間材)
本発明に用いる繊維強化樹脂中間材としては、一方向に連続して配列された複数本の強化繊維にマトリクス樹脂が含浸されたシート状のプリプレグが好適であり、このプレプレグを繊維方向が異なるように複数枚積層したものを用いるのがより好ましい。また、強化繊維から構成される織物、マット、不織布等にマトリクス樹脂が含浸されたプリプレグも適宜使用することができる。
(Intermediate material of fiber reinforced resin)
As the fiber-reinforced resin intermediate material used in the present invention, a sheet-like prepreg in which a plurality of reinforcing fibers continuously arranged in one direction is impregnated with a matrix resin is suitable, and the prepreg may have different fiber directions. It is more preferable to use a laminate of a plurality of sheets. Further, a prepreg obtained by impregnating a woven fabric, a mat, a non-woven fabric or the like made of reinforcing fibers with a matrix resin can also be used as appropriate.

この繊維強化樹脂中間材を構成する強化繊維としては、例えば、炭素繊維、ガラス繊維、アラミド繊維、高強度ポリエステル繊維、ボロン繊維、アルミナ繊維、窒化珪素繊維、ナイロン繊維などが挙げられる。これらの中でも、比強度及び比弾性に優れることから、炭素繊維が好ましい。 Examples of the reinforcing fiber constituting the fiber-reinforced resin intermediate material include carbon fiber, glass fiber, aramid fiber, high-strength polyester fiber, boron fiber, alumina fiber, silicon nitride fiber, nylon fiber and the like. Among these, carbon fiber is preferable because it is excellent in specific strength and specific elasticity.

また、この繊維強化樹脂中間材を構成するマトリックス樹脂としては、熱硬化性樹脂、熱可塑性樹脂を用いることができる。樹脂としては、熱硬化性樹脂のみを用いてもよく、熱可塑性樹脂のみを用いてもよく、熱硬化性樹脂と熱可塑性樹脂の両方を用いてもよいが、得られる成形物の強度物性や外観に優れることから、熱硬化性樹脂が好ましい。 A thermosetting resin or a thermoplastic resin can be used as the matrix resin constituting the fiber-reinforced resin intermediate material. As the resin, only a thermosetting resin may be used, only a thermoplastic resin may be used, or both a thermosetting resin and a thermoplastic resin may be used. Thermosetting resins are preferred because of their excellent appearance.

熱硬化性樹脂としては、例えば、不飽和ポリエステル樹脂、エポキシ樹脂、ビニルエステル樹脂、フェノール樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、マレイミド樹脂、シアネート樹脂などが挙げられる。熱硬化性樹脂としては、1種を単独で用いてもよく、2種以上を併用してもよい。
熱可塑性樹脂としては、例えば、ポリオレフィン系樹脂、アクリル樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルケトン樹脂、ポリエーテルスルフォン樹脂、芳香族ポリアミド樹脂などが挙げられる。熱可塑性樹脂としては、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the thermosetting resin include unsaturated polyester resin, epoxy resin, vinyl ester resin, phenol resin, epoxy acrylate resin, urethane acrylate resin, phenoxy resin, alkyd resin, urethane resin, maleimide resin, cyanate resin and the like. .. As the thermosetting resin, one type may be used alone, or two or more types may be used in combination.
Examples of the thermoplastic resin include polyolefin resin, acrylic resin, polyamide resin, polyester resin, polyphenylene sulfide resin, polyether ketone resin, polyether sulfone resin, and aromatic polyamide resin. As the thermoplastic resin, one type may be used alone, or two or more types may be used in combination.

(成形型)
本発明に好適な成形下型と成形上型の材質としては、鉄、ステンレス、インバー、アルミニウム、ステンレス、コンポジット、木材、石膏等から適宜選択するのが、耐熱性、形状賦形性の点で好ましい。
特に、成形上型の材質は、耐熱性、取り扱い性の点から、ステンレス、アルミニウム等の金属とするのが好ましい。
本発明に使用する成形上型の厚みは、0.5〜10mmの範囲とするのが好ましい。
これは、成形上型の厚みを0.5mm以上とすることによって、表面平滑性に優れた繊維強化樹脂成形体が製造される傾向にあるためである。より好ましくは0.7mm以上である。
また、成形上型の厚みを10mm以下とすることによって、成形中に通気性のないシートが破れる不具合が生じにくくなる傾向にあるためである。より好ましくは8mm以下である。
(Molding die)
The material of the molding lower mold and the molding upper mold suitable for the present invention is appropriately selected from iron, stainless steel, invar, aluminum, stainless steel, composite, wood, gypsum, etc. in terms of heat resistance and shape shaping property. preferable.
In particular, the material of the upper molding die is preferably a metal such as stainless steel or aluminum from the viewpoint of heat resistance and handleability.
The thickness of the upper molding die used in the present invention is preferably in the range of 0.5 to 10 mm.
This is because when the thickness of the upper molding die is 0.5 mm or more, a fiber-reinforced resin molded product having excellent surface smoothness tends to be manufactured. More preferably, it is 0.7 mm or more.
Further, if the thickness of the upper molding die is 10 mm or less, there is a tendency that the trouble that the sheet having no air permeability is torn during the molding is less likely to occur. More preferably, it is 8 mm or less.

(繊維強化樹脂中間材の配置と成形上型の積載)
本発明においては、繊維強化樹脂中間材を成形下型の上に配置し、さらに該繊維強化樹脂中間材の上に成形上型を積載する際に、その成形上型の外縁が該繊維強化樹脂中間材の外縁より内側に位置するように積載するのが重要である。これによって、上述の減圧時に繊維強化樹脂中間材から空気を短時間で十分に排出することが可能となり、空隙(ボイド)の少ない高品質の成形体を得ることが可能となる。
(Arrangement of fiber-reinforced resin intermediate material and loading of the upper mold)
In the present invention, the fiber-reinforced resin intermediate material is arranged on the lower molding die, and when the upper molding die is loaded on the fiber-reinforced resin intermediate material, the outer edge of the upper molding die is the fiber-reinforced resin. It is important to load so that it is located inside the outer edge of the intermediate material. This makes it possible to sufficiently discharge air from the fiber-reinforced resin intermediate material during the above-mentioned depressurization in a short time, and to obtain a high-quality molded body with few voids (voids).

この場合、前記成形上型の全ての外縁が、前記繊維強化樹脂中間材の外縁より内側に位置するように成形上型を積載するのがより好ましい。これによって、上記の空気の排出をより確実なものとすることができるためである。 In this case, it is more preferable to load the upper molding die so that all the outer edges of the upper molding die are located inside the outer edges of the fiber-reinforced resin intermediate material. This is because the air can be discharged more reliably.

さらに、前記成形上型の全ての外縁が、前記繊維強化樹脂中間材の外縁より内側に位置するように成形上型を積載する場合、この繊維強化樹脂中間材の外縁の任意の点から、この成形上型の外縁までの最短距離が5〜20mmの範囲となるように成形上型を積載するのが好ましい。
これは、この最短距離を5mm以上とすることによって、成形上型が繊維強化樹脂中間材に均等に圧力を加える事ができるためである。より好ましくは7mm以上である。またこの最短距離を20mm以下とすることによって、繊維強化樹脂中間材の成形体周囲のトリミングを少なくすることができるためである。より好ましくは18mm以下である。
Furthermore, when the molding upper die is loaded so that all the outer edges of the molding upper die are located inside the outer edge of the fiber-reinforced resin intermediate material, from any point of the outer edge of the fiber-reinforced resin intermediate material, The upper molding die is preferably loaded so that the shortest distance to the outer edge of the upper molding die is in the range of 5 to 20 mm.
This is because by setting this shortest distance to 5 mm or more, the upper mold can uniformly apply pressure to the fiber-reinforced resin intermediate material. It is more preferably at least 7 mm. Also, by setting this shortest distance to 20 mm or less, trimming around the molded body of the fiber-reinforced resin intermediate material can be reduced. More preferably, it is 18 mm or less.

また、前記繊維強化樹脂中間材の上に前記成形上型を積載する際には、それぞれの重心を結ぶ直線と、該繊維強化樹脂中間材と該成形上型の積載方向とが略平行の関係となるのが好ましい。
これは、このような位置関係にて繊維強化樹脂中間材と成形上型を積載することによって、繊維強化樹脂中間材に均等に圧力を加える事ができると同時に、繊維強化樹脂中間材の成形体周囲のトリミングを均等にすることができるためである。
Further, when the molding upper die is loaded on the fiber reinforced resin intermediate material, the straight line connecting the respective centers of gravity and the loading direction of the fiber reinforced resin intermediate material and the molding upper die are substantially parallel to each other. It is preferable that
By loading the fiber reinforced resin intermediate material and the molding upper die in such a positional relationship, it is possible to uniformly apply pressure to the fiber reinforced resin intermediate material, and at the same time, a molded body of the fiber reinforced resin intermediate material. This is because the surrounding trimming can be made uniform.

(離形フィルム)
本発明の繊維強化樹脂成形体の製造方法においては、前記繊維強化樹脂中間材と前記成形上型の間に離形フィルムを配置することができる。これによって、成形終了後の成形体と成形上型との分離が容易となるとともに、成形体の外観をより優れたものとすることができる。
本発明での使用に好適な離形フィルムの材質としては、適度な耐熱性を有し、硬化したエポキシ樹脂との離形性に優れるETFE(テトラフルオロエチレンとエチレンの共重合体)や、PVF(ポリビニルフォルマール)等が好ましい。離形フィルムの厚みについては特に制限は無いが、取り扱い性の観点から20〜60μmの範囲とするのが好ましい。
(Release film)
In the method for producing a fiber-reinforced resin molded product of the present invention, a release film can be arranged between the fiber-reinforced resin intermediate material and the molding upper die. This makes it easy to separate the molded body and the upper mold after molding from each other, and makes the molded body have a better appearance.
Examples of the material of the release film suitable for use in the present invention include ETFE (copolymer of tetrafluoroethylene and ethylene), which has appropriate heat resistance and excellent releasability with a cured epoxy resin, and PVF. (Polyvinyl formal) and the like are preferable. The thickness of the release film is not particularly limited, but it is preferably in the range of 20 to 60 μm from the viewpoint of handleability.

(シート)
本発明において、繊維強化樹脂中間材を成形下型の上に配置し、該繊維強化樹脂中間材の上に成形上型を積載した後に、これらの上に被せるシートは、真空バッグフィルムとも呼ばれ、伸張性を有し、通気性がないことが必要である。
このシートは、室温において100〜300%の伸度を有することが好ましい。このシートの伸張性が不充分である場合は、成形時に加圧してもシートが型に沿わないため、つっぱった部分ではシートと繊維強化樹脂中間材との間に空間ができ充分に加圧されないので、この部分に成形不良が発生しやすくなる。
このシートの材質としてはポリアミド、シリコーン等が例示されるが特にこれらに限定されるものではない。また、このシートの厚みは、成形の温度、圧力、シートの材質に応じて任意に設定することができる。また、後述するように、本発明においては、シートを境に減圧や気体による加圧を行うので、このシートは通気性がないことが必須となる。
(Sheet)
In the present invention, the fiber reinforced resin intermediate material is placed on the lower molding die, the upper molding die is loaded on the fiber reinforced resin intermediate material, and the sheet put on these is also called a vacuum bag film. It must be extensible and not breathable.
This sheet preferably has an elongation of 100 to 300% at room temperature. If the extensibility of this sheet is insufficient, the sheet does not follow the mold even when pressed at the time of molding, so there is a space between the sheet and the fiber-reinforced resin intermediate material in the tight portion, and it is not sufficiently pressed. Therefore, defective molding easily occurs in this portion.
Examples of the material of this sheet include polyamide and silicone, but are not particularly limited thereto. Further, the thickness of the sheet can be arbitrarily set according to the molding temperature, pressure, and material of the sheet. Further, as will be described later, in the present invention, depressurization and pressurization by gas are performed with the sheet as a boundary, and therefore it is essential that this sheet has no air permeability.

(ブリーザークロス)
本発明においては、上記の通気性のないシートを被せる前に、ブリーザークロスと呼ばれる織布や不織布等を上記の繊維強化樹脂中間材と成形上型の積載物の上に被せることができる。
このブリーザークロスを使用することによって、繊維強化樹脂中間材の層内、層間、及び上記シートとの間の空気を真空吸引、加圧により効果的に除去することができる。
ブリーザークロスとしては、ガラスクロスの他に、ポリエステル不織布等を好適に用いることができる。
(Breather cross)
In the present invention, a woven cloth or a non-woven cloth called a breather cloth can be covered on the fiber reinforced resin intermediate material and the load of the upper molding die before covering with the breathable sheet.
By using this breather cloth, it is possible to effectively remove air between the layers of the fiber-reinforced resin intermediate material, between the layers, and the sheet by vacuum suction and pressurization.
As the breather cloth, in addition to glass cloth, polyester non-woven fabric or the like can be preferably used.

(減圧、加圧方法)
本発明においては、上記のように通気性がないシートを被せた後に、このシートの繊維強化樹脂中間材側を減圧し、できるだけ真空状態に近づけることによって、ボイドの少ない所望の形状の繊維強化樹脂成形体を得ることができる。
また、この減圧と同時に、繊維強化樹脂中間材側の反対側をオートクレーブ等にて加圧することによって、ボイドをさらに減少させることができるとともに、成形体の外観をより優れたものとすることができる。この場合、減圧側の圧力が10kPa以下、加圧側の圧力が400〜700kPaの範囲であることが好ましい。オートクレーブを利用する場合の加圧媒体としては、窒素等の不活性ガスが好適であるが、空気でも差し支えない。
(Decompression and pressurization method)
In the present invention, after covering the sheet having no air permeability as described above, the fiber-reinforced resin intermediate material side of this sheet is depressurized, and as close as possible to the vacuum state, a fiber-reinforced resin having a desired shape with less voids is formed. A molded body can be obtained.
Further, simultaneously with this depressurization, by pressurizing the side opposite to the fiber-reinforced resin intermediate material side with an autoclave or the like, voids can be further reduced and the appearance of the molded body can be made more excellent. .. In this case, the pressure on the pressure reducing side is preferably 10 kPa or less and the pressure on the pressure increasing side is preferably in the range of 400 to 700 kPa. An inert gas such as nitrogen is suitable as a pressurizing medium when an autoclave is used, but air may also be used.

(成形方法)
本発明の繊維強化樹脂成形体の製造方法において、繊維強化樹脂中間材を加熱硬化させる条件は、特に限定されるものではなく、繊維強化樹脂中間材の加熱条件は、例えば使用するプリプレグを構成する樹脂の特性、すなわち熱硬化性樹脂にあっては硬化温度、硬化に要する時間、熱可塑性樹脂にあっては軟化温度、変形に要する時間によって、適宜設定することができる。
(Molding method)
In the method for producing a fiber-reinforced resin molded product of the present invention, the conditions for heating and curing the fiber-reinforced resin intermediate material are not particularly limited, and the heating conditions for the fiber-reinforced resin intermediate material constitute, for example, the prepreg used. It can be appropriately set depending on the characteristics of the resin, that is, the curing temperature and the time required for curing in the case of a thermosetting resin, and the softening temperature and the time required for deformation in the case of a thermoplastic resin.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

(成形に用いた材料)
下型:アルミニウム製プレート(950mm×460mm×10mm厚)
成形上型:ステンレス製プレート(330mm×280mm×1mm厚)
(350mm×300mm×1mm厚)
プリプレグ:三菱レイヨン製180℃硬化型中弾性炭素繊維プリプレグ
離形フィルム:フッ素系樹脂フィルム(旭硝子製、アフレックス25MW−1250NT)
ブリーザークロス:ガラスクロス(有沢製作所製、ECC120MIL−C−9084)
通気性のないシート:AIRTECH製、WRIGHTLON NYLON BAGGING FILM8400
(Material used for molding)
Lower mold: Aluminum plate (950 mm x 460 mm x 10 mm thick)
Upper mold: Stainless steel plate (330 mm × 280 mm × 1 mm thickness)
(350mm x 300mm x 1mm thickness)
Prepreg: Mitsubishi Rayon 180°C curable medium elastic carbon fiber prepreg Release film: Fluorine resin film (Asahi Glass, Aflex 25MW-1250NT)
Breather cloth: Glass cloth (Arisawa Seisakusho, ECC120MIL-C-9084)
Non-breathable sheet: AIRTECH, WRIGHTLON NYLON BAGGING FILM8400

(空隙の測定方法)
超音波探傷映像化装置(KJTD社製SDS−6500)を用い、水温15℃の水槽内に成形板を沈め、該成形板の上面から下面へ周波数5MHz、強度18dBの超音波を照射し、その透過率を測定、透過率をグラデーション表示することで空隙の多少を画像化した。
(Method of measuring void)
Using a ultrasonic flaw detector imaging device (SDS-6500 manufactured by KJTD), a molding plate is immersed in a water tank having a water temperature of 15° C., and ultrasonic waves having a frequency of 5 MHz and an intensity of 18 dB are radiated from the upper surface to the lower surface of the molding plate. The transmittance was measured, and the transmittance was displayed as a gradation to image some of the voids.

(実施例)
成形下型として10mm厚のアルミニウム製プレートを用い、オートクレーブ装置を用い平板を成形した。
まず、繊維強化複合材料用プリプレグとして、三菱レイヨン株式会社製炭素繊維MR50A−12Kを一方向に引き揃え、180℃硬化のエポキシ樹脂を含浸した繊維目付268g/m、樹脂含有率35重量%のプリプレグを350mm×300mmに切り出し、繊維軸方向を0°とした際に[0/+45/−45/0/90]2sとなる積層構成にて20枚積層したものを用意し、繊維強化樹脂中間材を準備した。これを成形下型の上に配置し、その上に離形フィルムとして旭硝子株式会社製のアフレックス25MW−1250NTを被せた。次に、成形上型としてプリプレグ積層体より長辺、短辺それぞれが10mm短い、330mm×280mm×1mm厚のステンレス製プレートを積層体と該成形上型それぞれの長辺、短辺の中心点(重心)が同位置になるように置いた。各辺の任意の点から繊維強化樹脂中間材の外縁への最短距離は10mm〜14mmであった。次に外周部にニトリルゴム製のダムを設置し、ガラスブリーザーとして、有沢製作所製ガラスクロスECC120MIL−C−9084を被せ、最後に通気性のないシートとして、AIRTECH製WRIGHTLON NYLON BAGGING FILM8400で成形下型のアルミプレート全体を覆い、繊維強化樹脂中間材側を真空吸引した。これをオートクレーブ内に設置し、繊維強化樹脂中間材側を2kPaに減圧した。オートクレーブ内を1.7℃/分で昇温すると同時に窒素で650kPaに加圧した。オートクレーブ内が140kPaに到達した際に真空吸引を停止し、繊維強化樹脂中間材側を大気解放した。繊維強化樹脂中間材の温度が180℃に達した後、120分保持し、これを硬化させた。オートクレーブ内の窒素を排出した後、繊維強化複合材料の成形板を取り出した。
この成形板を上記の方法で空隙の存在状況を画像解析したところ、図1の通り空隙がほぼ皆無であった。
(Example)
A 10 mm-thick aluminum plate was used as a lower molding die, and a flat plate was molded using an autoclave device.
First, as a prepreg for a fiber-reinforced composite material, carbon fibers MR50A-12K manufactured by Mitsubishi Rayon Co., Ltd. were aligned in one direction, and a fiber areal weight of 268 g/m 2 impregnated with an epoxy resin cured at 180° C. and a resin content of 35% by weight. Prepare a prepreg cut out into 350 mm x 300 mm and stack 20 sheets in a laminated structure of [0/+45/-45/0/90] 2s when the fiber axis direction is 0°. Prepared the material. This was placed on the lower molding die, and Aflex 25MW-1250NT manufactured by Asahi Glass Co., Ltd. was covered thereon as a release film. Next, a 330 mm x 280 mm x 1 mm thick stainless steel plate having a long side and a short side each 10 mm shorter than the prepreg laminate as a molding upper die is used as a center point of the long side and the short side of each of the laminate and the molding upper die ( Center of gravity) was placed in the same position. The shortest distance from any point on each side to the outer edge of the fiber-reinforced resin intermediate material was 10 mm to 14 mm. Next, a dam made of nitrile rubber is installed on the outer peripheral portion, and as a glass breather, glass cloth ECC120MIL-C-9084 manufactured by Arisawa Seisakusho is covered. The whole aluminum plate of was covered with vacuum, and the fiber-reinforced resin intermediate material side was vacuum-sucked. This was placed in an autoclave, and the pressure on the fiber-reinforced resin intermediate material side was reduced to 2 kPa. The temperature inside the autoclave was raised at 1.7° C./minute, and at the same time, nitrogen was applied to increase the pressure to 650 kPa. When the inside of the autoclave reached 140 kPa, vacuum suction was stopped and the fiber-reinforced resin intermediate material side was exposed to the atmosphere. After the temperature of the fiber-reinforced resin intermediate material reached 180° C., it was held for 120 minutes to cure it. After discharging the nitrogen in the autoclave, the molded plate of the fiber-reinforced composite material was taken out.
When this molded plate was subjected to image analysis of the existence of voids by the above method, almost no voids were found as shown in FIG.

(比較例)
成形上型として、プリプレグ積層体と同寸法の350mm×300mm×1mm厚のステンレス製プレートを用いた以外は実施例1と同様の方法にて成形を行い、繊維強化複合材料成形板を得た。
この成形板を実施例と同様の方法で空隙の存在状況を画像解析したところ、図2の通り全体において空隙が多く残る結果となった。
(Comparative example)
Molding was performed in the same manner as in Example 1 except that a 350 mm×300 mm×1 mm thick stainless steel plate having the same dimensions as the prepreg laminate was used as a molding upper die to obtain a fiber-reinforced composite material molded plate.
When this molded plate was subjected to an image analysis of the presence of voids in the same manner as in the example, a large amount of voids remained in the whole as shown in FIG.

実施例により得られた成形板の画像解析結果である。It is an image analysis result of the molded plate obtained by the example. 比較例により得られた成形板の画像解析結果である。It is an image analysis result of the molded plate obtained by the comparative example.

本発明によって、空隙(ボイド)の少ない高品質の繊維強化樹脂成形体を簡便な方法で得ることができる。 According to the present invention, a high-quality fiber-reinforced resin molded product having few voids can be obtained by a simple method.

Claims (7)

繊維強化樹脂中間材を成形下型の上に配置し、該繊維強化樹脂中間材の上に、成形上型をその全ての外縁が該繊維強化樹脂中間材の外縁より内側に位置するように積載し、これらの上に通気性のないシートを被せ、該シートの該繊維強化樹脂中間材側を減圧した状態下にて、該繊維強化樹脂中間材を加熱硬化する、繊維強化樹脂成形体の製造方法。 The fiber-reinforced resin intermediate material is placed on the lower molding die, and the molding upper die is loaded on the fiber-reinforced resin intermediate material such that all outer edges of the molding upper die are located inside the outer edges of the fiber-reinforced resin intermediate material. Then, a non-breathable sheet is covered thereon, and the fiber-reinforced resin intermediate material side is heat-cured under reduced pressure on the fiber-reinforced resin intermediate material side. Method. 前記通気性のないシートが、室温において100〜300%の伸度を有する真空バッグフィルムである、請求項1に記載の繊維強化樹脂成形体の製造方法。The method for producing a fiber-reinforced resin molded product according to claim 1, wherein the non-breathable sheet is a vacuum bag film having an elongation of 100 to 300% at room temperature. 前記繊維強化樹脂中間材の外縁の任意の点から前記成形上型の外縁までの最短距離が5〜20mmの範囲である、請求項2記載の繊維強化樹脂成形体の製造方法。 The method for producing a fiber-reinforced resin molding according to claim 2 , wherein the shortest distance from an arbitrary point on the outer edge of the fiber-reinforced resin intermediate material to the outer edge of the upper molding die is in the range of 5 to 20 mm. 前記繊維強化樹脂中間材と前記成形上型のそれぞれの重心を結ぶ直線と、該繊維強化樹脂中間材と該成形上型の積載方向とが略平行の関係となっている、請求項1〜3のいずれか1項に記載の繊維強化樹脂成形体の製造方法。 The straight line connecting the center of gravity of each of the fiber-reinforced resin intermediate material and the molding upper die and the loading direction of the fiber-reinforced resin intermediate material and the molding upper die are substantially parallel to each other. A method for producing the fiber-reinforced resin molded product according to any one of 1 . 前記成形上型の厚みが0.5〜10mmの範囲である、請求項1〜4のいずれか1項に記載の繊維強化樹脂成形体の製造方法。 The upper die thickness is in the range of 0.5 to 10 mm, method for producing a fiber-reinforced resin molded body according to any one of claims 1 to 4. 前記成形上型の材質が金属である、請求項1〜5のいずれか1項に記載の繊維強化樹脂成形体の製造方法。 The upper die material of a metal, a manufacturing method of a fiber reinforced plastic molded body according to any one of claims 1 to 5. 前記繊維強化樹脂中間材と前記成形上型の間に離形フィルムを配置する、請求項1〜6のいずれか1項に記載の繊維強化樹脂成形体の製造方法。
Placing a release film between the upper die and the fiber-reinforced resin intermediate material, method for producing a fiber-reinforced resin molded body according to any one of claims 1-6.
JP2016155124A 2016-08-08 2016-08-08 Method for producing fiber-reinforced resin molding Active JP6717105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016155124A JP6717105B2 (en) 2016-08-08 2016-08-08 Method for producing fiber-reinforced resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016155124A JP6717105B2 (en) 2016-08-08 2016-08-08 Method for producing fiber-reinforced resin molding

Publications (2)

Publication Number Publication Date
JP2018024097A JP2018024097A (en) 2018-02-15
JP6717105B2 true JP6717105B2 (en) 2020-07-01

Family

ID=61195361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016155124A Active JP6717105B2 (en) 2016-08-08 2016-08-08 Method for producing fiber-reinforced resin molding

Country Status (1)

Country Link
JP (1) JP6717105B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108652193B (en) * 2017-10-23 2020-07-31 杭州富阳行健塑料五金有限公司 Swinging electrostatic clothes nursing device
JP7341638B2 (en) * 2018-03-28 2023-09-11 三菱重工業株式会社 Molding jig and its manufacturing method
CN108906706A (en) * 2018-06-22 2018-11-30 郑州赫恩电子信息技术有限公司 A kind of both ends can be to the equipment of electronic product dedusting

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2738553B2 (en) * 1988-12-28 1998-04-08 富士重工業株式会社 Composite panel bending section forming method
JP2998171B2 (en) * 1990-04-23 2000-01-11 東洋紡績株式会社 Molding method of fiber reinforced thermoplastic resin molded article
DE102007015518A1 (en) * 2007-03-30 2008-10-02 Airbus Deutschland Gmbh Process for the production of profile parts
JP6537921B2 (en) * 2015-08-06 2019-07-03 三菱重工業株式会社 Apparatus for producing fiber-reinforced plastic, movable base, method for producing shaped fiber substrate, and method for producing fiber-reinforced plastic

Also Published As

Publication number Publication date
JP2018024097A (en) 2018-02-15

Similar Documents

Publication Publication Date Title
US20080210372A1 (en) Composite article debulking process
JP5597134B2 (en) Molding method of molding material
EP2495099A1 (en) Fiber-reinforced molded product and method for producing same
US20060249877A1 (en) Method of resin transfer molding
JP2020055447A (en) Composite material aircraft part and method of manufacturing the same
US10456961B2 (en) Bonding apparatus and bonding method
JP2009542483A (en) Manufacturing method of composite parts
JP6717105B2 (en) Method for producing fiber-reinforced resin molding
WO2012169011A1 (en) Surface layer material for cushioning material and cushioning material for hot-pressing
JP2007118598A (en) Method and apparatus for manufacturing preform
US11498290B2 (en) Method for molding composite material structure
JP2006219078A (en) Compound body for aircraft, and manufacturing method of compound structural part of aircraft
JP2011083975A (en) Method of manufacturing fiber reinforced plastic
JPWO2019244994A1 (en) Prepreg sheet and its manufacturing method, fiber reinforced composite molded article and its manufacturing method, and preform manufacturing method
JP7404486B2 (en) Carbon fiber reinforced molded body
US10532522B2 (en) Method and device for molding fiber-reinforced plastic member
US10583642B2 (en) Honeycomb structural body and method of manufacturing honeycomb structural body
JP4839523B2 (en) Manufacturing method of fiber reinforced resin
JP5441437B2 (en) Partially impregnated prepreg, method for producing the same, and method for producing a fiber-reinforced composite material using the same
JP2014042996A (en) Method of manufacturing thermal protection composite material and thermal protection composite material
JP2004276355A (en) Preform and method for manufacturing fiber reinforced resin composite using the preform
JP2004058608A (en) Method for manufacturing hollow molded article
JP2017087516A (en) Method for producing fiber-reinforced composite material molded product
JP2017148973A (en) Method for manufacturing fiber-reinforced composite material molded product
JP2015147384A (en) Method for producing molding of fiber-reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200525

R151 Written notification of patent or utility model registration

Ref document number: 6717105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151