JP2005212383A - Resin transfer forming method and manufacturing method for sandwich laminate - Google Patents

Resin transfer forming method and manufacturing method for sandwich laminate Download PDF

Info

Publication number
JP2005212383A
JP2005212383A JP2004023987A JP2004023987A JP2005212383A JP 2005212383 A JP2005212383 A JP 2005212383A JP 2004023987 A JP2004023987 A JP 2004023987A JP 2004023987 A JP2004023987 A JP 2004023987A JP 2005212383 A JP2005212383 A JP 2005212383A
Authority
JP
Japan
Prior art keywords
resin
mold
bagging film
path
lower mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004023987A
Other languages
Japanese (ja)
Other versions
JP4471672B2 (en
Inventor
Toru Kaneko
徹 金子
Sadataka Umemoto
禎孝 梅元
Kiyoto Sasaki
清人 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2004023987A priority Critical patent/JP4471672B2/en
Publication of JP2005212383A publication Critical patent/JP2005212383A/en
Application granted granted Critical
Publication of JP4471672B2 publication Critical patent/JP4471672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin transfer forming method and a manufacturing method for a sandwich laminate which diffuse a resin efficiently and enable attainment of a article having a uniform resin thickness. <P>SOLUTION: A bagging film 12 is superposed on a fiber reinforcement 4 laid on a bottom force 2 and is sealed airtightly at the peripheral edge to the bottom force 2, and a gap between the bagging film 12 and the bottom force 2 is evacuated, while the resin is injected into the fiber reinforcement 4. In this resin transfer forming method, a resin injection path 8 and a resin discharge path 6 parallel to each other are provided alternately or separately between the bagging film 12 and the bottom force 2. The resin is injected from the resin injection path 8, while the gap between the bagging film 12 and the bottom force 2 is evacuated from the resin discharge path 6, and after the resin injected from the resin injection path 8 is transferred to the resin discharge path 6, the resin injection path 8 and the resin discharge path 6 are evacuated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、上型又はバギングフィルムと下型との間に樹脂注入路及び樹脂排出路を設けて樹脂注入路から注入した樹脂を樹脂排出路まで移動させてこれらを充満させた後、樹脂注入路と樹脂排出路から余分の樹脂を排出しながら硬化させることにより硬化後厚みの均一な成形品を得る樹脂トランスファー成形法及びサンドイッチ積層板の製造方法に関する。   The present invention provides a resin injection path and a resin discharge path between the upper mold or the bagging film and the lower mold and moves the resin injected from the resin injection path to the resin discharge path to fill them, and then injects the resin. The present invention relates to a resin transfer molding method for obtaining a molded product having a uniform thickness after curing by discharging an excess resin from a channel and a resin discharging channel, and a method for manufacturing a sandwich laminate.

樹脂トランスファー成形法は、熱硬化性樹脂を用いた成形法の一種で、型のキャビティーに樹脂を注入して硬化させることにより成形品を得る成形法である。樹脂を注入する型としては一般的に剛性の高い金型が用いられる。大型の成形品の製造を目的とする場合には型の一部を柔軟性を有するバギングフィルムに置き換えて成形が行われている。   The resin transfer molding method is a kind of molding method using a thermosetting resin, and is a molding method in which a molded product is obtained by injecting a resin into a mold cavity and curing it. As the mold for injecting the resin, a highly rigid mold is generally used. For the purpose of manufacturing a large molded product, molding is performed by replacing a part of the mold with a flexible bagging film.

樹脂トランスファー成形法を用いて複合材料の成形を行うには、繊維強化材等の成形材料を型に敷設した後、型のキャビティーに樹脂を注入して繊維強化材に樹脂を含浸させ硬化させる。   To form a composite material using the resin transfer molding method, after laying a molding material such as a fiber reinforcing material on the mold, the resin is injected into the cavity of the mold and the fiber reinforcing material is impregnated with the resin and cured. .

このため、樹脂の注入は金型や成型品に無理な圧力がかからず樹脂の注入時間を短縮することができる真空アシストを用いた低圧封入成形法が用いられる。   For this reason, the resin is injected by a low-pressure encapsulating molding method using vacuum assist that does not apply excessive pressure to the mold or molded product and can shorten the resin injection time.

特に、型とバギングフィルムで成形材料を密封して成形を行う場合には、型とバギングフィルム間を減圧にすると、バギングフィルムが成形材料に密着して樹脂の流路を塞ぐので、樹脂の拡散が妨げられる。   In particular, when molding is performed with the mold and bagging film sealed, if the pressure between the mold and the bagging film is reduced, the bagging film adheres to the molding material and closes the resin flow path. Is disturbed.

このため、バギングフィルムを用いて複合材料を製造する場合、樹脂が拡散しやすいように通常樹脂拡散基材(メディア)が用いられている。樹脂拡散基材はメッシュ状のシートであり、成形材料を型に敷設した後成形材料上に重ねて敷設される。   For this reason, when a composite material is manufactured using a bagging film, a resin diffusion base material (media) is usually used so that the resin is easily diffused. The resin diffusion base material is a mesh-like sheet, which is laid on the molding material after the molding material is laid on the mold.

また、コア材を用いたサンドイッチ板の成形では、ポリウレタン等の発泡体やバルサ材からなるコア材の表面に溝を設けた樹脂トランスファー成形法(特許文献1及び2)がある。この方法は表面に溝のネットワークをもつコア材を繊維強化材で被覆した部品を複数用いて目的とする成形品の形状に配列した後、コア材の溝に樹脂を供給して繊維強化材に含浸させて一体化させ最終成形品を得るものである。   Further, in the molding of a sandwich plate using a core material, there is a resin transfer molding method (Patent Documents 1 and 2) in which grooves are provided on the surface of a core material made of a foamed material such as polyurethane or a balsa material. This method uses a plurality of parts coated with a fiber reinforcement on a core material having a groove network on the surface and arranges it in the shape of the desired molded product, and then supplies resin to the groove of the core material to produce a fiber reinforcement. It is impregnated and integrated to obtain a final molded product.

また、他の方法として金型、FRP型等の成形型に溝加工を行う方法も開示されている(特許文献3)。   Further, as another method, a method of performing groove processing on a mold such as a metal mold or FRP mold is also disclosed (Patent Document 3).

このように、樹脂を効率よく拡散させるため、樹脂拡散基材や表面に溝を設けた発泡体等のコア材等が従来使用されている。   As described above, in order to efficiently diffuse the resin, a resin diffusion base material, a core material such as a foam having a groove on the surface, and the like are conventionally used.

特表2000−501659号公報(第21頁、図1)JP 2000-501659 A (page 21, FIG. 1) 特表2001−510748号公報(第11頁、段落番号(0017))JP-T-2001-510748 (page 11, paragraph number (0017)) 特開2001−62932号公報(図2)JP 2001-62932 A (FIG. 2)

一般に、真空下で樹脂を注入すると、樹脂が繊維強化材に含浸するに従い、バギングフィルム又は上型と下型との間の真空度は均一にならずに排気口から離れるにつれ真空度が低下する。排気口から最も遠く位置する樹脂注入口付近と排気口付近の真空度が異なり、硬化後の成形物の厚みが異なったものとなる。即ち、排気口付近は成形物厚みが薄く、樹脂注入口付近は成形物厚みが厚い成形物となる傾向がある。   In general, when a resin is injected under vacuum, as the resin impregnates the fiber reinforcement, the degree of vacuum between the bagging film or the upper mold and the lower mold is not uniform, and the degree of vacuum decreases as the distance from the exhaust port increases. . The degree of vacuum in the vicinity of the resin injection port located farthest from the exhaust port is different from that in the vicinity of the exhaust port, and the thickness of the molded product after curing is different. That is, the thickness of the molded product tends to be thin near the exhaust port, and the molded product tends to be thick near the resin injection port.

本発明の目的は、真空下でバギングフィルム又は上型と下型との間に樹脂を注入しても硬化後厚みの均一な成形品が得られる樹脂トランスファー成形法及びサンドイッチ積層板の製造方法を提供することにある。   An object of the present invention is to provide a resin transfer molding method and a sandwich laminate manufacturing method in which a molded article having a uniform thickness after curing can be obtained even if a resin is injected between a bagging film or an upper die and a lower die under vacuum. It is to provide.

上記課題を解決する本発明は、以下に記載するものである。   The present invention for solving the above problems is described below.

〔1〕 下型に敷設した繊維強化材上にバギングフィルム又は上型を重ねて当該バギングフィルム周縁を下型に気密にシールし又は上型と下型とを型締めし、バギングフィルム又は上型と下型との間を排気すると共に繊維強化材に樹脂を注入して硬化させる樹脂トランスファー成形法において、バギングフィルム又は上型と下型との間に互いに平行な樹脂注入路と樹脂排出路を交互に又は1づつ設けて樹脂注入路から樹脂の注入を行うと共にバギングフィルム又は上型と下型との間を樹脂排出路から排気して樹脂を樹脂注入路から樹脂排出路まで充満させた後、樹脂注入路と樹脂排出路とから樹脂を排出させながら硬化させることを特徴とする樹脂トランスファー成形法。   [1] A bagging film or upper mold is overlapped on a fiber reinforcing material laid on the lower mold, and the periphery of the bagging film is hermetically sealed to the lower mold, or the upper mold and the lower mold are clamped, and the bagging film or upper mold is sealed. In a resin transfer molding method in which a resin is injected into a fiber reinforcement and cured between the upper mold and the lower mold, a resin injection path and a resin discharge path parallel to each other are provided between the bagging film or the upper mold and the lower mold. After injecting the resin from the resin injection path alternately or one by one and exhausting the bagging film or between the upper mold and the lower mold from the resin discharge path and filling the resin from the resin injection path to the resin discharge path A resin transfer molding method characterized in that the resin is cured while being discharged from a resin injection path and a resin discharge path.

〔2〕 樹脂注入路と樹脂排出路の間隔が200cm以下である〔1〕に記載の樹脂トランスファー成形法。   [2] The resin transfer molding method according to [1], wherein a distance between the resin injection path and the resin discharge path is 200 cm or less.

〔3〕 バギングフィルム又は上型と下型との間の樹脂注入時の真空度が−0.10〜−0.08MPaであり、樹脂を硬化させる時の真空度が−0.08〜−0.02MPaである〔1〕又は〔2〕に記載の樹脂トランスファー成形法。   [3] The degree of vacuum at the time of resin injection between the bagging film or the upper mold and the lower mold is −0.10 to −0.08 MPa, and the degree of vacuum at the time of curing the resin is −0.08 to −0. The resin transfer molding method according to [1] or [2], which is 0.02 MPa.

〔4〕 注入時の樹脂の粘度が0.01〜1Pa・sである〔1〕乃至〔3〕のいずれかに記載の樹脂トランスファー成形法。   [4] The resin transfer molding method according to any one of [1] to [3], wherein the viscosity of the resin at the time of injection is 0.01 to 1 Pa · s.

〔5〕 下型の一面上に、繊維強化材、コア材、繊維強化材を順次積重し、これらの上にバギングフィルム又は上型を重ねて当該バギングフィルム周縁を下型に気密にシールし又は下型と上型とを型締めし、バギングフィルム又は上型と下型との間を排気すると共に繊維強化材に樹脂を注入して硬化させるサンドイッチ積層板の製造方法において、バギングフィルム又は上型と下型との間に互いに平行な樹脂注入路と樹脂排出路を交互に又は1づつ設けて樹脂注入路から樹脂の注入を行うと共にバギングフィルム又は上型と下型との間を樹脂排出路から排気して樹脂を樹脂注入路から樹脂排出路まで充満させた後、樹脂注入路及び樹脂排出路とから樹脂を排出させながら硬化させることを特徴とするサンドイッチ積層板の製造方法。   [5] A fiber reinforcing material, a core material, and a fiber reinforcing material are sequentially stacked on one surface of the lower die, and a bagging film or an upper die is stacked on these to seal the bagging film periphery hermetically to the lower die. Alternatively, in the sandwich laminate manufacturing method in which the lower mold and the upper mold are clamped, the bagging film or the space between the upper mold and the lower mold is evacuated, and the resin is injected into the fiber reinforcing material to be cured. A resin injection path and a resin discharge path parallel to each other are provided between the mold and the lower mold to inject the resin from the resin injection path and to discharge the resin between the bagging film or the upper mold and the lower mold. A method for producing a sandwich laminate, comprising: exhausting from a path to fill a resin from a resin injection path to a resin discharge path, and curing the resin while discharging the resin from the resin injection path and the resin discharge path.

〔6〕 樹脂注入路と樹脂排出路の間隔が200cm以下である〔5〕に記載のサンドイッチ積層板の製造方法。   [6] The method for manufacturing a sandwich laminate plate according to [5], wherein the distance between the resin injection path and the resin discharge path is 200 cm or less.

〔7〕 バギングフィルム又は上型と下型との間の樹脂注入時の真空度が−0.10〜−0.08MPaであり、樹脂を硬化させる時の真空度が−0.08〜−0.02MPaである〔5〕又は〔6〕に記載のサンドイッチ積層板の製造方法。   [7] The degree of vacuum at the time of resin injection between the bagging film or the upper mold and the lower mold is −0.10 to −0.08 MPa, and the degree of vacuum at the time of curing the resin is −0.08 to −0. The method for producing a sandwich laminate according to [5] or [6], which is 0.02 MPa.

〔8〕 注入時の樹脂の粘度が0.01〜1Pa・sである〔5〕乃至〔7〕のいずれかに記載のサンドイッチ積層板の製造方法。   [8] The method for producing a sandwich laminate according to any one of [5] to [7], wherein the viscosity of the resin at the time of pouring is 0.01 to 1 Pa · s.

本発明の樹脂トランスファー成形法は、上型又はバギングフィルムと下型との間に樹脂注入路及び樹脂排出路を設けて樹脂注入路から注入した樹脂を樹脂排出路まで移動させた後、樹脂注入路と樹脂排出路から余分の樹脂を排出しながら樹脂を硬化させので、硬化後厚みの均一な成形品を得ることができる。   In the resin transfer molding method of the present invention, the resin injection path and the resin discharge path are provided between the upper mold or the bagging film and the lower mold, and the resin injected from the resin injection path is moved to the resin discharge path, and then the resin injection Since the resin is cured while discharging excess resin from the path and the resin discharge path, a molded product having a uniform thickness after curing can be obtained.

以下、図1及び2を参照して本発明の樹脂トランスファー成形法について説明する。   Hereinafter, the resin transfer molding method of the present invention will be described with reference to FIGS.

まずシリコーン油等の公知の離型剤を用いて離型処理した型2上に、繊維強化材4と樹脂拡散基材(メディア)5を順に敷設する(図1(a))。   First, a fiber reinforcing material 4 and a resin diffusion base material (media) 5 are laid in order on a mold 2 subjected to a release treatment using a known release agent such as silicone oil (FIG. 1A).

次に、敷設した繊維強化材4の両側に2本のチューブ6、8を互いに平行に配置する。次いで、バギングフィルム12を樹脂拡散基材5上に重ねて配置し、バギングフィルム12の周縁をシーラント14を用いて型2と気密にシールする。シーラント及びこれを用いるシール方法自体は公知のものである。チューブ6及び8は繊維強化材4に樹脂を注入するための又は型とバギングフィルム間を排気する(樹脂を排出する)ための孔を有している。   Next, two tubes 6 and 8 are arranged in parallel to each other on both sides of the laid fiber reinforcement 4. Next, the bagging film 12 is placed over the resin diffusion base material 5, and the periphery of the bagging film 12 is hermetically sealed with the mold 2 using the sealant 14. The sealant and the sealing method using the sealant are known. The tubes 6 and 8 have holes for injecting resin into the fiber reinforcement 4 or exhausting the space between the mold and the bagging film (exhausting the resin).

図1(a)のバギングフィルムを取り除いた状態の平面図を図2に示す。チューブ6(樹脂排出路)の一端は樹脂排出口6aを、チューブ8(樹脂注入路)の両端は樹脂注入口8bと樹脂排出口8aを形成する。樹脂注入口8bと樹脂排出口8aはそれぞれ樹脂の注入又は排出を制御する手段(バルブ10a、10b)を有しており、樹脂排出口6a、8aは真空ポンプ(不図示)と接続している。   FIG. 2 shows a plan view of the state where the bagging film of FIG. One end of the tube 6 (resin discharge path) forms a resin discharge port 6a, and both ends of the tube 8 (resin injection path) form a resin injection port 8b and a resin discharge port 8a. The resin injection port 8b and the resin discharge port 8a have means (valves 10a and 10b) for controlling the injection or discharge of the resin, respectively, and the resin discharge ports 6a and 8a are connected to a vacuum pump (not shown). .

その後、樹脂排出口6a及び8aに接続した真空ポンプを作動させ、バルブ10a及び10bを閉じた状態で型2とバギングフィルム12間の気体をチューブ6から排気して減圧にする(図1(b))。   Thereafter, the vacuum pump connected to the resin discharge ports 6a and 8a is operated, and the gas between the mold 2 and the bagging film 12 is exhausted from the tube 6 with the valves 10a and 10b closed to reduce the pressure (FIG. 1 (b )).

更に、型2とバギングフィルム12の間をチューブ6から排気した状態で、バルブ10bを開け、樹脂注入口8bからチューブ8を介して型2とバギングフィルム12の間に樹脂を注入する。チューブ8から注入した樹脂は、型2の他端側に位置するチューブ6から排気しているためバギングフィルム12に加圧されながら繊維強化材4に含浸すると共にチューブ6へ向かって移動する。   Further, in a state where the space between the mold 2 and the bagging film 12 is exhausted from the tube 6, the valve 10 b is opened, and the resin is injected between the mold 2 and the bagging film 12 through the tube 8 from the resin injection port 8 b. Since the resin injected from the tube 8 is exhausted from the tube 6 located on the other end side of the mold 2, the resin is impregnated into the fiber reinforcement 4 while being pressed against the bagging film 12 and moves toward the tube 6.

樹脂がチューブ8、繊維強化材4を満たしてチューブ6まで移動した後、バルブ10bを閉じ、バルブ10aを開けて、樹脂排出口6aに加えて樹脂排出口8aからも排気を行い、真空度低下のため樹脂注入路付近に余分にある樹脂を外部に排出する。   After the resin fills the tube 8 and the fiber reinforcing material 4 and moves to the tube 6, the valve 10b is closed, the valve 10a is opened, and the exhaust is performed from the resin discharge port 8a in addition to the resin discharge port 6a. Therefore, excess resin near the resin injection path is discharged to the outside.

樹脂排出口6a及び8aから排気して過剰な樹脂を外部へ排出しながら、繊維強化材4に含浸させた樹脂を硬化させる(図1(c))。樹脂の硬化に加熱が必要な場合には、オーブン等を用いて樹脂を注入した繊維強化材4を型2及びバギングフィルム12ごと加熱する。得られた成形品は繊維強化材に樹脂が含浸して硬化した繊維強化プラスチック層16とその表面を覆う樹脂と樹脂拡散基材5が硬化した層18とからなる。注入した樹脂を硬化させる際においても、型2とバギングフィルム12間の気体を排気しながら行うことが好ましい。   The resin impregnated in the fiber reinforcement 4 is cured while exhausting excess resin from the resin discharge ports 6a and 8a to the outside (FIG. 1 (c)). When heating is required for curing the resin, the fiber reinforcement 4 injected with the resin is heated together with the mold 2 and the bagging film 12 using an oven or the like. The obtained molded product is composed of a fiber reinforced plastic layer 16 in which a fiber reinforcing material is impregnated with a resin and cured, a resin covering the surface thereof, and a layer 18 in which the resin diffusion base material 5 is cured. Even when the injected resin is cured, it is preferable to exhaust the gas between the mold 2 and the bagging film 12.

なお、本発明においては、樹脂注入路8と樹脂排出路6の間隔は200cm以下とすることが好ましく、50〜200cmとすることがより好ましい。間隔が50cm未満では多数の樹脂注入路及び樹脂排出路を配置することになることから無駄になる樹脂が多く、200cmを超えると樹脂注入口と樹脂排出口の真空度に差ができ、硬化後に成形物の厚みが異なる傾向がある。例えば、樹脂注入路8と樹脂排出路6の間隔が200cmを超えると、樹脂排出口6aに加えてバルブ10aを開けて樹脂排出口8aから排出を行っても、排出口から最も遠い成形物の中心部分の余分な樹脂を外部に排出することができず、中心部分が厚い成形物となりやすい。   In the present invention, the distance between the resin injection path 8 and the resin discharge path 6 is preferably 200 cm or less, and more preferably 50 to 200 cm. If the interval is less than 50 cm, a lot of resin injection paths and resin discharge paths will be disposed, so that a lot of resin is wasted. If it exceeds 200 cm, the degree of vacuum between the resin injection port and the resin discharge port can be different, and after curing, The thickness of the molded product tends to be different. For example, if the distance between the resin injection path 8 and the resin discharge path 6 exceeds 200 cm, the molded product farthest from the discharge port can be removed even if the valve 10a is opened in addition to the resin discharge port 6a and the resin discharge port 8a is discharged. Excess resin in the central portion cannot be discharged to the outside, and a molded product with a thick central portion tends to be formed.

型2とバギングフィルム12間の排気は、バギングフィルムと下型との間が樹脂注入時には真空度が−0.10〜−0.08MPaとなるように行うことが好ましく、樹脂硬化時には真空度が−0.08〜−0.02MPaとなるように行うことが好ましい。   The exhaust between the mold 2 and the bagging film 12 is preferably performed so that the degree of vacuum between the bagging film and the lower mold is −0.10 to −0.08 MPa when the resin is injected, and the degree of vacuum is set when the resin is cured. It is preferable to carry out so as to be −0.08 to −0.02 MPa.

樹脂拡散基材5は必ずしも使用する必要はないが、樹脂の拡散速度を高めるため使用することが望ましい。成形品から樹脂拡散基材を除去する場合には、必要により繊維強化材4と樹脂拡散基材5の間にピールクロス等を敷設してもよい。   The resin diffusion base material 5 is not necessarily used, but is desirably used in order to increase the resin diffusion rate. When removing the resin diffusion base material from the molded product, a peel cloth or the like may be laid between the fiber reinforcement 4 and the resin diffusion base material 5 as necessary.

また、図1においては1の樹脂注入路と1の樹脂排出路を配置する場合を示したが、複数の樹脂注入路及び樹脂排出路を互いに平行に交互に配置してもよい。複数の樹脂注入路及び樹脂排出路を配置する場合、その間隔は200cm以下とすることが好ましい。   1 shows the case where one resin injection path and one resin discharge path are arranged, a plurality of resin injection paths and resin discharge paths may be alternately arranged in parallel with each other. When arranging a plurality of resin injection paths and resin discharge paths, the interval is preferably 200 cm or less.

図1においては樹脂注入路及び樹脂排出路として有孔チューブを用いたが、樹脂注入路及び樹脂排出路としてはバギングフィルムが排気により変形したときに樹脂の流路を確保することが可能なものであればいかなる形状、材質のものであっても用いることができる。具体的には、有孔チューブの他、スプリング状チューブ、I型、L型等の柱状構造体、突起を有する棒状体等を挙げることができる。   In FIG. 1, a perforated tube is used as the resin injection path and the resin discharge path. However, the resin injection path and the resin discharge path can secure a resin flow path when the bagging film is deformed by exhaust. Any shape and material can be used. Specific examples include a perforated tube, a spring-like tube, a columnar structure such as an I-type or an L-type, a rod-like body having protrusions, and the like.

本発明においては、樹脂注入路又は樹脂排出路として直径3〜20mmの有孔チューブ又はスプリング状チューブを用いることが好ましい。スプリング状チューブは長さの調節と成形面に沿わせることが容易なため最も好ましい。   In the present invention, it is preferable to use a perforated tube or a spring-like tube having a diameter of 3 to 20 mm as the resin injection path or the resin discharge path. Spring-like tubes are most preferred because they are easy to adjust in length and conform to the molding surface.

更に、樹脂注入路及び樹脂排出路として型やゴムシート(バギングフィルムの作用をする)に形成した溝を利用してもよい。型19に形成した溝70を樹脂注入路、溝72を樹脂排出路とする例を図3に示す。型19の材質としては、ゴム、FRP等を使用できる。   Further, grooves formed in a mold or a rubber sheet (which acts as a bagging film) may be used as the resin injection path and the resin discharge path. FIG. 3 shows an example in which the groove 70 formed in the mold 19 is a resin injection path and the groove 72 is a resin discharge path. As the material of the mold 19, rubber, FRP or the like can be used.

本発明においては、樹脂の拡散速度を高めるため、樹脂拡散基材に代えて又は樹脂拡散基材とともに樹脂注入路から樹脂排出路へ樹脂を拡散させるための溝(樹脂拡散用溝)を形成した型、ゴムシート又はプレートを用いてもよい。   In the present invention, in order to increase the diffusion rate of the resin, a groove (resin diffusion groove) for diffusing the resin from the resin injection path to the resin discharge path is formed instead of the resin diffusion base material or together with the resin diffusion base material. A mold, rubber sheet or plate may be used.

樹脂拡散用溝を形成した型の一例として、樹脂注入用溝50と樹脂排出用溝52の間に樹脂拡散用溝54を形成した型51の平面図を図4に示す。また、図5に示す型66のように、樹脂拡散用溝64は、樹脂注入用溝60と、樹脂排出用溝62の間を連続して繋がっていなくてもよい。   FIG. 4 shows a plan view of a mold 51 in which a resin diffusion groove 54 is formed between a resin injection groove 50 and a resin discharge groove 52 as an example of a mold in which a resin diffusion groove is formed. Further, as in the mold 66 shown in FIG. 5, the resin diffusion groove 64 may not be continuously connected between the resin injection groove 60 and the resin discharge groove 62.

樹脂拡散用溝20を形成した型2とバギングフィルム12との間に繊維強化材4をシールした状態と、型2と樹脂拡散用溝22を形成したゴムシート21との間に繊維強化材4をシールした状態の一例をそれぞれ図6、7に示す。   The fiber reinforcing material 4 is sealed between the mold 2 in which the resin diffusion groove 20 is formed and the bagging film 12 and the rubber reinforcing material 4 is sealed between the mold 2 and the rubber sheet 21 in which the resin diffusion groove 22 is formed. FIGS. 6 and 7 show examples of the state where the seal is sealed, respectively.

樹脂拡散用溝として型やゴムシートに形成する溝は、樹脂の流路となるものであれば特に限定はないが、幅0.5〜5mm、深さ1〜5mm、長さ方向に直角断面の断面積0.5〜25mm2とすることが好ましい。断面積が0.5mm2未満では樹脂の拡散速度が遅くなりやすく、25mm2を超えると利用されない樹脂量が増加して不経済となる傾向がある。 The groove formed in the mold or rubber sheet as the resin diffusion groove is not particularly limited as long as it becomes a resin flow path, but the width is 0.5 to 5 mm, the depth is 1 to 5 mm, and the cross section is perpendicular to the length direction. The cross-sectional area is preferably 0.5 to 25 mm 2 . If the cross-sectional area is less than 0.5 mm 2 , the diffusion rate of the resin tends to be slow, and if it exceeds 25 mm 2 , the amount of resin that is not used tends to increase and it becomes uneconomical.

長さ方向に直角断面の溝の形状は特に制限されず、U字状、V字状、半円状、多角状等任意の形状とすることができる。   The shape of the groove having a cross section perpendicular to the length direction is not particularly limited, and may be an arbitrary shape such as a U shape, a V shape, a semicircle, or a polygon.

樹脂拡散用溝の間隔は20〜200mmとすることが好ましい。間隔が20mm未満では無駄になる樹脂が多く、200mmを超えると繊維強化材への樹脂含浸スピードが遅く、未含浸の部分が生じやすい。   The interval between the resin diffusion grooves is preferably 20 to 200 mm. If the interval is less than 20 mm, a lot of the resin is wasted, and if it exceeds 200 mm, the resin impregnation speed to the fiber reinforcement is slow, and an unimpregnated portion tends to occur.

ゴムシートに溝を形成する方法としては、例えば厚さ2〜10mm程度のゴムシートに溝加工を行う方法、未加硫ゴムを突起を有する型に流し込みその後加硫する方法、未加硫のゴムシートを突起を有する型に載せた後加硫する方法等を挙げることができる。   As a method of forming grooves in the rubber sheet, for example, a method of performing groove processing on a rubber sheet having a thickness of about 2 to 10 mm, a method of pouring unvulcanized rubber into a mold having protrusions, and then vulcanizing, a non-vulcanized rubber Examples thereof include a method of vulcanizing after placing the sheet on a mold having protrusions.

溝を形成するゴムシートの材質は溝を形成することができるものであれば公知のものが使用できるが、例えばシリコーンゴム、フッ素ゴム、ウレタンゴム、天然ゴム、ブタジエンゴム、アクリルゴム、ニトリルゴム等を挙げることができる。   As the material of the rubber sheet forming the groove, any known material can be used as long as it can form the groove. For example, silicone rubber, fluorine rubber, urethane rubber, natural rubber, butadiene rubber, acrylic rubber, nitrile rubber, etc. Can be mentioned.

溝を形成する場合、ゴムシートの硬度(JIS K 6301に準拠)は25〜80とすることが好ましい。   When forming the groove, the rubber sheet preferably has a hardness (conforming to JIS K 6301) of 25-80.

未加硫ゴムを加硫して製造するゴムシートの形状は特に制限されず目的とする成形品の形状等により適宜選択することができるが、厚さ2〜10mmのものを用いることが好ましい。   The shape of the rubber sheet produced by vulcanizing the unvulcanized rubber is not particularly limited and can be appropriately selected depending on the shape of the target molded product, etc., but it is preferable to use one having a thickness of 2 to 10 mm.

また、樹脂拡散用溝は、バギングフィルムと型との間に溝を形成したプレートを挿入して形成してもよい。型2に敷設した繊維強化材4とバギングフィルム12の間に樹脂拡散用溝24を形成したプレート30を挿入して用いた例を図8に示す。プレートとしては上記の溝を形成したゴムシートや板厚みが1〜5mmtのFRP板、金属板等を用いることができる。   Further, the resin diffusion groove may be formed by inserting a plate in which a groove is formed between the bagging film and the mold. FIG. 8 shows an example in which a plate 30 having a resin diffusion groove 24 formed between the fiber reinforcement 4 laid on the mold 2 and the bagging film 12 is inserted. As the plate, a rubber sheet in which the groove is formed, an FRP plate having a thickness of 1 to 5 mmt, a metal plate, or the like can be used.

本発明においては異なる形態の樹脂拡散用溝を組み合わせて用いてもよい。   In the present invention, different forms of resin diffusion grooves may be used in combination.

上記説明においては型とバギングフィルム又はゴムシートを用いて成形を行う場合を示したが、本発明においては分割型を用いてもよい。分割型を用いた場合の一例を図9に示す。   In the above description, a case where molding is performed using a mold and a bagging film or a rubber sheet is shown, but a split mold may be used in the present invention. An example in the case of using the split type is shown in FIG.

下型36に繊維強化材4を敷設した後、樹脂拡散用溝38を形成した上型42を重ねて型締めし、Oリング44で上型42と下型36とをシールする。その後、バギングフィルムを用いた場合と同様にして成形を行う。   After the fiber reinforcing material 4 is laid on the lower die 36, the upper die 42 having the resin diffusion groove 38 is overlapped and clamped, and the upper die 42 and the lower die 36 are sealed with an O-ring 44. Then, it shape | molds like the case where a bagging film is used.

樹脂拡散用溝は下型に形成してもよいし、図8に示す溝を形成したプレートを挿入して用いてもよい。   The resin diffusion groove may be formed in the lower mold, or a plate in which the groove shown in FIG. 8 is formed may be inserted.

分割型の材質としては特に制限されず、例えばFRP型、金型等が使用できる。   The material of the split mold is not particularly limited, and for example, an FRP mold or a mold can be used.

本発明で用いる繊維強化材としては、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、金属繊維等の通常の繊維強化材に用いる材料が使用できる。中でも、炭素繊維、ガラス繊維、アラミド繊維が好ましい。   As the fiber reinforcing material used in the present invention, materials used for ordinary fiber reinforcing materials such as carbon fiber, glass fiber, aramid fiber, boron fiber, and metal fiber can be used. Among these, carbon fiber, glass fiber, and aramid fiber are preferable.

繊維強化材の形態は特に制限されず、織物、編物、不織布等が利用できる。   The form of the fiber reinforcement is not particularly limited, and woven fabrics, knitted fabrics, nonwoven fabrics, and the like can be used.

繊維強化材として織物を用いる場合にはいずれの織形式のものを用いても良いが、それ自体が面対称のものを用いるか、複数の繊維強化材を面対称となるように組み合わせて積重し使用することが好ましい。面対称の繊維強化材あるいは積重して面対称とした繊維強化材を用いることにより、成形品とした際に成形品の反りを防止できる。   When weaving is used as the fiber reinforcing material, any woven type may be used, but the material itself is plane symmetric, or a plurality of fiber reinforcing materials are combined in a plane symmetric manner and stacked. It is preferable to use it. By using a plane symmetric fiber reinforcement or a piled and plane symmetric fiber reinforcement, it is possible to prevent warping of the molded product when formed into a molded product.

面対称の織物又は積重して面対称とすることができる織物としては、一方向織物、多軸織物を挙げることができる。   Examples of the plane-symmetric fabric or the fabric that can be stacked to be plane-symmetric include a unidirectional fabric and a multiaxial fabric.

なお、一方向織物とは、平行に並んだ繊維強化材の束(ストランド)をナイロン糸、ポリエステル糸、ガラス繊維糸等で編んだ織物をいう。多軸織物とは、一方向に引き揃えた繊維強化材の束をシート状にして角度を変えて積層し、ナイロン糸、ポリエステル糸、ガラス繊維糸等でステッチした織物をいう。   The unidirectional woven fabric refers to a woven fabric in which bundles of fiber reinforcing materials arranged in parallel are knitted with nylon yarn, polyester yarn, glass fiber yarn or the like. A polyaxial woven fabric refers to a woven fabric in which bundles of fiber reinforcements aligned in one direction are formed in a sheet shape and laminated at different angles and stitched with nylon yarn, polyester yarn, glass fiber yarn or the like.

好ましい多軸織物の例としては、〔0/−45/−45/0〕、〔0/+45/−45/−45/+45/0〕、〔0/+45/90/−45/−45/90/+45/0〕等を挙げることができる。積重して面対称となる多軸織物の組合わせとしては、例えば〔0/−45〕及び〔−45/0〕、〔0/+45/−45〕及び〔−45/+45/0〕、〔0/+45/−45/90〕及び〔90/−45/+45/0〕等を挙げることができる。0、±45、90は、多軸織物を構成する各層の積層角度を表し、それぞれ一方向に引き揃えた繊維強化材の繊維軸方向が織物の長さ方向に対して0°、±45°、90°であることを示している。積層角度はこれらの角度に限定されず、任意の角度とすることができる。   Examples of preferred multiaxial fabrics include [0 / -45 / -45 / 0], [0 / + 45 / -45 / -45 / + 45/0], [0 / + 45/90 / -45 / -45 / 90 / + 45/0]. For example, [0 / −45] and [−45/0], [0 / + 45 / −45] and [−45 / + 45/0], [0 / + 45 / −45 / 90] and [90 / −45 / + 45/0] can be exemplified. 0, ± 45, 90 represents the lamination angle of each layer constituting the multiaxial woven fabric, and the fiber axis direction of the fiber reinforcing material aligned in one direction is 0 °, ± 45 ° with respect to the length direction of the woven fabric. , 90 °. The stacking angle is not limited to these angles, and can be any angle.

多軸織物の厚さは、成形品の用途により適宜選択するものであるが、通常0.2〜3mmが好ましい。   The thickness of the multiaxial woven fabric is appropriately selected depending on the application of the molded product, but is usually preferably 0.2 to 3 mm.

繊維強化材の目付は1枚当り200〜4000g/m2が好ましく、400〜2000g/m2がより好ましい。 Basis weight of the fibrous reinforcement is preferably one per 200~4000g / m 2, 400~2000g / m 2 is more preferable.

本発明の樹脂トランスファー成形法で用いる樹脂としては、通常成形品の製造に用いる熱硬化性樹脂が使用できる。具体的には、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂、シリコン樹脂、マレイミド樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、マレイミド樹脂とシアン酸エステル樹脂を予備重合した樹脂等が挙げられ、本発明においてはこれらの樹脂の混合物を使用することもできる。繊維強化複合材料を用途とする場合には、耐熱性、弾性率、耐薬品性に優れたエポキシ樹脂組成物、ビニルエステル樹脂組成物が好ましい。これらの熱硬化性樹脂には、硬化剤、硬化促進剤以外に着色剤や各種添加剤等が含まれていてもよい。   As the resin used in the resin transfer molding method of the present invention, a thermosetting resin usually used for the production of a molded product can be used. Specifically, epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, polyurethane resin, silicon resin, maleimide resin, vinyl ester resin, cyanate ester resin, resin obtained by prepolymerizing maleimide resin and cyanate ester resin, etc. In the present invention, a mixture of these resins can also be used. When a fiber reinforced composite material is used, an epoxy resin composition and a vinyl ester resin composition excellent in heat resistance, elastic modulus, and chemical resistance are preferable. These thermosetting resins may contain a colorant, various additives and the like in addition to the curing agent and the curing accelerator.

熱硬化性樹脂は、加熱等により注入時の粘度を0.01〜1Pa・sとすることが好ましい。   The thermosetting resin preferably has a viscosity at the time of injection of 0.01 to 1 Pa · s by heating or the like.

次に、本発明のサンドイッチ積層板の製造方法について図10を参照して説明する。   Next, a method for manufacturing the sandwich laminate of the present invention will be described with reference to FIG.

離型処理した型2上に、繊維強化材4a、コア材5、繊維強化材4bを順次積重する。その後、チューブ6(樹脂排出路)及び8(樹脂注入路)を配置した後、バギングフィルム12で積層材料を密封し、上記の樹脂トランスファー成形法と同様にしてサンドイッチ積層板を製造する。   A fiber reinforcing material 4a, a core material 5, and a fiber reinforcing material 4b are sequentially stacked on the mold 2 subjected to the mold release treatment. Thereafter, after the tubes 6 (resin discharge path) and 8 (resin injection path) are arranged, the laminated material is sealed with the bagging film 12, and a sandwich laminate is produced in the same manner as in the resin transfer molding method described above.

樹脂注入路及び樹脂排出路は上記の樹脂トランスファー成形法と同じ形態とすることができる。また、コア材5には樹脂拡散用溝を形成することが好ましい。   The resin injection path and the resin discharge path can have the same form as the above-described resin transfer molding method. Further, it is preferable to form a resin diffusion groove in the core material 5.

コア材としては、ウレタンフォーム、塩化ビニルフォーム、ポリメタアクリルイミドフォーム、アクリルフォーム、フェノールフォーム、ポリスチレンフォーム等が例示できる。また、バルサ材も使用できる。   Examples of the core material include urethane foam, vinyl chloride foam, polymethacrylimide foam, acrylic foam, phenol foam, and polystyrene foam. Balsa wood can also be used.

コア材の厚さはサンドイッチ積層板の用途により適宜選択するものであるが、通常3〜200mmが好ましい。   The thickness of the core material is appropriately selected depending on the use of the sandwich laminate, but is usually preferably 3 to 200 mm.

以下、実施例により本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例
離型処理したアルミ板の上に幅50cm×長さ150cmにカットした東邦テナックス社製炭素繊維織物W−3101を10枚積層した。その上にピールクロスRelease Ply C(AIRTECH社製)と樹脂拡散基材のResin Flow 60(AIRTECH社製)を積層した。その後、アルミ板にシーラントテープと樹脂注入路及び樹脂排出路としてφ10mmのスパイラル(スプリング状)チューブ2本を炭素繊維織物の長さ方向に配置し、更に樹脂注入口と樹脂排出口の形成のためスプリング状チューブの両端にホースを配置した。バギングフィルムで積層した炭素繊維織物とチューブを覆い、樹脂注入口及び樹脂排出口を除く全体をシーラントテープで密封した。その後、樹脂注入用φ12mmのホースの両端(樹脂注入口と樹脂排出口)を閉じて樹脂排出用φ12mmのホースの一端側に形成した樹脂排出口から真空ポンプでバギングフィルム内を−0.1MPaに減圧した。次いで、リポキシR−806(昭和高分子社製)を100質量部、パーメリックN(日本油脂社製)を1.0質量部、6%ナフテン酸コバルト(関東化学社製)を0.5質量部混合した混合液を、25℃雰囲気下、真空度−0.1MPaで樹脂注入用φ12mmのホースの一端側に形成した樹脂注入口から炭素繊維織物に注入した。樹脂注入後、真空度を−0.05MPaに調整し、樹脂注入口を閉め、樹脂注入用ホースの他端側に形成した樹脂排出口を開け、樹脂注入用ホースの排出口からも真空度−0.05MPaで減圧し、硬化させた。
Example 10 pieces of carbon fiber woven fabric W-3101 manufactured by Toho Tenax Co., Ltd. cut to a width of 50 cm and a length of 150 cm were laminated on a release-treated aluminum plate. On top of that, peel cloth Release Ply C (manufactured by AIRTECH) and resin diffusion base material Resin Flow 60 (manufactured by AIRTECH) were laminated. After that, two φ10mm spiral (spring-like) tubes are placed in the length direction of the carbon fiber fabric as sealant tape, resin injection path and resin discharge path on the aluminum plate, and further for forming the resin injection port and resin discharge port A hose was placed at each end of the spring-like tube. The carbon fiber fabric laminated with the bagging film and the tube were covered, and the whole except the resin inlet and the resin outlet was sealed with a sealant tape. Thereafter, both ends (resin injection port and resin discharge port) of the resin injection φ12 mm hose are closed, and the inside of the bagging film is set to −0.1 MPa by a vacuum pump from the resin discharge port formed on one end side of the resin discharge φ12 mm hose. The pressure was reduced. Next, 100 parts by mass of Lipoxy R-806 (manufactured by Showa Polymer Co., Ltd.), 1.0 part by mass of Permeric N (manufactured by Nippon Oil & Fats Co., Ltd.), and 0.5 part by mass of 6% cobalt naphthenate (manufactured by Kanto Chemical Co., Inc.) The mixed liquid mixture was injected into the carbon fiber fabric from a resin injection port formed at one end of a φ12 mm hose for resin injection at a vacuum degree of −0.1 MPa in an atmosphere of 25 ° C. After resin injection, the degree of vacuum is adjusted to -0.05 MPa, the resin injection port is closed, the resin discharge port formed on the other end of the resin injection hose is opened, and the degree of vacuum is also from the discharge port of the resin injection hose- Reduced pressure at 0.05 MPa and cured.

得られた成形物(実施品)は、板厚みのばらつきが少ないものであった。   The obtained molded product (practical product) had little variation in plate thickness.

比較例
樹脂排出用ホースのみから樹脂を排出し、樹脂注入用ホースからは樹脂を排出しないことを除いては実施例と同様にして成形物(比較品)を得た。
Comparative Example A molded product (comparative product) was obtained in the same manner as in the example except that the resin was discharged only from the resin discharge hose and the resin was not discharged from the resin injection hose.

実施品及び比較品の樹脂注入路付近、中心部、樹脂排出路付近の板厚みを測定した結果を表1に示す。   Table 1 shows the results of measurement of the plate thickness in the vicinity of the resin injection path, the central portion, and the vicinity of the resin discharge path of the implemented product and the comparative product.

表 1
─────────────────────────
実施品 比較品
─────────────────────────
樹脂注入路付近 2.1 2.1
中心部 2.1 2.1
樹脂排出路付近 2.1 2.4〜2.5
─────────────────────────
(単位:mmt)
Table 1
─────────────────────────
Product Comparison product ─────────────────────────
Near the resin injection path 2.1 2.1
Center 2.1 2.1
Near resin discharge path 2.1 2.4-2.5
─────────────────────────
(Unit: mmt)

本発明の樹脂トランスファー成形法の一例を示すフロー図で、(a)は繊維強化材をバギングフィルムと型との間にシールした状態を示す断面図、(b)はバギングフィルムと型との間を減圧した状態を示す断面図、(c)は繊維強化材に樹脂を含浸させた状態を示す断面図である。It is a flowchart which shows an example of the resin transfer molding method of this invention, (a) is sectional drawing which shows the state which sealed the fiber reinforcement material between the bagging film and the type | mold, (b) is between a bagging film and a type | mold. Sectional drawing which shows the state which reduced pressure, (c) is sectional drawing which shows the state which made the fiber reinforcement material impregnate resin. 図1(a)のバギングフィルムを取り除いた状態を示す平面図である。It is a top view which shows the state which removed the bagging film of Fig.1 (a). 本発明の樹脂トランスファー成形法の他の例であって、型に形成した溝を樹脂注入路及び樹脂排出路とする例を示す断面図である。It is sectional drawing which is another example of the resin transfer molding method of this invention, Comprising: The groove | channel formed in the type | mold is used as the resin injection path and the resin discharge path. 本発明に用いる樹脂拡散用溝を形成した型の一例を示す平面図である。It is a top view which shows an example of the type | mold which formed the groove | channel for resin diffusion used for this invention. 本発明に用いる樹脂拡散用溝を形成した型の他の例を示す平面図である。It is a top view which shows the other example of the type | mold which formed the groove | channel for resin diffusion used for this invention. 本発明の樹脂トランスファー成形法の他の例であって、型の一面に溝を形成した例を示す断面図である。It is sectional drawing which is another example of the resin transfer molding method of this invention, Comprising: The example which formed the groove | channel on one surface of a type | mold. 本発明の樹脂トランスファー成形法の他の例であって、ゴムシートに溝を形成した例を示す断面図である。It is sectional drawing which is another example of the resin transfer molding method of this invention, Comprising: The example which formed the groove | channel in the rubber sheet. 本発明の樹脂トランスファー成形法の他の例であって、溝を形成したプレートを配置した例を示す断面図である。It is sectional drawing which is another example of the resin transfer molding method of this invention, Comprising: The example which has arrange | positioned the plate in which the groove | channel was formed. 本発明の樹脂トランスファー成形法の他の例であって、分割型の上型に溝を形成した例を示す断面図である。It is sectional drawing which is another example of the resin transfer molding method of this invention, Comprising: The example which formed the groove | channel in the split type upper mold | type. 本発明のサンドイッチ積層板の製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the sandwich laminated board of this invention.

符号の説明Explanation of symbols

2 型
4 繊維強化材
5 樹脂拡散基材(メディア)
6、8 チューブ
10 バルブ
12 バギングフィルム
14 シーラント
16 樹脂含浸層
18 樹脂層
6a、8a 樹脂排出口
8b 樹脂注入口
Type 2 4 Fiber reinforcement 5 Resin diffusion base material (media)
6, 8 Tube 10 Valve 12 Bagging film 14 Sealant 16 Resin impregnated layer 18 Resin layer 6a, 8a Resin outlet 8b Resin inlet

Claims (8)

下型に敷設した繊維強化材上にバギングフィルム又は上型を重ねて当該バギングフィルム周縁を下型に気密にシールし又は上型と下型とを型締めし、バギングフィルム又は上型と下型との間を排気すると共に繊維強化材に樹脂を注入して硬化させる樹脂トランスファー成形法において、バギングフィルム又は上型と下型との間に互いに平行な樹脂注入路と樹脂排出路を交互に又は1づつ設けて樹脂注入路から樹脂の注入を行うと共にバギングフィルム又は上型と下型との間を樹脂排出路から排気して樹脂を樹脂注入路から樹脂排出路まで充満させた後、樹脂注入路と樹脂排出路とから樹脂を排出させながら硬化させることを特徴とする樹脂トランスファー成形法。 A bagging film or upper mold is overlapped on the fiber reinforcement laid in the lower mold, and the periphery of the bagging film is hermetically sealed to the lower mold, or the upper mold and the lower mold are clamped, and the bagging film or the upper mold and the lower mold are sealed. In a resin transfer molding method in which a resin is injected into a fiber reinforcement and cured by resin, a bagging film or a resin injection path and a resin discharge path that are parallel to each other between an upper mold and a lower mold are alternately or Resin is injected from the resin injection path by filling the resin from the resin injection path by exhausting the bagging film or between the upper mold and the lower mold from the resin discharge path. A resin transfer molding method characterized in that the resin is cured while being discharged from a path and a resin discharge path. 樹脂注入路と樹脂排出路の間隔が200cm以下である請求項1に記載の樹脂トランスファー成形法。 The resin transfer molding method according to claim 1, wherein the distance between the resin injection path and the resin discharge path is 200 cm or less. バギングフィルム又は上型と下型との間の樹脂注入時の真空度が−0.10〜−0.08MPaであり、樹脂を硬化させる時の真空度が−0.08〜−0.02MPaである請求項1又は2に記載の樹脂トランスファー成形法。 The degree of vacuum when injecting the resin between the bagging film or the upper mold and the lower mold is -0.10 to -0.08 MPa, and the degree of vacuum when curing the resin is -0.08 to -0.02 MPa. The resin transfer molding method according to claim 1 or 2. 注入時の樹脂の粘度が0.01〜1Pa・sである請求項1乃至3のいずれかに記載の樹脂トランスファー成形法。 The resin transfer molding method according to any one of claims 1 to 3, wherein the viscosity of the resin at the time of injection is 0.01 to 1 Pa · s. 下型の一面上に、繊維強化材、コア材、繊維強化材を順次積重し、これらの上にバギングフィルム又は上型を重ねて当該バギングフィルム周縁を下型に気密にシールし又は下型と上型とを型締めし、バギングフィルム又は上型と下型との間を排気すると共に繊維強化材に樹脂を注入して硬化させるサンドイッチ積層板の製造方法において、バギングフィルム又は上型と下型との間に互いに平行な樹脂注入路と樹脂排出路を交互に又は1づつ設けて樹脂注入路から樹脂の注入を行うと共にバギングフィルム又は上型と下型との間を樹脂排出路から排気して樹脂を樹脂注入路から樹脂排出路まで充満させた後、樹脂注入路及び樹脂排出路とから樹脂を排出させながら硬化させることを特徴とするサンドイッチ積層板の製造方法。 A fiber reinforcing material, a core material, and a fiber reinforcing material are sequentially stacked on one surface of the lower mold, and a bagging film or an upper mold is layered on these layers, and the periphery of the bagging film is hermetically sealed to the lower mold or the lower mold. In the method for manufacturing a sandwich laminate in which a bagging film or an upper mold and a lower mold are evacuated and a resin is injected into a fiber reinforcement and cured, the bagging film or the upper mold and the lower mold are clamped. A resin injection path and a resin discharge path that are parallel to each other are provided between the mold and one by one to inject the resin from the resin injection path and exhaust the bagging film or between the upper mold and the lower mold from the resin discharge path. Then, after the resin is filled from the resin injection path to the resin discharge path, the resin is cured while being discharged from the resin injection path and the resin discharge path. 樹脂注入路と樹脂排出路の間隔が200cm以下である請求項5に記載のサンドイッチ積層板の製造方法。 6. The method for producing a sandwich laminate according to claim 5, wherein the distance between the resin injection path and the resin discharge path is 200 cm or less. バギングフィルム又は上型と下型との間の樹脂注入時の真空度が−0.10〜−0.08MPaであり、樹脂を硬化させる時の真空度が−0.08〜−0.02MPaである請求項5又は6に記載のサンドイッチ積層板の製造方法。 The degree of vacuum when injecting the resin between the bagging film or the upper mold and the lower mold is -0.10 to -0.08 MPa, and the degree of vacuum when curing the resin is -0.08 to -0.02 MPa. A method for producing a sandwich laminate according to claim 5 or 6. 注入時の樹脂の粘度が0.01〜1Pa・sである請求項5乃至7のいずれかに記載のサンドイッチ積層板の製造方法。 The method for producing a sandwich laminate according to any one of claims 5 to 7, wherein the viscosity of the resin at the time of pouring is 0.01 to 1 Pa · s.
JP2004023987A 2004-01-30 2004-01-30 Resin transfer molding method and sandwich laminate manufacturing method Expired - Fee Related JP4471672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004023987A JP4471672B2 (en) 2004-01-30 2004-01-30 Resin transfer molding method and sandwich laminate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004023987A JP4471672B2 (en) 2004-01-30 2004-01-30 Resin transfer molding method and sandwich laminate manufacturing method

Publications (2)

Publication Number Publication Date
JP2005212383A true JP2005212383A (en) 2005-08-11
JP4471672B2 JP4471672B2 (en) 2010-06-02

Family

ID=34906819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004023987A Expired - Fee Related JP4471672B2 (en) 2004-01-30 2004-01-30 Resin transfer molding method and sandwich laminate manufacturing method

Country Status (1)

Country Link
JP (1) JP4471672B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130731A (en) * 2004-11-04 2006-05-25 Yokohama Rubber Co Ltd:The Manufacturing method of fiber reinforced resin molded product
JP2007076307A (en) * 2005-09-16 2007-03-29 Toho Tenax Co Ltd Resin transfer molding process
JP2007237604A (en) * 2006-03-09 2007-09-20 Sekisui Chem Co Ltd Vacuum injection molding method of fiber-reinforced resin molded product
JP2007260925A (en) * 2006-03-27 2007-10-11 Toray Ind Inc Fiber reinforced plastic, its manufacturing method and preform
JP2009534236A (en) * 2006-04-26 2009-09-24 スネクマ・プロピュルシオン・ソリド Method for producing fiber layers for the production of composite part preforms
WO2011043253A1 (en) * 2009-10-09 2011-04-14 東レ株式会社 Process and apparatus for producing fiber-reinforced plastic
JP2011083975A (en) * 2009-10-16 2011-04-28 Toray Ind Inc Method of manufacturing fiber reinforced plastic
JP2012507416A (en) * 2008-11-05 2012-03-29 スピリット アエロシステムズ,アイエヌシー. Reusable infusion bag
JP2012224084A (en) * 2011-04-14 2012-11-15 Siemens Ag Method of producing fibre reinforced structure
JP2014504438A (en) * 2011-01-24 2014-02-20 フェン グオアン Power battery pack cooling device
CN104395052A (en) * 2012-10-31 2015-03-04 积水化学工业株式会社 Method and device for manufacturing resin laminate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130731A (en) * 2004-11-04 2006-05-25 Yokohama Rubber Co Ltd:The Manufacturing method of fiber reinforced resin molded product
JP4586500B2 (en) * 2004-11-04 2010-11-24 横浜ゴム株式会社 Manufacturing method of fiber reinforced resin molding
JP2007076307A (en) * 2005-09-16 2007-03-29 Toho Tenax Co Ltd Resin transfer molding process
JP2007237604A (en) * 2006-03-09 2007-09-20 Sekisui Chem Co Ltd Vacuum injection molding method of fiber-reinforced resin molded product
JP2007260925A (en) * 2006-03-27 2007-10-11 Toray Ind Inc Fiber reinforced plastic, its manufacturing method and preform
JP2009534236A (en) * 2006-04-26 2009-09-24 スネクマ・プロピュルシオン・ソリド Method for producing fiber layers for the production of composite part preforms
JP2012507416A (en) * 2008-11-05 2012-03-29 スピリット アエロシステムズ,アイエヌシー. Reusable infusion bag
WO2011043253A1 (en) * 2009-10-09 2011-04-14 東レ株式会社 Process and apparatus for producing fiber-reinforced plastic
JP2011083975A (en) * 2009-10-16 2011-04-28 Toray Ind Inc Method of manufacturing fiber reinforced plastic
JP2014504438A (en) * 2011-01-24 2014-02-20 フェン グオアン Power battery pack cooling device
JP2012224084A (en) * 2011-04-14 2012-11-15 Siemens Ag Method of producing fibre reinforced structure
CN104395052A (en) * 2012-10-31 2015-03-04 积水化学工业株式会社 Method and device for manufacturing resin laminate

Also Published As

Publication number Publication date
JP4471672B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP4515526B2 (en) Resin transfer molding method
US8420002B2 (en) Method of RTM molding
US7785518B2 (en) Method and apparatus for molding composite articles
WO2011043253A1 (en) Process and apparatus for producing fiber-reinforced plastic
JP4471672B2 (en) Resin transfer molding method and sandwich laminate manufacturing method
JP2008514452A (en) Apparatus, system and method for manufacturing composite parts
JP4839523B2 (en) Manufacturing method of fiber reinforced resin
WO2017175809A1 (en) Method for manufacturing composite material
JP2004130723A (en) Method of manufacturing fiber-reinforced resin structure and manufacturing device using this method
JP2007261014A (en) Fiber-reinforced resin plate and manufacturing method
JP4371671B2 (en) Resin transfer molding method and sandwich laminate manufacturing method
JP5843686B2 (en) Manufacturing method of resin diffusion medium and manufacturing method of fiber reinforced plastic molding
JP4824462B2 (en) Manufacturing method of fiber reinforced composite material
JP4764121B2 (en) Resin transfer molding method.
JP2004299178A (en) Resin transfer molding method
JP5638492B2 (en) Fiber-reinforced plastic structure and method for manufacturing the same
JP6048967B2 (en) Manufacturing method and manufacturing apparatus for fiber-reinforced plastic molded body, and elevator wall
JP4586500B2 (en) Manufacturing method of fiber reinforced resin molding
JP2006130733A (en) Manufacturing method of fiber reinforced resin molded product
JP2007261212A (en) Manufacturing process of sandwich laminate
JP2020116771A (en) Molding method
JP2005335242A (en) Method for producing sandwich laminate
JP5156176B2 (en) Manufacturing method of fiber reinforced resin molding
JP2009248511A (en) Manufacturing method of fiber-reinforced member
JP2006181813A (en) Method for producing honeycomb sandwich panel with frequency selection plate laminated

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4471672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees