JP2009045927A - Method of manufacturing fiber reinforced plastic - Google Patents
Method of manufacturing fiber reinforced plastic Download PDFInfo
- Publication number
- JP2009045927A JP2009045927A JP2008184716A JP2008184716A JP2009045927A JP 2009045927 A JP2009045927 A JP 2009045927A JP 2008184716 A JP2008184716 A JP 2008184716A JP 2008184716 A JP2008184716 A JP 2008184716A JP 2009045927 A JP2009045927 A JP 2009045927A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- bag material
- pressure
- reinforcing fiber
- fiber preform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
本発明は、真空RTM(Resin Transfer Molding)成形方法を用いた繊維強化プラスチックの製造方法に関し、特に、強化繊維プリフォームに、部分的に目付が高い、あるいは、密度が高い難含浸部が存在する場合に、簡易な設備を用いて、樹脂をプリフォーム全体に完全に含浸させることができ、安定して優れた品質の繊維強化プラスチック(以下、FRPとも称す)を得ることが可能な繊維強化プラスチックの製造方法に関する。 The present invention relates to a method for producing a fiber reinforced plastic using a vacuum RTM (Resin Transfer Molding) molding method, and in particular, a reinforcing fiber preform has a partially impregnated portion having a high basis weight or a high density. In some cases, the fiber reinforced plastic can be impregnated completely with the resin using a simple equipment and can stably obtain a fiber reinforced plastic (hereinafter also referred to as FRP) of excellent quality. It relates to the manufacturing method.
FRPは軽量で高い機械特性を発揮できる材料であり、各種分野に使用されている。FRPの代表的な製造方法として、RTM(Resin Transfer Molding)法、プリプレグ法、真空RTM成形法などが知られている。 FRP is a lightweight material that can exhibit high mechanical properties, and is used in various fields. As typical FRP manufacturing methods, an RTM (Resin Transfer Molding) method, a prepreg method, a vacuum RTM molding method, and the like are known.
RTM法は、両面金型のキャビティ内に強化繊維を配置し、当該キャビティ内に樹脂を加圧注入して強化繊維に樹脂を注入する成形法であり、金型を加圧保持するプレス機が必要である。プレプレグ法は、プリプレグと称される予め強化繊維に半硬化の樹脂を含浸させたシートを、オートクレーブと呼ばれる圧力釜の中で加熱・加圧して成形する方法であり、いずれも高価な設備が必要となる成形法である。 The RTM method is a molding method in which reinforcing fibers are arranged in a cavity of a double-sided mold, and resin is injected into the cavity by pressurizing and injecting resin into the reinforcing fiber. is necessary. The prepreg method is a method in which a sheet of pre-impregnated reinforcing fiber impregnated with semi-cured resin is heated and pressed in a pressure cooker called an autoclave, both of which require expensive equipment. Is a forming method.
一方、真空RTM成形法は、金型上に強化繊維を配置し、強化繊維全体をバッグ材で密閉してバッグ材内部を減圧し、樹脂を減圧されたバッグ材内部と外部圧力(大気圧)との差圧を利用して樹脂を強化繊維に注入し、樹脂を硬化させ、硬化後に脱型してFRPを得る方法である。真空RTM成形法は、加圧設備などが不要で、非常に簡易な設備で製造できる利点を有する反面、樹脂に高圧をかけて注入するRTM成形法などと異なり、注入圧が大気圧(1気圧)に限られるため、プリフォームの目付が高い場合や、密度が高い場合などには、圧力不足が原因で、樹脂がプリフォーム全体に行き渡らず硬化し、FRPに樹脂の未含浸部が生じる問題があった。また、真空RTM成形装置において、樹脂を加圧して注入した場合、樹脂の圧力でバッグ材が押し上げられ、バッグ材が膨張するため、成形が出来ないと言う問題があった。 On the other hand, in the vacuum RTM molding method, reinforcing fibers are arranged on a mold, the entire reinforcing fibers are sealed with a bag material, the inside of the bag material is decompressed, and the inside of the bag material is decompressed and the external pressure (atmospheric pressure) The resin is injected into the reinforcing fiber using the pressure difference between the resin and the resin, the resin is cured, and after the curing, the mold is removed to obtain FRP. The vacuum RTM molding method does not require pressurization equipment, and has the advantage that it can be manufactured with very simple equipment. On the other hand, unlike the RTM molding method that injects resin under high pressure, the injection pressure is atmospheric (1 atm). When the preform has a high basis weight or has a high density, the resin hardens without reaching the entire preform due to insufficient pressure, resulting in an unimpregnated portion of the resin in the FRP. was there. Further, in the vacuum RTM molding apparatus, when the resin is injected under pressure, the bag material is pushed up by the pressure of the resin, and the bag material expands, which causes a problem that molding cannot be performed.
前記問題を解決するために、真空RTM成形装置全体を加圧釜の中に入れて、バッグ材の外部より全体を加圧して、樹脂を加圧注入する方法(特許文献1)や、ダムを用いて加圧媒体を入れ、外部から加圧して、樹脂を加圧注入する方法(特許文献2)が提案されている。しかしながら、プリフォームに、部分的に目付が高い、あるいは、密度が高い難含浸部が存在し、前記難含浸部の面積がプリフォーム全体の面積に比べて、小さい場合にも、プリフォーム全体を加圧するために、過大な設備が必要となる。そのため、設備費が高価になり、また、運転のエネルギー消費が大きく環境負荷が高いという問題があった。 In order to solve the above problem, the entire vacuum RTM molding device is placed in a pressure kettle, the whole is pressurized from the outside of the bag material, and the resin is pressurized and injected (Patent Document 1) or a dam is used. There has been proposed a method (Patent Document 2) in which a pressurized medium is inserted, pressurized from the outside, and the resin is injected under pressure. However, even if the preform has a partially impregnated portion with a high basis weight or a high density, and the area of the difficultly impregnated portion is smaller than the area of the entire preform, Excessive equipment is required to apply pressure. For this reason, there are problems that the equipment cost becomes expensive and that the energy consumption of operation is large and the environmental load is high.
また、樹脂の含浸性を改善させる方法として、プリフォームに、ニードリングと呼ばれる針で孔をあける方法も提案されている(特許文献3)が、プリフォーム内部の繊維を切断するため、成形品の強度が低下し、品質が低下するという問題があった。
そこで本発明の課題は、真空RTM(Resin Transfer Molding)成形法において、強化繊維プリフォームに、部分的に目付が高い(部分的に板厚が厚い場合もこれに該当する)、あるいは、密度が高い難含浸部が存在する場合に、簡易な設備を用いて、難含浸部だけ樹脂の含浸性を向上させるようにし、最終的に樹脂をプリフォーム全体に完全に含浸させることができるようにして、安定して優れた品質の繊維強化プラスチック(FRP)を得ることが可能な繊維強化プラスチックの製造方法を提供することにある。 Therefore, the problem of the present invention is that, in the vacuum RTM (Resin Transfer Molding) molding method, the reinforcing fiber preform has a partially high basis weight (this also applies when the plate thickness is partially thick), or the density is high. When there is a highly difficult impregnation part, use simple equipment to improve the impregnation of the resin only in the difficult impregnation part, and finally allow the resin to completely impregnate the entire preform. Another object of the present invention is to provide a method for producing a fiber reinforced plastic capable of stably obtaining a fiber reinforced plastic (FRP) of excellent quality.
上記課題を達成するために、本発明は以下の各手段をとる。すなわち、本発明は、金型上に、部分的に目付が高い、あるいは、密度が高い難含浸部が存在する強化繊維プリフォームを配置し、前記強化繊維プリフォーム全体をバッグ材で密閉し、該バッグ材の内部を減圧した後に、樹脂を前記強化繊維プリフォームに注入する繊維強化プラスチックの製造方法であって、前記強化繊維プリフォームの難含浸部を含む部分に配置された膨張抑制部で、前記バッグ材上の一部にバッグ材の膨張を抑制するように膨張抑制治具を配置した状態で、前記膨張抑制部のバッグ材の内部に樹脂を加圧して注入することを特徴とする繊維強化プラスチックの製造方法である。 In order to achieve the above object, the present invention takes the following means. That is, the present invention is arranged on the mold partly reinforcing fiber preform having a high weight per unit area or high-impact impregnated portion, and sealing the entire reinforcing fiber preform with a bag material, A method for producing a fiber reinforced plastic in which a resin is injected into the reinforcing fiber preform after decompressing the inside of the bag material, wherein the expansion suppressing portion is disposed at a portion including the hardly impregnated portion of the reinforcing fiber preform. In the state in which an expansion suppression jig is disposed so as to suppress expansion of the bag material on a part of the bag material, the resin is pressurized and injected into the bag material of the expansion suppression portion. It is a manufacturing method of a fiber reinforced plastic.
また、本発明の別の態様は、金型上に、部分的に目付が高い、あるいは、密度が高い難含浸部が存在する強化繊維プリフォームを配置し、前記強化繊維プリフォーム全体をバッグ材で密閉し、該バッグ材の内部を減圧した後に、樹脂を前記強化繊維プリフォームに注入する繊維強化プラスチックの製造方法であって、前記強化繊維プリフォームの難含浸部を含む部分に配置された加圧部で、前記バッグ材の一部を外部から加圧し、該バッグ材の一部を外部から加圧した状態で、前記加圧部のバッグ材の内部に樹脂を加圧して注入することを特徴とする繊維強化プラスチックの製造方法である。 In another aspect of the present invention, a reinforcing fiber preform having a partially impregnated portion having a high basis weight or a high density is disposed on a mold, and the entire reinforcing fiber preform is a bag material. After sealing the interior of the bag material and depressurizing the inside of the bag material, a method for producing a fiber reinforced plastic in which a resin is injected into the reinforced fiber preform, which is disposed in a portion including the hardly impregnated portion of the reinforced fiber preform. Pressurizing and injecting resin into the bag material of the pressurizing unit in a state in which a part of the bag material is pressurized from the outside by the pressurizing unit and a part of the bag material is pressurized from the outside. Is a method for producing a fiber-reinforced plastic.
本発明に係る繊維強化プラスチックの製造方法によれば、強化繊維プリフォームに、部分的に目付が高い、あるいは、密度が高い難含浸部が存在する場合にも、膨張抑制部や加圧部といった簡易な設備を設けることにより、必要な部分だけ、樹脂を加圧して注入することができるようにし、最終的に樹脂をプリフォーム全体に完全に含浸させることができ、安定して優れた品質の繊維強化プラスチック(FRP)を得ることができる。 According to the method for producing a fiber reinforced plastic according to the present invention, even when the reinforcing fiber preform has a partially impregnated portion having a high basis weight or a high density, the expansion suppressing portion and the pressurizing portion are used. By providing simple equipment, it is possible to pressurize and inject only the necessary part of the resin. Finally, the entire preform can be completely impregnated with the resin, and stable and excellent quality can be achieved. Fiber reinforced plastic (FRP) can be obtained.
以下、本発明を実施するための最良の形態を、図面を参照しながら説明する。なお、本発明は、図面に記載された具体的な態様に限定されるものではない。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. In addition, this invention is not limited to the specific aspect described in drawing.
図1は従来の真空RTM成形法を説明するための構成図である。図2は、本発明の製造方法に係る強化繊維プリフォームの形態を説明するための断面図である。図3は本発明の製造方法に係る第1の実施の形態を説明するための構成図である。 FIG. 1 is a configuration diagram for explaining a conventional vacuum RTM molding method. FIG. 2 is a cross-sectional view for explaining the form of the reinforcing fiber preform according to the production method of the present invention. FIG. 3 is a block diagram for explaining the first embodiment according to the manufacturing method of the present invention.
図1のとおり、金型2上に強化繊維プリフォーム1を配置し、強化繊維プリフォーム全体をバッグ材4で覆って、シーラント3により密閉し、吸引ライン5、真空トラップ6を介して真空ポンプ7と連通されたバッグ材の内部を減圧し、バッグ材の内部と樹脂9にかかる圧力の差圧により、注入ライン8を介して樹脂を強化繊維プリフォームに注入する。樹脂を強化繊維プリフォームの表面に素早く拡散させるために、強化繊維プリフォームの表面に、樹脂拡散媒体18を配置する場合もある。
As shown in FIG. 1, the reinforcing
本発明に係る強化繊維プラスチックの製造方法において、図2(a)の如く、用いられる強化繊維プリフォーム1には、部分的に目付が高い難含浸部19aが存在する。一般的に、樹脂は強化繊維プリフォーム内を含浸しつつ、強化繊維プリフォームの流動抵抗による圧力損失によって、樹脂の流動先端部の圧力が低下していく。また、強化繊維プリフォームには、強化繊維と平行な方向には樹脂の流動抵抗が低く、垂直な方向には流動抵抗が高い特徴がある。したがって、従来の真空RTM成形法では、強化繊維プリフォームの板厚が厚い部分においては、樹脂が板厚方向に含浸しながら圧力損失により流動速度が低下するため、樹脂が板厚方向へ完全に含浸する前に硬化し、成形品に樹脂の未含浸部が生じるといった品質上の不具合の問題があった。
In the reinforcing fiber plastic manufacturing method according to the present invention, as shown in FIG. 2 (a), the reinforcing
また、本発明に係る強化繊維プラスチックの製造方法で用いられる強化繊維プリフォーム1の難含浸部とは、図2(a)の部分的に目付が高い難含浸部19aのみならず、図2(b)の通り、部分的に強化繊維の密度が高い難含浸部19bも含まれる。従来の真空RTM成形法においては、強化繊維プリフォーム中の強化繊維の密度が高いほど、樹脂の流動抵抗が高くなるため、圧力損失が大きくなって、成形品に樹脂の未含浸部が生じる問題があった。
Further, the difficultly impregnated portion of the reinforcing
本発明で用いられる強化繊維プリフォームは、樹脂の含浸されていない強化繊維で構成された繊維構造体を指し、強化繊維としては、例えば、ガラス繊維、炭素繊維、アラミド繊維などがあり、繊維構造体の形態としては、例えば、織物の積層体、3次元の編物などがあり、用途により使い分けられる。 The reinforcing fiber preform used in the present invention refers to a fiber structure composed of reinforcing fibers not impregnated with resin. Examples of reinforcing fibers include glass fibers, carbon fibers, aramid fibers, and the like. Examples of the form of the body include a laminate of woven fabric and a three-dimensional knitted fabric.
本発明においては、図3の如く、強化繊維プリフォーム1の少なくとも難含浸部を含む部分のバッグ材4の上に膨張抑制治具20を配置した、膨張抑制部を設ける。本発明における膨張抑制部とは、膨張抑制治具20とバッグ材4が接する領域を言う。
In the present invention, as shown in FIG. 3, an expansion suppression portion in which an
本発明に係る強化繊維プラスチックの製造方法では、バッグ材4の内部を減圧した後、強化繊維プリフォーム1の少なくとも難含浸部を含む部分のバッグ材4の上に膨張抑制治具20を配置し、該治具と金型2とを膨張抑制治具締結部21でボルト締結する。そして、前記膨張抑制部のバッグ材の内部に、樹脂注入ライン8aを介して、樹脂容器10を連通させて、樹脂容器10内は、加圧ライン11を介して加圧ポンプ12aにより加圧状態にし、バッグ材の内部と樹脂容器10内の圧力の差圧により、樹脂9aを強化繊維プリフォーム1に注入する。
In the method for producing a reinforced fiber plastic according to the present invention, after decompressing the inside of the
樹脂注入中、強化繊維プリフォーム1には樹脂の圧力が付加されるが、膨張抑制治具20に抑えられているため、バッグ材4が膨張すること無く、樹脂は強化繊維プリフォーム内を板厚方向に含浸する。樹脂容器10内の圧力は、樹脂が強化繊維プリフォームの難含浸部全体に完全に含浸するように、高く設定すれば良い。
During the resin injection, the resin pressure is applied to the reinforcing
樹脂は板厚方向に含浸しつつ、水平方向にも含浸し、含浸距離にともなって樹脂の圧力が低下する。したがって、膨張抑制部以外の部分においては、樹脂の圧力が注入口に比べて低下しているため、注入完了時まで膨張抑制部以外の部分の樹脂圧が大気圧より高くならないように、膨張抑制部の位置、樹脂容器内の圧力のいずれか、もしくはその両方を調整することによって、バッグ材を膨張させずに成形することができる。また、樹脂圧が高いままでは、膨張抑制部以外の部分の樹脂圧が大気圧より高くなり膨張する場合には、樹脂を加圧して注入した後、樹脂容器10内を除圧し(すなわち、樹脂に対する加圧を開放して大気圧とし)、大気圧と前記バッグ材4内の差圧で樹脂を注入しても良い。
While the resin is impregnated in the plate thickness direction, it is also impregnated in the horizontal direction, and the pressure of the resin decreases with the impregnation distance. Therefore, since the pressure of the resin is lower than the injection port in the portion other than the expansion suppression portion, the expansion suppression is performed so that the resin pressure in the portion other than the expansion suppression portion does not become higher than the atmospheric pressure until the completion of the injection. By adjusting either the position of the portion, the pressure in the resin container, or both, the bag material can be molded without being inflated. Further, if the resin pressure in the portion other than the expansion suppressing portion is higher than the atmospheric pressure and expands with the resin pressure kept high, the
樹脂が強化繊維プリフォーム1全体に完全に含浸した後、樹脂注入ライン8aを閉止して、樹脂の注入を止め、樹脂を硬化させた後に、金型より脱型すれば、樹脂未含浸部の無い、品質の高い成形品を得ることが出来る。
After the resin is completely impregnated into the reinforcing
本発明に用いられる膨張抑制治具20および該治具の固定方法は、樹脂の圧力で強化繊維プリフォーム1の上昇およびバッグ材4の膨張を抑える機能を有していれば、特に形態が限定されるものでは無い。膨張抑制治具20の材質・形状も特に限定されるものでは無く、樹脂の圧力による変形が微小になるように、強度および剛性が設計されていれば良い。例えば、スチール、ステンレス、アルミ合金などの金属材料、または繊維強化プラスチックなど、弾性率が高い材料を用いることが好ましい。また、該膨張抑制治具20は金型2に結合して固定されていても良いし、金型以外の外部の構造物に固定されていても良く、膨張抑制治具20の固定方法は、取り外しが容易なように、例えばボルトなどの機械締結がなされていることが好ましい。
The
本発明に用いられる膨張抑制治具20は、強化繊維プリフォーム1の難含浸部を押し潰す(加圧する)ように力を加えて配置しても良いし、強化繊維プリフォーム1に力を加えないように配置しても良い。加圧力が高いと強化繊維プリフォーム1内の強化繊維が密になり、樹脂の流動速度が低下するし、バッグ材4との間に隙間を空けると、強化繊維プリフォーム1が浮き上がり、樹脂でバッグ材4が膨張する。すなわち、膨張抑制治具20は、強化繊維プリフォーム1の上昇およびバッグ材4の膨張を抑え、かつ、樹脂が充分に流動するような強化繊維プリフォーム1の密度になるように、適宜配置すれば良い。
The
さらに、本発明に係る製造方法は、強化繊維プリフォームが部分的に目付の高い、もしくは、部分的に強化繊維の密度の高い難含浸部が存在する場合、難含浸部を含む部分を加圧する加圧部を設け、当該加圧部内に樹脂を加圧して注入することによっても、難含浸部では充分に高い圧力で板厚方向に含浸させ、板厚の薄い部分では、大気圧以下の低い圧力で、強化繊維プリフォーム全体に樹脂を完全に含浸させて、樹脂未含浸部の無い、品質の高い成形品を得ることが出来る。 Furthermore, in the manufacturing method according to the present invention, when the reinforcing fiber preform has a partially high basis weight or a partially impregnated part having a high reinforcing fiber density, the part including the hardly impregnated part is pressurized. Even by providing a pressurizing part and pressurizing and injecting resin into the pressurizing part, the impregnated part is impregnated in the thickness direction with a sufficiently high pressure, and the thin part is low below atmospheric pressure. The resin can be completely impregnated with the whole of the reinforcing fiber preform by pressure, and a high-quality molded product having no resin non-impregnated portion can be obtained.
図4は、本発明の製造方法に係る第2の好ましい実施の形態を説明するための構成図であり、図5は図4の装置を上から見たときの平面図である。本発明においては、図4の如く、強化繊維プリフォーム1の少なくとも難含浸部を含む部分の周囲に、ダム13を、シール材15を挟んで設置し、ダムに囲まれた領域に加圧媒体14aを入れて、前記バッグ材の一部を外部から加圧することにより、当該外部から強化繊維プリフォーム1を部分的に加圧する加圧部を設ける。本発明における加圧部とは、加圧媒体14aが配置された領域を言う。また、以下、バッグ材が配置された領域のうち、加圧部以外の部分を、非加圧部と称す。
FIG. 4 is a block diagram for explaining a second preferred embodiment according to the manufacturing method of the present invention, and FIG. 5 is a plan view when the apparatus of FIG. 4 is viewed from above. In the present invention, as shown in FIG. 4, a
本発明に用いられるダムは、上下面が開放され、側面部が気密性を有する壁状の枠体を指し、例えば、金属製の枠体を用いることができる。本発明に係る強化繊維プラスチックの製造方法において、用いられる加圧媒体には、例えば、気体、流体、固体、粉体などがあり、用いられるシール材は、気密状体を保つために、ダムまたはチャンバーと金型及びバッグ材を密閉接続する材料を指し、例えば、ゴム、軟質の樹脂などの弾性体を用いることができる。 The dam used in the present invention refers to a wall-shaped frame body whose upper and lower surfaces are open and whose side surface portions are airtight. For example, a metal frame body can be used. In the method for producing a reinforced fiber plastic according to the present invention, the pressurizing medium used includes, for example, gas, fluid, solid, powder, and the sealing material used is a dam or a dam in order to maintain an airtight body. It refers to a material that hermetically connects the chamber, the mold, and the bag material. For example, an elastic body such as rubber or soft resin can be used.
本発明に係る強化繊維プラスチックの製造方法では、前記バッグ材の一部を外部から加圧することにより、当該外部から強化繊維プリフォーム1を部分的に加圧した状態で、前記加圧部のバッグ材の内部に、樹脂注入ライン8aを介して、樹脂容器10を連通させる。樹脂容器10内は、加圧ライン11を介して加圧ポンプ12aにより加圧状態にし、バッグ材の内部と樹脂容器10内の圧力の差圧により、樹脂9aを強化繊維プリフォーム1に注入する。
In the method for producing a reinforced fiber plastic according to the present invention, a bag of the pressurizing unit is formed in a state where the reinforced
樹脂注入中、強化繊維プリフォーム1には樹脂の圧力が付加されるが、加圧媒体14aにより逆方向に加圧して抑えられているため、バッグ材4が膨張すること無く、樹脂は強化繊維プリフォーム内を板厚方向に含浸する。樹脂容器10内の圧力は、樹脂が強化繊維プリフォームの難含浸部全体に完全に含浸するように、高く設定すれば良い。
During the resin injection, the pressure of the resin is applied to the reinforcing
樹脂は板厚方向に含浸しつつ、水平方向にも含浸し、含浸距離にともなって樹脂の圧力が低下する。したがって、非加圧部においては、樹脂の圧力が注入口に比べて低下しているため、注入完了時まで非加圧部の樹脂圧が大気圧より高くならないように、加圧部の位置、樹脂容器内の圧力のいずれか、もしくはその両方を調整することによって、バッグ材を膨張させずに成形することができる。 While the resin is impregnated in the plate thickness direction, it is also impregnated in the horizontal direction, and the pressure of the resin decreases with the impregnation distance. Therefore, in the non-pressurized part, the resin pressure is lower than that of the injection port, so that the resin pressure of the non-pressurized part does not become higher than the atmospheric pressure until the completion of the injection, By adjusting either or both of the pressures in the resin container, the bag material can be molded without being inflated.
樹脂が強化繊維プリフォーム1全体に完全に含浸した後、樹脂注入ライン8aを閉止して、樹脂の注入を止め、樹脂を硬化させた後に、金型より脱型すれば、樹脂未含浸部の無い、品質の高い成形品を得ることが出来る。
After the resin is completely impregnated into the reinforcing
本発明に係る製造方法により、強化繊維プリフォームが部分的に厚い、もしくは、部分的に強化繊維の密度が高い難含浸部が存在する場合にも、難含浸部を含む部分を加圧する加圧部を設け、当該加圧部内に樹脂を加圧して注入することによって、難含浸部では充分に高い圧力で板厚方向に含浸させ、板厚の薄い部分では、大気圧以下の低い圧力で、強化繊維プリフォーム全体に樹脂を完全に含浸させて、樹脂未含浸部の無い、品質の高い成形品を得ることが出来る。 By the manufacturing method according to the present invention, even when a reinforcing fiber preform is partially thick or a partially impregnated part having a high reinforcing fiber density is present, pressurizing a part including the hardly impregnated part By injecting the resin into the pressurizing part by pressurizing the resin, the impregnated part is impregnated in the plate thickness direction with a sufficiently high pressure, and in the thin part of the plate thickness, at a low pressure below atmospheric pressure, By completely impregnating the entire reinforcing fiber preform with the resin, a high-quality molded product having no resin non-impregnated portion can be obtained.
図6は本発明の製造方法に係る第3の実施の形態を説明するための構成図である。図6のとおり、強化繊維プリフォーム1の少なくとも難含浸部を含む部分の周囲に、チャンバー16を、シール材15を挟んで設置し、チャンバー内に袋体17を設置し、袋体の中に加圧ポンプ12bにより加圧媒体14bを入れて、バッグ材の外部より加圧することもできる。袋体17を設置せずに、直接、チャンバー内に加圧媒体を入れても良い。
FIG. 6 is a block diagram for explaining a third embodiment according to the manufacturing method of the present invention. As shown in FIG. 6, a
本発明に用いられるチャンバーは、金型およびバッグ材の上に配置され、金型およびバッグ材との間に空間を形成する箱状体を指す。前記空間は気密状態で、密閉接続されることが好ましく、密閉接続には、シール材13を使用しても良い。また、前記チャンバーは、加圧媒体の圧力に耐えるように、材料、板厚が設定され、例えば、金属製の半円筒の箱状体を用いることができる。
The chamber used for this invention points out the box-shaped body which is arrange | positioned on a metal mold | die and a bag material, and forms a space between a metal mold | die and a bag material. The space is preferably hermetically connected in a hermetic state, and a sealing
本発明に係る製造方法に用いられる袋体は、内部の気密状態を保つことができる袋状のものを指す。袋体の材料としては、例えば、熱可塑製樹脂を使用しても良く、ポリプロピレンやポリエチレン、ナイロンが使用できる。また場合によっては、樹脂フィルムの他、クロロプレン、ポリイソプレン、ブタジエン、シリコーンなどのゴムを使用しても良い。 The bag body used for the manufacturing method according to the present invention refers to a bag-like one that can maintain an internal airtight state. As the material of the bag body, for example, a thermoplastic resin may be used, and polypropylene, polyethylene, and nylon can be used. In some cases, rubber such as chloroprene, polyisoprene, butadiene, and silicone may be used in addition to the resin film.
本発明に係る製造方法において、バッグ材を外部から加圧する方法は、部分的に強化繊維プリフォームを加圧する機能を有する方法であれば特に限定しないが、簡易な設備で、バッグ材全体を均等に加圧できるため、加圧部をダムやチャンバーで構成し、当該ダムやチャンバーに加圧媒体を入れる方法を用いることが好ましい。また、バッグ材とチャンバー間の加圧媒体のリークを容易に防止することができるため、チャンバー内に袋体を設置することが、より好ましい形態である。錘やプレス機などでバッグ外から加圧する方法を用いても良い。 In the manufacturing method according to the present invention, the method of pressurizing the bag material from the outside is not particularly limited as long as it is a method having a function of partially pressurizing the reinforcing fiber preform, but the entire bag material is evenly arranged with simple equipment. Therefore, it is preferable to use a method in which the pressurizing part is composed of a dam or a chamber and a pressurizing medium is put into the dam or chamber. In addition, since it is possible to easily prevent leakage of the pressurized medium between the bag material and the chamber, it is a more preferable form to install the bag body in the chamber. You may use the method of pressurizing from the bag outside with a weight, a press machine, etc.
また、図4の通り、非加圧部には、バッグ材の内部に注入ライン8bを介して樹脂9bを連通させ、バッグ材の内部と樹脂にかかる大気圧の差圧により樹脂を注入しても良い。加圧部の注入ライン8aとは別に注入ライン8bを設けることにより、非加圧部において、確実に樹脂の圧力を大気圧以下にすることが出来るため、容易にバッグ材を膨張させずに成形することができる。 Also, as shown in FIG. 4, the non-pressurized portion is made to communicate with the resin 9b through the injection line 8b inside the bag material, and the resin is injected by the pressure difference between the bag material and the atmospheric pressure applied to the resin. Also good. By providing the injection line 8b separately from the injection line 8a of the pressurizing part, the pressure of the resin can be surely reduced to the atmospheric pressure or less in the non-pressurized part, so that the bag material is not easily expanded. can do.
また、強化繊維プリフォームの表面には樹脂拡散媒体18を配置しても良い。本発明において、樹脂拡散媒体18を配置する場合には、加圧部と非加圧部の間は、樹脂拡散媒体を分離することが好ましい。樹脂拡散媒体自体は流動抵抗が小さく、樹脂流動時の圧力損失が小さいため、樹脂拡散媒体に樹脂を加圧注入した場合、樹脂拡散媒体内の樹脂の圧力は均一に高くなる。したがって、樹脂拡散媒体を分離することによって、加圧部と非加圧部の間の流動抵抗を高くすることにより、加圧部から非加圧部に流動する樹脂の圧力を低下することができ、非加圧部の樹脂の圧力を容易に大気圧以下にすることができる。
A
樹脂拡散媒体を分離する方法としては、樹脂拡散媒体間の抵抗を、樹脂拡散媒体より高くできる方法であれば、特に限定はしないが、樹脂拡散媒体の間に隙間を設けても良いし、樹脂拡散媒体の空隙部を塞いでも良いし、樹脂拡散媒体の間に高抵抗体を入れても良い。 The method for separating the resin diffusion medium is not particularly limited as long as the resistance between the resin diffusion media can be higher than that of the resin diffusion medium, but a gap may be provided between the resin diffusion media or the resin. The gap of the diffusion medium may be closed, or a high resistance body may be inserted between the resin diffusion media.
前記加圧部において、前記バッグ材の外部からかかる圧力が高く、樹脂硬化後に成形品の加圧部の板厚が薄くなり過ぎる場合には、前記樹脂の注入を停止した後に、加圧部を除圧して(すなわち、ダムまたはチャンバー内の加圧を開放して大気圧として)から樹脂を硬化させても良い。 In the pressurizing part, when the pressure applied from the outside of the bag material is high and the plate thickness of the pressurizing part of the molded product becomes too thin after the resin is cured, after the injection of the resin is stopped, The resin may be cured after the pressure is removed (ie, the pressure in the dam or chamber is released to atmospheric pressure).
(実施例1)
東レ株式会社性炭素繊維T800S(PAN系炭素繊維、24,000フィラメント)の一方向織物(目付190g/m2)にPES(ポリエーテルスルホン)を主成分とする高靭性化樹脂粒子を分散付与した一方向性炭素繊維織物(東レ株式会社製、品名CZ8431DP)を、幅300mm×長さ250mmの大きさに16枚切断し、さらに、幅が300mmで、長さを150mmから181mmまで1mm毎に変化させた大きさに32枚切断した。次に、300mm×300mmの炭素繊維織物を16枚積層し、さらに、32枚の炭素繊維織物を長い方から順次積層して、図2(a)の如く、部分的に板厚の厚い難含浸部19aが存在する、強化繊維プリフォーム1を用意した。
Example 1
Toray Co., Ltd. carbon fiber T800S (PAN-based carbon fiber, 24,000 filaments) was unidirectionally woven (weight per unit: 190 g / m 2 ) to which toughened resin particles mainly composed of PES (polyether sulfone) were dispersed and applied. 16 unidirectional carbon fiber fabrics (product name: CZ8431DP, manufactured by Toray Industries, Inc.) are cut into 16 pieces each having a width of 300 mm and a length of 250 mm. Further, the width is 300 mm and the length is changed from 150 mm to 181 mm every 1 mm. 32 sheets were cut to the size. Next, 16 pieces of 300 mm × 300 mm carbon fiber woven fabrics were laminated, and 32 carbon fiber woven fabrics were laminated in order from the longer one, and as shown in FIG. A reinforcing
図3のとおり、スチール製の平板状金型1(平均板厚20mm)の上に、強化繊維プリフォーム1を配置した。強化繊維プリフォーム1をバッグ材4(ナイロン製フィルム、0.05mm厚さ)で覆い、シーラント3(RICHMOND製、SM5126)で周囲を密閉し、真空吸引ライン5、真空トラップ6を介して連通された真空ポンプ7により、バッグ材4の内部を絶対圧で5kPa以下まで減圧した。
As shown in FIG. 3, the reinforcing
次に、スチール製の膨張抑制治具20(平均板厚15mm)を、強化繊維プリフォーム1の難含浸部19a上のバッグ材4と接するように設置し、金型と5箇所でボルト締結した。
Next, a steel expansion restraining jig 20 (average plate thickness of 15 mm) was placed in contact with the
成形装置全体を70℃に設定したオーブン内に投入し、プリフォーム温度が70℃になるまで、加熱を行った。70℃に加熱したエポキシ樹脂9aを、樹脂加圧容器10(スチール製密閉容器)の中に入れ、樹脂加圧容器10と加圧ポンプ12aは加圧ライン11を介して接続した。樹脂注入ライン8aを介して、加圧部のバッグ材の内部と、樹脂9aを接続した。なお、接続する時には、樹脂注入ライン8aをクランプで閉止しておいた。また、本実施例では、エポキシ樹脂として、東レ株式会社製TR−A36を使用した。
The entire molding apparatus was put into an oven set at 70 ° C. and heated until the preform temperature reached 70 ° C. The epoxy resin 9 a heated to 70 ° C. was placed in a resin pressure vessel 10 (steel sealed container), and the
次に、樹脂加圧容器10内を加圧ポンプ12aにより絶対圧で200kPaの圧力に調整した上で、樹脂注入ライン8aのクランプを開放して、樹脂の注入を開始した。樹脂注入から10分が経過した後に、加圧ポンプ12aを止めて、樹脂容器10内を大気開放した。さらに20分が経過した後、樹脂注入ライン8aを閉止した。次に、オーブンの設定温度を130℃まで上昇させ、2時間保持して樹脂を硬化した。最後に、室温まで冷却し、金型からFRPを脱型した。
Next, after the inside of the
FRPを外観検査した結果、表面には樹脂の未含浸部が無く、さらに、超音波探傷器(PANAMETRICS社製EPOCH4)で、FRP内部の欠陥を検査した結果、FRPの全面で底面のエコーが確認され、FRP全体に樹脂の未含浸部が無い、品質に優れる成形品を得ることができた。 As a result of visual inspection of the FRP, there was no resin unimpregnated part on the surface, and further, an ultrasonic flaw detector (EPOCH4 manufactured by PANAMETRICS) was used to inspect defects inside the FRP. As a result, it was possible to obtain a molded product excellent in quality in which the entire FRP had no resin non-impregnated portion.
(実施例2)
東レ株式会社性炭素繊維T800S(PAN系炭素繊維、24,000フィラメント)の一方向織物(目付190g/m2)にPES(ポリエーテルスルホン)を主成分とする高靭性化樹脂粒子を分散付与した一方向性炭素繊維織物(東レ株式会社製、品名CZ8431DP)を、幅300mm×長さ300mmの大きさに16枚切断し、さらに、幅が300mmで、長さを150mmから181mmまで1mm毎に変化させた大きさに32枚切断した。次に、300mm×300mmの炭素繊維織物を16枚積層し、さらに、32枚の炭素繊維織物を長い方から順次積層して、図2(a)の如く、部分的に板厚の厚い難含浸部19aが存在する、強化繊維プリフォーム1を用意した。
(Example 2)
Toray Co., Ltd. carbon fiber T800S (PAN-based carbon fiber, 24,000 filaments) was unidirectionally woven (weight per unit: 190 g / m 2 ) to which toughened resin particles mainly composed of PES (polyether sulfone) were dispersed and applied. Sixteen unidirectional carbon fiber fabrics (product name: CZ8431DP, manufactured by Toray Industries, Inc.) are cut into a size of 300 mm in width and 300 mm in length, and further, the width is 300 mm and the length is changed from 150 mm to 181 mm every 1 mm. 32 sheets were cut to the size. Next, 16 pieces of 300 mm × 300 mm carbon fiber woven fabrics were laminated, and 32 carbon fiber woven fabrics were laminated in order from the longer one, and as shown in FIG. A reinforcing
図6のとおり、スチール製の平板状金型1の上に、樹脂拡散媒体18として、ポリプロピレン製のメッシュ材(東京ポリマー製TSX−400P)を、長さを150mmと100mmに分割して配置し、次に強化繊維プリフォーム1を配置した。強化繊維プリフォーム1をバッグ材4(ナイロン製フィルム、0.05mm厚さ)で覆い、シーラント3(RICHMOND製、SM5126)で周囲を密閉し、真空吸引ライン5、真空トラップ6を介して連通された真空ポンプ7により、バッグ材4の内部を絶対圧で5kPa以下まで減圧した。
As shown in FIG. 6, a polypropylene mesh material (TSX-400P manufactured by Tokyo Polymer Co., Ltd.) is arranged as a
次に、シリコーンゴム(平均厚さ:1.0mm)製の密閉された風船状の袋体17と、加圧ポンプ12bを接続し、スチール製(平均厚さ:10mm)のチャンバー16の中に袋体を入れ、金型1とバッグ材4上に配置したシリコーン製のOリングからなるシール材15の上にチャンバー16を配置し、チャンバー16と金型2をボルト接合し、固定した。その後、加圧ポンプ12bからの空気圧により、袋体17内を絶対圧で300kPaに加圧調整した。つぎに、成形装置全体を70℃に設定したオーブン内に投入し、プリフォーム温度が70℃になるまで、加熱を行った。
Next, a sealed balloon-
70℃に加熱したエポキシ樹脂9aを、樹脂加圧容器10(スチール製密閉容器)の中に入れ、樹脂加圧容器10と加圧ポンプ12aは加圧ライン11を介して接続した。樹脂注入ライン8aを介して、加圧部のバッグ材の内部と、樹脂9aを接続し、また、樹脂注入ライン8bを介して、非加圧部のバッグ材の内部と樹脂9bを接続した。なお、接続する時には、樹脂注入ライン8a、8bをクランプで閉止しておいた。また、本実施例では、エポキシ樹脂として、東レ株式会社製TR−A36を使用した。
The epoxy resin 9 a heated to 70 ° C. was placed in a resin pressure vessel 10 (steel sealed container), and the
次に、樹脂加圧容器10内を加圧ポンプ12aにより絶対圧で250kPaの圧力に調整した上で、樹脂注入ライン8a、8bのクランプを開放して、樹脂の注入を開始した。樹脂注入から15分が経過した後に、樹脂注入ライン8a、8bを閉止し、さらに10分が経過した後、加圧ポンプ12bを止めて、袋体17内を大気開放した。次に、オーブンの設定温度を130℃まで上昇させ、2時間保持して樹脂を硬化した。最後に、室温まで冷却し、金型からFRPを脱型した。
Next, after the inside of the
FRPを外観検査した結果、表面には樹脂の未含浸部が無く、さらに、超音波探傷器(PANAMETRICS社製EPOCH4)で、FRP内部の欠陥を検査した結果、FRPの全面で底面のエコーが確認され、FRP全体に樹脂の未含浸部が無い、品質に優れる成形品を得ることができた。 As a result of visual inspection of the FRP, there was no resin unimpregnated part on the surface, and further, an ultrasonic flaw detector (EPOCH4 manufactured by PANAMETRICS) was used to inspect defects inside the FRP. As a result, it was possible to obtain a molded product excellent in quality in which the entire FRP had no resin non-impregnated portion.
本発明は、あらゆる強化繊維プラスチックの製造方法に適用することができ、とくに、部分的に目付が高い、あるいは、密度が高い部材の製造に好適であり、例えば、車両、船舶、航空機、建築部材などの産業用途、あるいはスポーツ用途など、種々の分野に用いられる広範囲なFRPの製造方法に適用が可能である。 INDUSTRIAL APPLICABILITY The present invention can be applied to any method for producing reinforcing fiber plastics, and is particularly suitable for producing parts having a high basis weight or a high density, for example, vehicles, ships, aircrafts, building members. The present invention can be applied to a wide range of FRP manufacturing methods used in various fields such as industrial uses and sports uses.
1:強化繊維プリフォーム
2:金型
3:シーラント
4:バッグ材
5:吸引ライン
6:真空トラップ
7:真空ポンプ
8a,b:樹脂注入ライン
9a,b:樹脂
10:樹脂加圧容器
11:加圧ライン
12a,b:加圧ポンプ
13:ダム
14a,b:加圧媒体
15:シール材
16:加圧チャンバー
17:袋体
18:樹脂拡散媒体
19a,19b:難含浸部
20:膨張抑制治具
21:膨張抑制治具締結部
1: Reinforcing fiber preform 2: Mold 3: Sealant 4: Bag material 5: Suction line 6: Vacuum trap 7: Vacuum pump 8a, b: Resin injection line 9a, b: Resin 10: Resin pressure vessel 11: Addition Pressure line 12a, b: Pressurizing pump 13: Dam 14a, b: Pressurizing medium 15: Sealing material 16: Pressurizing chamber 17: Bag body 18: Resin diffusion medium 19a, 19b: Difficult impregnation part 20: Expansion suppression jig 21: Expansion suppression jig fastening part
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008184716A JP2009045927A (en) | 2007-07-24 | 2008-07-16 | Method of manufacturing fiber reinforced plastic |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007191670 | 2007-07-24 | ||
JP2008184716A JP2009045927A (en) | 2007-07-24 | 2008-07-16 | Method of manufacturing fiber reinforced plastic |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009045927A true JP2009045927A (en) | 2009-03-05 |
Family
ID=40498600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008184716A Pending JP2009045927A (en) | 2007-07-24 | 2008-07-16 | Method of manufacturing fiber reinforced plastic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009045927A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014511783A (en) * | 2011-03-24 | 2014-05-19 | ロッキード マーティン コーポレーション | Resin injection molding process using vacuum with reusable resin distribution line |
JP2016539032A (en) * | 2013-12-04 | 2016-12-15 | スネクマ | Method for impregnating fiber preform and apparatus for carrying out said method |
-
2008
- 2008-07-16 JP JP2008184716A patent/JP2009045927A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014511783A (en) * | 2011-03-24 | 2014-05-19 | ロッキード マーティン コーポレーション | Resin injection molding process using vacuum with reusable resin distribution line |
JP2016539032A (en) * | 2013-12-04 | 2016-12-15 | スネクマ | Method for impregnating fiber preform and apparatus for carrying out said method |
US10183450B2 (en) | 2013-12-04 | 2019-01-22 | Safran Aircraft Engines | Method for impregnation of a fibrous preform and device for implementation of the said method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11179901B2 (en) | Process and apparatus for molding composite articles | |
Williams et al. | Resin infusion under flexible tooling (RIFT): a review | |
JP5670381B2 (en) | Controlled atmospheric pressure resin injection process | |
EP1808282B1 (en) | Pressurized molding of composite parts | |
US9120253B2 (en) | Methods of RTM molding | |
JP5045443B2 (en) | Forming mold, and method for producing preform and fiber reinforced plastic using the same | |
US20080210372A1 (en) | Composite article debulking process | |
JP5702773B2 (en) | Method of manufacturing molded product using mold and mold apparatus | |
WO2014192601A1 (en) | Method and device for manufacturing fiber-reinforced plastic | |
WO2011043253A1 (en) | Process and apparatus for producing fiber-reinforced plastic | |
JPH04270610A (en) | Crossover formation device for consolidating composite material | |
JP2013504454A (en) | Improved manufacturing method and apparatus for composite materials | |
JP2010540294A (en) | Molding method of molding material | |
CA2795861C (en) | Method and device for producing a composite moulded part from fibre-reinforced plastic | |
JP2007260925A (en) | Fiber reinforced plastic, its manufacturing method and preform | |
KR101794331B1 (en) | Mold-unit of engineering method for pressure forming and engineering method for pressure forming using the same | |
JP2009045927A (en) | Method of manufacturing fiber reinforced plastic | |
US20150014898A1 (en) | Device and method for producing a moulded part from a composite material | |
JP5854430B2 (en) | FRP manufacturing apparatus and FRP manufacturing method | |
KR20150062195A (en) | Pressurized Molding Machine For CFRP Product and Pressurized Molding Method Of CFRP Product | |
US8097198B2 (en) | Manufacturing method with vacuum bag | |
JP2002234078A (en) | Method for manufacturing fiber-reinforced composite material and molded body with fiber-reinforced composite material | |
JP4239570B2 (en) | Manufacturing method of composite material | |
JP2005262560A (en) | Method and apparatus for producing fiber-reinforced composite material | |
JP2022038508A (en) | Method of manufacturing fibre-reinforced plastic moulding |