JP2013197912A - ダイバーシティ受信装置、ダイバーシティ受信方法及び伝送システム - Google Patents

ダイバーシティ受信装置、ダイバーシティ受信方法及び伝送システム Download PDF

Info

Publication number
JP2013197912A
JP2013197912A JP2012063240A JP2012063240A JP2013197912A JP 2013197912 A JP2013197912 A JP 2013197912A JP 2012063240 A JP2012063240 A JP 2012063240A JP 2012063240 A JP2012063240 A JP 2012063240A JP 2013197912 A JP2013197912 A JP 2013197912A
Authority
JP
Japan
Prior art keywords
diversity
radio signal
received
antenna
state data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012063240A
Other languages
English (en)
Inventor
Yuki Sakai
悠希 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2012063240A priority Critical patent/JP2013197912A/ja
Publication of JP2013197912A publication Critical patent/JP2013197912A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radio Transmission System (AREA)

Abstract

【課題】通信品質を向上することが可能なダイバーシティ受信装置、ダイバーシティ受信方法及び伝送システムを提供する。
【解決手段】ダイバーシティ受信装置100は、飛行体から送信される第1の無線信号を第1及び第2のホーンにより受信する指向性空中線101と、受信した第1の無線信号に対し角度ダイバーシティ合成を行う受信部102と、飛行体の飛行状態示す状態データを取得する取得部103と、取得した状態データに基づいて、指向性空中線101の指向角度を制御する制御部104と、を備えるものである。
【選択図】図1

Description

本発明は、ダイバーシティ受信装置、ダイバーシティ受信方法及び伝送システムに関し、特に、飛行体と通信を行うダイバーシティ受信装置、ダイバーシティ受信方法及び伝送システムに関する。
近年、地震等の災害が発生した場合に、現地の情報を迅速かつ正確に伝達するための技術が強く望まれている。例えば、民間の機関や官省庁等では、災害発生時、初動対応としてヘリコプターにカメラを搭載し、現地の情報をいち早くリアルタイムで伝送する伝送装置が使用されている。
このような伝送装置では、移動するヘリコプターから地上受信局へ空中線により映像を伝送するため、マルチパスフェージングが発生し、受信レベルが瞬間的に落ち映像断となることがある。このマルチパスフェージングの影響に強い変調方式としてOFDM(Orthogonal Frequency Division Multiplexing)が使用されている。
また、車両等の地上移動局では、より通信品質を向上させるため複数の空中線を使用し受信信号を合成処理する空間ダイバーシティ方式も併用されている。ダイバーシティ方式は、電波の空間における伝搬路や周波数が異なると、短周期フェージングの時間的な変化が異なることを利用したもので、異なる伝搬路または周波数で送られた信号を同時に受信して合成し、通信品質が良くなるように処理する方式である。
図6は、関連するダイバーシティ方式である空間ダイバーシティと角度ダイバーシティの概念を示している。図6(a)に示すように、空間ダイバーシティでは、送信側装置は1面の送信用空中線901を備え、受信側装置は受信用空中線902を2面(902a、902b)またはそれ以上備えている。空間ダイバーシティは、2面以上の受信用空中線902を、水平または垂直方向に100波長以上離して配置し、電波の伝搬経路の違いによる伝搬状態の時間的な相違を利用したものである。
図6(b)に示すように、角度ダイバーシティでは、送信側装置は1面の送信用空中線901を備え、受信側装置は1面の受信用空中線902を備えている。角度ダイバーシティは、1面の受信用空中線902で受信する受信ビームを水平または垂直方向に2つ作り、各異なった方向から到達する電波をそれぞれのビームで受信し、図6(a)のような受信用空中線902を2面用いた空間ダイバーシティと同様のダイバーシティ効果を得る方法である。
例えば、関連するダイバーシティ受信装置として、特許文献1や2に記載された装置が知られている。
特開2004−297142号公報 特開2004−166091号公報
特許文献1などのように関連する技術では、地上の中継車等の装置において、無指向の空中線を複数本使用し通信品質を向上させる空間ダイバーシティが用いられている。
しかしながら、関連する技術では、ヘリコプター等の飛行体と地上受信局(地上固定局)を含む伝送システムへの適用について考慮されていない。このため、関連する技術では、ダイバーシティを適用することができず通信品質を向上することが困難な場合があるという問題があった。例えば、地上固定局にあるパラボラアンテナ等の指向受信空中線を複数設置した空間ダイバーシティで運用することは設置面や経済性の観点から非常に困難である。
本発明の目的は、このような課題を解決するダイバーシティ受信装置、ダイバーシティ受信方法及び伝送システムを提供することにある。
本発明に係るダイバーシティ受信装置は、飛行体から送信される第1の無線信号を第1及び第2のホーンにより受信する指向性空中線と、前記受信した第1の無線信号に対し角度ダイバーシティ合成を行う受信部と、前記飛行体の飛行状態示す状態データを取得する取得部と、前記取得した状態データに基づいて、前記指向性空中線の指向角度を制御する制御部と、を備えるものである。
本発明に係るダイバーシティ受信方法は、飛行体から送信される第1の無線信号を、指向性空中線の第1及び第2のホーンにより受信し、前記受信した第1の無線信号に対し角度ダイバーシティ合成を行い、前記飛行体の飛行状態示す状態データを取得し、前記取得した状態データに基づいて、前記指向性空中線の指向角度を制御するものである。
本発明に係る伝送システムは、飛行体と地上受信局との間で無線通信を行う伝送システムであって、前記地上受信局は、前記飛行体から送信される第1の無線信号を第1及び第2のホーンにより受信する指向性空中線と、前記受信した第1の無線信号に対し角度ダイバーシティ合成を行う受信部と、前記飛行体の飛行状態示す状態データを取得する取得部と、前記取得した状態データに基づいて、前記指向性空中線の指向角度を制御する制御部と、を備えるものである。
本発明によれば、通信品質を向上することが可能なダイバーシティ受信装置、ダイバーシティ受信方法及び伝送システムを提供することができる。
本発明に係るダイバーシティ受信装置の特徴を説明するための構成図である。 実施の形態1に係る伝送システムの構成を示す構成図である。 実施の形態1に係る撮影ヘリコプターの構成を示す構成図である。 実施の形態1に係る地上受信局の構成を示す構成図である。 実施の形態1に係る地上受信局における空中線及び受信部の構成を示す構成図である。 関連するダイバーシティ方式を説明するための概念図である。
<本発明の特徴>
実施の形態の説明に先立って、図1を用いて、本発明の特徴についてその概要を説明する。
図1に示すように、本発明に係るダイバーシティ受信装置100は、指向性空中線101と、受信部102と、取得部103と、制御部104とを備えている。
そして、指向性空中線101は、ヘリコプター等の飛行体から送信される第1の無線信号を第1及び第2のホーンにより受信し、受信部102は、受信した第1の無線信号に対し角度ダイバーシティ合成を行い、取得部103は、飛行体の飛行状態示す状態データを取得し、制御部104は、取得した状態データに基づいて、指向性空中線101の指向角度を制御することを、本発明の主要な特徴としている。
本発明のダイバーシティ受信装置100によれば、第1及び第2のホーンにより無線信号を受信し角度ダイバーシティを行うため、指向受信空中線を増やさなくても、1面の空中線にホーンを追加し伝搬路の無相関な信号を得ることによる角度ダイバーシティ効果が得られ、通信品質を向上させることができる。
したがって、地上受信局のようなダイバーシティ受信装置において、ヘリコプター等から撮影したリアルタイム映像等を品質良く受信できるため、災害発生時における現地の情報など緊急性の高い情報を、リアルタイムに正確に伝達することが可能となる。
<実施の形態1>
以下、図面を参照して実施の形態1について説明する。
図2は、実施の形態1に係る伝送システムの構成を示している。図2に示すように、この伝送システムは、撮影ヘリコプター2と地上受信局1を備えている。この伝送システムは、撮影ヘリコプター2が撮影した映像を地上受信局1へリアルタイム伝送を行うシステムであり、撮影ヘリコプター2及び地上受信局1は、映像伝送距離を伸ばすために指向空中線を使用する。
撮影ヘリコプター2は、撮影した映像の映像データを送信用データとして、指向空中線(不図示)を介して無線信号wdで送信する。地上受信局1は、撮影ヘリコプター2から送信された送信用データの無線信号wdを指向空中線を介して受信し、映像データを取得する。
また、撮影ヘリコプター2及び地上受信局1は、データ伝送用の空中線(不図示)を備え、時々刻々と変化する撮影機データsaが、撮影ヘリコプター2から地上受信局1へ送信される。撮影機データsaは、撮影ヘリコプター2の現在位置情報(機体座標)、機体姿勢、機体高度、機首方位、地上受信局1に対する離隔距離、及び、所定の飛行運動予測算出プログラムによる飛行運動予測値から構成されている。
図3のブロック図は、本実施の形態に係る撮影ヘリコプター2の要部の構成を示している。図3に示すように、撮影ヘリコプター2は、カメラ装置21と、送信部22と、第1空中線23と、機体情報取得部24と、GPS(Global Positioning System)25と、第2空中線26と、データ無線部27と、演算部28と、駆動部29とから構成されている。
カメラ装置21は、撮影した映像に対応した映像データvdを出力する。送信部22は、カメラ装置21から出力される映像データvdに対して、エンコード、変調、所定の周波数帯へのアップコンバート及び増幅処理を行ってRF信号を生成し、同RF信号を送信用データsdとして第1空中線23へ出力すると共に、送信用データsdの出力レベルnaを演算部28へ出力する。第1空中線23は、たとえばパラボラアンテナなどの指向空中線で構成され、駆動部29の制御により指向を地上受信局1に向けて、送信用データsdを無線信号wdとして送信する。
機体情報取得部24は、撮影ヘリコプター2の機体姿勢(ロール、ピッチ、ヨー)、機体高度、及び機首方位を取得して機体情報maとして出力する。GPS25は、撮影ヘリコプター2の現在位置情報を取得して機体座標gaを出力する。
第2空中線26は、無指向空中線で構成されている。データ無線部27は、演算部28から出力される撮影機データpaを、第2空中線26から撮影機データsaとして、所定の周波数帯域(たとえばUHF帯、Ultra High Frequency)の搬送波で構成されている伝送路を経て地上受信局1へ送信する。
演算部28は、機体情報ma及び機体座標gaを入力し、現在位置情報(機体座標)、機体姿勢、機体高度、機首方位、離隔距離、受信レベル、及び飛行運動予測値に基づいて、適応的に、第1空中線23の半値角da(指向特性)を算出すると共に、送信部22に対して制御信号caを出力して送信用データsdの変調方式及び同送信用データsdの出力レベルを制御する。駆動部29は、演算部28で算出された半値角daに基づいて制御信号eaを出力して第1空中線23の半値角を制御する。
図4のブロック図は、本実施の形態に係る地上受信局1の要部の構成を示している。図4に示すように、地上受信局1は、第1空中線11と、受信部12と、第2空中線13と、データ無線部14と、演算部15と、駆動部16とから構成されている。
第1空中線11は、後述のように、ダイバーシティアンテナなどの指向空中線で構成され、駆動部16の制御により指向を撮影ヘリコプター2に向けて無線信号wdを受信し、後述の低雑音増幅器を経て受信データrdとして出力する。受信部12は、後述のように、受信データrdをベースバンドにダウンコンバートして受信データtdとして出力すると共に、受信データrdの受信レベルnbを演算部15へ出力する。
第2空中線13は、無指向空中線で構成されている。データ無線部14は、撮影ヘリコプター2から伝送路及び第2空中線13を経て撮影機データsaを受信して復調し、撮影機データqaとして演算部15へ入力する。
演算部15は、データ無線部14で受信された撮影機データsaに基づいて、地上受信局1の撮影ヘリコプター2に対する離隔距離を算出すると共に、受信データrdの受信レベルnbに基づいて無線信号wdの受信レベルを算出しこれに基づいて、適応的に、第1空中線11の半値角dbを算出すると共に、受信部12に対して制御信号cbを出力して受信データtdの復調方式を制御する。駆動部16は、演算部15で算出された半値角dbに基づいて制御信号ebを出力して第1空中線11の半値角を制御する。
すなわち、地上受信局1では、第2空中線13で受信しデータ無線部14より得られる撮影機データを基に演算部15にて処理を行い駆動部16にて第1空中線11を制御し撮影ヘリコプター2へ向ける。例えば、図1の取得部103は、第2空中線13及びデータ無線部14に相当し、図1の制御部104は、演算部15及び駆動部16に相当する。
図5は、実施の形態1に係る地上受信局1における第1空中線11及び受信部12の内部構成を示している。第1空中線11は、ダイバーシティアンテナ111、低雑音増幅器(LNA)112(112a及び112b)を備えている。
ダイバーシティアンテナ111は、角度タイバーシティを使用するため2つのホーン111a及び111bを有している。例えば、ホーン111a及び111bのいずれか一方が主ビームホーンであり、他方が角度ビームホーンである。
低雑音増幅器112a及び112bは、ホーン111a及び111bに対応して設けられている。低雑音増幅器112aは、ホーン111aで受信した無線信号wd(RF信号)を入力とし、この信号を増幅して受信データrdaとして出力する。また、低雑音増幅器112bは、ホーン111bで受信した無線信号wd(RF信号)を入力とし、この信号を増幅して受信データrdbとして出力する。
受信部12は、ダウンコンバータ(CONV)121(121a及び121b)、合成器(COMB)122、復調器(DEM)123を有している。
ダウンコンバータ121は、ホーン111a及び11b、低雑音増幅器112a及び112bに対応して設けられている。ダウンコンバータ121aは、低雑音増幅器112aからの受信データrdaを入力とし、この信号に対し無線周波数帯から中間周波数帯へダウンコンバート(周波数変換)して出力する。ダウンコンバータ121bは、低雑音増幅器112bからの受信データrdbを入力とし、この信号に対し無線周波数帯から中間周波数帯へダウンコンバート(周波数変換)して出力する。
合成器122は、ダウンコンバータ121aから受信データrdaをダウンコンバートした信号が入力されるとともに、ダウンコンバータ121bから受信データrdbをダウンコンバートした信号が入力され、これらの信号をダイバーシティ合成処理(角度ダイバーシティ合成)して出力する。
復調器123は、合成器122が合成した信号を入力とし、この信号を復調して受信データtdとして出力する。例えば、復調器123は、符号間干渉の除去や信号の判定を行って受信データとし、また、受信レベルnbの出力や制御信号cbに応じた復調等も行う。
ここで、本実施の形態における角度ダイバーシティの効果について説明する。ダイバーシティによる改善量を決める大きな要因は、2つまたはそれ以上の受信信号相互の無相関性である。受信信号間の振幅相関係数が与えられると単一受信における短周期フェージングの確率分布に対する改善量が計算される。自乗合成回路を用いた2重合成受信における確率分布P(R)は次の数1で表わされる。
Figure 2013197912
数1において、Rは受信信号レベル、ρは振幅相関係数、δは受信信号レベル分布の標準偏差を示す。また角度ダイバーシティの振幅相関係数ρの理論式は次の数2で表わされる。
Figure 2013197912
数2において、φはビーム挟角であり、φは次の数3で表される。
Figure 2013197912
数3において、αは空中線ビーム半値幅×0.6を示す。
以上のように本実施の形態では、ヘリコプターのような飛行体から無線によりデータを受信する地上受信局において、角度ダイバーシティ方式を採用する構成とした。このため、空間ダイバーシティに比べ空中線が少なく済み経済的である。
また、角度ダイバーシティ方式を採用するため、撮影ヘリコプターからのマルチパスフェージングによる歪みをダイバーシティにより改善させることができ、通信品質、通達性を向上させることが可能となる。
<その他の実施の形態>
上記実施の形態では、地上受信局において、空中線を1面(第1空中線11)備え、ホーンを2つ設けることで角度ダイバーシティを行う構成としたが、さらに複数の空中線を設置してもよい。例えば、地上受信局に空中線を2面設置できかつ各空中線にホーンを2つ設置できれば、空間ダイバーシティと角度ダイバーシティの4重ダイバーシティが可能となり、より通信品質を向上させることができる。
また、上記実施の形態では、ヘリコプターと地上受信局を備えた伝送システムについて説明したが、ヘリコプターに限らず、飛行機、飛行船などその他の飛翔体や飛行体であってもよい。
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
1 地上受信局
2 撮影ヘリコプター
11 第1空中線
12 受信部
13 第2空中線
14 データ無線部
15 演算部
16 駆動部
21 カメラ装置
22 送信部
23 第1空中線
24 機体情報取得部
26 第2空中線
27 データ無線部
28 演算部
29 駆動部
100 ダイバーシティ受信装置
101 指向性空中線
102 受信部
103 取得部
104 制御部
111 ダイバーシティアンテナ
111a、111b ホーン
112(112a、112b) 低雑音増幅器
121(121a、121b) ダウンコンバータ
122 合成器
123 復調器

Claims (10)

  1. 飛行体から送信される第1の無線信号を第1及び第2のホーンにより受信する指向性空中線と、
    前記受信した第1の無線信号に対し角度ダイバーシティ合成を行う受信部と、
    前記飛行体の飛行状態示す状態データを取得する取得部と、
    前記取得した状態データに基づいて、前記指向性空中線の指向角度を制御する制御部と、
    を備えるダイバーシティ受信装置。
  2. 前記指向性空中線は、前記第1及び第2のホーンにより受信された前記第1の無線信号を低雑音増幅する第1及び第2の低雑音増幅器を有し、
    前記受信部は、前記第1及び第2の低雑音増幅器により増幅された信号をダウンコンバートする第1及び第2のダウンコンバータと、
    前記第1及び第2のダウンコンバータによりダウンコンバートされた信号を合成する合成器と、
    前記合成器により合成された信号を復調する復調器と、
    を備える請求項1に記載のダイバーシティ受信装置。
  3. 前記制御部は、前記受信された前記第1の無線信号のレベルに基づいて、前記指向性空中線の指向角度を制御する、
    請求項1又は2に記載のダイバーシティ受信装置。
  4. 前記制御部は、前記取得した状態データに基づいて、前記受信部の復調方式を制御する、
    請求項1乃至3のいずれか一項に記載のダイバーシティ受信装置。
  5. 前記取得部は、
    前記飛行体から送信される第2の無線信号を受信する無指向性空中線と、
    前記受信した第2の無線信号に基づいて前記状態データを生成する状態データ通信部と、
    を備える請求項1乃至4のいずれか一項に記載のダイバーシティ受信装置。
  6. 飛行体から送信される第1の無線信号を、指向性空中線の第1及び第2のホーンにより受信し、
    前記受信した第1の無線信号に対し角度ダイバーシティ合成を行い、
    前記飛行体の飛行状態示す状態データを取得し、
    前記取得した状態データに基づいて、前記指向性空中線の指向角度を制御する、
    ダイバーシティ受信方法。
  7. 前記第1及び第2のホーンにより受信された前記第1の無線信号を低雑音増幅して、第1及び第2の低雑音増幅信号を生成し、
    前記受信部は、前記第1及び第2の低雑音増幅信号をダウンコンバートして、第1及び第2のダウンコンバート信号を生成し、
    前記第1及び第2のダウンコンバート信号を合成して合成信号を生成し、
    前記合成信号を復調する、
    請求項6に記載のダイバーシティ受信方法、
  8. 前記受信された前記第1の無線信号のレベルに基づいて、前記指向性空中線の指向角度を制御する、
    請求項6又は7に記載のダイバーシティ受信方法、
  9. 前記取得した状態データに基づいて、前記受信部の復調方式を制御する、
    請求項6乃至8のいずれか一項に記載のダイバーシティ受信装置。
  10. 飛行体と地上受信局との間で無線通信を行う伝送システムであって、
    前記地上受信局は、
    前記飛行体から送信される第1の無線信号を第1及び第2のホーンにより受信する指向性空中線と、
    前記受信した第1の無線信号に対し角度ダイバーシティ合成を行う受信部と、
    前記飛行体の飛行状態示す状態データを取得する取得部と、
    前記取得した状態データに基づいて、前記指向性空中線の指向角度を制御する制御部と、
    を備える伝送システム。
JP2012063240A 2012-03-21 2012-03-21 ダイバーシティ受信装置、ダイバーシティ受信方法及び伝送システム Pending JP2013197912A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012063240A JP2013197912A (ja) 2012-03-21 2012-03-21 ダイバーシティ受信装置、ダイバーシティ受信方法及び伝送システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012063240A JP2013197912A (ja) 2012-03-21 2012-03-21 ダイバーシティ受信装置、ダイバーシティ受信方法及び伝送システム

Publications (1)

Publication Number Publication Date
JP2013197912A true JP2013197912A (ja) 2013-09-30

Family

ID=49396324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012063240A Pending JP2013197912A (ja) 2012-03-21 2012-03-21 ダイバーシティ受信装置、ダイバーシティ受信方法及び伝送システム

Country Status (1)

Country Link
JP (1) JP2013197912A (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02230825A (ja) * 1989-03-03 1990-09-13 Nec Corp 角度ダイバーシチ受信装置
JPH05122111A (ja) * 1991-10-28 1993-05-18 Nec Corp 角度ダイバシテイ方式
JPH0629890A (ja) * 1992-07-08 1994-02-04 Nec Corp 干渉波除去装置
JP2007527125A (ja) * 2004-08-26 2007-09-20 株式会社エヌ・ティ・ティ・ドコモ コンテキスト認識指向性アンテナ
JP2009239758A (ja) * 2008-03-27 2009-10-15 Nec Corp 情報伝送システム、該情報伝送システムに用いられる空中線制御方法及び空中線制御プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02230825A (ja) * 1989-03-03 1990-09-13 Nec Corp 角度ダイバーシチ受信装置
JPH05122111A (ja) * 1991-10-28 1993-05-18 Nec Corp 角度ダイバシテイ方式
JPH0629890A (ja) * 1992-07-08 1994-02-04 Nec Corp 干渉波除去装置
JP2007527125A (ja) * 2004-08-26 2007-09-20 株式会社エヌ・ティ・ティ・ドコモ コンテキスト認識指向性アンテナ
JP2009239758A (ja) * 2008-03-27 2009-10-15 Nec Corp 情報伝送システム、該情報伝送システムに用いられる空中線制御方法及び空中線制御プログラム

Similar Documents

Publication Publication Date Title
CN108028698B (zh) 在没有指南针的情况下捕获leo卫星
US20190363784A1 (en) Multi-channel communications system using mobile airborne platforms
EP3370460B1 (en) Apparatus and method in wireless communications system
US10312984B2 (en) Distributed airborne beamforming system
US10110330B1 (en) Relay system calibration for wireless communications between a head-mounted display and a console
US11190250B2 (en) System and method for enhancing an aerospace coverage capability of a mobile communication base station
CN108964724A (zh) 用于机载卫星通信的多波束相控阵
WO2014190074A1 (en) System and method for estimating direction of arrival of a signal incident on an antenna array
KR20110014239A (ko) 비행중 광대역 모바일 통신 서비스를 제공하기 위한 시스템들 및 방법
US10419100B2 (en) Doppler shift correction sub-system for communication device
JP2014509497A (ja) 空対地通信システムのリアルタイム較正
EP2532103A1 (en) Scalable high speed mimo-satellite communication system
US10205249B2 (en) Diversified antenna system for vehicle-to-vehicle or vehicle-to-infrastructure communication
US9319125B2 (en) Method and apparatus of wireless communication by using multiple directional antennas
JP2018007212A (ja) Ais信号受信システム及びais信号の受信方法
JP7425365B2 (ja) 無線通信システム、中継装置及び無線通信方法
EP2859723B1 (en) Mimo signal transmission and reception device and system comprising at least one such device
JP6392710B2 (ja) 車載通信装置
CN114755701B (zh) 一种智能分布合成的区域协同导航欺骗系统及方法
JP2013197912A (ja) ダイバーシティ受信装置、ダイバーシティ受信方法及び伝送システム
CN102624431A (zh) 一种提升车载端多天线通信容量的方法和系统
US9270360B2 (en) Signal transmitting/receiving apparatus and method for controlling polarization
WO2022137445A1 (ja) 送受信装置、無線通信システム及び無線通信方法
JP5278103B2 (ja) 情報伝送システム、該システムに用いられる歪み補償方法及び歪み補償制御プログラム
JP5167902B2 (ja) 情報伝送システム、該情報伝送システムに用いられる空中線制御方法及び空中線制御プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160927