JP2013197644A - マルチキャリヤ変調信号受信装置 - Google Patents

マルチキャリヤ変調信号受信装置 Download PDF

Info

Publication number
JP2013197644A
JP2013197644A JP2012059651A JP2012059651A JP2013197644A JP 2013197644 A JP2013197644 A JP 2013197644A JP 2012059651 A JP2012059651 A JP 2012059651A JP 2012059651 A JP2012059651 A JP 2012059651A JP 2013197644 A JP2013197644 A JP 2013197644A
Authority
JP
Japan
Prior art keywords
signal
equalizer
subchannel
unit
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012059651A
Other languages
English (en)
Other versions
JP5878803B2 (ja
Inventor
Tomoaki Takeuchi
知明 竹内
Hiroyuki Hamazumi
啓之 濱住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2012059651A priority Critical patent/JP5878803B2/ja
Publication of JP2013197644A publication Critical patent/JP2013197644A/ja
Application granted granted Critical
Publication of JP5878803B2 publication Critical patent/JP5878803B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Noise Elimination (AREA)

Abstract

【課題】修正DFT変調合成バンクによって変調されたマルチキャリヤ変調信号をチャネル等化する際に、等化可能な遅延時間範囲の確保と伝搬路の変動に対する耐性の両方を同時に実現する。
【解決手段】修正DFT変調分析バンク5は、実質的に最大間引き率の2倍のレートで動作し、時間領域の等価ベースバンド信号を周波数領域の信号に変換し、実部サブチャネル信号および虚部サブチャネル信号を生成する。チャネル等化器6は、実部サブチャネル信号を等化する実部等化器11と、虚部サブチャネル信号を等化する虚部等化器15とを備える。実部等化器11および虚部等化器15は、主波の信号を等化するシンボル等化器41と、シンボル間干渉成分のレプリカを生成するシンボル間干渉レプリカ生成部42とを並列接続し、減算器43にて、シンボル等化器41による等化後の信号からシンボル間干渉レプリカ生成部42により生成されたレプリカを減算する。
【選択図】図6

Description

本発明は、マルチキャリヤ変調信号の受信装置に関し、特に、デジタル放送や無線LANなどにおいて電波を受信する際に問題となるマルチパス環境においても、送信データを正しく受信することのできる受信装置に関する。
デジタル放送や無線LANなどに用いるマルチキャリヤ変調方式にOFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)がある。OFDMでは、マルチパスに対する耐性を得るために、ガードインターバル(GI:Guard Interval)またはサイクリックプレフィックス(CP:Cyclic Prefix)と呼ばれる期間を設けている。
一方、非特許文献1において、OFDMがトランスマルチプレクサの一種であることが指摘されている。図16は、一般的なトランスマルチプレクサの構成を示すブロック図である。このトランスマルチプレクサ100は、M個のインタポレータおよびM個の送信フィルタを備えた合成バンクと、M個の受信フィルタおよびM個のデシメータを備えた分析バンクとにより構成されている。合成バンクおよび分析バンクは、チャネル(伝送路)を介して接続される。
図17は、OFDMをトランスマルチプレクサとして表現したときの構成を示すブロック図である。図17からわかるように、OFDMは、フィルタ係数が全て1であり、かつフィルタ長がサブチャネル数と一致するプロトタイプフィルタのDFT変調トランスマルチプレクサである。このことは、OFDMのパルス形成フィルタが矩形窓関数を用いていることからも明らかである。
しかし、このOFDMにおけるプロトタイプフィルタは、第1サイドローブレベルが約−13dBであり、周波数特性が劣悪である。これに対応するため、GIを用い、チャネル等化が必要となる。非特許文献1では、より理想的な直交周波数分割多重を行うことにより、チャネルの影響を軽減できることが指摘されている。
また、DFT変調フィルタバンク(DFT変調トランスマルチプレクサの分析バンクと合成バンクが双対になって構成されたシステム)は、分析および合成のために、FFT(Fast Fourier Transform:高速フーリエ変換)対を用いることができることから、実用面で有用であることが知られている。
非特許文献2には、DFT変調フィルタバンクにおいて、デシメーションを2段階にして修正を行うことにより、擬似的に完全再構成条件を満足することが記載されている。すなわち、出力信号が入力信号の時間遅れの定数倍とほぼ等しくなることが記載されている。
図18は、修正DFT変調合成バンクの構成を示すブロック図であり、図19は、修正DFT変調分析バンクの構成を示すブロック図である。図18において、修正DFT変調合成バンク101は、M個のサブチャネル信号を入力し、サブチャネル信号の実部成分および虚部成分を抽出してそれぞれ第1段階目のインタポレーションを行い、遅延させた実部成分と虚部成分とを合成する。そして、その合成信号に対して第2段階目のインタポレーションを行ってフィルタ処理を施し、全てのサブチャネル信号を合成して等価ベースバンド信号を出力する。図19において、修正DFT変調分析バンク102は、等価ベースバンド信号を入力し、M個の等価ベースバンド信号に分岐させ、それぞれフィルタ処理を施して第1段階目のデシメーションを行い、実部成分および遅延させた虚部成分に対して第2段階目のデシメーションを行い、実部成分と虚部成分とを合成してそれぞれM個のサブチャネル信号を出力する。
図18に示した修正DFT変調合成バンク101および図19に示した修正DFT変調分析バンク102をマルチキャリヤ変調方式の観点で見ると、修正DFT変調合成バンク101が変調器となり、修正DFT変調分析バンク102が復調器となる。すなわち、送受信端でそれぞれ修正DFT変調合成バンク101および修正DFT変調分析バンク102を用いることにより、マルチキャリヤ変調方式による信号伝送を実現することができる。この場合、サブチャネル数よりも長いフィルタ長のプロトタイプフィルタを用いることができるため、より良好な周波数特性を実現することができる。しかし、送受信間のチャネルにマルチパスなどによる歪みがある場合には、チャネル等化器が必要となる。
DFT変調トランスマルチプレクサに適用可能なチャネル等化器としては、例えば特許文献1に記載のものがある。このチャネル等化器は、パイロット信号を参照信号として最適化を行うことにより、等化係数を求めるものである。データが送られている間は等化係数の最適化を行うことができないため、伝搬路に変動がある場合には、伝送特性が劣化してしまうという問題がある。この問題を改善する手法として、等化後の信号をシンボル判定し、判定値を参照信号として用いる判定指向型等化器が知られている。しかし、判定指向型等化器には伝搬路に変動がある場合の伝送特性を改善できるという利点がある一方、等化係数が最適値へ収束しなかったり、シンボル判定における誤りの軽減が困難になったりすることで、伝送特性が著しく劣化することがあるという欠点がある。
このような判定指向型等化器の欠点を補うための手法として、例えば特許文献2に記載のものがある。この手法は、信号点のうち外郭のシンボルのみを用いて、等化後の信号をシンボル判定するものである。しかし、この手法では、等化係数の更新頻度が低くなってしまう他、外郭のシンボル以外が伝送されているときに、等化係数が最適値から乖離してしまうという問題がある。また、外郭のシンボルに限定するモードから限定をしないモードへ移行する必要があり、限定モードで十分に収束しない場合にはモード移行が困難になるという問題もある。
また、判定指向モードに入る前に、判定値を用いることなく等化係数を最適化する定包絡線アルゴリズムを用いる手法が特許文献3に記載されている。しかし、この手法では、定包絡線アルゴリズムを多値QAM信号に適用した場合には、定常誤差がゼロにならないという問題がある。これに対し、定包絡線アルゴリズムを多値QAM信号に適用するためのアルゴリズムが非特許文献3に記載されている。しかし、この手法も、初期状態では定包絡線アルゴリズムを用い、ある程度等化係数が収束した段階で多値レベルモードへ移行する必要がある。したがって、この手法では、定包絡線アルゴリズムにて初期引き込みを行う際に等化係数が十分に収束しない場合、モード移行が困難になるという問題がある。
この他、定包絡線アルゴリズムを用いて、等化後の信号における振幅方向の値に基づいて位相方向のシンボル判定のみを行う手法が特許文献4に記載されている。しかし、前述のとおり、定包絡線アルゴリズムを多値QAM信号に適用した場合には、定常誤差をゼロにすることができないから、この手法においてもモード移行が必要になり、初期引き込みの問題を含んでいる。
さらに、前述の特許文献2,3,4および非特許文献3に記載されている、判定指向型等化器の欠点(等化係数が最適値へ収束しなかったり、シンボル判定における誤りの軽減が困難になったりするという欠点)を補う手法は、いずれもシングルキャリヤ変調信号に対するものである。マルチキャリヤ変調信号のシンボル長は、シングルキャリヤ変調信号のそれと比較すると非常に長いから、伝搬路の変動が同じ場合、マルチキャリヤ変調信号は、シングルキャリヤ変調信号と比較してシンボル間での変動が大きくなる。したがって、シングルキャリヤ変調信号に対する手法をマルチキャリヤ変調信号にそのまま適用しても、十分な特性が得られないという問題がある。
また、本件特許出願の同一の出願人および発明者によりなされた、本件特許出願時に未公開である特願2011−157195号公報に記載されたマルチキャリヤ変調信号受信装置では、等化係数算出部が、等化後の複素キャリヤシンボルの変調誤差比が低いときに、広い範囲の判定領域を設定し、変調誤差比が高いときに、狭い範囲の判定領域を設定し、等化後の信号が判定領域内にある場合にのみ等化係数を最適化する。そして、等化器が、等化係数を用いて、分析バンクからのサブチャネル信号ベクトルを線形等化する。このマルチキャリヤ変調信号受信装置によれば、初期引き込みや軽減困難な誤りの克服に一定の効果がある。しかしながら、遅延時間の長いマルチパスに対応すべく、等化可能な遅延時間範囲を確保するためには、依然として等化器の次数を大きくする必要がある。また、これに起因して、初期引き込みや軽減困難な誤りの克服が十分でない場合があり得る。
等化可能な遅延時間範囲を確保するための手段として、等化後のシンボル判定値を帰還させる判定帰還型等化器が知られている。しかし、修正DFT変調フィルタバンクのサブチャネル等化器では、その入力信号が4系統の信号からなるベクトルであり、出力信号は実部および虚部の2系統の信号があるため、これをそのまま適用することはできない。
特開2010−98471号公報 特許第4553663号公報 特許第2682617号公報 特許第4304081号公報
Ali N. Akansu, Pierre Dubamel, Xueming Lin, and Marc de Courville. "Orthogonal transmultiplexers in communications: A review.", IEEE Trans. Signal Process., 46(4):979-995, April 1998. Tanja Karp and N. J. Fliege. "Modified DFT filter banks with perfect reconstruction.", IEEE Trans. Circuits Syst. II, 46(11):1404-1414, November 1999. K.N.Oh. "A single/multilevel modulus algorithm for blind equalization of QAM signals.", IEICE Trans., E80A(6):1033-1038, 1997.
このように、従来のマルチキャリヤ変調信号受信装置では、冗長な情報を伝送することなく、マルチパスに対する耐性を得ることができる。しかし、パイロット信号を参照信号として用いることで等化係数を最適化するため、等化器の次数を大きくすると、時間変動を伴う伝搬路の伝送特性が劣化するという問題があった。つまり、従来のマルチキャリヤ変調信号受信装置では、遅延時間の長いマルチパスを等化するために、等化器の次数を大きくする必要があり、等化器の次数を大きくすると、収束するまでに時間がかかり、収束特性が悪化するという問題があった。
そこで、本発明は、かかる問題を解決するためになされたものであり、その目的は、修正DFT変調合成バンクによって変調されたマルチキャリヤ変調信号をチャネル等化する際に、等化可能な遅延時間範囲の確保と伝搬路の変動に対する耐性の両方を同時に実現可能なマルチキャリヤ変調信号受信装置を提供することにある。
前記目的を達成するために、請求項1の発明は、修正DFT変調合成バンクによってマルチキャリヤ変調された信号を受信するマルチキャリヤ変調信号受信装置であって、直交復調された時間領域の等価ベースバンド信号を、最大間引き率の2倍のレートで周波数領域の信号に変換し、サブチャネル信号を出力する修正DFT変調分析バンクと、前記修正DFT変調分析バンクの出力するサブチャネル信号を等化するサブキャリヤ数分のチャネル等化器と、を備え、前記チャネル等化器が、前記サブチャネル信号を等化し、キャリヤシンボルを生成する等化器と、既知送信信号であるパイロット信号を生成するパイロット信号生成部と、前記パイロット信号生成部により生成されたパイロット信号から、前記等化器により生成された等化後のキャリヤシンボルを減じて誤差を算出する誤差算出部と、前記等化器により、サブチャネル信号の主波成分を等化するための等化係数、および前記サブチャネル信号のシンボル間干渉波成分を等化するための補償係数を算出する係数算出部と、を備え、前記等化器が、前記等化係数を用いて前記サブチャネル信号を等化するシンボル等化器と、前記補償係数を用いて前記サブチャネル信号を等化し、シンボル間干渉成分のレプリカを生成するシンボル間干渉レプリカ生成部と、前記シンボル等化器により等化された信号から、前記シンボル間干渉レプリカ生成部により生成されたレプリカを減算し、等化後のキャリヤシンボルを生成する減算器と、を備えることを特徴とする。
また、請求項2の発明は、請求項1に記載のマルチキャリヤ変調信号受信装置において、前記シンボル等化器が、前記修正DFT変調分析バンクの出力するサブチャネル信号を遅延させる第1の遅延器と、前記第1の遅延器により遅延したサブチャネル信号を、前記係数算出部により算出された等化係数を用いて等化する第1の線形等化器と、を備えることを特徴とする。
また、請求項3の発明は、請求項1または2に記載のマルチキャリヤ変調信号受信装置において、前記シンボル間干渉レプリカ生成部が、前記係数算出部により算出された補償係数を、先行波に対応する補償係数と遅延波に対応する補償係数とに分割する分割部と、前記修正DFT変調分析バンクの出力するサブチャネル信号を、前記分割部により分割された先行波に対応する補償係数を用いて等化する第2の線形等化器と、前記修正DFT変調分析バンクの出力するサブチャネル信号を遅延させる第2の遅延器と、前記第2の遅延器により遅延したサブチャネル信号を、前記分割部により分割された遅延波に対応する補償係数を用いて等化する第3の線形等化器と、前記第2の線形等化器により等化された信号と第3の線形等化器により等化された信号とを加算し、シンボル間干渉成分のレプリカを生成する加算器と、を備えることを特徴とする。
また、請求項4の発明は、請求項1から3までのいずれか一項に記載のマルチキャリヤ変調信号受信装置において、前記係数算出部が、前記修正DFT変調分析バンクの出力するサブチャネル信号、および前記誤差算出部により算出された誤差に基づいて、前記等化係数を算出する等化係数算出部と、前記修正DFT変調分析バンクの出力するサブチャネル信号における先行波および遅延波に対応する信号、および前記誤差算出部により算出された誤差に基づいて、前記補償係数を算出する補償係数算出部と、を備えることを特徴とする。
また、請求項5の発明は、請求項4に記載のマルチキャリヤ変調信号受信装置において、前記補償係数算出部が、前記修正DFT変調分析バンクの出力するサブチャネル信号を遅延させる第3の遅延器と、前記修正DFT変調分析バンクの出力するサブチャネル信号および前記第3の遅延器により遅延したサブチャネル信号を連結し、先行波および遅延波に対応する信号を生成する連結部と、前記誤差算出部により算出された誤差の符号を反転する符号反転器と、前記連結部により生成された先行波および遅延波に対応する信号、および前記符号反転器により符号が反転した誤差に基づいて、前記補償係数を最適化する補償係数最適化部と、を備えることを特徴とする。
以上のように、本発明によれば、主波付近の信号を等化するシンボル等化器と、シンボル間干渉により生じた信号を等化してレプリカを生成するシンボル間干渉レプリカ生成部とが並列接続され、シンボル等化器により等化された信号から、シンボル間干渉レプリカ生成部により生成されたレプリカを減算する減算器を備えた等化器を用いて、実質的に最大間引き率の2倍のレートで動作する修正DFT変調分析バンクの出力する複数系統の信号からなるサブチャネル信号を等化するようにした。これにより、等化可能な遅延時間範囲の確保と伝搬路の変動に対する耐性の両方を同時に実現することが可能となる。
本発明の実施形態によるマルチキャリヤ変調信号受信装置の構成を示すブロック図である。 分析バンクの構成を示すブロック図である。 ポリフェーズ分析バンクの構成を示すブロック図である。 サブチャネル処理部の構成を示すブロック図である。 チャネル等化器の構成を示すブロック図である。 実部等化器の構成を示すブロック図である。 シンボル等化器の構成を示すブロック図である。 シンボル間干渉レプリカ生成部の構成を示すブロック図である。 線形等化器の構成を示すブロック図である。 係数算出部の構成を示すブロック図である。 等化係数最適化部の構成を示すブロック図である。 伝送路の遅延プロファイルとシンボル等化器およびシンボル間干渉レプリカ生成部の処理対象信号との関係を説明する図である。 次元拡張部による処理の具体例を説明する図である。 次元分割部による処理の具体例を説明する図である。 計算機シミュレーションにより求めたBER特性を示す図である。 一般的なトランスマルチプレクサの構成を示すブロック図である。 OFDMをトランスマルチプレクサとして表現したときの構成を示すブロック図である。 修正DFT変調合成バンクの構成を示すブロック図である。 修正DFT変調分析バンクの構成を示すブロック図である。
以下、本発明を実施するための形態について図面を用いて詳細に説明する。
〔マルチキャリヤ変調信号受信装置〕
図1は、本発明の実施形態によるマルチキャリヤ変調信号受信装置の構成を示すブロック図である。このマルチキャリヤ変調信号受信装置1は、周波数変換部2、A/D(アナログ/デジタル)変換部3、直交復調部4、分析バンク(修正DFT変調分析バンク)5、チャネル等化器6、デマッピング部7およびP/S(パラレル/シリアル)変換部8を備えている。
周波数変換部2は、受信信号をIF信号に周波数変換する。周波数変換部2の出力するIF信号はA/D変換部3へ入力される。A/D変換部3は、周波数変換部2から入力されるIF信号(アナログIF信号)をデジタルIF信号にA/D変換する。A/D変換部3の出力するデジタルIF信号は直交復調部4へ入力される。直交復調部4は、A/D変換部3から入力されるデジタルIF信号を等価ベースバンド信号に直交復調する。直交復調部4の出力する等価ベースバンド信号は分析バンク5へ入力される。
分析バンク5は、直交復調部4から入力される時間領域の等価ベースバンド信号を、実質的に最大間引き率の2倍のレートで周波数領域の信号に変換し、通常の分析バンクにおける出力信号の実部成分および虚部成分の他に、通常の出力信号と対になる虚部成分および実部成分も合わせて出力する。すなわち、分析バンク5は、2系統の実部成分および2系統の虚部成分により構成される、合わせて4系統の実数信号からなる実部サブチャネル信号ベクトル、および、2系統の実部成分および2系統の虚部成分により構成される、合わせて4系統の実数信号からなる虚部サブチャネル信号ベクトルをそれぞれ出力する。分析バンク5の出力する実部サブチャネル信号ベクトルおよび虚部サブチャネル信号ベクトル(以下、総称してサブチャネル信号ベクトルという。)はチャネル等化器6へ入力される。
チャネル等化器6は、分析バンク5から入力されるサブチャネル信号ベクトルを等化し、等化後のサブチャネル信号(等化後のキャリヤシンボル)として出力する。チャネル等化器6の出力する等化後のサブチャネル信号はデマッピング部7へ入力される。
デマッピング部7は、チャネル等化器6から入力される等化後のサブチャネル信号をデマッピングし、パラレル信号に変換する。デマッピング部7の出力するパラレル信号はP/S変換部8へ入力される。P/S変換部8は、デマッピング部7から入力されるパラレル信号をシリアル信号に変換し、シリアル信号のビット列を外部へ出力する。
〔分析バンク(ポリフェーズ構成)〕
次に、図1に示した分析バンク5のポリフェーズ構成について説明する。図2は、分析バンク5の構成を示すブロック図である。この分析バンク5は、遅延器21、ポリフェーズ分析バンク22−1,22−2およびサブチャネル処理部23−0〜23−(M−1)を備えている。分析バンク5は、直交復調部4から等価ベースバンド信号が入力され、サブチャネル信号ベクトル0〜M−1(実部サブチャネル信号ベクトル0〜M−1および虚部サブチャネル信号ベクトル0〜M−1)を生成し、サブチャネル信号ベクトルとして出力する。
図1に示した直交復調部4から入力される等価ベースバンド信号は2分配され、一方が遅延器21へ、他方がポリフェーズ分析バンク22−1へ入力される。遅延器21は、直交復調部4から入力される等価ベースバンド信号をM/2サンプル遅延させる。遅延器21の出力する等価ベースバンド信号はポリフェーズ分析バンク22−2へ入力される。
ポリフェーズ分析バンク22−1は、直交復調部4から入力される等価ベースバンド信号をポリフェーズ分析し、第1のサブチャネル信号0〜M−1を生成する。ポリフェーズ分析バンク22−1の出力する第1のサブチャネル信号0〜M−1はサブチャネル処理部23−0〜23−(M−1)へ入力される。
ポリフェーズ分析バンク22−2は、遅延器21から入力される等価ベースバンド信号をポリフェーズ分析し、第2のサブチャネル信号0〜M−1を生成する。ポリフェーズ分析バンク22−2の出力する第2のサブチャネル信号0〜M−1はサブチャネル処理部23−0〜23−(M−1)へ入力される。
サブチャネル処理部23−0〜23−(M−1)は、ポリフェーズ分析バンク22−1,22−2から入力されるそれぞれのサブチャネル信号0〜M−1に、サブチャネル毎の処理を行い、サブチャネル信号ベクトル0〜M−1(実部サブチャネル信号ベクトル0〜M−1および虚部サブチャネル信号ベクトル0〜M−1)、すなわち実部サブチャネル信号ベクトルkおよび虚部サブチャネル信号ベクトルk(サブチャネル信号ベクトルk)を生成して出力する。
(ポリフェーズ分析バンク)
次に、図2に示したポリフェーズ分析バンク22−1,22−2(以下、総称してポリフェーズ分析バンク22という。)について説明する。図3は、ポリフェーズ分析バンク22の構成を示すブロック図である。このポリフェーズ分析バンク22は、遅延器24−1〜24−(M−1)、デシメータ25−0〜25−(M−1)、ポリフェーズフィルタ26−0〜26−(M−1)、FFT部27および乗算器28−0〜28−(M−1)を備えている。ポリフェーズ分析バンク22は、等価ベースバンド信号を入力し、サブチャネル信号0〜M−1を生成して出力する。
ポリフェーズ分析バンク22に入力される等価ベースバンド信号は2分配され、一方が遅延器24−1へ、他方がデシメータ25−0に入力される。遅延器24−1は、入力される等価ベースバンド信号を1サンプル遅延させる。遅延器24−1の出力する等価ベースバンド信号は2分配され、一方が遅延器24−2へ、他方がデシメータ25−1へ入力される。
同様に、遅延器24−k(2≦k<M−1)は、前段の遅延器24−(k−1)から入力される等価ベースバンド信号を1サンプル遅延させる。遅延器24−kの出力する等価ベースバンド信号は2分配され、一方が後段の遅延器24−(k+1)へ、他方がデシメータ25−kへ入力される。
遅延器24−(M−1)は、前段の遅延器24−(M−2)から入力される等価ベースバンド信号を1サンプル遅延させる。遅延器24−(M−1)の出力する等価ベースバンド信号はデシメータ25−(M−1)へ入力される。
デシメータ25−k(0≦k≦M−1)は、等価ベースバンド信号を入力し、等価ベースバンド信号に対し、比Mのデシメーション処理を行う。デシメータ25−kの出力するデシメーション後の等価ベースバンド信号はポリフェーズフィルタ26−kへ入力される。
ポリフェーズフィルタ26−k(0≦k≦M−1)は、デシメータ25−kから入力されるデシメーション後の等価ベースバンド信号にポリフェーズフィルタ処理を行う。ポリフェーズフィルタ26−kの出力するポリフェーズフィルタ処理後の等価ベースバンド信号はFFT部27へ入力される。
ポリフェーズフィルタE(z)は、プロトタイプフィルタp(n)のType1のポリフェーズ成分であり、以下の式で表される。
Figure 2013197644
ここで、Nはプロトタイプフィルタのフィルタ長を、Mはサブチャネル数を示す自然数を、kは任意のサブチャネルをそれぞれ示す。
FFT部27は、ポリフェーズフィルタ26−kから入力されるポリフェーズフィルタ処理後のそれぞれの等価ベースバンド信号をFFT処理する。FFT部27の出力するM個のサブチャネル信号はそれぞれ乗算器28−kへ入力される。
乗算器28−k(0≦k≦M−1)は、FFT部27から入力されるサブチャネル信号にjM−kを乗算する。ただしjは虚数単位である。乗算器28−kの出力するサブチャネル信号kは、図2に示したサブチャネル処理部23−kへ入力される。
このように、ポリフェーズ分析バンク22は、等価ベースバンド信号を入力し、サブチャネル信号0〜M−1を生成してサブチャネル処理部23−0〜23−(M−1)に出力する。以下、ポリフェーズ分析バンク22−1の出力するサブチャネル信号をk1とし、ポリフェーズ分析バンク22−2の出力するサブチャネル信号をk2とする。
(サブチャネル処理部)
次に、図2に示したサブチャネル処理部23−0〜23−(M−1)について説明する。図4は、サブチャネル処理部23−k(0≦k≦M−1)の構成を示すブロック図である。このサブチャネル処理部23−kは、実部抽出部29−1,29−2、虚部抽出部30−1,30−2、遅延器31−1,31−2および乗算器32−1,32−2を備えている。サブチャネル処理部23−kは、ポリフェーズ分析バンク22−1からサブチャネル信号k1を入力すると共に、ポリフェーズ分析バンク22−2からサブチャネル信号k2を入力し、8個の要素からなるサブチャネル信号ベクトルk(4個の要素からなる実部サブチャネル信号ベクトルkおよび4個の要素からなる虚部サブチャネル信号ベクトルk)を生成して出力する。
図2に示したポリフェーズ分析バンク22−2から入力されるサブチャネル信号k2は2分配され、一方が実部抽出部29−1へ、他方が虚部抽出部30−1へ入力される。図2に示したポリフェーズ分析バンク22−1から入力されるサブチャネル信号k1は2分配され、一方が実部抽出部29−2へ、他方が虚部抽出部30−2へ入力される。
実部抽出部29−1は、ポリフェーズ分析バンク22−2から入力されるサブチャネル信号k2から実部を抽出し、実数サブチャネル信号を生成する。実部抽出部29−1の出力する実数サブチャネル信号は2分配され、一方が実部サブチャネル信号ベクトルkの1要素としてサブチャネル処理部23−kから出力され、他方が遅延器31−2へ入力される。
虚部抽出部30−1は、ポリフェーズ分析バンク22−2から入力されるサブチャネル信号k2から虚部を抽出し、実数サブチャネル信号を生成する。虚部抽出部30−1の出力する実数サブチャネル信号は2分配され、一方が実部サブチャネル信号ベクトルkの1要素としてサブチャネル処理部23−kから出力され、他方が遅延器31−1へ入力される。
虚部抽出部30−2は、ポリフェーズ分析バンク22−1から入力されるサブチャネル信号k1から虚部を抽出し、実数サブチャネル信号を生成する。虚部抽出部30−2の出力する実数サブチャネル信号は2分配され、一方が実部サブチャネル信号ベクトルkの1要素として、他方が虚部サブチャネル信号ベクトルkの1要素としてサブチャネル処理部23−kから出力される。
実部抽出部29−2は、ポリフェーズ分析バンク22−1から入力されるサブチャネル信号k1から実部を抽出し、実数サブチャネル信号を生成する。実部抽出部29−2の出力する実数サブチャネル信号は2分配され、一方が実部サブチャネル信号ベクトルkの1要素としてサブチャネル処理部23−kから出力され、他方が乗算器32−1へ入力される。
乗算器32−1は、実部抽出部29−2から入力される実数サブチャネル信号に−1を乗算し、符号を反転させる。乗算器32−1の出力する、符号が反転した実数サブチャネル信号は、虚部サブチャネル信号ベクトルkの1要素としてサブチャネル処理部23−kから出力される。
遅延器31−1は、虚部抽出部30−1から入力される実数サブチャネル信号を1サンプル遅延させる。遅延器31−1の出力する実数サブチャネル信号は、虚部サブチャネル信号ベクトルkの1要素としてサブチャネル処理部23−kから出力される。
遅延器31−2は、実部抽出部29−1から入力される実数サブチャネル信号を1サンプル遅延させる。遅延器31−2の出力する実数サブチャネル信号は乗算器32−2に入力される。乗算器32−2は、遅延器31−2から入力される実数サブチャネル信号に−1を乗算し、符号を反転させる。乗算器32−2の出力する、符号が反転した実数サブチャネル信号は、虚部サブチャネル信号ベクトルkの1要素としてサブチャネル処理部23−kから出力される。
なお、実部抽出部29−1により抽出される実数サブチャネル信号を
Figure 2013197644
とし、虚部抽出部30−1により抽出される実数サブチャネル信号を
Figure 2013197644
とし、虚部抽出部30−2により抽出される実数サブチャネル信号を
Figure 2013197644
とし、実部抽出部29−2により抽出される実数サブチャネル信号を
Figure 2013197644
とすると、実部サブチャネル信号ベクトルkは、以下のようになる。
Figure 2013197644
ここで、上付きのTは転置を、下付きのkはサブチャネルを、上付きのRおよびIはそれぞれ実部および虚部を、zは最大間引きレートであること、すなわちサンプル間隔がシンボル長の1/Mであることを示す。
一方、虚部サブチャネル信号ベクトルkは、以下のようになる。
Figure 2013197644
図2、図3および図4において、デシメータ25−0〜25−(M−1)の前段に設けられた遅延器21,24−1〜24−(M−1)は、最大間引きレート(サンプル間隔がシンボル長の1/Mとなるレート)のM倍で動作する。また、デシメータ25−0〜25−(M−1)の後段に設けられたポリフェーズフィルタ26−0〜26−(M−1)、FFT部27、乗算器28−0〜28−(M−1)、実部抽出部29−1,29−2、虚部抽出部30−1,30−2、遅延器31−1,31−2および乗算器32−1,32−2は、最大間引きレートで動作する。しかし、サブチャネル処理部23−kでは、ポリフェーズ分析バンク22−1,22−2それぞれから最大間引きレートのサブチャネル信号k1,k2が入力され、間引きが行われることなく2個の信号に分岐し、分岐した2個のサブチャネル信号に対して同じサンプリングレート(最大間引きレート)で処理が行われる。そして、実部サブチャネル信号ベクトルkおよび虚部サブチャネル信号ベクトルkが出力されるため、サブチャネル処理部23−k全体として、実質的に最大間引き率の2倍のレートで動作する。
このように、分析バンク5によれば、実部サブチャネル信号ベクトルkを生成すると共に、この実部サブチャネル信号ベクトルkに基づいて虚部サブチャネル信号ベクトルkを生成するようにした。また、式(3)に示したように、実部サブチャネル信号ベクトルkから虚部サブチャネル信号ベクトルkへの変換は、定数である変換行列により行われる。これにより、後段のチャネル等化器6において、実部サブチャネル信号ベクトルkおよび虚部サブチャネル信号ベクトルkに対して異なる等化係数を用いることなく、両ベクトルにそれぞれ共通の等化係数を用いて線形等化を行うことができ好適である。
〔チャネル等化器〕
次に、図1に示したチャネル等化器6について説明する。図5は、図1に示したチャネル等化器6の構成を示すブロック図である。このチャネル等化器6は、実部等化器11、パイロット信号生成部12、誤差算出部13、係数算出部14、虚部等化器15、乗算器16および加算器17を備えている。チャネル等化器6は、分析バンク5からサブチャネル信号ベクトル(実部サブチャネル信号ベクトルおよび虚部サブチャネル信号ベクトル)を入力し、サブキャリヤ毎に、実部サブチャネル信号ベクトルの信号を実部等化器11にて等化すると共に、虚部サブチャネル信号ベクトルの信号を虚部等化器15にて等化し、等化後の実部信号および虚部信号からなる複素キャリヤシンボルを出力する。すなわち、図1に示したチャネル等化器6は、図2に示す構成をM個備えている。以下、実部サブチャネル信号ベクトルを実部サブチャネル信号、虚部サブチャネル信号ベクトルを虚部サブチャネル信号という。
図1に示した分析バンク5の出力する実部サブチャネル信号は2分配され、一方が実部等化器11へ、他方が係数算出部14へ入力される。実部等化器11は、分析バンク5から入力される実部サブチャネル信号に対し、係数算出部14から入力される等化係数および補償係数を用いて等化処理を行う。実部等化器11の出力する等化後の信号は2分配され、一方が加算器17へ、他方が誤差算出部13へ入力される。
パイロット信号生成部12は、既知信号であるパイロット信号を生成して誤差算出部13へ出力する。誤差算出部13は、パイロット信号生成部12の出力するパイロット信号から、実部等化器11の出力する等化後の信号のうちのパイロット信号を減算し、誤差を求める。誤差算出部13の出力する誤差は係数算出部14へ入力される。
係数算出部14は、分析バンク5から入力される実部サブチャネル信号と、誤差算出部13から入力される誤差とを用いて、実部等化器11および虚部等化器15にて用いる等化係数および補償係数を算出する。係数算出部14の出力する等化係数および補償係数は2分配され、一方が実部等化器11へ、他方が虚部等化器15へ入力される。
図1に示した分析バンク5の出力する虚部サブチャネル信号は虚部等化器15へ入力される。虚部等化器15は、分析バンク5から入力される虚部サブチャネル信号に対し、係数算出部14から入力される等化係数および補償係数を用いて等化処理を行う。虚部等化器15の出力する等化後の信号は乗算器16へ入力される。
乗算器16は、虚部等化器15から入力される等化後の信号に1jを乗算して出力する。乗算器16の出力する等化後の信号は加算器17へ入力される。加算器17は、実部等化器11および乗算器16からそれぞれ入力される等化後の実部信号および虚部信号を加算し、複素キャリヤシンボルを生成する。加算器17の出力する等化後のキャリヤシンボルは、図1に示したデマッピング部7へ入力される。
(実部等化器および虚部等化器)
次に、図5に示した実部等化器11および虚部等化器15について説明する。図6は、実部等化器11の構成を示すブロック図である。実部等化器11および虚部等化器15は同じ構成であるため、以下では実部等化器11について説明する。この実部等化器11は、シンボル等化器41、シンボル間干渉レプリカ生成部(ISIレプリカ生成部)42および減算器43を備えている。実部等化器11は、分析バンク5から実部サブチャネル信号を入力すると共に、係数算出部14から等化係数および補償係数を入力し、実部サブチャネル信号に対し等化係数および補償係数を用いて、サブチャネル毎に等化処理を行う。
分析バンク5の出力する実部サブチャネル信号は2分配され、一方がシンボル等化器41へ、他方がシンボル間干渉レプリカ生成部42へ入力される。係数算出部14の出力する等化係数はシンボル等化器41へ入力され、補償係数はシンボル間干渉レプリカ生成部42へ入力される。ここで、等化係数は、主波付近の信号を等化するための係数であり、補償係数は、シンボル間干渉により生じた信号を等化しレプリカを生成するための係数である。等化係数および補償係数の詳細については後述する。
シンボル等化器41は、分析バンク5から入力される実部サブチャネル信号に対し、係数算出部14から入力される等化係数を用いて、当該シンボルの等化処理を行う。これにより、主波付近の信号が等化される。シンボル等化器41の出力する等化後の信号は減算器43へ入力される。
シンボル間干渉レプリカ生成部42は、分析バンク5から入力される実部サブチャネル信号、および係数算出部14から入力される補償係数を用いて、当該シンボルにおけるシンボル間干渉成分のレプリカ(シンボル間干渉レプリカ)を生成する。これにより、シンボル間干渉成分のレプリカが生成される。シンボル間干渉レプリカ生成部42の出力するシンボル間干渉レプリカは減算器43へ入力される。
減算器43は、シンボル等化器41の出力する等化後の信号から、シンボル間干渉レプリカ生成部42の出力するシンボル間干渉レプリカを減算し、等化後の実部信号を生成する。これにより、シンボルの等化処理が行われた等化後の信号から、遅延波によって生じたシンボル間干渉成分が除去される。減算器43の出力する等化後の実部信号は、図5に示した誤差算出部13および加算器17へ入力される。
図12は、伝送路の遅延プロファイルと図6に示したシンボル等化器41およびシンボル間干渉レプリカ生成部42の処理対象信号との関係を説明する図であり、単位更新時間のシンボル毎の番号t=5のタイミングにおける遅延プロファイル、および実部サブチャネル信号を示している。t=5は、後述する図13および図14の説明と対応付けるための時間タイミングを示す。実部サブチャネル信号は、単位更新時間のシンボル毎の番号(0,1,2,3,4,5,6,7,8)に対応して表現し、番号0の信号が最新であり、番号8の信号が最も古い信号である。t=5のタイミングの遅延プロファイルでは、遅延波に対応する実部サブチャネル信号が番号2,3の信号に、主波に対応する実部サブチャネル信号が番号4の信号に、先行波に対応する実部サブチャネル信号が番号5の信号に含まれると考えられる。
番号2,3の実部サブチャネル信号(遅延波に対応する信号)が、シンボル間干渉レプリカ生成部42に備えた線形等化器49(後述する図8を参照)にて等化され、番号4の実部サブチャネル信号(主波に対応する信号)が、シンボル等化器41に備えた線形等化器45(後述する図7を参照)にて等化され、番号5の実部サブチャネル信号(先行波に対応する信号)が、シンボル間干渉レプリカ生成部42に備えた線形等化器47(後述する図8を参照)にて等化されるように、図6に示した実部等化器11は動作する。すなわち、図6に示した実部等化器11において、シンボル等化器41が、図12に示した番号4の実部サブチャネル信号を等化し、シンボル間干渉レプリカ生成部42が、図12に示した番号2,3,5の実部サブチャネル信号を等化してシンボル間干渉レプリカを生成する。
(シンボル等化器)
次に、図6に示したシンボル等化器41について説明する。図7は、シンボル等化器41の構成を示すブロック図である。このシンボル等化器41は、遅延器44および線形等化器45を備えている。以下では、実部サブチャネル信号ベクトルを入力するシンボル等化器41について説明する。虚部サブチャネル信号ベクトルを入力する場合も同様である。シンボル等化器41は、分析バンク5から実部サブチャネル信号を入力すると共に、係数算出部14から等化係数を入力し、実部サブチャネル信号に対し等化係数を用いて、当該シンボルの等化処理を行う。
遅延器44は、分析バンク5から入力される実部サブチャネル信号を、後述する図8に示すシンボル間干渉レプリカ生成部42の線形等化器47の設定可能な値である遅延量に相当するシンボル数分遅延させる。遅延器44の出力する遅延した実部サブチャネル信号は線形等化器45へ入力される。
線形等化器45は、遅延器44から入力される遅延した実部サブチャネル信号に対し、係数算出部14から入力される等化係数を用いて線形等化する。線形等化器45の出力する等化後の信号は、図6に示した減算器43へ入力される。
(シンボル間干渉レプリカ生成部)
次に、図6に示したシンボル間干渉レプリカ生成部42について説明する。図8は、シンボル間干渉レプリカ生成部42の構成を示すブロック図である。このシンボル間干渉レプリカ生成部42は、次元分割部46、線形等化器47、遅延器48、線形等化器49および加算器50を備えている。以下では、実部サブチャネル信号を入力するシンボル間干渉レプリカ生成部42について説明する。虚部サブチャネル信号を入力する場合も同様である。シンボル間干渉レプリカ生成部42は、分析バンク5から実部サブチャネル信号を入力すると共に、係数算出部14から補償係数を入力し、実部サブチャネル信号および補償係数を用いて、当該シンボルにおけるシンボル間干渉レプリカを生成する。
次元分割部46は、係数算出部14から入力される補償係数を分割し、次元が分割された補償係数を生成する。ここで、次元分割部46は、後述する図10に示す次元拡張部53に対応するように、次元分割処理を行う。次元分割部46の具体例については後述する。次元分割部46の出力する次元が分割された補償係数は、一部が線形等化器47へ入力され、残りが線形等化器49へ入力される。
これにより、係数算出部14から入力される補償係数が、先行波に対応する実部サブチャネル信号を線形等化器47にて等化するための先行波等化用の補償係数と、遅延波に対応する実部サブチャネル信号を線形等化器49にて等化するための遅延波等化用の補償係数とに分割される。
線形等化器47は、分析バンク5から入力される実部サブチャネル信号、および次元分割部46から入力される分割された補償係数を用いて、第1のシンボル間干渉レプリカを生成する。これにより、先行波に対応する実部サブチャネル信号が、先行波等化用の補償係数を用いて等化される。線形等化器47の出力する第1のシンボル間干渉レプリカは加算器50へ入力される。
遅延器48は、分析バンク5から入力される実部サブチャネル信号を、図7に示したシンボル等化器41の遅延器44の遅延量および線形等化器45の遅延量に相当するシンボルを合わせた時間分遅延させる。遅延器48の出力する遅延した実部サブチャネル信号は線形等化器49へ入力される。
線形等化器49は、遅延器48から入力される遅延した実部サブチャネル信号、および次元分割部46から入力される分割された補償係数を用いて、第2のシンボル間干渉レプリカを生成する。これにより、遅延波に対応する実部サブチャネル信号が、遅延波等化用の補償係数を用いて等化される。線形等化器49の出力する第2のシンボル間干渉レプリカは加算器50へ入力される。
加算器50は、線形等化器47から入力される第1のシンボル間干渉レプリカと、線形等化器49から入力される第2のシンボル間干渉レプリカとを加算して合成する。これにより、先行波に対応する第1のシンボル間干渉レプリカと遅延波に対応する第2のシンボル間干渉レプリカとが加算され、シンボル間干渉により生じた信号のレプリカが生成される。加算器50の出力するシンボル間干渉レプリカは、図6に示した減算器43へ入力される。
(係数算出部)
次に、図5に示した係数算出部14について説明する。図10は、係数算出部14の構成を示すブロック図である。この係数算出部14は、等化係数最適化部51、遅延器52、次元拡張部(連結部)53、符号反転器54および補償係数最適化部55を備えている。係数算出部14は、分析バンク5から実部サブチャネル信号を入力すると共に、誤差算出部13から誤差を入力し、実部サブチャネル信号と誤差とを用いて、実部等化器11および虚部等化器15にて用いる等化係数および補償係数を算出する。等化係数最適化部51により等化係数算出部が構成され、遅延器52、次元拡張部53、符号反転器54および補償係数最適化部55により補償係数算出部が構成される。
図1に示した分析バンク5の出力する実部サブチャネル信号は3分配され、等化係数最適化部51、遅延器52および次元拡張部53へ入力される。尚、説明を簡単にするため、図10に示す遅延器52と図8に示した遅延器48は異なるものとしているが、実際には入出力信号が同じであるため、共有することができる。図5に示した誤差算出部13の出力する誤差は2分配され、一方が等化係数最適化部51へ、他方が符号反転器54へ入力される。
等化係数最適化部51は、分析バンク5から入力される実部サブチャネル信号、および誤差算出部13から入力される誤差を用いて、当該誤差が最小となるように、等化係数を最適化する。これにより、主波に対応する実部サブチャネル信号を図6に示したシンボル等化器41にて等化するための等化係数が生成される。等化係数最適化部51の出力する等化係数は、図5に示した実部等化器11および虚部等化器15へ入力される。
遅延器52は、分析バンク5から入力される実部サブチャネル信号を、図7に示したシンボル等化器41の遅延器44の遅延量および線形等化器45の遅延量に相当するシンボルを合わせた時間分遅延させる。遅延器52の出力する遅延した実部サブチャネル信号は次元拡張部53へ入力される。
次元拡張部53は、分析バンク5から入力される実部サブチャネル信号と、遅延器52から入力される遅延した実部サブチャネル信号とを連結し、次元が拡張された実部サブチャネル信号を生成する。ここで、次元拡張部53は、図8に示した次元分割部46に対応するように、次元拡張処理を行う。次元拡張部53の具体例については後述する。次元拡張部53の出力する次元が拡張された実部サブチャネル信号は補償係数最適化部55へ入力される。
これにより、次元拡張部53が入力する時系列の実部サブチャネル信号から主波に対応する実部サブチャネル信号が除外され、主波よりも先のタイミングの先行波に対応する所定の実部サブチャネル信号と、主波よりも後のタイミングの遅延波に対応する所定の実部サブチャネル信号との連結信号が生成される。
符号反転器54は、誤差算出部13から入力される誤差の符号を反転する。符号反転器54の出力する誤差は補償係数最適化部55へ入力される。
補償係数最適化部55は、次元拡張部53から入力される次元が拡張された実部サブチャネル信号、および符号反転器54から入力される誤差を用いて、当該誤差が最小となるように、補償係数を最適化する。補償係数最適化部55の出力する補償係数は、図5に示した実部等化器11および虚部等化器15へ入力される。
これにより、先行波に対応する実部サブチャネル信号を線形等化器47にて等化するための先行波等化用の補償係数と、遅延波に対応する実部サブチャネル信号を線形等化器49にて等化するための遅延波等化用の補償係数とが生成される。補償係数最適化部55の出力する補償係数は、次元拡張部53により次元が拡張された実部サブチャネル信号に対応するものである。次元拡張部53における第1の入力信号である実部サブチャネル信号に対応する補償係数は、図8に示した線形等化器47にて用いられる。また、次元拡張部53における第2の入力信号である遅延器52からの実部サブチャネル信号に対応する補償係数は、図8に示した線形等化器49にて用いられる。
図13は、図10に示した次元拡張部53による処理の具体例を説明する図である。図13に示す(A)〜(C)の信号は、図12に示したものに対応している。次元拡張部53は、分析バンク5から(A)に示す実部サブチャネル信号を入力すると共に、遅延器52から(B)に示す遅延した実部サブチャネル信号を入力する。そして、次元拡張部53は、例えばt=5のタイミングにて、(A)における番号5の信号と(B)における番号2,3の信号とを連結し、番号5,2,3からなる連結信号を生成する。このように、次元拡張部53は、単位更新時間の番号のタイミング毎に、(A)の実部サブチャネル信号における当該タイミングの信号と、(B)の実部サブチャネル信号における当該タイミングの信号および1つ前の信号とを連結し、連結信号を補償係数最適化部55に出力する。そして、後段の補償係数最適化部55により、連結信号のうち(A)の実部サブチャネル信号に対応する補償係数C、(B)の実部サブチャネル信号に対応する補償係数C,Cが生成される。
図14は、図8に示した次元分割部46による処理の具体例を説明する図である。図14に示す(D)〜(F)の信号は、図13に示した信号に対応している。次元分割部46は、係数算出部14から(D)に示す補償係数C,C,Cを入力し、図13に示した次元拡張部53において番号5の信号と番号3,2の信号とを連結した拡張処理に対応させて、入力した補償係数C,C,Cを、(E)に示す補償係数Cと(F)に示す補償係数C,Cとに分割し、次元が分割された(E)に示す補償係数Cを線形等化器47に出力し、(F)に示す補償係数C,Cを線形等化器49に出力する。
(線形等化器)
次に、図7に示した線形等化器45および図8に示した線形等化器47,49について説明する。図9は、線形等化器45の構成を示すブロック図である。線形等化器45,47,49は同じ構成であるため、以下では線形等化器45について説明する。この線形等化器45は、適応フィルタ71−1〜71−4および加算器72を備えている。線形等化器45は、実部サブチャネル信号または虚部サブチャネル信号をサブチャネル毎に、係数算出部14の出力する等化係数または補償係数で等化し、等化後の実部サブチャネル信号(キャリヤシンボル)または虚部サブチャネル信号(キャリヤシンボル)を出力する。
適応フィルタ71−1〜71−4は、実部サブチャネル信号ベクトルkである
Figure 2013197644
の要素、または虚部サブチャネル信号ベクトルkである
Figure 2013197644
の要素を、図10に示した係数算出部14から入力される等化係数または補償係数によりフィルタ処理する。適応フィルタ71−1〜71−4の出力するフィルタ処理後の実部サブチャネル信号ベクトルkの要素または虚部サブチャネル信号ベクトルkの要素は加算器72へ入力される。
加算器72は、適応フィルタ71−1〜71−4から入力されるフィルタ処理後の実部サブチャネル信号ベクトルkの要素または虚部サブチャネル信号ベクトルkの要素を加算する。
(等化係数最適化部および補償係数最適化部)
次に、図10に示した等化係数最適化部51および補償係数最適化部55について説明する。図11は、等化係数最適化部51の構成を示すブロック図であり、正規化LMSアルゴリズムの例を示している。等化係数最適化部51および補償係数最適化部55は同じ構成であるため、以下では等化係数最適化部51について説明する。この等化係数最適化部51は、ノルム算出部56、除算器57、乗算器58,59、加算器60および遅延器61を備えている。等化係数最適化部51は、分析バンク5から実部サブチャネル信号を入力すると共に、誤差算出部13から誤差を入力し、当該誤差が最小となるように、等化係数を最適化する。尚、等化係数最適化部51および補償係数最適化部55は、異なる構成であってもよい。
図1に示した分析バンク5の出力する実部サブチャネル信号は2分配され、一方が除算器57へ、他方がノルム算出部56へ入力される。ノルム算出部56は、分析バンク5から入力される実部サブチャネル信号のノルムを算出する。ノルム算出部56の出力するノルムは除算器57へ入力される。
除算器57は、分析バンク5から入力される実部サブチャネル信号を、ノルム算出部56から入力されるノルムで除算し、正規化する。除算器57の出力する正規化された実部サブチャネル信号は乗算器58へ入力される。
乗算器58は、誤差算出部13から入力される誤差に、除算器57から入力される正規化された実部サブチャネル信号を乗算する。乗算器58の出力する乗算結果は乗算器59へ入力される。乗算器59は、乗算器58から入力される乗算結果に、予め決められた値であるステップサイズを乗算する。乗算器59の出力する乗算結果は加算器60へ入力される。
加算器60は、遅延器61から入力される単位更新時間前の等化係数に、乗算器59から入力される乗算結果を加算することで、等化係数を更新する。加算器60の出力する等化係数は2分配され、一方が実部等化器11および虚部等化器15へ入力され、他方が遅延器61へ入力される。遅延器61は、加算器60から入力される等化係数を単位更新時間分遅延させる。遅延器61の出力する単位更新時間遅延した等化係数は加算器60へ入力される。
図11に示した等化係数最適化部51による処理を数式を用いて表現すると、以下のようになる。すなわち、実部サブチャネル信号をx、誤差をeとすると、等化係数のベクトルwは、次式により更新される。
Figure 2013197644
ここで、nは単位更新時間を示し、μはステップサイズを示す。
〔シミュレーション結果〕
次に、計算機シミュレーションにより求めた結果について説明する。図15は、計算機シミュレーションにより求めた、伝搬路に変動がある場合のBER特性の例を示す図である。(1)は、従来のマルチキャリヤ変調信号受信装置のBER特性を示しており、(2)は、本発明の実施形態によるマルチキャリヤ変調信号受信装置1のBER特性を示している。また、分割数Mは1024、シンボル長は126μs、クロック周波数は8.127MHzとし、伝搬路は主波の他に、ドップラー変動するD/U3dB、遅延時間30μsのマルチパスが存在するものとする。図15の横軸は、マルチパスのドップラー周波数を示し、縦軸はBERを示している。図15(1)(2)に示すBER特性から、本発明の実施形態によるマルチキャリヤ変調信号受信装置1では、従来のマルチキャリヤ変調信号受信装置と比較して、良いBER特性が得られていることがわかる。
以上のように、本発明の実施形態によるマルチキャリヤ変調信号受信装置1によれば、修正DFT変調分析バンクである分析バンク5は、実質的に最大間引き率の2倍のレートで動作し、時間領域の等価ベースバンド信号を周波数領域の信号に変換し、通常の分析バンクにおける出力信号の実部成分および虚部成分の他に、通常の出力信号と対になる虚部成分および実部成分も合わせ、実部サブチャネル信号および虚部サブチャネル信号として出力するようにした。また、チャネル等化器6は、実部サブチャネル信号を等化する実部等化器11と、虚部サブチャネル信号を等化する虚部等化器15とを備え、実部等化器11および虚部等化器15のそれぞれが、主波付近の信号を等化するシンボル等化器41と、遅延波によってシンボル間干渉が生じる信号のレプリカを生成するシンボル間干渉レプリカ生成部42とを並列接続し、減算器43にて、シンボル等化器41により等化された信号から、シンボル間干渉レプリカ生成部42により生成されたレプリカを減算するようにした。これにより、シンボル等化処理により主波成分が等化された等化後の信号から、遅延波によって生じたシンボル間干渉成分のレプリカが除去される。したがって、遅延時間の長いマルチパスを等化するために、チャネル等化器6の次数を大きくする必要がないことに加え、冗長な情報を伝送することなく、マルチパスに対する耐性と共に、伝搬路の変動に対する耐性を実現することができる。すなわち、修正DFT変調合成バンクによって変調されたマルチキャリヤ変調信号をチャネル等化する際に、等化可能な遅延時間範囲の確保と伝搬路の変動に対する耐性の両方を同時に実現することが可能となる。
1 マルチキャリヤ変調信号受信装置
2 周波数変換部
3 A/D変換部
4 直交復調部
5 分析バンク
6 チャネル等化器
7 デマッピング部
8 P/S変換部
11 実部等化器
12 パイロット信号生成部
13 誤差算出部
14 係数算出部
15 虚部等化器
16,28,32,58,59 乗算器
17,50,60,72 加算器
21,24,31,44,48,52,61 遅延器
22 ポリフェーズ分析バンク
23 サブチャネル処理部
25 デシメータ
26 ポリフェーズフィルタ
27 FFT部
29 実部抽出部
30 虚部抽出部
41 シンボル等化器
42 シンボル間干渉レプリカ生成部
43 減算器
45,47,49 線形等化器
46 次元分割部
51 等化係数最適化部
53 次元拡張部
54 符号反転器
55 補償係数最適化部
56 ノルム算出部
57 除算器
71 適応フィルタ
100 トランスマルチプレクサ
101 修正DFT変調合成バンク
102 修正DFT変調分析バンク

Claims (5)

  1. 修正DFT変調合成バンクによってマルチキャリヤ変調された信号を受信するマルチキャリヤ変調信号受信装置であって、
    直交復調された時間領域の等価ベースバンド信号を、最大間引き率の2倍のレートで周波数領域の信号に変換し、サブチャネル信号を出力する修正DFT変調分析バンクと、
    前記修正DFT変調分析バンクの出力するサブチャネル信号を等化するサブキャリヤ数分のチャネル等化器と、を備え、
    前記チャネル等化器が、
    前記サブチャネル信号を等化し、キャリヤシンボルを生成する等化器と、
    既知送信信号であるパイロット信号を生成するパイロット信号生成部と、
    前記パイロット信号生成部により生成されたパイロット信号から、前記等化器により生成された等化後のキャリヤシンボルを減じて誤差を算出する誤差算出部と、
    前記等化器により、サブチャネル信号の主波成分を等化するための等化係数、および前記サブチャネル信号のシンボル間干渉波成分を等化するための補償係数を算出する係数算出部と、を備え、
    前記等化器が、
    前記等化係数を用いて前記サブチャネル信号を等化するシンボル等化器と、
    前記補償係数を用いて前記サブチャネル信号を等化し、シンボル間干渉成分のレプリカを生成するシンボル間干渉レプリカ生成部と、
    前記シンボル等化器により等化された信号から、前記シンボル間干渉レプリカ生成部により生成されたレプリカを減算し、等化後のキャリヤシンボルを生成する減算器と、を備えることを特徴とするマルチキャリヤ変調信号受信装置。
  2. 前記シンボル等化器が、
    前記修正DFT変調分析バンクの出力するサブチャネル信号を遅延させる第1の遅延器と、
    前記第1の遅延器により遅延したサブチャネル信号を、前記係数算出部により算出された等化係数を用いて等化する第1の線形等化器と、を備えることを特徴とする請求項1に記載のマルチキャリヤ変調信号受信装置。
  3. 前記シンボル間干渉レプリカ生成部が、
    前記係数算出部により算出された補償係数を、先行波に対応する補償係数と遅延波に対応する補償係数とに分割する分割部と、
    前記修正DFT変調分析バンクの出力するサブチャネル信号を、前記分割部により分割された先行波に対応する補償係数を用いて等化する第2の線形等化器と、
    前記修正DFT変調分析バンクの出力するサブチャネル信号を遅延させる第2の遅延器と、
    前記第2の遅延器により遅延したサブチャネル信号を、前記分割部により分割された遅延波に対応する補償係数を用いて等化する第3の線形等化器と、
    前記第2の線形等化器により等化された信号と第3の線形等化器により等化された信号とを加算し、シンボル間干渉成分のレプリカを生成する加算器と、を備えることを特徴とする請求項1または2に記載のマルチキャリヤ変調信号受信装置。
  4. 前記係数算出部が、
    前記修正DFT変調分析バンクの出力するサブチャネル信号、および前記誤差算出部により算出された誤差に基づいて、前記等化係数を算出する等化係数算出部と、
    前記修正DFT変調分析バンクの出力するサブチャネル信号における先行波および遅延波に対応する信号、および前記誤差算出部により算出された誤差に基づいて、前記補償係数を算出する補償係数算出部と、を備えることを特徴とする請求項1から3までのいずれか一項に記載のマルチキャリヤ変調信号受信装置。
  5. 前記補償係数算出部が、
    前記修正DFT変調分析バンクの出力するサブチャネル信号を遅延させる第3の遅延器と、
    前記修正DFT変調分析バンクの出力するサブチャネル信号および前記第3の遅延器により遅延したサブチャネル信号を連結し、先行波および遅延波に対応する信号を生成する連結部と、
    前記誤差算出部により算出された誤差の符号を反転する符号反転器と、
    前記連結部により生成された先行波および遅延波に対応する信号、および前記符号反転器により符号が反転した誤差に基づいて、前記補償係数を最適化する補償係数最適化部と、を備えることを特徴とする請求項4に記載のマルチキャリヤ変調信号受信装置。
JP2012059651A 2012-03-16 2012-03-16 マルチキャリヤ変調信号受信装置 Expired - Fee Related JP5878803B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012059651A JP5878803B2 (ja) 2012-03-16 2012-03-16 マルチキャリヤ変調信号受信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012059651A JP5878803B2 (ja) 2012-03-16 2012-03-16 マルチキャリヤ変調信号受信装置

Publications (2)

Publication Number Publication Date
JP2013197644A true JP2013197644A (ja) 2013-09-30
JP5878803B2 JP5878803B2 (ja) 2016-03-08

Family

ID=49396136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012059651A Expired - Fee Related JP5878803B2 (ja) 2012-03-16 2012-03-16 マルチキャリヤ変調信号受信装置

Country Status (1)

Country Link
JP (1) JP5878803B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010098471A (ja) * 2008-10-15 2010-04-30 Nippon Hoso Kyokai <Nhk> マルチキャリヤ変調信号受信装置
WO2010072963A1 (fr) * 2008-12-22 2010-07-01 France Telecom Decomposition polyphase d ' un banc de filtres pour ofdm surechantillonne
US7936851B2 (en) * 2004-02-20 2011-05-03 Nokia Corporation Channel equalization
JP5662892B2 (ja) * 2011-07-15 2015-02-04 日本放送協会 マルチキャリヤ変調信号受信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7936851B2 (en) * 2004-02-20 2011-05-03 Nokia Corporation Channel equalization
JP2010098471A (ja) * 2008-10-15 2010-04-30 Nippon Hoso Kyokai <Nhk> マルチキャリヤ変調信号受信装置
WO2010072963A1 (fr) * 2008-12-22 2010-07-01 France Telecom Decomposition polyphase d ' un banc de filtres pour ofdm surechantillonne
JP5662892B2 (ja) * 2011-07-15 2015-02-04 日本放送協会 マルチキャリヤ変調信号受信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014047447; 竹内知明, 濱住啓之: '重複擬似完全再構成トランスマルチプレクサの判定指向型チャネル等化' 映像情報メディア学会冬季大会講演予稿集 (2011) , 20111221 *

Also Published As

Publication number Publication date
JP5878803B2 (ja) 2016-03-08

Similar Documents

Publication Publication Date Title
US7912118B2 (en) Hybrid domain block equalizer
US9866419B2 (en) Transmission apparatus, reception apparatus, and communication system
US10237095B2 (en) Linear equalization for use in low latency high speed communication systems
EP2709328B1 (en) Coefficient determining apparatus, equalizer, receiver and transmitter
JP2001094524A (ja) 通信システム、送信装置、受信装置、送信方法、受信方法、および、情報記録媒体
KR20060102185A (ko) 주파수 공간 블록 부호화 기법과 단일 반송파 주파수 영역등화 방식을 이용한 송수신 장치 및 방법
CN109756434A (zh) 用于正交频分复用-偏移正交幅度调制的系统和方法
WO2017183631A1 (ja) Los-mimo復調装置、通信装置、los-mimo伝送システム、los-mimo復調方法及びプログラム
CN101133580A (zh) 接收装置
JP4311132B2 (ja) Ofdm伝送方式における受信装置
JPWO2015064127A1 (ja) 送信装置、受信装置および通信システム
CN113472712A (zh) 一种相位噪声抑制方法
JP5198212B2 (ja) マルチキャリヤ変調信号受信装置
JP4871334B2 (ja) Ofdm信号合成用受信装置
JP5271163B2 (ja) マルチキャリヤ変調信号受信装置
CN104301282A (zh) 一种超高速移动ofdm系统的ici自适应抑制方法
JP5878803B2 (ja) マルチキャリヤ変調信号受信装置
WO2009107347A1 (ja) 受信装置、集積回路及び受信方法
JP6266169B2 (ja) 送信装置、受信装置および通信システム
JP5662892B2 (ja) マルチキャリヤ変調信号受信装置
JP2001313594A (ja) Dmtシステムのタイムドメインイコライザーの係数更新方法、レシーブ方法、dmtシステム及びdmtモデム
JP6214822B2 (ja) 送信装置、受信装置および通信システム
JP6165347B2 (ja) 送信装置、送信方法、受信装置、および受信方法
JP6006629B2 (ja) マルチキャリヤ変調信号受信装置
JP2012010203A (ja) Ofdm信号受信装置および中継装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160129

R150 Certificate of patent or registration of utility model

Ref document number: 5878803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees