JP2013195076A - Magnetic detector and manufacturing method of the same - Google Patents

Magnetic detector and manufacturing method of the same Download PDF

Info

Publication number
JP2013195076A
JP2013195076A JP2012059277A JP2012059277A JP2013195076A JP 2013195076 A JP2013195076 A JP 2013195076A JP 2012059277 A JP2012059277 A JP 2012059277A JP 2012059277 A JP2012059277 A JP 2012059277A JP 2013195076 A JP2013195076 A JP 2013195076A
Authority
JP
Japan
Prior art keywords
magnetic detection
detection device
opening
substrate
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012059277A
Other languages
Japanese (ja)
Other versions
JP5912701B2 (en
Inventor
Masafumi Kaneko
雅史 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2012059277A priority Critical patent/JP5912701B2/en
Priority to CN201310038476.XA priority patent/CN103308870B/en
Publication of JP2013195076A publication Critical patent/JP2013195076A/en
Application granted granted Critical
Publication of JP5912701B2 publication Critical patent/JP5912701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic detector capable of being arranged stably and parallel to a mounting substrate, and also to provide a manufacturing method of the same.SOLUTION: A magnetic detector 1 includes a magnetic sensor for detecting a direction of an external magnetic field, and a plurality of electrode pads on a mounting surface. An isolation layer 7 is formed on the mounting surface 12. A plurality of apertures 8 are formed in the isolation layer 7. A plurality of electrode pads 9 are formed in the plurality of apertures 8. A plurality of circumferential apertures 8a are a part of the apertures 8 and are located in at least a circumferential portion 12a of the mounting surface 12. In the circumferential apertures 8a, open parts 13 reaching from the circumferential apertures 8a to respective side faces 1a-1d of the magnetic detector are formed.

Description

本発明は、外部磁界の方向を検出するための磁気センサを備えた磁気検出装置の特に実装面の構造に関する。   The present invention relates to a structure of a mounting surface of a magnetic detection device including a magnetic sensor for detecting the direction of an external magnetic field.

外部磁界の方向を検出するための磁気センサとしては、例えば地磁気の方位を検出するための地磁気センサがある。   As a magnetic sensor for detecting the direction of the external magnetic field, for example, there is a geomagnetic sensor for detecting the direction of geomagnetism.

地磁気センサを有する磁気検出装置は、前記地磁気センサを基板上に備えてパッケージ化されたものである。前記基板の裏面は実装基板との実装面に該当し、図8(a)(従来の磁気検出装置の裏面図)に示すように実装面30には基板の裏面に塗布されたレジスト層22が設けられ、前記レジスト層22には複数の開口部23が形成されている。そして各開口部23内に夫々、電極パッド31が露出している。図8(a)に示すように複数の電極パッド31を実装面30に配列したことで、基板実装の高密度化を図ることができる。   A magnetic detection device having a geomagnetic sensor is packaged with the geomagnetic sensor on a substrate. The back surface of the substrate corresponds to a mounting surface with the mounting substrate, and a resist layer 22 applied to the back surface of the substrate is formed on the mounting surface 30 as shown in FIG. 8A (back surface view of a conventional magnetic detection device). A plurality of openings 23 are formed in the resist layer 22. The electrode pads 31 are exposed in the openings 23, respectively. As shown in FIG. 8A, by arranging the plurality of electrode pads 31 on the mounting surface 30, it is possible to increase the density of board mounting.

図8(a)に示す磁気検出装置の側面24は製造工程中の切断面に該当する。すなわち複数の磁気検出装置を同時に製造するために、各磁気検出装置を構成する基板よりも大きな基板(大基板)を用いて、大基板上に複数の磁気センサ等を搭載し、モールドした後、大基板を個々の磁気検出装置ごとに切断する。その際の切断面が各磁気検出装置の側面24に該当する。   The side surface 24 of the magnetic detection device shown in FIG. 8A corresponds to a cut surface during the manufacturing process. That is, in order to manufacture a plurality of magnetic detection devices at the same time, using a substrate (large substrate) larger than the substrate constituting each magnetic detection device, after mounting and molding a plurality of magnetic sensors on the large substrate, A large substrate is cut for each magnetic detection device. The cut surface at that time corresponds to the side surface 24 of each magnetic detection device.

特開2001−7246号公報JP 2001-7246 A 特開2002−100711号公報JP 2002-1000071 A 特開2008−277661号公報JP 2008-277661 A 特開2006−295156号公報JP 2006-295156 A

しかしながら、大基板を各磁気検出装置ごとに切断する際、図8(a)に示すように切断位置Dが、所定の位置からずれてしまうと、図8(b)(従来の磁気検出装置の部分拡大裏面図)に示すように、実装面30の周囲部に位置する少なくとも一部の周囲開口部(図8(a)(b)にて符号23aを付した)と、磁気検出装置の側面24との間の間隔が狭くなり、あるいは、周囲開口部23aには側面24にまで通じる連通部(欠陥部)25が形成されてしまう。なお図8(b)に示す側面24は、図8(a)に示す切断位置Dにて切断した際の側面である。   However, when the large substrate is cut for each magnetic detection device, if the cutting position D deviates from a predetermined position as shown in FIG. 8A, FIG. As shown in the partial enlarged rear view), at least a part of the peripheral opening (denoted by reference numeral 23a in FIGS. 8A and 8B) located in the peripheral portion of the mounting surface 30 and the side surface of the magnetic detection device The space | interval between 24 becomes narrow, or the communication part (defect part) 25 which leads to the side surface 24 will be formed in the surrounding opening part 23a. In addition, the side surface 24 shown in FIG.8 (b) is a side surface at the time of cut | disconnecting in the cutting position D shown to Fig.8 (a).

図8(b)に示すように切断位置Dにて側面24が形成されてしまうと、周囲開口部23aの側面24に最も近い位置と側面24間の最小幅が非常に小さくなり、その結果、前記最小幅付近のレジスト層22(図8(b)では符号22aを付した)の面積が非常に小さくなるため、レジスト剥がれが生じやすい問題があった。   If the side surface 24 is formed at the cutting position D as shown in FIG. 8B, the minimum width between the side surface 24 and the position closest to the side surface 24 of the peripheral opening 23a becomes very small. Since the area of the resist layer 22 in the vicinity of the minimum width (indicated by reference numeral 22a in FIG. 8B) is very small, there is a problem that resist peeling is likely to occur.

レジスト層22が剥がれると、図8(c)(磁気検出装置の正面図)に示すように、磁気検出装置26の実装面30と実装基板27との間にレジスト層22の剥離部が挟みこまれてしまい、磁気検出装置26が実装基板27に対して斜めに傾いた状態で実装されやすい。なお図8(c)(d)に示す符号29は半田層である。   When the resist layer 22 is peeled off, a peeling portion of the resist layer 22 is sandwiched between the mounting surface 30 of the magnetic detection device 26 and the mounting substrate 27 as shown in FIG. 8C (front view of the magnetic detection device). Therefore, it is easy to mount the magnetic detection device 26 in an inclined state with respect to the mounting substrate 27. In addition, the code | symbol 29 shown to FIG.8 (c) (d) is a solder layer.

また、周囲開口部23aに側面24にまで通じる連通部(欠陥部)25が形成されていると、図8(d)(磁気検出装置の正面図)に示すように、電極パッド31と実装基板27の導電接続部間を接合するための半田ペースト28が、連通部25から側面24の外方に流出しやすくなる。このとき、図8(a)に示す図示右側に位置する周囲開口部23aでは、半田ペースト28が連通部25を介して側面24の外方に流れやすいが、図8(a)に示す図示左側に位置する周囲開口部23aでは、連通部25が形成されず半田ペースト28が側面24の外方に流れにくい。よって、半田ペースト28が流れやすい周囲開口部23a内の電極パッド31と実装基板27の導電接続部間、及び、半田ペースト28が流れない周囲開口部23a内の電極パッド31と実装基板27の導電接続部間では、高さ方向への間隔(スペーシング)が変化する。したがって図8(d)に示すように、磁気検出装置26が実装基板27に対して斜めに傾いた状態で実装されやすい。なお図8(d)では、外方に流出した半田ペースト28と、磁気検出装置26と実装基板27間を接合する半田層29とを区別して表示した。   Further, when a communication portion (defect portion) 25 that leads to the side surface 24 is formed in the peripheral opening 23a, as shown in FIG. 8D (a front view of the magnetic detection device), the electrode pad 31 and the mounting substrate The solder paste 28 for joining the conductive connecting portions 27 easily flows out of the side surface 24 from the communication portion 25. At this time, in the peripheral opening 23a located on the right side of the figure shown in FIG. 8A, the solder paste 28 tends to flow outward from the side surface 24 via the communication part 25, but the left side of the figure shown in FIG. 8A. In the peripheral opening 23 a located at, the communication portion 25 is not formed, and the solder paste 28 does not easily flow to the outside of the side surface 24. Therefore, the conductivity between the electrode pad 31 and the mounting substrate 27 in the peripheral opening 23a where the solder paste 28 easily flows, and between the electrode pad 31 and the mounting substrate 27 in the peripheral opening 23a where the solder paste 28 does not flow. An interval (spacing) in the height direction changes between the connecting portions. Therefore, as shown in FIG. 8D, the magnetic detection device 26 is easily mounted in a state of being inclined with respect to the mounting substrate 27. In FIG. 8D, the solder paste 28 that has flowed outward and the solder layer 29 that joins between the magnetic detection device 26 and the mounting substrate 27 are shown separately.

図8(c)(d)に示したように、磁気検出装置26が実装基板27に対して斜めに傾いた状態で実装されると、磁気検出装置26内に内蔵された地磁気センサにより地磁気の方位を精度良く検出することができなくなり、検出精度の低下や検出精度ばらつきが生じた。   As shown in FIGS. 8C and 8D, when the magnetic detection device 26 is mounted in an inclined state with respect to the mounting substrate 27, the geomagnetic sensor built in the magnetic detection device 26 can detect the geomagnetism. The azimuth could not be detected with high accuracy, resulting in a decrease in detection accuracy and variations in detection accuracy.

上記した各特許文献には、いずれにも実装面に電極パッドを露出させるための開口部を備えるレジスト層が設けられた構成において、切断位置が所定の位置からずれた際にレジスト剥がれや半田ペーストの流出を低減させるための実装面の構造について開示されていない。   In each of the above-mentioned patent documents, in any configuration in which a resist layer having an opening for exposing an electrode pad on the mounting surface is provided, when the cutting position deviates from a predetermined position, resist peeling or solder paste The structure of the mounting surface for reducing the outflow of the battery is not disclosed.

そこで本発明は、上記従来の課題を解決するためのものであり、特に、磁気検出装置を実装基板に対し平行に安定して設置することができる磁気検出装置及びその製造方法を提供することを目的とする。   Accordingly, the present invention is to solve the above-described conventional problems, and in particular, to provide a magnetic detection device capable of stably installing the magnetic detection device in parallel to the mounting substrate and a method for manufacturing the same. Objective.

本発明は、外部磁界の方向を検出するための磁気センサを備え、実装面に複数の電極パッドを有する磁気検出装置において、
前記実装面には絶縁層が形成されており、前記絶縁層には複数の開口部が形成され、前記複数の電極パッドが、前記複数の開口部内に形成されており、
前記複数の開口部のうち、少なくとも実装面の周囲部に位置する周囲開口部には、前記周囲開口部から前記磁気検出装置の側面にまで通じる開放部が形成されていることを特徴とするものである。これにより、周囲開口部の側面に最も近い位置と側面間の最小幅寸法を従来よりも広げることができ、最小幅付近の絶縁層の面積を従来よりも大きくできる。よって絶縁層が実装面から剥がれたり欠ける等の不具合を従来より抑制できる。また磁気検出装置を実装基板上に実装する際、余剰の半田ペーストを周囲開口部から開放部に向けて流出させることができる。以上により、磁気検出装置を実装基板上に平行に実装させることができ、磁気センサにより外部磁界の方向を高精度に検出でき、精度ばらつきを低減できる。
The present invention includes a magnetic sensor for detecting the direction of an external magnetic field and having a plurality of electrode pads on a mounting surface.
An insulating layer is formed on the mounting surface, a plurality of openings are formed in the insulating layer, and the plurality of electrode pads are formed in the plurality of openings,
Among the plurality of openings, at least a peripheral opening located at a peripheral portion of the mounting surface is formed with an open portion that extends from the peripheral opening to a side surface of the magnetic detection device. It is. As a result, the position closest to the side surface of the peripheral opening and the minimum width dimension between the side surfaces can be made wider than before, and the area of the insulating layer near the minimum width can be made larger than before. Accordingly, it is possible to suppress problems such as peeling or chipping of the insulating layer from the mounting surface. Further, when the magnetic detection device is mounted on the mounting substrate, excess solder paste can flow out from the peripheral opening toward the opening. As described above, the magnetic detection device can be mounted in parallel on the mounting substrate, the direction of the external magnetic field can be detected with high accuracy by the magnetic sensor, and variation in accuracy can be reduced.

本発明では、前記絶縁層は、レジスト層であることが好ましい。本発明では、レジスト剥がれを効果的に抑制できる。   In the present invention, the insulating layer is preferably a resist layer. In the present invention, resist peeling can be effectively suppressed.

また本発明では、基板と、前記基板の前記実装面とは逆側の面に配置された前記磁気センサおよび集積回路と、前記磁気センサおよび前記集積回路を覆うカバー部材と、を有し、
前記複数の電極パッドは前記基板に設けられた各配線層に電気的に接続されており、
前記磁気検出装置の側面は、前記基板の側面および前記カバー部材の側面により構成されていることが好ましい。
In the present invention, the substrate, the magnetic sensor and the integrated circuit disposed on the surface opposite to the mounting surface of the substrate, and a cover member that covers the magnetic sensor and the integrated circuit,
The plurality of electrode pads are electrically connected to each wiring layer provided on the substrate,
It is preferable that a side surface of the magnetic detection device is constituted by a side surface of the substrate and a side surface of the cover member.

また本発明では、前記複数の開口部及び前記複数の電極パッドは、夫々、略円形状で形成されることが好ましい。簡単に各開口部及び各電極パッドを形成できるとともに、従来に比べて各周囲開口部と側面間の最小幅寸法を広げて、前記最小幅付近の絶縁層の面積を効果的に大きくすることができ、絶縁層の剥がれを効果的に抑制することができる。
また本発明では、前記磁気センサは、地磁気センサであることが好ましい。
In the present invention, it is preferable that the plurality of openings and the plurality of electrode pads are each formed in a substantially circular shape. Each opening and each electrode pad can be easily formed, and the minimum width dimension between each peripheral opening and the side surface can be expanded as compared with the conventional case to effectively increase the area of the insulating layer near the minimum width. And peeling of the insulating layer can be effectively suppressed.
In the present invention, the magnetic sensor is preferably a geomagnetic sensor.

また本発明は、外部磁界の方向を検出するための磁気センサを備え、実装面に複数の電極パッドを有する磁気検出装置の製造方法において、
複数の前記磁気検出装置を構成する各実装面を一体化した裏面に形成された絶縁層に対し前記各実装面の位置に夫々、前記複数の電極パッドを形成するための複数の開口部を形成し、このとき、各実装面に形成された前記複数の開口部のうち、少なくとも各実装面の周囲部に位置する周囲開口部に、前記開口部から切断部の位置まで達する開放部を形成する工程、
前記複数の開口部に夫々、前記電極パッドを形成する工程、
各磁気検出装置ごとに前記裏面を切断する工程、
を有することを特徴とするものである。これにより、各磁気検出装置ごとに切断する際、切断位置が切断部から多少外れても、切断面である各磁気検出装置の側面と、各周囲開口部の側面に最も近い位置との間の最小幅寸法を従来よりも広げることができ、最小幅付近の絶縁層の面積を従来よりも大きくできる。よって絶縁層が実装面から剥がれたり欠ける等の不具合を従来より抑制できる。また磁気検出装置を実装基板上に実装する際、余剰の半田ペーストを各周囲開口部から略均一に開放部へ流出させることができる。以上により、磁気検出装置を実装基板上に平行に実装させることができ、磁気センサにより外部磁界の方向を高精度に検出でき、精度ばらつきを低減できる。
The present invention also includes a magnetic sensor for detecting the direction of an external magnetic field, and a method for manufacturing a magnetic detection device having a plurality of electrode pads on a mounting surface.
A plurality of openings for forming the plurality of electrode pads are formed at positions of the mounting surfaces, respectively, with respect to an insulating layer formed on the back surface integrating the mounting surfaces constituting the plurality of magnetic detection devices. At this time, among the plurality of openings formed on each mounting surface, an opening that reaches from the opening to the position of the cutting portion is formed at least in the peripheral opening located at the periphery of each mounting surface. Process,
Forming the electrode pad in each of the plurality of openings,
Cutting the back surface for each magnetic detection device;
It is characterized by having. Thereby, when cutting for each magnetic detection device, even if the cutting position is slightly deviated from the cutting portion, between the side surface of each magnetic detection device that is the cutting surface and the position closest to the side surface of each peripheral opening The minimum width dimension can be increased as compared with the conventional case, and the area of the insulating layer near the minimum width can be increased as compared with the conventional case. Accordingly, it is possible to suppress problems such as peeling or chipping of the insulating layer from the mounting surface. Further, when the magnetic detection device is mounted on the mounting substrate, it is possible to allow excess solder paste to flow out from each peripheral opening portion to the open portion substantially uniformly. As described above, the magnetic detection device can be mounted in parallel on the mounting substrate, the direction of the external magnetic field can be detected with high accuracy by the magnetic sensor, and variation in accuracy can be reduced.

また本発明では従来に比べて切断位置の許容範囲を広げることができ、したがって製造工程を容易化できる。   Further, in the present invention, the allowable range of the cutting position can be expanded as compared with the conventional case, and thus the manufacturing process can be facilitated.

本発明では、前記切断部を挟んで隣り合う前記各実装面に形成された各周囲開口部間を前記開放部により一体に繋げることが好ましい。これにより簡単に開放部を形成でき、また切断位置が多少ずれても、隣り合う各実装面に形成された各周囲開口部の双方に適切に側面(切断位置の切断面に該当する)にまで通じる開放部を設けることができる。   In the present invention, it is preferable that the peripheral openings formed on the mounting surfaces adjacent to each other with the cutting part interposed therebetween are integrally connected by the open part. As a result, an open part can be easily formed, and even if the cutting position is slightly shifted, both side openings (corresponding to the cutting surface at the cutting position) are appropriately formed on both peripheral openings formed on each adjacent mounting surface. An open portion can be provided.

また本発明では、基板と、前記基板の前記実装面とは逆側の面に配置された前記磁気センサおよび集積回路と、前記磁気センサおよび前記集積回路を覆うカバー部材と、を有し、
前記基板は、複数の前記磁気検出装置を一体化した大きさの大基板であり、前記大基板の各磁気検出装置の位置に前記磁気センサ及び前記集積回路を配置し、
前記大基板を各磁気検出装置ごとに切断することが好ましい。
上記により複数のパッケージ化された磁気検出装置を簡単に製造することができる。
In the present invention, the substrate, the magnetic sensor and the integrated circuit disposed on the surface opposite to the mounting surface of the substrate, and a cover member that covers the magnetic sensor and the integrated circuit,
The substrate is a large substrate having a size in which a plurality of the magnetic detection devices are integrated, and the magnetic sensor and the integrated circuit are arranged at positions of the magnetic detection devices on the large substrate,
The large substrate is preferably cut for each magnetic detection device.
As described above, a plurality of packaged magnetic detection devices can be easily manufactured.

本発明によれば、各周囲開口部の側面に最も近い位置と側面間の最小幅寸法を従来よりも広げることができ、最小幅付近の絶縁層の面積を従来よりも大きくできる。よって絶縁層が実装面から剥がれたり欠ける等の不具合を従来より抑制できる。また磁気検出装置を実装基板上に実装する際、余剰の半田ペーストを各周囲開口部から略均一に各開放部に向けて流出させることができる。以上により、磁気検出装置を実装基板上に平行に実装させることができ、磁気センサにより外部磁界の方向を高精度に検出でき、精度ばらつきを低減できる。   According to the present invention, the position closest to the side surface of each peripheral opening and the minimum width dimension between the side surfaces can be increased as compared with the conventional case, and the area of the insulating layer near the minimum width can be increased as compared with the conventional case. Accordingly, it is possible to suppress problems such as peeling or chipping of the insulating layer from the mounting surface. Further, when the magnetic detection device is mounted on the mounting substrate, excess solder paste can be allowed to flow out substantially uniformly from each peripheral opening toward each open portion. As described above, the magnetic detection device can be mounted in parallel on the mounting substrate, the direction of the external magnetic field can be detected with high accuracy by the magnetic sensor, and variation in accuracy can be reduced.

図1(a)は、本実施形態における磁気検出装置の正面図であり、図1(b)は、図1(a)に示す磁気検出装置の実装面を示す裏面図であり、図1(c)は、図1(b)に示す実装面の一部を拡大して示した部分拡大裏面図である。FIG. 1A is a front view of the magnetic detection device according to the present embodiment, and FIG. 1B is a rear view showing the mounting surface of the magnetic detection device shown in FIG. c) is a partially enlarged back view showing an enlarged part of the mounting surface shown in FIG. 図2(a)は、本実施形態の実装面の絶縁層に形成された周囲開口部と開放部とを拡大して示した部分拡大裏面図であり、特に、従来のように開放部のない形態と比較して本実施形態の効果を説明するための図であり、図2(b)は、別の実施形態の周囲開口部の形状を示す部分裏面図である。FIG. 2A is a partially enlarged back view showing an enlarged peripheral opening and an open portion formed in the insulating layer on the mounting surface of this embodiment, and in particular, there is no open portion as in the prior art. It is a figure for demonstrating the effect of this embodiment compared with a form, FIG.2 (b) is a partial back view which shows the shape of the surrounding opening part of another embodiment. 図3は、本実施形態における磁気検出装置及び磁気検出装置を実装基板上に実装した状態を示す部分拡大縦断面図である。FIG. 3 is a partially enlarged longitudinal sectional view showing the magnetic detection device and the magnetic detection device according to the present embodiment mounted on a mounting substrate. 図4は、本実施形態における磁気検出装置のブロック図である。FIG. 4 is a block diagram of the magnetic detection device according to the present embodiment. 図5は、本実施形態における磁気検出装置の製造工程を示す一工程図(実装面を示す図)である。FIG. 5 is a process diagram (a diagram illustrating a mounting surface) illustrating a manufacturing process of the magnetic detection device according to the present embodiment. 図6は、図5に示す工程の次の工程を示す一工程図(実装面を示す図)である。FIG. 6 is a process diagram (a diagram illustrating a mounting surface) illustrating a process subsequent to the process illustrated in FIG. 5. 図7は、別の実施形態を示す磁気検出装置の製造工程図(実装面を示す図)である。FIG. 7 is a manufacturing process diagram (a diagram showing a mounting surface) of a magnetic detection device showing another embodiment. 図8(a)は、従来の磁気検出装置の実装面を示す裏面図であり、図8(b)は、図8(a)に示す実装面の一部を拡大して示した部分拡大裏面図であり、図8(c)(d)は、従来の磁気検出装置の問題点を説明するための正面図である。FIG. 8A is a rear view showing a mounting surface of a conventional magnetic detection device, and FIG. 8B is a partially enlarged rear view showing a part of the mounting surface shown in FIG. FIGS. 8C and 8D are front views for explaining problems of the conventional magnetic detection device.

図1(a)は、本実施形態における磁気検出装置の正面図であり、図1(b)は、図1(a)に示す磁気検出装置の実装面を示す裏面図であり、図1(c)は、図1(b)に示す実装面の一部を拡大して示した部分拡大裏面図である。また、図2(a)は、本実施形態の実装面の絶縁層に形成された周囲開口部と開放部とを拡大して示した部分拡大裏面図であり、特に、従来のように開放部のない形態と比較して本実施形態の効果を説明するための図である。また図2(b)は、別の実施形態の周囲開口部の形状を示す部分裏面図である。また、図3は、本実施形態における磁気検出装置及び磁気検出装置を実装基板上に実装した状態を示す部分拡大縦断面図である。また、図4は、本実施形態における磁気検出装置のブロック図である。   FIG. 1A is a front view of the magnetic detection device according to the present embodiment, and FIG. 1B is a rear view showing the mounting surface of the magnetic detection device shown in FIG. c) is a partially enlarged back view showing an enlarged part of the mounting surface shown in FIG. FIG. 2 (a) is a partially enlarged rear view showing an enlarged peripheral opening and an opening formed in the insulating layer on the mounting surface of the present embodiment. It is a figure for demonstrating the effect of this embodiment compared with the form which has no. Moreover, FIG.2 (b) is a partial back surface figure which shows the shape of the surrounding opening part of another embodiment. FIG. 3 is a partially enlarged longitudinal sectional view showing a state in which the magnetic detection device and the magnetic detection device according to the present embodiment are mounted on a mounting substrate. FIG. 4 is a block diagram of the magnetic detection device in the present embodiment.

本実施形態における磁気センサを備えた磁気検出装置1は、例えば携帯電話等の携帯機器に搭載される地磁気検出装置(地磁気センサ)として構成される。   A magnetic detection device 1 including a magnetic sensor in the present embodiment is configured as a geomagnetic detection device (geomagnetic sensor) mounted on a portable device such as a mobile phone.

各図に示すX軸方向、及びY軸方向は水平面内にて直交する2方向を示し、Z軸方向は前記水平面に対して直交する方向を示している。   The X-axis direction and the Y-axis direction shown in each figure indicate two directions orthogonal to each other in the horizontal plane, and the Z-axis direction indicates a direction orthogonal to the horizontal plane.

磁気検出装置1は、図1、図3に示すように、基板2と、基板2の表面(上面)2aに搭載された磁気センサ3、及び集積回路4(ASIC)と、磁気センサ3及び集積回路4の表面を覆うカバー部材5と、基板2の裏面(下面)2bに設けられた配線層6と、裏面2bに形成された絶縁層7と、絶縁層7に形成された開口部8と、前記開口部8から露出し、前記配線層6に電気的に接続された電極パッド9と、を有して構成される。   As shown in FIGS. 1 and 3, the magnetic detection device 1 includes a substrate 2, a magnetic sensor 3 mounted on a surface (upper surface) 2 a of the substrate 2, an integrated circuit 4 (ASIC), a magnetic sensor 3, and an integrated circuit. A cover member 5 covering the surface of the circuit 4, a wiring layer 6 provided on the back surface (lower surface) 2b of the substrate 2, an insulating layer 7 formed on the back surface 2b, and an opening 8 formed in the insulating layer 7. And an electrode pad 9 exposed from the opening 8 and electrically connected to the wiring layer 6.

図3の実線に示すように、磁気センサ3は、基板2表面に設けられてもよいし、あるいは図3の点線で示すように、集積回路4と重ねて設けられてもよい。   As shown by the solid line in FIG. 3, the magnetic sensor 3 may be provided on the surface of the substrate 2, or may be provided so as to overlap the integrated circuit 4 as shown by the dotted line in FIG. 3.

基板2の表面2aには配線層10が形成され、各配線層10の先端の接続端部10aと集積回路4の電極部4aとが導電接着剤を介して電気的に接続されている。   A wiring layer 10 is formed on the surface 2a of the substrate 2, and the connection end 10a at the tip of each wiring layer 10 and the electrode part 4a of the integrated circuit 4 are electrically connected via a conductive adhesive.

図4に示すように磁気センサ3と集積回路4間は電気的に接続されており、磁気センサ3にて得られた検出信号が集積回路4にて制御される。   As shown in FIG. 4, the magnetic sensor 3 and the integrated circuit 4 are electrically connected, and the detection signal obtained by the magnetic sensor 3 is controlled by the integrated circuit 4.

磁気センサ3は、上記したように例えば地磁気センサであり、地磁気センサは図4に示すようにX軸センサ3a、Y軸センサ3b及びZ軸センサ3cを備える。このように3軸検出が可能な磁気センサ3を用いることで地磁気の方位を検出することが可能である。   As described above, the magnetic sensor 3 is, for example, a geomagnetic sensor, and the geomagnetic sensor includes an X-axis sensor 3a, a Y-axis sensor 3b, and a Z-axis sensor 3c as shown in FIG. Thus, it is possible to detect the azimuth of geomagnetism by using the magnetic sensor 3 capable of detecting three axes.

本実施形態では、磁気センサ3の構成は限定されない。例えば磁気センサ3には磁気抵抗効果素子(GMR素子、TMR素子等)やホール素子を用いることができる。   In the present embodiment, the configuration of the magnetic sensor 3 is not limited. For example, the magnetic sensor 3 can be a magnetoresistive element (GMR element, TMR element, etc.) or a Hall element.

図3に示すように、基板2には表面2aから裏面2bにまで通じる内部配線層11が設けられ、内部配線層11を介して集積回路4と電極パッド9とが電気的に接続されている(図4も参照)。   As shown in FIG. 3, the substrate 2 is provided with an internal wiring layer 11 leading from the front surface 2 a to the back surface 2 b, and the integrated circuit 4 and the electrode pad 9 are electrically connected via the internal wiring layer 11. (See also FIG. 4).

図3に示すように基板2の裏面2aには絶縁層7が形成されている。絶縁層7は例えばレジスト層である。図1(b)、図3に示すように絶縁層7には複数の開口部8が形成されている。そして複数の電極パッド9が一つずつ各開口部8内に設けられる。   As shown in FIG. 3, an insulating layer 7 is formed on the back surface 2 a of the substrate 2. The insulating layer 7 is a resist layer, for example. As shown in FIGS. 1B and 3, a plurality of openings 8 are formed in the insulating layer 7. A plurality of electrode pads 9 are provided in each opening 8 one by one.

図1(b)に示すように、各開口部8及び各電極パッド9は略円形状で形成される。なお開口部8のうち、周囲開口部8aについては後述するように開放部が連続して繋がっているため、周囲開口部8aの輪郭は、厳密に言えば、円形状でなく円弧状である。略円形状としたのは、円形以外に製造誤差等によって円形からやや変形した形であってもよく、また周囲開口部8aの外周のように円弧状の形態も含むこととしたためである。   As shown in FIG. 1B, each opening 8 and each electrode pad 9 are formed in a substantially circular shape. In addition, since the opening part is connecting continuously about the surrounding opening part 8a among the opening parts 8 so that it may mention later, the outline of the surrounding opening part 8a is not circular shape but circular arc shape. The reason for having a substantially circular shape is that it may be a shape slightly deformed from a circle due to manufacturing errors or the like in addition to a circle, and also includes an arcuate shape such as the outer periphery of the peripheral opening 8a.

各電極パッド9は、実装基板との実装面12に露出する平面電極パッド(LGA;Land grid array)であり、平面視(Z方向視)にて略円形状とされている。各電極パッド9の外周部は、各開口部8の外周より内側に位置して、各電極パッド9の面積は、各開口部8よりも小さく形成される。   Each electrode pad 9 is a planar electrode pad (LGA; Land grid array) exposed on the mounting surface 12 with the mounting substrate, and has a substantially circular shape in plan view (viewed in the Z direction). The outer peripheral part of each electrode pad 9 is located inside the outer periphery of each opening 8, and the area of each electrode pad 9 is formed smaller than each opening 8.

図3では、各電極パッド9の厚さは、絶縁層7の厚さと同等とされているが、実装基板との間で適切に実装が可能であれば、特に厚さ寸法を限定するものでない。   In FIG. 3, the thickness of each electrode pad 9 is equal to the thickness of the insulating layer 7, but the thickness dimension is not particularly limited as long as it can be appropriately mounted with the mounting substrate. .

図1(b)に示すように絶縁層7に形成された複数の開口部8のうち、実装面12の周囲部12aには複数の周囲開口部8aが位置している。ここで周囲部12aとは、実装面12のうち、磁気検出装置1のX1側面1a付近、X2側面1b付近、Y1側面1c付近及びY2側面1d付近を示す。なお、実装面12の形状が矩形状でなく、他の多角形状である場合には、各辺付近を指し、また実装面が曲面を有している場合には、曲面に沿った側面付近を指す。あるいは、図1(b)に示すように、実装面12の中央付近に開口部(内側開口部8bと称する)が設けられてるが、内側開口部8bよりも外側に位置する開口部8を周囲開口部8aと定義することもできる。   As shown in FIG. 1B, among the plurality of openings 8 formed in the insulating layer 7, the plurality of peripheral openings 8 a are located in the peripheral part 12 a of the mounting surface 12. Here, the surrounding portion 12a indicates the vicinity of the X1 side surface 1a, the vicinity of the X2 side surface 1b, the vicinity of the Y1 side surface 1c, and the vicinity of the Y2 side surface 1d of the magnetic detection device 1 in the mounting surface 12. In addition, when the shape of the mounting surface 12 is not rectangular but is another polygonal shape, it indicates the vicinity of each side, and when the mounting surface has a curved surface, the vicinity of the side surface along the curved surface is indicated. Point to. Alternatively, as shown in FIG. 1B, an opening (referred to as an inner opening 8b) is provided in the vicinity of the center of the mounting surface 12, but the opening 8 positioned outside the inner opening 8b is surrounded by It can also be defined as the opening 8a.

図1(b)に示すように、周囲開口部8aは、実装面12のX1側面1a付近、X2側面1b付近、Y1側面1c付近及びY2側面1d付近を囲むように形成されているが、周囲開口部8aや内側開口部8bの配置や数は、実装基板15の表面に形成される導電接続部16の配置に応じて変更される。   As shown in FIG. 1B, the peripheral opening 8a is formed so as to surround the X1 side surface 1a, the X2 side surface 1b, the Y1 side surface 1c and the Y2 side surface 1d of the mounting surface 12. The arrangement and number of the openings 8 a and the inner openings 8 b are changed according to the arrangement of the conductive connection parts 16 formed on the surface of the mounting substrate 15.

図1(b)に示すように、複数の周囲開口部8aには、夫々、いずれかの側面1a〜1dにまで通じる開放部13が形成されている。ここで各開放部13は、各周囲開口部8aから近い側面に向けて形成される。図1(c)に示す周囲開口部8aは、実装面12内にてX2−Y2側の隅に設けられており、周囲開口部8aにはX2側面1bにまで通じる開放部13と、Y2側面1dにまで通じる開放部13とが設けられている。なお開放部13の数は、各周囲開口部8aに対して1以上設けられる。   As shown in FIG.1 (b), the opening part 13 which leads to any one of the side surfaces 1a-1d is formed in the some surrounding opening part 8a, respectively. Here, each opening part 13 is formed toward the side surface near from each surrounding opening part 8a. The peripheral opening 8a shown in FIG. 1C is provided at the corner on the X2-Y2 side in the mounting surface 12, and the peripheral opening 8a has an open portion 13 leading to the X2 side surface 1b and the Y2 side surface. An open part 13 leading to 1d is provided. One or more open portions 13 are provided for each peripheral opening 8a.

各開放部13は、孔状の各周囲開口部8aと一体化した溝形状で形成される。各開放部13の深さ寸法と各周囲開口部8aの深さ寸法は同じである。各開口部8及び各開放部13は、絶縁層6を膜厚方向に貫いており、各開口部8からは配線層6の一部が露出している。   Each open portion 13 is formed in a groove shape integrated with each hole-shaped peripheral opening 8a. The depth dimension of each open part 13 and the depth dimension of each surrounding opening 8a are the same. Each opening 8 and each opening 13 penetrates the insulating layer 6 in the film thickness direction, and a part of the wiring layer 6 is exposed from each opening 8.

図1(c)に示すように、各開放部13の幅寸法t1は、各周囲開口部8aの最大幅寸法(直径)t2よりも小さく形成される。また、各開放部13は、図1(b)(c)では、一定幅となっているが、幅が変化するように形成してもよい。   As shown in FIG.1 (c), the width dimension t1 of each open part 13 is formed smaller than the maximum width dimension (diameter) t2 of each surrounding opening part 8a. In addition, each open portion 13 has a constant width in FIGS. 1B and 1C, but may be formed so that the width changes.

各開放部13は、絶縁層7がレジストであれば、フォトリソグラフィ技術を用いて各周囲開口部8aとともに形成でき、また絶縁層7がレジストでない場合には、フォトリソグラフィ技術及びエッチング技術を用いて各周囲開口部8aとともに形成できる。   If the insulating layer 7 is a resist, each open portion 13 can be formed together with each peripheral opening 8a using a photolithography technique. If the insulating layer 7 is not a resist, each opening section 13 can be formed using a photolithography technique and an etching technique. It can be formed with each peripheral opening 8a.

なお、内側開口部8bには側面に通じる開放部が形成されていないが、図1(b)の点線で示すように開放部14を形成可能なスペースがあり、且つ開放部14に半田ペーストが流れても、流れ出した半田ペーストを介して実装基板15との間で短絡を起こして使用不能の状態とならなければ、内側開口部8bに側面にまで通じる開放部14を設けることができる。   In addition, although the opening part which leads to a side surface is not formed in the inner side opening part 8b, there exists a space which can form the opening part 14 as shown by the dotted line of FIG. Even if it flows, if the short circuit is caused between the mounting substrate 15 and the unusable state via the solder paste that has flowed out, the inner opening 8b can be provided with an opening 14 that leads to the side surface.

図3に示すように、実装基板15の表面には、配線層17が形成され、配線層17の端部に導電接続部16が設けられる。また導電接続部16以外の配線層17上はレジスト等の絶縁層18によって覆われている。   As shown in FIG. 3, the wiring layer 17 is formed on the surface of the mounting substrate 15, and the conductive connection portion 16 is provided at the end of the wiring layer 17. The wiring layer 17 other than the conductive connection portion 16 is covered with an insulating layer 18 such as a resist.

そして図3に示すように、磁気検出装置1の各電極パッド9と、実装基板15の各導電接続部16とが、半田層19を介して電気的に接続されている。   As shown in FIG. 3, each electrode pad 9 of the magnetic detection device 1 and each conductive connection portion 16 of the mounting substrate 15 are electrically connected via a solder layer 19.

図1(a)、図3に示すように、磁気センサ3及び集積回路4の表面はカバー部材5によって覆われており、磁気検出装置1はパッケージ化されている。例えば、カバー部材5はパッケージ用モールド樹脂である。   As shown in FIGS. 1A and 3, the surfaces of the magnetic sensor 3 and the integrated circuit 4 are covered with a cover member 5, and the magnetic detection device 1 is packaged. For example, the cover member 5 is a package molding resin.

本実施形態において磁気検出装置1の側面1a〜1dは、基板2及びカバー部材5の各側面にて構成される。   In the present embodiment, the side surfaces 1 a to 1 d of the magnetic detection device 1 are configured by the side surfaces of the substrate 2 and the cover member 5.

本実施形態の磁気検出装置1では、実装面12に設けられた絶縁層7には複数の開口部8が設けられており、各開口部8内には電極パッド9が露出している。複数の開口部8のうち、実装面12の周囲部12aに位置する複数の周囲開口部8には、距離的に近い側面1a〜1dにまで通じる開放部13が連通している。   In the magnetic detection device 1 of the present embodiment, a plurality of openings 8 are provided in the insulating layer 7 provided on the mounting surface 12, and the electrode pads 9 are exposed in the openings 8. Among the plurality of openings 8, the plurality of peripheral openings 8 positioned on the peripheral portion 12 a of the mounting surface 12 communicate with the open portions 13 that lead to the side surfaces 1 a to 1 d that are close in distance.

図2(a)に示すX2側面1bの位置は、後述する製造方法に示す切断部Aの位置とほぼ一致しており、周囲開口部8aは側面1bから最小距離L1だけ内側(X1側)に離れている。   The position of the X2 side surface 1b shown in FIG. 2A substantially coincides with the position of the cutting portion A shown in the manufacturing method described later, and the peripheral opening 8a is located inside (X1 side) by the minimum distance L1 from the side surface 1b. is seperated.

しかしながら切断位置Bが、そのぶれ幅の範囲内で切断部AよりもX1側にずれていると、切断位置Bにより形成された側面1eは、本来の側面1bよりも周囲開口部8aに近づく。ここで図3に示す側面1eは、周囲開口部8aに連通する開放部13が形成されていない形態(図8(a)(b)に示す従来例)における周囲開口部8aの円周と接する位置(点線で示した円周と側面1eとが接している)に設けられる。   However, when the cutting position B is shifted to the X1 side from the cutting portion A within the range of the fluctuation width, the side surface 1e formed by the cutting position B is closer to the peripheral opening 8a than the original side surface 1b. Here, the side surface 1e shown in FIG. 3 is in contact with the circumference of the peripheral opening 8a in the form in which the open portion 13 communicating with the peripheral opening 8a is not formed (conventional example shown in FIGS. 8A and 8B). It is provided at a position (the circumference indicated by the dotted line is in contact with the side surface 1e).

図2(a)の斜線で示した領域Cは、従来例のように周囲開口部8aにまで連通する開放部13が形成されていない構成と、実施形態のように周囲開口部8aにまで連通する開放部13を形成した構成とを対比したときに、本実施形態には存在しないが従来例の構成には存在する絶縁層7の領域を指す。   A region C indicated by hatching in FIG. 2A has a configuration in which the open portion 13 that communicates with the peripheral opening 8a is not formed as in the conventional example, and communicates with the peripheral opening 8a as in the embodiment. When compared with the configuration in which the open portion 13 is formed, it refers to the region of the insulating layer 7 that does not exist in the present embodiment but exists in the configuration of the conventional example.

斜線で示した絶縁層7の領域Cでは、周囲開口部8aの側面1eに最も近い位置と側面1eとの間の最小幅寸法が非常に狭く、図2(a)ではゼロとなっており、領域Cは先細る形状となって非常に面積が小さくなっている。このため領域Cでは、絶縁層7が剥がれたり、あるいは欠けたりする不具合が生じやすくなっている。   In the region C of the insulating layer 7 indicated by oblique lines, the minimum width dimension between the position closest to the side surface 1e of the peripheral opening 8a and the side surface 1e is very narrow, and is zero in FIG. The area C has a tapered shape and a very small area. For this reason, in the region C, there is a tendency that the insulating layer 7 is peeled off or chipped.

これに対して本実施形態では、周囲開口部8aから側面1b,1eにまで連通する開放部13を形成したことで、切断位置BがX1側にずれて側面1eとされても、開放部13の側壁部13a,13bが設けられたことで、周囲開口部8aと側面1eとの間の最小幅寸法はL2となり、従来例よりも最小幅寸法L2を大きくできる。したがって本実施形態では従来例よりも最小幅付近の絶縁層7の面積を大きく形成できる。したがって、多少、切断位置Bが周囲開口部8aに近づく方向に(最大限、図2(a)に示すように、周囲開口部8aの点線で示した円周に接する位置まで)ずれたとしても、本実施形態では開放部13の側壁部13a,13bが残り、絶縁層7が剥がれたり欠けたりする不具合を低減することができる。   On the other hand, in the present embodiment, by forming the opening 13 that communicates from the peripheral opening 8a to the side surfaces 1b and 1e, even if the cutting position B shifts to the X1 side and becomes the side 1e, the opening 13 By providing the side wall portions 13a and 13b, the minimum width dimension between the peripheral opening 8a and the side surface 1e is L2, and the minimum width dimension L2 can be made larger than that of the conventional example. Therefore, in this embodiment, the area of the insulating layer 7 near the minimum width can be formed larger than that of the conventional example. Therefore, even if the cutting position B is slightly shifted in the direction approaching the peripheral opening 8a (up to the position in contact with the circumference indicated by the dotted line of the peripheral opening 8a as shown in FIG. 2A). In this embodiment, the side wall portions 13a and 13b of the open portion 13 remain, and the problem that the insulating layer 7 is peeled off or chipped can be reduced.

また本実施形態では図1(b)に示すように全ての周囲開口部8aに、いずれかの側面1a〜1dにまで通じる開放部13を設けたことで、実装基板15の導電接続部16との接合に用いられる半田ペースト20の余剰分20aが、図1(c)に示すように、周囲開口部8a内から開放部13内に誘導される。例えば本実施形態ではリフロー式により半田付けを行うが、その際、溶解した半田ペースト20の余剰分20aを、各周囲開口部8aから開放部13に流出させることができる。また開放部13は側面にまで通じているので、半田ペーストの塗布量が多い場所では、余剰分20aを開放部13を介して側面の外方にまで適切に導くことができる。よって各電極パッド9と各導電接続部16との間の接合部分における半田ペーストの量を、どの接合部分においてもほぼ同等となるように調整できる。   Further, in this embodiment, as shown in FIG. 1B, all the peripheral openings 8a are provided with the open portions 13 leading to any one of the side surfaces 1a to 1d. As shown in FIG. 1C, the surplus portion 20a of the solder paste 20 used for bonding is guided into the open portion 13 from the peripheral opening 8a. For example, in the present embodiment, soldering is performed by the reflow method. At this time, the excess 20a of the melted solder paste 20 can flow out from each peripheral opening 8a to the opening 13. Moreover, since the open part 13 leads to the side surface, the surplus portion 20a can be appropriately guided to the outside of the side surface through the open part 13 in a place where the amount of solder paste applied is large. Therefore, the amount of solder paste at the joint portion between each electrode pad 9 and each conductive connecting portion 16 can be adjusted to be substantially the same at any joint portion.

以上により図1(a)に示すように、磁気検出装置1を実装基板15の表面15aに平行に実装することができ、磁気センサ3により地磁気の方位を高精度に検出でき、従来に比べて精度ばらつきを低減できる。   1A, the magnetic detection device 1 can be mounted in parallel to the surface 15a of the mounting substrate 15, and the magnetic sensor 3 can detect the azimuth of the geomagnetism with high accuracy. Variation in accuracy can be reduced.

本実施形態では絶縁層7はレジスト層であることが好ましい。絶縁層7を所望の厚みで形成でき、また絶縁層7に所定の形状及び大きさからなる複数の開口部8及び複数の開放部13を簡単且つ適切に形成できる。そして本実施形態では絶縁層7をレジスト層としても、図2(a)で説明したように、本来の切断部Aの位置から切断位置Bがずれても、周囲開口部8aと側面1eとの間の最小幅寸法L2を従来よりも大きくでき、したがって本実施形態では従来例よりも最小幅付近の絶縁層7(レジスト層)の面積を大きく形成できる。したがって、レジスト剥がれを効果的に抑制できる。   In the present embodiment, the insulating layer 7 is preferably a resist layer. The insulating layer 7 can be formed with a desired thickness, and a plurality of openings 8 and a plurality of openings 13 having a predetermined shape and size can be easily and appropriately formed in the insulating layer 7. In this embodiment, even if the insulating layer 7 is a resist layer, even if the cutting position B is deviated from the original position of the cutting portion A as described with reference to FIG. The minimum width dimension L2 between them can be made larger than in the prior art. Therefore, in this embodiment, the area of the insulating layer 7 (resist layer) near the minimum width can be formed larger than in the conventional example. Therefore, resist peeling can be effectively suppressed.

また本実施形態では、各開口部8及び各電極パッド9が略円形状で形成されることが好適である。図2(a)に示すように周囲開口部8aの外周を略円形状(円弧状)とすることで、周囲開口部8aと側面1eとの間の最小幅寸法L2を従来よりも効果的に大きくできる。例えば、各周囲開口部8aは、略円形状(円弧状)でなくても、図2(b)に示すように、各周囲開口部8aの外周壁面8a1のうち、少なくとも磁気検出装置の側面1a〜1dに近い外周壁面8a1が、磁気検出装置の側面1a〜1dに対して直線状あるいは曲面状の傾斜面で形成された構成とすることもできる。図2(b)に示す周囲開口部8aは菱形であり、菱形の周囲開口部8aの外周壁面のうち、側面1b,1dに近い外周壁面8a1,8a1は、側面1b,1dに対し傾斜している。そして、周囲開口部8aから側面1b,1dにかけて開放部13が形成されている(図2(b)に示す点線は、周囲開口部8aに開放部13が形成されない従来例の形態を示す)。ただし、周囲開口部8aを図2(b)に示す形状とするよりも図1(b)(c)、図2(a)に示す円形状としたほうが簡単に周囲開口部8aを形成でき好適である。   In the present embodiment, each opening 8 and each electrode pad 9 are preferably formed in a substantially circular shape. As shown in FIG. 2A, by making the outer periphery of the peripheral opening 8a into a substantially circular shape (arc shape), the minimum width dimension L2 between the peripheral opening 8a and the side surface 1e can be more effectively improved than before. Can be big. For example, even if each peripheral opening 8a is not substantially circular (arc), as shown in FIG. 2B, at least the side surface 1a of the magnetic detection device among the outer peripheral wall surface 8a1 of each peripheral opening 8a. The outer peripheral wall surface 8a1 close to ˜1d may be formed as a linear or curved inclined surface with respect to the side surfaces 1a to 1d of the magnetic detection device. The peripheral opening 8a shown in FIG. 2 (b) has a rhombus shape, and among the outer peripheral wall surfaces of the rhombic peripheral opening 8a, the outer peripheral wall surfaces 8a1, 8a1 near the side surfaces 1b, 1d are inclined with respect to the side surfaces 1b, 1d. Yes. And the open part 13 is formed from the surrounding opening part 8a to the side surfaces 1b and 1d (the dotted line shown in FIG.2 (b) shows the form of the prior art example in which the open part 13 is not formed in the surrounding opening part 8a). However, it is easier to form the peripheral opening 8a because the circular opening shown in FIGS. 1B, 1C, and 2A is easier than the shape shown in FIG. It is.

次に本実施形態の磁気検出装置1の製造方法について説明する。
まず本実施形態では、複数の磁気検出装置1を構成する各基板2を一体化した大きさの大基板の表面に複数の磁気センサ3及び複数の集積回路4を実装する。各磁気センサ3及び各集積回路4は、各磁気検出装置1の位置に夫々実装する。
Next, the manufacturing method of the magnetic detection apparatus 1 of this embodiment is demonstrated.
First, in this embodiment, a plurality of magnetic sensors 3 and a plurality of integrated circuits 4 are mounted on the surface of a large substrate having a size in which the substrates 2 constituting the plurality of magnetic detection devices 1 are integrated. Each magnetic sensor 3 and each integrated circuit 4 are mounted at the position of each magnetic detection device 1.

さらに図3で示したカバー部材5を各磁気センサ3及び各集積回路4の表面に形成する。カバー部材5は、各磁気検出装置1間にわたって一体化して形成される。カバー部材5はモールド樹脂であり、複数の磁気センサ3及び複数の集積回路4の表面にモールド樹脂によるカバー部材5を成形できる。   Further, the cover member 5 shown in FIG. 3 is formed on the surface of each magnetic sensor 3 and each integrated circuit 4. The cover member 5 is integrally formed across the magnetic detection devices 1. The cover member 5 is a mold resin, and the cover member 5 made of the mold resin can be formed on the surfaces of the plurality of magnetic sensors 3 and the plurality of integrated circuits 4.

図5に示すように大基板21の裏面21bには、例えばレジスト層からなる絶縁層7が形成されており、前記絶縁層7にフォトリソグラフィ技術を用いて、複数の開口部8を形成する。図5に示す点線は、切断部Aを示しており、切断部Aによって区分けされた各領域が、各磁気検出装置1の各実装面12を構成している。   As shown in FIG. 5, an insulating layer 7 made of, for example, a resist layer is formed on the back surface 21b of the large substrate 21, and a plurality of openings 8 are formed in the insulating layer 7 using a photolithography technique. A dotted line shown in FIG. 5 indicates the cutting part A, and each region divided by the cutting part A constitutes each mounting surface 12 of each magnetic detection device 1.

図5に示すように、各実装面12に形成された複数の開口部8のうち、各実装面12の周囲部に位置する複数の周囲開口部8aに切断部Aの位置まで達する開放部13を、各周囲開口部8aと同時に形成する。各周囲開口部8a及び開放部13は絶縁層7に形成された孔(穴)である。各周囲開口部8aからは図3に示す配線層6が露出している。   As shown in FIG. 5, among the plurality of openings 8 formed on each mounting surface 12, the opening 13 that reaches the position of the cutting portion A reaches the plurality of peripheral openings 8 a located on the periphery of each mounting surface 12. Are formed simultaneously with each peripheral opening 8a. Each peripheral opening 8a and the opening 13 are holes (holes) formed in the insulating layer 7. The wiring layer 6 shown in FIG. 3 is exposed from each peripheral opening 8a.

図5に示すように、切断部Aを挟んで隣り合う各実装面12に形成された各周囲開口部8a間を開放部13により一体的に繋げる。例えば、図7に示すように、切断部Aは、ある程度の幅を持っており、各周囲開口部8aに連続する各開放部13の端部13cを切断部Aの幅内に入り込むように形成すれば、必ずしも図5のように、切断部Aを介して隣り合う周囲開口部8a間を開放部13により一体的に繋げなくてもよい。図7に示す切断部Aから大基板21を切断すれば、各実装面12に形成された各周囲開口部8aには各磁気検出装置1の側面にまで通じる開放部13を形成することができる。ただし切断位置が、切断部Aからわずかにずれる程度であれば問題ないが、図7に示すように切断部Aからの切断位置Bのずれが大きくなると、図7の図示右側に配列された各周囲開口部8aには、磁気検出装置1の側面にまで通じない、途中で行き止まりとなる開放部13が形成されてしまう。よって、図5のように切断部Aを介して隣り合う各実装面12に形成された各周囲開放部8a間を開放部13により一体的に繋げることが切断位置ずれの許容範囲を広げることができ好適である。   As shown in FIG. 5, the surrounding openings 8 a formed on the respective mounting surfaces 12 adjacent to each other with the cutting part A interposed therebetween are integrally connected by the opening part 13. For example, as shown in FIG. 7, the cutting part A has a certain width, and is formed so that the end part 13c of each open part 13 continuous to each peripheral opening part 8a enters the width of the cutting part A. Then, as shown in FIG. 5, it is not always necessary to integrally connect the adjacent opening portions 8 a via the cutting portion A with the opening portion 13. When the large substrate 21 is cut from the cutting portion A shown in FIG. 7, the open portions 13 leading to the side surfaces of the magnetic detection devices 1 can be formed in the peripheral openings 8 a formed on the mounting surfaces 12. . However, there is no problem if the cutting position is slightly deviated from the cutting part A. However, when the deviation of the cutting position B from the cutting part A increases as shown in FIG. In the peripheral opening 8a, an open portion 13 that does not reach the side surface of the magnetic detection device 1 and becomes a dead end is formed. Therefore, as shown in FIG. 5, the peripheral opening portions 8 a formed on the respective mounting surfaces 12 adjacent to each other via the cutting portions A are integrally connected by the opening portions 13 to widen the allowable range of cutting position deviation. This is preferable.

続いて図6に示すように各周囲開口部8a内に電極パッド9を形成する。また図1(b)に示す内側開口部8bがあれば、内側開口部8bにも電極パッド9を形成する。上記したように各開口部8内には配線層6の一部が露出しているので電極パッド9は配線層6に重ねて形成する。また、電極パッド9の材質は特に問わないが、例えば、AgペーストやCuペーストを塗布、及び熱硬化させた導電層により形成することができる。   Subsequently, as shown in FIG. 6, electrode pads 9 are formed in the respective peripheral openings 8a. If the inner opening 8b shown in FIG. 1B is provided, the electrode pad 9 is also formed in the inner opening 8b. As described above, since a part of the wiring layer 6 is exposed in each opening 8, the electrode pad 9 is formed so as to overlap the wiring layer 6. The material of the electrode pad 9 is not particularly limited. For example, the electrode pad 9 can be formed by a conductive layer coated with Ag paste or Cu paste and thermally cured.

また図5,図6では、各開口部8及び各電極パッド9を略円形状に形成しているが形状を限定するものでない。ただし略円形状とすることが好適である。   5 and 6, each opening 8 and each electrode pad 9 are formed in a substantially circular shape, but the shape is not limited. However, a substantially circular shape is preferred.

次に切断部Aに沿って大基板21及びカバー部材を各磁気検出装置1ごとに切断(ダイシング)する。このとき図6に示すように切断位置Bが本来の切断部Aからずれてしまっても、本実施形態の磁気検出装置の製造方法によれば、各磁気検出装置1の実装面12に形成された各周囲開口部8aに夫々、磁気検出装置1の側面にまで通じる開放部13を形成することができる。したがって各磁気検出装置1を実装基板15上にリフロー半田により実装する際、余剰の半田ペーストを各周囲開口部8aから開放部13に流出させることができる。   Next, the large substrate 21 and the cover member are cut (diced) for each magnetic detection device 1 along the cutting portion A. At this time, even if the cutting position B is deviated from the original cutting portion A as shown in FIG. 6, according to the manufacturing method of the magnetic detection device of this embodiment, it is formed on the mounting surface 12 of each magnetic detection device 1. Each of the surrounding openings 8a can be formed with an open portion 13 that leads to the side surface of the magnetic detection device 1. Therefore, when each magnetic detection device 1 is mounted on the mounting substrate 15 by reflow soldering, excess solder paste can be allowed to flow out from each peripheral opening 8a to the opening 13.

また図2(a)にて説明したように、切断位置BがX1側にずれて本来の側面1bから側面1eとされても、開放部13の側壁部13a,13bが形成されたことで、周囲開口部8aと側面1eとの間の最小幅寸法をL2にでき、従来例よりも最小幅寸法を大きくできる。したがって本実施形態では従来例よりも最小幅付近の絶縁層7の面積を大きく形成できる。したがって、多少、切断位置Bが周囲開口部8aに近づく方向にずれたとしても、絶縁層7が剥がれたり欠けたりする不具合を低減することができる。   Further, as described in FIG. 2A, even when the cutting position B is shifted to the X1 side and is changed from the original side surface 1b to the side surface 1e, the side wall portions 13a and 13b of the opening portion 13 are formed. The minimum width dimension between the peripheral opening 8a and the side surface 1e can be set to L2, and the minimum width dimension can be made larger than the conventional example. Therefore, in this embodiment, the area of the insulating layer 7 near the minimum width can be formed larger than that of the conventional example. Therefore, even if the cutting position B slightly shifts in the direction approaching the peripheral opening 8a, it is possible to reduce the problem that the insulating layer 7 is peeled off or chipped.

以上により本実施形態の磁気検出装置1を実装基板15の表面に平行に実装させることができる。また本実施形態では、従来よりも切断位置の許容範囲を広げることができ、従って製造工程を容易化することができる。   As described above, the magnetic detection device 1 of the present embodiment can be mounted in parallel to the surface of the mounting substrate 15. Moreover, in this embodiment, the tolerance | permissible_range of a cutting position can be expanded conventionally, Therefore A manufacturing process can be simplified.

なお本実施形態では、周囲開口部8aは複数であったが、一つであっても従来に比べて効果がある。   In the present embodiment, there are a plurality of peripheral openings 8a. However, even a single peripheral opening 8a is more effective than the conventional one.

本実施形態における磁気検出装置1は地磁気センサ以外にも起用できる。ただし、3軸加速度センサやスピードセンサ等、外部磁界の方向を正確に知る必要のある磁気検出装置に適用される。   The magnetic detection apparatus 1 in this embodiment can be used other than a geomagnetic sensor. However, it is applied to a magnetic detection device that needs to know the direction of the external magnetic field accurately, such as a three-axis acceleration sensor or a speed sensor.

A 切断部
B 切断位置
1 磁気検出装置
1a〜1e (磁気検出装置の)側面
2 基板
2a (基板の)表面
2b (基板の)裏面
3 磁気センサ
4 集積回路
5 カバー部材
6、7 絶縁層
8 開口部
8a 周囲開口部
8b 内側開口部
9 電極パッド
10、11 配線層
12 実装面
12a 周囲部
13、14 開放部
15 実装基板
16 導電接続部
19 半田層
20 半田ペースト
20a (半田ペーストの)余剰分
21 大基板
A cutting part B cutting position 1 magnetic detectors 1a to 1e side surface 2 (substrate) front surface 2b (substrate) back surface 3 magnetic sensor 4 integrated circuit 5 cover member 6, 7 insulating layer 8 opening Part 8a Peripheral opening 8b Inner opening 9 Electrode pads 10, 11 Wiring layer 12 Mounting surface 12a Peripheral parts 13, 14 Opening part 15 Mounting substrate 16 Conductive connection part 19 Solder layer 20 Solder paste 20a Surplus part 21 (of solder paste) 21 Large board

Claims (8)

外部磁界の方向を検出するための磁気センサを備え、実装面に複数の電極パッドを有する磁気検出装置において、
前記実装面には絶縁層が形成されており、前記絶縁層には複数の開口部が形成され、前記複数の電極パッドが、前記複数の開口部内に形成されており、
前記複数の開口部のうち、少なくとも実装面の周囲部に位置する周囲開口部には、前記周囲開口部から前記磁気検出装置の側面にまで通じる開放部が形成されていることを特徴とする磁気検出装置。
In a magnetic detection device comprising a magnetic sensor for detecting the direction of an external magnetic field and having a plurality of electrode pads on the mounting surface,
An insulating layer is formed on the mounting surface, a plurality of openings are formed in the insulating layer, and the plurality of electrode pads are formed in the plurality of openings,
Among the plurality of openings, an opening that extends from the peripheral opening to the side surface of the magnetic detection device is formed at least in the peripheral opening located at the peripheral part of the mounting surface. Detection device.
前記絶縁層は、レジスト層である請求項1記載の磁気検出装置。   The magnetic detection device according to claim 1, wherein the insulating layer is a resist layer. 基板と、前記基板の前記実装面とは逆側の面に配置された前記磁気センサおよび集積回路と、前記磁気センサおよび前記集積回路を覆うカバー部材と、を有し、
前記複数の電極パッドは前記基板に設けられた各配線層に電気的に接続されており、
前記磁気検出装置の側面は、前記基板の側面および前記カバー部材の側面により構成されている請求項1又は2に記載の磁気検出装置。
A substrate, the magnetic sensor and the integrated circuit disposed on a surface opposite to the mounting surface of the substrate, and a cover member that covers the magnetic sensor and the integrated circuit,
The plurality of electrode pads are electrically connected to each wiring layer provided on the substrate,
The magnetic detection device according to claim 1, wherein a side surface of the magnetic detection device is configured by a side surface of the substrate and a side surface of the cover member.
前記複数の開口部及び前記複数の電極パッドは、夫々、略円形状で形成される請求項1ないし3のいずれか1項に記載の磁気検出装置。   4. The magnetic detection device according to claim 1, wherein the plurality of openings and the plurality of electrode pads are each formed in a substantially circular shape. 5. 前記磁気センサは、地磁気センサである請求項1ないし4のいずれか1項に記載の磁気検出装置。   The magnetic detection apparatus according to claim 1, wherein the magnetic sensor is a geomagnetic sensor. 外部磁界の方向を検出するための磁気センサを備え、実装面に複数の電極パッドを有する磁気検出装置の製造方法において、
複数の前記磁気検出装置を構成する各実装面を一体化した裏面に形成された絶縁層に対し前記各実装面の位置に夫々、前記複数の電極パッドを形成するための複数の開口部を形成し、このとき、各実装面に形成された前記複数の開口部のうち、少なくとも各実装面の周囲部に位置する周囲開口部に、前記開口部から切断部の位置まで達する開放部を形成する工程、
前記複数の開口部に夫々、前記電極パッドを形成する工程、
各磁気検出装置ごとに前記裏面を切断する工程、
を有することを特徴とする磁気検出装置の製造方法。
In a method for manufacturing a magnetic detection device comprising a magnetic sensor for detecting the direction of an external magnetic field and having a plurality of electrode pads on a mounting surface,
A plurality of openings for forming the plurality of electrode pads are formed at positions of the mounting surfaces, respectively, with respect to an insulating layer formed on the back surface integrating the mounting surfaces constituting the plurality of magnetic detection devices. At this time, among the plurality of openings formed on each mounting surface, an opening that reaches from the opening to the position of the cutting portion is formed at least in the peripheral opening located at the periphery of each mounting surface. Process,
Forming the electrode pad in each of the plurality of openings,
Cutting the back surface for each magnetic detection device;
The manufacturing method of the magnetic detection apparatus characterized by having.
前記切断部を挟んで隣り合う前記各実装面に形成された各周囲開口部間を前記開放部により一体に繋げる請求項6記載の磁気検出装置の製造方法。   The manufacturing method of the magnetic detection apparatus of Claim 6 which connects between each surrounding opening part formed in each said mounting surface adjacent on both sides of the said cutting part by the said open part. 基板と、前記基板の前記実装面とは逆側の面に配置された前記磁気センサおよび集積回路と、前記磁気センサおよび前記集積回路を覆うカバー部材と、を有し、
前記基板は、複数の前記磁気検出装置を一体化した大きさの大基板であり、前記大基板の各磁気検出装置の位置に前記磁気センサ及び前記集積回路を配置し、
前記大基板を各磁気検出装置ごとに切断する請求項6又は7に記載の磁気検出装置の製造方法。
A substrate, the magnetic sensor and the integrated circuit disposed on a surface opposite to the mounting surface of the substrate, and a cover member that covers the magnetic sensor and the integrated circuit,
The substrate is a large substrate having a size in which a plurality of the magnetic detection devices are integrated, and the magnetic sensor and the integrated circuit are arranged at positions of the magnetic detection devices on the large substrate,
The manufacturing method of the magnetic detection apparatus of Claim 6 or 7 which cut | disconnects the said large board | substrate for every magnetic detection apparatus.
JP2012059277A 2012-03-15 2012-03-15 Method for manufacturing magnetic detection device Active JP5912701B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012059277A JP5912701B2 (en) 2012-03-15 2012-03-15 Method for manufacturing magnetic detection device
CN201310038476.XA CN103308870B (en) 2012-03-15 2013-01-31 Magnetic detection device and manufacture method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012059277A JP5912701B2 (en) 2012-03-15 2012-03-15 Method for manufacturing magnetic detection device

Publications (2)

Publication Number Publication Date
JP2013195076A true JP2013195076A (en) 2013-09-30
JP5912701B2 JP5912701B2 (en) 2016-04-27

Family

ID=49134297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012059277A Active JP5912701B2 (en) 2012-03-15 2012-03-15 Method for manufacturing magnetic detection device

Country Status (2)

Country Link
JP (1) JP5912701B2 (en)
CN (1) CN103308870B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105793672A (en) * 2013-12-27 2016-07-20 日立金属株式会社 Magnetic sensor, magnetic encoder using same, lens barrel, camera and method for manufacturing magnetic sensor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104793152B (en) * 2014-01-16 2019-02-15 北京嘉岳同乐极电子有限公司 A kind of highly sensitive chip sensor
WO2015113184A1 (en) * 2014-01-29 2015-08-06 北京嘉岳同乐极电子有限公司 High sensitivity magnetic sensor and manufacturing method thereof
US10145909B2 (en) * 2014-11-17 2018-12-04 Seiko Epson Corporation Magnetism measuring device, gas cell, manufacturing method of magnetism measuring device, and manufacturing method of gas cell

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04266038A (en) * 1991-02-21 1992-09-22 Sharp Corp Structure for mounting lsi chip
JPH08264928A (en) * 1995-03-22 1996-10-11 Nec Corp Pad for forming solder bump
US5936309A (en) * 1997-10-23 1999-08-10 Samsung Electronics Co., Ltd. Mounted structure of printed circuit board in semiconductor package
JP2003309219A (en) * 2002-04-17 2003-10-31 Matsushita Electric Ind Co Ltd Method of assembling semiconductor device
JP2003347356A (en) * 2002-05-29 2003-12-05 Sharp Corp Semiconductor device and its manufacturing method
US20070283585A1 (en) * 2006-06-12 2007-12-13 Samsung Electronics Co., Ltd. Two-axis geomagnetic sensor and method for manufacturing the same
JP2008053347A (en) * 2006-08-23 2008-03-06 Seiko Epson Corp Device, manufacturing method therefor, circuit substrate, and electronic apparatus
JP2009130271A (en) * 2007-11-27 2009-06-11 Panasonic Corp Semiconductor device and method of manufacturing the same
JP2010140990A (en) * 2008-12-10 2010-06-24 Renesas Electronics Corp Interconnect substrate, method of manufacturing interconnect substrate and semiconductor device
JP2010237058A (en) * 2009-03-31 2010-10-21 Sanyo Electric Co Ltd Sensor device, and method for manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7024947B2 (en) * 2002-03-07 2006-04-11 Alps Electric Co., Ltd. Detection device including circuit component
JP2004138558A (en) * 2002-10-18 2004-05-13 Sony Corp Magnetic direction measuring apparatus
JP2004239828A (en) * 2003-02-07 2004-08-26 Fukuoka Prefecture Flux gate magnetic field sensor
EP1498744B1 (en) * 2003-07-18 2011-08-10 Yamaha Corporation Magnetic sensor and manufacturing method therefor
TWI281037B (en) * 2004-03-24 2007-05-11 Yamaha Corp Semiconductor device, magnetic sensor, and magnetic sensor unit
US7215026B2 (en) * 2005-04-14 2007-05-08 Samsung Electonics Co., Ltd Semiconductor module and method of forming a semiconductor module

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04266038A (en) * 1991-02-21 1992-09-22 Sharp Corp Structure for mounting lsi chip
JPH08264928A (en) * 1995-03-22 1996-10-11 Nec Corp Pad for forming solder bump
US5936309A (en) * 1997-10-23 1999-08-10 Samsung Electronics Co., Ltd. Mounted structure of printed circuit board in semiconductor package
JP2003309219A (en) * 2002-04-17 2003-10-31 Matsushita Electric Ind Co Ltd Method of assembling semiconductor device
JP2003347356A (en) * 2002-05-29 2003-12-05 Sharp Corp Semiconductor device and its manufacturing method
US20070283585A1 (en) * 2006-06-12 2007-12-13 Samsung Electronics Co., Ltd. Two-axis geomagnetic sensor and method for manufacturing the same
JP2008053347A (en) * 2006-08-23 2008-03-06 Seiko Epson Corp Device, manufacturing method therefor, circuit substrate, and electronic apparatus
JP2009130271A (en) * 2007-11-27 2009-06-11 Panasonic Corp Semiconductor device and method of manufacturing the same
JP2010140990A (en) * 2008-12-10 2010-06-24 Renesas Electronics Corp Interconnect substrate, method of manufacturing interconnect substrate and semiconductor device
JP2010237058A (en) * 2009-03-31 2010-10-21 Sanyo Electric Co Ltd Sensor device, and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105793672A (en) * 2013-12-27 2016-07-20 日立金属株式会社 Magnetic sensor, magnetic encoder using same, lens barrel, camera and method for manufacturing magnetic sensor

Also Published As

Publication number Publication date
CN103308870B (en) 2015-10-21
CN103308870A (en) 2013-09-18
JP5912701B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5277755B2 (en) Electronic components
US9346668B1 (en) Molded cavity substrate MEMS package fabrication method and structure
JP5847385B2 (en) PRESSURE SENSOR DEVICE, ELECTRONIC DEVICE PROVIDED WITH THE DEVICE, AND METHOD FOR MOUNTING THE DEVICE
JP5912701B2 (en) Method for manufacturing magnetic detection device
WO2014175133A1 (en) Semiconductor device and method for manufacturing same
JP6566625B2 (en) Electronic component, electronic module, manufacturing method thereof, and electronic device
US9560768B2 (en) Wiring substrate and method of making wiring substrate
CN104418292A (en) MEMS device
KR20140099761A (en) Multi-layer printed circuit board and alignment method thereof
US9791470B2 (en) Magnet placement for integrated sensor packages
TWI518886B (en) Photosensitive device and method for forming the same
JP2010166061A (en) Method of manufacturing electronic device and method of manufacturing electronic module
JP2016192516A (en) Hall sensor device and position detector
JP6483435B2 (en) Magnetic detector
KR101060121B1 (en) Semiconductor package for horizontal and vertical adhesion, and method for manufacturing the same
TW201432883A (en) Non-solder mask defined copper pad and embedded copper pad to reduce packaging system height
US9322837B2 (en) Semiconductor device
JP2016039195A (en) Through electrode substrate and manufacturing method of the same, and semiconductor device using through electrode substrate
JP2000106385A (en) Semiconductor device and manufacture thereof, manufacturing device of semiconductor, circuit board and electronic equipment
JP2016039190A (en) Semiconductor device
US10260974B2 (en) Electronic part with sensor exposed to ambient air
JPWO2016158109A1 (en) Imaging component and imaging module including the same
JP5461321B2 (en) Wiring board
JP2016129170A (en) Rigid flexible substrate
JP2014202562A (en) Dynamic quantity sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160401

R150 Certificate of patent or registration of utility model

Ref document number: 5912701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350