JP2013194869A - Eccentric oscillating reduction gear, and method for manufacturing external gear for the same - Google Patents

Eccentric oscillating reduction gear, and method for manufacturing external gear for the same Download PDF

Info

Publication number
JP2013194869A
JP2013194869A JP2012064593A JP2012064593A JP2013194869A JP 2013194869 A JP2013194869 A JP 2013194869A JP 2012064593 A JP2012064593 A JP 2012064593A JP 2012064593 A JP2012064593 A JP 2012064593A JP 2013194869 A JP2013194869 A JP 2013194869A
Authority
JP
Japan
Prior art keywords
hole
external gear
diameter
gear
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012064593A
Other languages
Japanese (ja)
Other versions
JP5816582B2 (en
Inventor
Seiji Minegishi
清次 峯岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2012064593A priority Critical patent/JP5816582B2/en
Priority to CN201310078209.5A priority patent/CN103322132B/en
Publication of JP2013194869A publication Critical patent/JP2013194869A/en
Application granted granted Critical
Publication of JP5816582B2 publication Critical patent/JP5816582B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Retarders (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an eccentric oscillating reduction gear allowing production of external gears in a shorter time and at lower cost.SOLUTION: An eccentric oscillating reduction gear G1 includes: external gears 12, 14; an internal gear 16 inscribed while the external gears 12, 14 oscillate; and an inner roller (pin-shaped member) 38 inserted into through-holes 34, 36 formed in the external gears 12, 14, brought into contact with inner peripheries of the through-holes 34, 36, and synchronizing with rotational components of the external gears 12, 14. In the eccentric oscillating reduction gear G1, the through-holes 34, 36 have nonuniform inner diameters in an axial direction.

Description

本発明は偏心揺動型の減速機およびその外歯歯車の製造方法に関する。   The present invention relates to an eccentric oscillating speed reducer and a method for manufacturing the external gear.

例えば、特許文献1に偏心揺動型の減速機が開示されている。   For example, Patent Document 1 discloses an eccentric oscillating speed reducer.

この減速機は、外歯歯車と、該外歯歯車が揺動しながら内接する内歯歯車を備える。外歯歯車の揺動は、入力軸に設けられた偏心体によって行われる。外歯歯車には貫通孔が複数個設けられ、ピン状部材(内ピンおよび内ローラ)が挿入されている。ピン状部材は、出力軸のフランジ部に固着又は嵌入されている。このため、ピン状部材は外歯歯車の自転成分と同期している。   The reduction gear includes an external gear and an internal gear that is inscribed while the external gear swings. The external gear is swung by an eccentric body provided on the input shaft. The external gear is provided with a plurality of through holes, and pin-like members (inner pins and inner rollers) are inserted therein. The pin-like member is fixed or fitted to the flange portion of the output shaft. For this reason, the pin-shaped member is synchronized with the rotation component of the external gear.

前記外歯歯車は、内歯歯車の内歯の数よりも僅かだけ少ない数の外歯を有している。   The external gear has a number of external teeth that is slightly smaller than the number of internal teeth of the internal gear.

この構成において、入力軸が回転すると、外歯歯車が内歯歯車に内接噛合しながら揺動し、該内歯歯車に対して相対回転する(自転する)。この自転成分を外歯歯車に設けた前記貫通孔と該貫通孔に挿入されたピン状部材の摺動を介して出力軸から取り出すことで、該出力軸から減速された回転を得ている。   In this configuration, when the input shaft rotates, the external gear swings while being in mesh with the internal gear, and rotates relative to the internal gear (rotates). This rotation component is taken out from the output shaft through sliding of the through hole provided in the external gear and the pin-shaped member inserted into the through hole, thereby obtaining a rotation reduced from the output shaft.

特開2000−249199号公報JP 2000-249199 A

この種の偏心揺動型の減速機にあっては、このように、外歯歯車の自転を取り出すための(あるいは自転を拘束するための)ピン状部材が挿入される多数の貫通孔を形成する必要がある。この貫通孔は、ピン状部材とのより高い摺動性と長期の寿命を求めれば求めるほど、より良好な平滑性と高い硬度が要求される。   In this type of eccentric oscillating speed reducer, a large number of through holes into which pin-like members for taking out the rotation of the external gear (or for constraining the rotation) are inserted are formed. There is a need to. The more the smoothness and the higher hardness are required for the through hole, the higher the slidability and the long life with the pin-like member are required.

そのため該貫通孔の形成には、時間とコストがかかり、外歯歯車の製造コスト上昇の大きな要因となっていた。   Therefore, it takes time and cost to form the through hole, which is a major factor in increasing the manufacturing cost of the external gear.

本発明は、このような問題を解消するためになされたものであって、外歯歯車を、より短時間で、かつより低コストで製造することのできる偏心揺動型の減速機を提供することをその課題としている。   The present invention has been made in order to solve such problems, and provides an eccentric oscillating type speed reducer that can manufacture an external gear in a shorter time and at a lower cost. That is the issue.

本発明は、外歯歯車と、該外歯歯車が揺動しながら内接する内歯歯車と、前記外歯歯車に設けられた貫通孔に挿入され、該貫通孔の内周に接触して前記外歯歯車の自転成分と同期するピン状部材と、を備えた偏心揺動型の減速機において、前記貫通孔の内径が軸方向において不均一である構成とすることにより、上記課題を解決したものである。   The present invention is inserted into an external gear, an internal gear that is inscribed while the external gear swings, and a through hole provided in the external gear, and contacts the inner periphery of the through hole to In the eccentric oscillating type speed reducer provided with a pin-like member that synchronizes with the rotation component of the external gear, the above-mentioned problem has been solved by adopting a configuration in which the inner diameter of the through hole is not uniform in the axial direction. Is.

本発明においては、従来、当然のように外歯歯車の軸方向の全長に亘って均一な内径で形成されていた貫通孔を、敢えて不均一に形成するようにしている。この意図は、後述する知見に基づき、真に動力伝達に寄与する本来の「貫通孔」の機能を、軸方向の一部の内周面のみに受け持たせ、他の部分は、該機能を持たないようにすることにある。これにより、時間とコストの掛かる貫通孔の、特に仕上げ加工が、当該軸方向の一部にのみ行うだけで済むようになり、その分、貫通孔形成のための時間とコストを低減することができる。   In the present invention, the through holes that have been formed with a uniform inner diameter over the entire length in the axial direction of the external gear as a matter of course are intentionally formed non-uniformly. This intention is based on the knowledge to be described later, and the function of the original “through hole” that truly contributes to power transmission is assigned to only a part of the inner peripheral surface in the axial direction, and the other part has the function. It is to avoid having. As a result, time-consuming and costly through-holes, in particular, finishing can be performed only in a part of the axial direction, thereby reducing the time and cost for forming the through-holes. it can.

なお、本発明は、外歯歯車の製造方法という観点で捉えるならば、「外歯歯車と、該外歯歯車が揺動しながら内接する内歯歯車と、前記外歯歯車に設けられた貫通孔に挿入され、該貫通孔の内周に接触して前記外歯歯車の自転成分と同期するピン状部材と、を備えた偏心揺動型の減速機の前記外歯歯車の製造方法において、前記外歯歯車の素材に前記貫通孔の素孔を形成する工程と、該素孔の軸方向の一部の内径をより大径に形成する工程と、該一部を大径とした工程の後に、当該外歯歯車の素材を硬化処理する工程と、該硬化処理の後に、前記素孔の大径とされていない部分の仕上げ処理を行う工程と、を含むことを特徴とする偏心揺動型の減速機の外歯歯車の製造方法」と捉えることもできる。   Note that the present invention can be understood from the viewpoint of a manufacturing method of an external gear: "External gear, internal gear that is inscribed while the external gear swings, and a through-hole provided in the external gear. In the manufacturing method of the external gear of the eccentric oscillating speed reducer, the pin-shaped member inserted into the hole and in contact with the inner periphery of the through-hole to synchronize with the rotation component of the external gear, A step of forming a through hole in the material of the external gear, a step of forming an inner diameter of a part of the through hole in an axial direction, and a step of increasing the diameter of the part. And a step of hardening the material of the external gear, and a step of finishing a portion of the raw hole that has not been made large diameter after the hardening treatment. It can also be understood as “a manufacturing method of an external gear of a type reduction gear”.

本発明によれば、外歯歯車を、より短時間で、かつより低コストで製造することのできる偏心揺動型の減速機を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the eccentric rocking | swiveling type reduction gear which can manufacture an external gear in a shorter time and at lower cost can be obtained.

本発明の実施形態の一例に係る偏心揺動型の減速機の要部を示す拡大断面図The expanded sectional view which shows the principal part of the eccentric rocking | fluctuation type reduction gear which concerns on an example of embodiment of this invention 上記実施形態に係る減速機が適用されているギヤモータの主要部分の断面図Sectional drawing of the principal part of the gearmotor to which the reduction gear concerning the said embodiment is applied 図2の矢視III−III線に沿う断面図Sectional view along the line III-III of FIG. 上記実施形態に係る偏心揺動型の減速機の外歯歯車の製造工程図Manufacturing process diagram of external gear of eccentric rocking type reduction gear according to the above embodiment 上記実施形態の変形例(他の実施形態)に係る外歯歯車の貫通孔付近の拡大断面図The expanded sectional view of the through-hole vicinity of the external gear which concerns on the modification (other embodiment) of the said embodiment 上記実施形態の他の変形例に係る図5相当の拡大断面図Enlarged sectional view corresponding to FIG. 5 according to another modification of the above embodiment 上記実施形態のさらに他の変形例に係る図5相当の拡大断面図FIG. 5 is an enlarged cross-sectional view corresponding to FIG. 5 according to another modification of the embodiment. 上記実施形態のさらに他の変形例に係る図5相当の拡大断面図FIG. 5 is an enlarged cross-sectional view corresponding to FIG. 5 according to another modification of the embodiment.

以下、図面に基づいて、本発明の実施形態の一例を詳細に説明する。   Hereinafter, an example of an embodiment of the present invention will be described in detail based on the drawings.

図1〜図3に、本発明の実施形態の一例に係る偏心揺動型の減速機が適用されたギヤモータを示す。   1 to 3 show a gear motor to which an eccentric oscillating speed reducer according to an example of an embodiment of the present invention is applied.

このギヤモータGM1は、モータM1と偏心揺動型の減速機G1とを一体的に連結したものである。偏心揺動型の減速機G1は、外歯歯車12、14と、該外歯歯車12、14が揺動しながら内接する内歯歯車16とを備え、外歯歯車12、14と内歯歯車16との相対回転を出力として取り出す構成とされている。   The gear motor GM1 is obtained by integrally connecting a motor M1 and an eccentric oscillating speed reducer G1. The eccentric oscillating speed reducer G1 includes external gears 12 and 14 and an internal gear 16 that is inscribed while the external gears 12 and 14 swing, and the external gears 12 and 14 and the internal gears. 16 is extracted as an output.

モータM1のモータ軸18は、減速機G1の入力軸20を兼ねている。入力軸20には、キー21を介して筒状部材25が嵌合されている。図1に示されるように、筒状部材25には、所定位相差(この例では180度)にて2個の偏心体22、24が形成されている。各偏心体22、24の軸心は、入力軸20の軸心O1に対してそれぞれδeだけ偏心している。それぞれの偏心体22、24には、ころ軸受26、28および偏心体軸孔30、32を介して2枚の外歯歯車12、14が取付けられている。   The motor shaft 18 of the motor M1 also serves as the input shaft 20 of the reduction gear G1. A cylindrical member 25 is fitted to the input shaft 20 via a key 21. As shown in FIG. 1, two eccentric bodies 22 and 24 are formed on the tubular member 25 with a predetermined phase difference (180 degrees in this example). The shafts of the eccentric bodies 22 and 24 are each eccentric by δe with respect to the shaft center O1 of the input shaft 20. Two external gears 12 and 14 are attached to the eccentric bodies 22 and 24 via roller bearings 26 and 28 and eccentric body shaft holes 30 and 32, respectively.

各外歯歯車12、14には、貫通孔34、36が複数(この例では8個:図3参照)それぞれ形成されている。貫通孔34、36には、内ローラ38が被せられた内ピン40が挿入されている。   Each external gear 12, 14 has a plurality of through holes 34, 36 (eight in this example: see FIG. 3). An inner pin 40 covered with an inner roller 38 is inserted into the through holes 34 and 36.

内ローラ38の外径d1は、貫通孔34、36の内径(後述する均一な内径を有する定径部34Bの内径)D1よりも偏心量δeの2倍だけ小さい(2・δeに相当する隙間S1が存在する)。内ピン40に内ローラ38を被せるようにしたのは、本来の内ピン40と外歯歯車12、14との滑りを、「内ピン40と内ローラ38の内周との間」および「内ローラ38の外周と貫通孔34、36との間」に分散することにより、より円滑な摺動特性を得るためである。   The outer diameter d1 of the inner roller 38 is smaller than the inner diameter D1 of the through holes 34 and 36 (the inner diameter of a constant diameter portion 34B having a uniform inner diameter described later) D1 by twice the eccentric amount δe (a gap corresponding to 2 · δe). S1 is present). The inner pin 38 is covered with the inner roller 38 because the slip between the original inner pin 40 and the external gears 12 and 14 is “between the inner pin 40 and the inner periphery of the inner roller 38” and “inner This is because a smoother sliding characteristic is obtained by dispersing between the outer periphery of the roller 38 and the through holes 34 and 36.

本実施形態のように内ピン40に内ローラ38が被せられているときは、内ローラ38が「外歯歯車の貫通孔と接触するピン状部材」に相当するが、内ピン40とペアで「ピン状部材」を構成すると捉えてもよい(内ローラが被せられていないときは、内ピン自体が「外歯歯車の貫通孔と接触するピン状部材」を構成する)。内ローラ38は、外歯歯車12、14の貫通孔34、36内に挿入され、該貫通孔34、36の内周に接触しているため、外歯歯車12、14の自転成分と同期した動きをする。貫通孔34、36の構成については後に詳述する。   When the inner roller 38 is covered on the inner pin 40 as in the present embodiment, the inner roller 38 corresponds to “a pin-shaped member that contacts the through-hole of the external gear”. It may be understood that it constitutes a “pin-shaped member” (when the inner roller is not covered, the inner pin itself constitutes “a pin-shaped member that contacts the through-hole of the external gear”). Since the inner roller 38 is inserted into the through holes 34 and 36 of the external gears 12 and 14 and is in contact with the inner periphery of the through holes 34 and 36, it synchronizes with the rotation component of the external gears 12 and 14. Make a move. The configuration of the through holes 34 and 36 will be described in detail later.

内ピン40は、出力軸42のフランジ部42Aに圧入・固定されている。   The inner pin 40 is press-fitted and fixed to the flange portion 42 </ b> A of the output shaft 42.

なお、外歯歯車12、14を2枚設けているのは、主に、伝達容量の増大、および偏心位相を変えることによる回転バランスの保持を図るためである。外歯歯車12、14の外周にはトロコイド歯形の外歯12A、14Aが設けられている。   The two external gears 12 and 14 are provided mainly for the purpose of increasing the transmission capacity and maintaining the rotational balance by changing the eccentric phase. On the outer periphery of the external gears 12 and 14, trochoidal external teeth 12A and 14A are provided.

内歯歯車16は、この実施形態ではケーシング50と一体化されて固定状態にある内歯歯車本体16A、該内歯歯車本体16Aに支持され該内歯歯車16の内歯を構成する外ピン16B、および該外ピン16Bに回転自在に被せられた外ローラ16Cとで構成されている。   In this embodiment, the internal gear 16 is integrated with the casing 50 and fixed in an internal gear main body 16A, and is supported by the internal gear main body 16A and an external pin 16B constituting the internal teeth of the internal gear 16. And an outer roller 16C which is rotatably covered on the outer pin 16B.

この実施形態では、外歯歯車12、14の外歯の数は、「21」であり、内歯歯車16の内歯の数(外ピン16Bおよび外ローラ16Cの本数)は、「22」である。即ち、外歯歯車12、14の外歯の数は、内歯歯車16の内歯の数よりも僅かだけ(この例では1だけ)少ない。   In this embodiment, the number of external teeth of the external gears 12 and 14 is “21”, and the number of internal teeth of the internal gear 16 (the number of external pins 16B and external rollers 16C) is “22”. is there. That is, the number of external teeth of the external gears 12 and 14 is slightly smaller (by 1 in this example) than the number of internal teeth of the internal gear 16.

ここで、外歯歯車12、14の貫通孔34、36の構成の具体的な説明に入る前に、本実施形態の理解をより容易にするために、この偏心揺動型の減速機G1の動力伝達系の作用を簡単に説明しておく。   Here, before entering into a specific description of the configuration of the through holes 34, 36 of the external gears 12, 14, in order to make the present embodiment easier to understand, the eccentric oscillating speed reducer G1 is described. The operation of the power transmission system will be briefly described.

モータM1のモータ軸18の回転により該モータ軸18と一体化された入力軸20が1回回転すると、該入力軸20と連結されている筒状部材25に形成されている偏心体22、24が1回回転する。偏心体22、24が回転すると、ころ軸受26、28を介して外歯歯車12、14が内歯歯車16に内接噛合しながら揺動する。   When the input shaft 20 integrated with the motor shaft 18 is rotated once by the rotation of the motor shaft 18 of the motor M1, eccentric bodies 22 and 24 formed on the cylindrical member 25 connected to the input shaft 20 are rotated. Rotates once. When the eccentric bodies 22 and 24 rotate, the external gears 12 and 14 oscillate while internally meshing with the internal gear 16 via the roller bearings 26 and 28.

外歯歯車12、14と内歯歯車16は、歯数差が「1」であるため、外歯歯車12、14は、入力軸20が1回回転する毎に、固定状態にある内歯歯車16に対して歯数差「1」に相当する分だけ円周方向の位相がずれる(自転する)。この自転成分が貫通孔34、36内に挿入された内ローラ38および内ピン40を介して出力軸42のフランジ部42Aに伝達される。この結果、出力軸42が減速比「1/21」の減速された速度で回転する。なお、外歯歯車12、14の揺動成分は、内ローラ38と貫通孔34、36との間の隙間S1によって吸収される。   Since the external gears 12 and 14 and the internal gear 16 have a difference in the number of teeth of “1”, the external gears 12 and 14 are in a fixed state each time the input shaft 20 rotates once. 16, the phase in the circumferential direction is shifted (rotates) by an amount corresponding to the difference in the number of teeth “1”. This rotation component is transmitted to the flange portion 42 </ b> A of the output shaft 42 via the inner roller 38 and the inner pin 40 inserted into the through holes 34 and 36. As a result, the output shaft 42 rotates at a reduced speed with a reduction ratio “1/21”. The swinging components of the external gears 12 and 14 are absorbed by the gap S1 between the inner roller 38 and the through holes 34 and 36.

このように、内ローラ38(ピン状部材)と貫通孔34、36は、外歯歯車12、14が揺動するときの自転成分を取り出すために、強い力で押圧し合いながら摺動している。そのため、貫通孔34、36に必要な強度および硬度を確保するために、外歯歯車12、14には、焼き入れ処理された硬い素材が用いられる。これは、換言するならば、この硬い素材に形成された貫通孔34、36に対し、超硬工具による切削、極めて硬い砥石を用いた研削(あるいはホーニング)等の、時間とコストの掛かる仕上げ処理を行わなければならないことを意味する。   Thus, the inner roller 38 (pin-shaped member) and the through holes 34 and 36 slide while pressing with a strong force to extract the rotation component when the external gears 12 and 14 swing. Yes. Therefore, in order to ensure the strength and hardness required for the through holes 34 and 36, hardened materials that are quenched are used for the external gears 12 and 14. In other words, this is a time-consuming and costly finishing process for the through holes 34 and 36 formed in the hard material, such as cutting with a carbide tool or grinding (or honing) with an extremely hard grindstone. Means you have to do.

一方、この貫通孔34、36は、当該偏心揺動型の減速機G1の動力伝達系の中核を担う重要な構成要素となるものであるため、従来、外歯歯車12、14の軸方向の全長Ltに亘って均一の内径で、かつ精密に形成されていた(逆に言うならば、全長Ltに亘って均一の内径で、かつ精密に形成される必要があると理解されていた)。そのため、従来、外歯歯車12、14のコスト上昇の大きな要因となっていた。   On the other hand, the through holes 34 and 36 are important components that play a central role in the power transmission system of the eccentric oscillating speed reducer G1. It was precisely formed with a uniform inner diameter over the entire length Lt (in other words, it was understood that it was necessary to form with a uniform inner diameter and precisely over the entire length Lt). Therefore, conventionally, it has been a major factor in increasing the cost of the external gears 12 and 14.

しかしながら、発明者が改めて吟味してみるに、貫通孔34、36と内ローラ38の接触は、凹表面と凸表面の接触となる。このため、例えば、外歯歯車12、14と内歯歯車16(の外ローラ16C)との接触、あるいは、偏心体22、24ところ軸受26、28の接触のような凸表面と凸表面の接触ではなく、面圧は低い。また、同じ凹表面と凸表面と接触となる偏心体軸孔30、32ところ軸受26、28との接触と比較しても、凹表面と凸表面の径差が小さいため、接触面積的に有利であり、潤滑油も比較的確保し易い。そのため、単一(同一)の減速機G1において、この貫通孔34、36と内ローラ38との間の接触は、強度上(あるいは寿命上)、他の部分の接触と比較して相対的に余裕があり、必ずしも、貫通孔34、36の全長Ltに亘って接触部を確保しなくても、減速機G1全体の強度を(低下させずに)維持することができる。本実施形態は、この知見に基づき、外歯歯車12、14の貫通孔34、36を以下に示すような構成にて形成するようにしている。   However, when the inventor examines again, the contact between the through holes 34 and 36 and the inner roller 38 is a contact between the concave surface and the convex surface. Therefore, for example, contact between the external gears 12 and 14 and the internal gear 16 (the outer roller 16C), or contact between the convex surfaces and the convex surfaces such as contact between the eccentric bodies 22 and 24 and the bearings 26 and 28. Rather, the surface pressure is low. Further, even when compared with the contact between the eccentric body shaft holes 30 and 32 where the same concave surface and convex surface are in contact with the bearings 26 and 28, the diameter difference between the concave surface and convex surface is small, which is advantageous in terms of contact area. Therefore, it is relatively easy to secure lubricating oil. Therefore, in the single (same) reduction gear G1, the contact between the through-holes 34, 36 and the inner roller 38 is relatively stronger (or longer in life) than the contact of other parts. There is a margin, and the strength of the entire reduction gear G1 can be maintained (without being reduced) without necessarily securing a contact portion over the entire length Lt of the through holes 34 and 36. In the present embodiment, based on this knowledge, the through holes 34 and 36 of the external gears 12 and 14 are formed in the following configuration.

図1を参照して、本実施形態に係る外歯歯車12、14の貫通孔34、36は、その内径を軸方向において敢えて不均一に形成し、軸方向の一部(内径の小さい部分)のみを、内ローラ(ピン状部材)38との動力伝達に活用するようにしている。なお、この図1の描写を含め、各図における貫通孔34、36は、内径の軸方向の変化が容易に理解できるように、該内径の変化を誇張して描写している。   Referring to FIG. 1, the through holes 34 and 36 of the external gears 12 and 14 according to the present embodiment are formed with an uneven inner diameter in the axial direction, and a part in the axial direction (a portion with a small inner diameter). Only is utilized for power transmission with the inner roller (pin-shaped member) 38. In addition, including the depiction of FIG. 1, the through holes 34 and 36 in each of the drawings exaggerate the change in the inner diameter so that the change in the axial direction of the inner diameter can be easily understood.

この実施形態においては、貫通孔34、36は、内径が、D1で均一(一定)である定径部34B、36Bを軸方向中央に有している。そして、該定径部34B、36Bの軸方向両端に内径が直線的にD2まで拡大してゆく大径部が設けられている(D1<D2)。この実施形態では、貫通孔34、36における内径がD1で一定である定径部34B、36Bの軸方向範囲L1と、内径がより大きい2つの大径部34A、36Aの軸方向範囲L2の合計2・L2は、ほぼ同一である(L1≒2・L2)。すなわち、単一の外歯歯車12(または14)において、それぞれの定径部34B、36Bの軸方向範囲L1と大径部34A(または36A)の軸方向範囲2・L2はほぼ同一である。なお、符号54は、外歯歯車12、14の軸方向の移動を規制している位置決め部材である。   In this embodiment, the through holes 34 and 36 have constant diameter portions 34B and 36B having an inner diameter that is uniform (constant) at D1 in the center in the axial direction. And the large diameter part which an internal diameter linearly expands to D2 is provided in the axial direction both ends of this constant diameter part 34B, 36B (D1 <D2). In this embodiment, the sum of the axial range L1 of the constant diameter portions 34B and 36B where the inner diameter of the through holes 34 and 36 is constant at D1 and the axial range L2 of the two large diameter portions 34A and 36A having a larger inner diameter. 2 · L2 is substantially the same (L1≈2 · L2). That is, in the single external gear 12 (or 14), the axial range L1 of the constant diameter portions 34B and 36B and the axial range 2 · L2 of the large diameter portion 34A (or 36A) are substantially the same. Reference numeral 54 denotes a positioning member that restricts the movement of the external gears 12 and 14 in the axial direction.

この実施形態の作用は、外歯歯車12、14の製造工程と深く関係しているため、以降、当該貫通孔34、36の製造方法の説明とともに、この実施形態の作用を説明する。   Since the operation of this embodiment is closely related to the manufacturing process of the external gears 12 and 14, the operation of this embodiment will be described below together with the description of the method of manufacturing the through holes 34 and 36.

貫通孔34を有する外歯歯車12は、具体的には図4に示されるような工程で製造される(貫通孔36を有する外歯歯車14も同様である)。   Specifically, the external gear 12 having the through hole 34 is manufactured by a process as shown in FIG. 4 (the same applies to the external gear 14 having the through hole 36).

すなわち、先ず、(a)焼き入れ等の硬化処理がなされていない外歯歯車12の素材12R1に、貫通孔34のベースとなる素孔34Rを、均一の内径D3で(8個)形成する(図4(A))。   That is, first, (a) the raw material 34R1 of the external gear 12 that has not been subjected to hardening treatment such as quenching is formed with eight uniform holes D with a uniform inner diameter D3 as a base of the through hole 34 ( FIG. 4 (A)).

次いで、(b)各素孔34Rの軸方向の一部(具体的には軸方向両端)の内径を端部に近づく程内径が大きくなるように直線的に大径としてゆき、該軸方向両端の軸方向範囲L6の部位に大径部34Raを形成する(図4(B))。ここまでの工程は、未だ外歯歯車12の素材12R1に対して硬化処理がなされていない時点での加工である。そのため、低コストの通常の工具(図示略)にて極めて容易に行うことができる。   Next, (b) the inner diameter of a part (specifically, both ends in the axial direction) of each of the raw holes 34R is linearly increased so that the inner diameter increases toward the end, and both ends in the axial direction are increased. The large-diameter portion 34Ra is formed at a site in the axial direction range L6 (FIG. 4B). The process up to this point is the processing at the time when the material 12R1 of the external gear 12 has not yet been cured. Therefore, it can be performed very easily with a low-cost ordinary tool (not shown).

なお、実際には、この(b)の工程の、前または後に、外歯歯車12の素材12R1に外歯(トロコイド歯形)12Aを形成する工程が入る。   In practice, a step of forming external teeth (trochoidal tooth profile) 12A on the material 12R1 of the external gear 12 before or after the step (b) is performed.

そして、(c)全ての素孔34Rに大径部34Raを形成した後に、当該外歯歯車12の素材12R1に対して焼き入れによる硬化処理を行い、硬い素材12R2とする(図4(C))。この硬化処理は、特に焼き入れに限定されるものではなく、従来公知の種々の硬化手法を用いることができる。   And (c) After forming large diameter part 34Ra in all the raw holes 34R, hardening processing by hardening is performed with respect to the raw material 12R1 of the said external gear 12, and it is set as the hard raw material 12R2 (FIG.4 (C)). ). This curing process is not particularly limited to quenching, and various conventionally known curing methods can be used.

最後に、(d)軸方向両端に大径部34Raが形成された8個の素孔34Rの、大径とされていない部分34Rbを内径D1まで均一に仕上げ処理する(図4(D))。これにより、均一の内径D1の定径部34Bを有する完成品としての外歯歯車12を得る。なお、仕上げ処理のなされていない大径部34Raは、そのまま最終的な大径部34Aとして残る。   Finally, (d) the non-large-diameter portion 34Rb of the eight raw holes 34R in which the large-diameter portions 34Ra are formed at both ends in the axial direction is uniformly finished to the inner diameter D1 (FIG. 4D). . As a result, the external gear 12 as a finished product having the constant diameter portion 34B having a uniform inner diameter D1 is obtained. The large-diameter portion 34Ra that has not been subjected to the finishing process remains as the final large-diameter portion 34A.

ここでの仕上げ処理の具体例としては、例えば超硬工具等を用いた切削、極めて硬くかつ微細な砥粒によって構成された砥石を用いた研削(あるいはホーニング)等がある。仕上げ処理の前に焼き入れ(硬化処理)の工程を入れるのは、仕上げ処理を行った後に焼き入れを行うと、熱歪みによって製品としての正確な寸法が維持できないためである。   Specific examples of the finishing treatment here include cutting using a carbide tool or the like, and grinding (or honing) using a grindstone composed of extremely hard and fine abrasive grains. The reason why a quenching (curing) process is performed before the finishing process is that when the quenching is performed after the finishing process, the accurate dimensions as a product cannot be maintained due to thermal distortion.

しかし、この実施形態では、この仕上げ処理を、素孔34Rの大径とされていない部分(均一の内径D3の定径部34Rbの部分)に対してのみ行うことになるため(定径部34Bと大径部34Aとで仕上げ処理が異なるため)、従来の外歯歯車の貫通孔34、36の全長Ltに亘って仕上げ処理を行うのに比べ、当然加工時間は短くて済むことになる。また、加工範囲が小さいため、超硬工具等の摩耗も小さい(工具の寿命が延びる)。   However, in this embodiment, this finishing process is performed only on the portion of the raw hole 34R that is not made large (the portion of the constant diameter portion 34Rb having a uniform inner diameter D3) (the constant diameter portion 34B). Since the finishing process differs between the large-diameter portion 34A and the large-diameter portion 34A), the processing time is naturally shorter than when the finishing process is performed over the entire length Lt of the through holes 34 and 36 of the conventional external gear. Further, since the machining range is small, wear of the carbide tool and the like is small (the tool life is extended).

この種の偏心揺動型の減速機の外歯歯車の製造コストに最も影響するのは、複数の貫通孔を形成する際の仕上げ処理のコスト(具体的には、例えば超硬チップの交換コスト)とも言われる。したがって、外歯歯車12、14の1個当りの加工量が少なくて済むことによる工具の寿命の増大は、そのまま外歯歯車12、14の製造コストの低減に繋がる。   The manufacturing cost of the external gear of this type of eccentric oscillating speed reducer has the greatest effect on the cost of finishing processing when forming a plurality of through holes (specifically, for example, the replacement cost of a carbide tip) ). Therefore, an increase in the tool life due to a small amount of processing per one external gear 12, 14 leads to a reduction in manufacturing cost of the external gear 12, 14 as it is.

結果として、外歯歯車12、14、あるいは減速機G1全体の強度を低下させることなく、すなわち、外歯歯車12、14としての必要な強度特性を十分に維持したまま、加工時間を短縮し、かつ製造コストを低減することができる。   As a result, the processing time can be shortened without reducing the strength of the external gears 12 and 14 or the entire reduction gear G1, that is, while maintaining the necessary strength characteristics as the external gears 12 and 14 sufficiently. In addition, the manufacturing cost can be reduced.

この実施形態に係る外歯歯車12、14は、軸方向両端に該貫通孔34、36の軸方向中央の定径部34B、36Bの内径D1よりも大きな内径(最大内径D2)の大径部34A、36Aを有しているため、内ローラ38との摺動(動力伝達)は、該貫通孔34、36の「軸方向中央」の定径部34B、36Bにて行われる。したがって、外歯歯車12、14と内歯歯車16との噛合、あるいは外歯歯車12、14ところ軸受26、28との転動において、大きなモーメント等が発生する虞が小さい。   The external gears 12 and 14 according to this embodiment have large-diameter portions having an inner diameter (maximum inner diameter D2) larger than the inner diameter D1 of the constant-diameter portions 34B and 36B at the axial center of the through holes 34 and 36 at both ends in the axial direction. Since it has 34A and 36A, sliding (power transmission) with the inner roller 38 is performed at the constant-diameter portions 34B and 36B at the “axial center” of the through holes 34 and 36. Therefore, there is little possibility that a large moment or the like is generated in the engagement between the external gears 12 and 14 and the internal gear 16 or the rolling of the external gears 12 and 14 with the bearings 26 and 28.

また、貫通孔34、36は、内径D1が一定である定径部34B、36Bを有し、かつ、該定径部34B、36Bから軸方向において内径が「直線的」に拡大するように構成されているため、大径部34A、36Aの加工が容易であり、かつ外歯歯車12、14が何らかの理由で軸心O1に対して傾斜しようとした場合であっても、定径部34B、36Bの軸方向端部34B1、36B1に応力が集中するのをより軽減することができる。   Further, the through holes 34 and 36 have constant diameter portions 34B and 36B having a constant inner diameter D1, and are configured so that the inner diameter expands “linearly” in the axial direction from the constant diameter portions 34B and 36B. Therefore, it is easy to process the large diameter portions 34A, 36A, and even if the external gears 12, 14 are inclined with respect to the axis O1 for some reason, the constant diameter portions 34B, It is possible to further reduce stress concentration on the axial end portions 34B1 and 36B1 of 36B.

なお、本発明では、貫通孔の内周の具体的形状(内径の変化態様)は、特に上記例に限定されない。図5〜図8に、貫通孔の内周の具体的形状の変形例を示す。   In the present invention, the specific shape of the inner periphery of the through-hole (change mode of the inner diameter) is not particularly limited to the above example. 5 to 8 show modified examples of the specific shape of the inner periphery of the through hole.

図5に示される変形例では、外歯歯車60、62の貫通孔64、66は、一定の内径D5の定径部64B、66Bを軸方向中央に有するとともに、軸方向両端に該定径部64B、66Bから大径部64A、66Aが一定の内径D6で形成されている。この構成は、貫通孔64、66の大径部64A、66Aの形成が先の実施形態よりも容易である。その他の構成は、先の実施形態と同様である。   In the modification shown in FIG. 5, the through holes 64 and 66 of the external gears 60 and 62 have constant diameter portions 64B and 66B having a constant inner diameter D5 at the center in the axial direction, and the constant diameter portions at both ends in the axial direction. Large diameter portions 64A and 66A are formed with a constant inner diameter D6 from 64B and 66B. In this configuration, formation of the large diameter portions 64A and 66A of the through holes 64 and 66 is easier than in the previous embodiment. Other configurations are the same as in the previous embodiment.

図6に示される変形例では、外歯歯車70、72の貫通孔74、76は、一定の内径D7の定径部74B、76Bを、軸方向中央にではなく、軸方向一端側の端部に有している。そして、該定径部74B、76Bから他端側の端部へ向けて「単一」の大径部74A、76Aが直線状に拡大形成され、他方側の端部が最大内径D8とされている。このため、大径部74A、76Aを形成する際に、外歯歯車70、72の素材の掴み替え等が不要で、大径部74A、76Aの形成工程を簡略化できる。また、この変形例では、貫通孔74、76の一定の内径D7の定径部74B、76Bの軸方向範囲L5よりも内径の大きな大径部74A、76Aの軸方向範囲L6の方が広く形成されている(L5<L6)。このため、仕上げ加工を行うべき定径部74B、76Bの範囲L5を先の2つの例より一層少なくすることができ、本実施形態の効果を非常に顕著に得ている。   In the modification shown in FIG. 6, the through-holes 74 and 76 of the external gears 70 and 72 have constant diameter portions 74B and 76B having a constant inner diameter D7, not at the center in the axial direction but at the end on the one end side in the axial direction. Have. A “single” large-diameter portion 74A, 76A is linearly expanded from the constant-diameter portions 74B, 76B to the end portion on the other end side, and the other end portion has a maximum inner diameter D8. Yes. For this reason, when forming the large diameter portions 74A and 76A, it is not necessary to replace the material of the external gears 70 and 72, and the formation process of the large diameter portions 74A and 76A can be simplified. In this modified example, the large diameter portions 74A and 76A having a larger inner diameter than the axial range L5 of the constant diameter portions 74B and 76B having a constant inner diameter D7 of the through holes 74 and 76 are formed wider. (L5 <L6). For this reason, the range L5 of the constant diameter portions 74B and 76B to be finished can be further reduced as compared with the previous two examples, and the effect of the present embodiment is obtained very remarkably.

なお、この図6の変形例のように、仕上げ加工を行うべき定径部74B、76Bの軸方向範囲L5を小さく抑えた結果、貫通孔74、76の定径部74B、76Bと内ローラ(ピン状部材)38との間の最大面圧P1が上昇し、例えば内歯歯車16(の外ローラ16C)と外歯歯車70、72との間の最大面圧P2よりも大きくなってしまう場合がある。しかしながら、たとえこのような状況(P1>P2)となっても、このことが当該減速機G1における強度上、あるいは寿命上のボトルネックとなることは少ない(十分にこれまでの減速機G1の全体強度あるいは寿命を、なお維持することができる)。それは、貫通孔74、76の定径部74B、76Bと内ローラ38の接触部分は、内歯歯車16と外歯歯車70、72の接触部分よりも潤滑性が良く、かつ加工精度も高いためである。   In addition, as shown in the modified example of FIG. 6, as a result of suppressing the axial range L5 of the constant diameter portions 74B and 76B to be finished to a small size, the constant diameter portions 74B and 76B of the through holes 74 and 76 and the inner rollers ( When the maximum surface pressure P1 between the inner gear 16 and the external gears 70 and 72 increases, for example, the maximum surface pressure P1 between the inner gear 16 and the external gears 70 and 72 increases. There is. However, even in such a situation (P1> P2), this rarely becomes a bottleneck on the strength or life of the reduction gear G1 (sufficiently the entire reduction gear G1 so far). Strength or lifetime can still be maintained). This is because the contact portions between the constant diameter portions 74B and 76B of the through holes 74 and 76 and the inner roller 38 have better lubricity and higher processing accuracy than the contact portions of the internal gear 16 and the external gears 70 and 72. It is.

図7に示される変形例においては、大径部84A、86Aとする範囲を比較的小さく抑えることで、外歯歯車80、82の貫通孔84、86近傍の強度の低下を最小限に抑えている。例えば外歯歯車80、82の軸方向幅L7がもともとそれほど大きく設定されていないとき等では、このように、大径部84A、86Aの軸方向範囲L8を定径部84B、86Bの軸方向範囲L9より小さく形成するようにしてもよい。それでも、大径部84A、86Aを僅かでも形成する限り、その分、時間短縮およびコスト低減の効果を得ることができる。   In the modification shown in FIG. 7, the reduction in strength in the vicinity of the through holes 84 and 86 of the external gears 80 and 82 is minimized by suppressing the range of the large diameter portions 84A and 86A to be relatively small. Yes. For example, when the axial width L7 of the external gears 80, 82 is not originally set so large, the axial range L8 of the large diameter portions 84A, 86A is thus changed to the axial range of the constant diameter portions 84B, 86B. You may make it form smaller than L9. Nevertheless, as long as the large-diameter portions 84A and 86A are formed even slightly, it is possible to obtain the effects of time reduction and cost reduction.

なお、この図7の変形例では、大径部84A、86Aの形成部位を貫通孔84、86の一端側のみとして、加工の容易性を確保しながら、2枚の外歯歯車80、82を組み込む際に、(内径が一定の)定径部84B、86Bを互いに対向させるようにしている。これにより、軸方向において対称の2枚の外歯歯車80、82がセットで設けられていることになり、内歯歯車16との間で発生するスラスト力をかなり相殺することが可能になる。   In the modification of FIG. 7, the two external gears 80 and 82 are formed while ensuring the ease of processing by forming the large diameter portions 84A and 86A only on one end side of the through holes 84 and 86. When incorporating, the constant diameter portions 84B and 86B (having a constant inner diameter) are made to face each other. Thereby, two external gears 80 and 82 symmetrical in the axial direction are provided as a set, and the thrust force generated between the internal gears 16 can be considerably canceled out.

図8の変形例では、大径部94A、96Aを間欠的に複数(この変形例では2箇所)形成するようにしている。このように、大径部94A、96Aを間欠的に形成するようにした場合、外歯歯車90、92は、貫通孔94、96の軸方向のほぼ全面において内ローラ38との動力伝達を行うことができ、該貫通孔94、96の軸方向の一部のみに応力が集中するのを防止できる。そして、例えば、組み付けの際に、この大径部94A、96A内にグリースを塗布することにより、該大径部94A、96Aを、グリース溜りとして活用することもできるようになる。   In the modification shown in FIG. 8, a plurality of large diameter portions 94A and 96A are intermittently formed (two in this modification). As described above, when the large diameter portions 94A and 96A are formed intermittently, the external gears 90 and 92 transmit power to the inner roller 38 over almost the entire axial direction of the through holes 94 and 96. It is possible to prevent stress from concentrating on only a part of the through holes 94 and 96 in the axial direction. For example, when the grease is applied to the large diameter portions 94A and 96A at the time of assembly, the large diameter portions 94A and 96A can be used as a grease reservoir.

なお、上記実施形態、あるいは変形例においては、いずれも定径部および大径部の境界部分を段差的に、あるいは2つの直線同士の交差で構成するようにしていたが、例えば該定径部および大径部を丸みのある曲線で連結するのは無論可能であり、「応力の集中の防止」という観点では、むしろこの方が好ましい。   In the above-described embodiment or modification, the boundary portion between the constant diameter portion and the large diameter portion is configured to be stepped or intersecting two straight lines. For example, the constant diameter portion Of course, it is possible to connect the large diameter portions with a rounded curve, and this is preferable from the viewpoint of “preventing stress concentration”.

また、上記実施形態においては、いずれも内ピンに内ローラが被せられた構成例が示されていた。内ピンに内ローラが被せられている場合、(内ピンが直接貫通孔と摺動する構成と比べて)摺動面での負荷が小さいことから、内径が一定の定径部、すなわち仕上げ加工を必要とする部分をより大きく低減することができるため、本発明の効果をより顕著に得ることができる。しかしながら、本発明は、内ピンが直接貫通孔に摺動するタイプの減速機においても適用することができ、大径部が少しでも形成されれば、相応の効果が得られる。   Moreover, in the said embodiment, the example of a structure by which the inner roller was covered on the inner pin was shown. When the inner pin is covered with the inner roller, the load on the sliding surface is small (compared to the configuration in which the inner pin slides directly with the through hole), so that the constant diameter part with a constant inner diameter, that is, finish machining Therefore, the effect of the present invention can be obtained more remarkably. However, the present invention can also be applied to a reduction gear of a type in which the inner pin slides directly into the through hole, and a corresponding effect can be obtained if the large diameter portion is formed even a little.

また、上記実施形態においては、外歯歯車が2枚組み込まれた構成を有していたが、本発明に係る偏心揺動型の減速機は、外歯歯車の数は、2枚に限定されるものではなく、1枚であっても、また、3枚以上であってもよい。3枚の外歯歯車を組み込む場合は、3枚とも同一の形状の外歯歯車としてもよいし、両側と中央とで外歯歯車の貫通孔の形状を異ならせてもよい。3枚の外歯歯車を有する偏心揺動型の減速機の場合、軸方向中央の外歯歯車は、良好な潤滑性の確保が難しくなることが多いため、大径部の範囲を両側の外歯歯車と比べて小さくしたり、中央の外歯歯車のみ本発明を適用しないようにしてもよい。すなわち、本発明は、必ずしも全ての外歯歯車に等しく(あるいは対称に)適用する必要はない。   In the above-described embodiment, two external gears are incorporated. However, in the eccentric oscillating type speed reducer according to the present invention, the number of external gears is limited to two. It may be one sheet or three or more sheets. When three external gears are incorporated, the three external gears may have the same shape, or the shape of the through hole of the external gear may be different on both sides and the center. In the case of an eccentric oscillating type speed reducer having three external gears, the external gear at the center in the axial direction often has difficulty in ensuring good lubricity. You may make it small compared with a toothed gear, and may make it not apply this invention only to a center external gear. That is, the present invention is not necessarily applied equally (or symmetrically) to all external gears.

さらに、上記実施形態においては、内歯歯車が固定され、ピン状部材が外歯歯車の貫通孔に挿入されつつ、該外歯歯車の自転と同期して公転する例が示されていたが、本発明は、外歯歯車の自転成分と同期するピン状部材が貫通孔を介して外歯歯車の自転を拘束し、内歯歯車が出力部材として回転するいわゆる枠回転タイプの偏心揺動型の減速にも適用可能である。   Furthermore, in the above embodiment, an example is shown in which the internal gear is fixed and the pin-shaped member is inserted into the through hole of the external gear, and revolves in synchronization with the rotation of the external gear. The present invention is a so-called frame rotation type eccentric oscillating type in which a pin-like member synchronized with the rotation component of an external gear constrains the rotation of the external gear through a through hole, and the internal gear rotates as an output member. It can also be applied to deceleration.

なお、外歯歯車の製造方法は、上記実施形態の方法に限定されず、最終的に貫通孔の内径が軸方向に不均一となっていれば、どのような方法で製造してもよい。   In addition, the manufacturing method of an external gear is not limited to the method of the said embodiment, As long as the internal diameter of a through-hole is finally non-uniform | heterogenous in an axial direction, you may manufacture by what kind of method.

12、14…外歯歯車
16…内歯歯車
22、24…偏心体
34、36…貫通孔
34A、36A…大径部
34B、36B…定径部
38…内ローラ
40…内ピン
DESCRIPTION OF SYMBOLS 12, 14 ... External gear 16 ... Internal gear 22, 24 ... Eccentric body 34, 36 ... Through-hole 34A, 36A ... Large diameter part 34B, 36B ... Constant diameter part 38 ... Inner roller 40 ... Inner pin

Claims (7)

外歯歯車と、該外歯歯車が揺動しながら内接する内歯歯車と、前記外歯歯車に設けられた貫通孔に挿入され、該貫通孔の内周に接触して前記外歯歯車の自転成分と同期するピン状部材と、を備えた偏心揺動型の減速機において、
前記貫通孔の内径が軸方向において不均一である
ことを特徴とする偏心揺動型の減速機。
An external gear, an internal gear that is inscribed while the external gear swings, and a through-hole provided in the external gear, are in contact with the inner periphery of the through-hole, In an eccentric rocking type speed reducer comprising a pin-like member synchronized with the rotation component,
An eccentric oscillation type speed reducer characterized in that the inner diameter of the through hole is not uniform in the axial direction.
請求項1において、
前記貫通孔の軸方向両端に、該貫通孔の軸方向中央よりも内径の大きな大径部が形成されている
ことを特徴とする偏心揺動型の減速機。
In claim 1,
An eccentric oscillating type speed reducer characterized in that large-diameter portions having an inner diameter larger than the axial center of the through-hole are formed at both axial ends of the through-hole.
請求項1または2において、
前記貫通孔が、内径が一定である定径部を有し、かつ該定径部から軸方向において内径が直線的に拡大している
ことを特徴とする偏心揺動型の減速機。
In claim 1 or 2,
The eccentric oscillating speed reducer, wherein the through hole has a constant diameter portion having a constant inner diameter, and the inner diameter linearly expands in the axial direction from the constant diameter portion.
請求項1〜3のいずれかにおいて、
前記貫通孔が、内径が一定である定径部を有し、かつ該定径部の軸方向範囲より内径の大きな部分の軸方向範囲の方が広い
ことを特徴とする偏心揺動型の減速機。
In any one of Claims 1-3,
An eccentric oscillating type speed reducer characterized in that the through hole has a constant diameter portion having a constant inner diameter, and the axial range of the portion having a larger inner diameter is wider than the axial range of the constant diameter portion. Machine.
請求項1〜4のいずれかにおいて、
前記貫通孔が、内径が一定である定径部と、定径部よりも内径の大きい大径部と、を有し、
該定径部と大径部とで仕上げ処理が異なる
ことを特徴とする偏心揺動型の減速機。
In any one of Claims 1-4,
The through hole has a constant diameter portion having a constant inner diameter, and a large diameter portion having a larger inner diameter than the constant diameter portion,
An eccentric oscillating speed reducer characterized in that the finishing process is different between the constant diameter part and the large diameter part.
請求項1〜5のいずれかにおいて、
前記貫通孔の内周と前記ピン状部材との間の最大面圧が、前記内歯歯車と外歯歯車との間の最大面圧よりも大きく設定されている
ことを特徴とする偏心揺動型の減速機。
In any one of Claims 1-5,
Eccentric oscillation characterized in that the maximum surface pressure between the inner periphery of the through hole and the pin-shaped member is set to be larger than the maximum surface pressure between the internal gear and the external gear. Mold reducer.
外歯歯車と、該外歯歯車が揺動しながら内接する内歯歯車と、前記外歯歯車に設けられた貫通孔に挿入され、該貫通孔の内周に接触して前記外歯歯車の自転成分と同期するピン状部材と、を備えた偏心揺動型の減速機の前記外歯歯車の製造方法において、
前記外歯歯車の素材に前記貫通孔の素孔を形成する工程と、
該素孔の軸方向の一部の内径をより大径に拡大する工程と、
該一部を大径とした工程の後に、当該外歯歯車の素材を硬化処理する工程と、
該硬化処理の後に、前記素孔の大径とされていない部分の仕上げ処理を行う工程と、を含む
ことを特徴とする偏心揺動型の減速機の外歯歯車の製造方法。
An external gear, an internal gear that is inscribed while the external gear swings, and a through-hole provided in the external gear, are in contact with the inner periphery of the through-hole, In the manufacturing method of the external gear of the eccentric oscillating speed reducer provided with a pin-like member synchronized with the rotation component,
Forming a through hole in the material of the external gear;
Expanding the inner diameter of a part of the raw hole in the axial direction to a larger diameter;
After the step of increasing the diameter of the part, a step of curing the material of the external gear;
And a step of performing a finishing process on a portion of the raw hole not having a large diameter after the hardening process. A method of manufacturing an external gear of an eccentric rocking type reduction gear.
JP2012064593A 2012-03-21 2012-03-21 Eccentric oscillation type speed reducer and manufacturing method of external gear Active JP5816582B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012064593A JP5816582B2 (en) 2012-03-21 2012-03-21 Eccentric oscillation type speed reducer and manufacturing method of external gear
CN201310078209.5A CN103322132B (en) 2012-03-21 2013-03-12 Eccentrically rocking type reduction gear and the manufacture method of external gear thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012064593A JP5816582B2 (en) 2012-03-21 2012-03-21 Eccentric oscillation type speed reducer and manufacturing method of external gear

Publications (2)

Publication Number Publication Date
JP2013194869A true JP2013194869A (en) 2013-09-30
JP5816582B2 JP5816582B2 (en) 2015-11-18

Family

ID=49191081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012064593A Active JP5816582B2 (en) 2012-03-21 2012-03-21 Eccentric oscillation type speed reducer and manufacturing method of external gear

Country Status (2)

Country Link
JP (1) JP5816582B2 (en)
CN (1) CN103322132B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104708287A (en) * 2013-12-11 2015-06-17 住友重机械工业株式会社 Eccentric swinging type speed reducer, and manufacturing method of bent axle and external gear thereof
JP2015129553A (en) * 2014-01-07 2015-07-16 住友重機械工業株式会社 Eccentric oscillation type reduction gear
JP2015197157A (en) * 2014-03-31 2015-11-09 住友重機械工業株式会社 Eccentric oscillation type speed reducer and process of manufacture for its pin member
US9903443B2 (en) 2016-05-20 2018-02-27 Denso Corporation Eccentric speed variator
DE102022134067A1 (en) 2022-01-04 2023-07-06 Sumitomo Heavy Industries, Ltd. ECCENTRIC OSCILLATING GEAR DEVICE

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127579A (en) * 2013-12-27 2015-07-09 住友重機械工業株式会社 Speed reducer
JP6296940B2 (en) * 2014-08-11 2018-03-20 住友重機械工業株式会社 Reduction gear
JP6629175B2 (en) * 2016-12-05 2020-01-15 住友重機械工業株式会社 Eccentric oscillating gear device
JP7319784B2 (en) * 2019-01-29 2023-08-02 住友重機械工業株式会社 Manufacturing method for eccentric oscillating speed reducer and external gear

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002120116A (en) * 2000-10-11 2002-04-23 Sumitomo Heavy Ind Ltd Manufacturing method of outer tooth gear
JP2005003144A (en) * 2003-06-13 2005-01-06 Koyo Seiko Co Ltd Rack spindle and rack-and-pinion type steering system
JP2009197819A (en) * 2008-02-19 2009-09-03 Sumitomo Heavy Ind Ltd Reduction gear

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088935A (en) * 2001-09-13 2003-03-25 Sumitomo Heavy Ind Ltd Manufacturing method of external gear
JP4265748B2 (en) * 2003-03-31 2009-05-20 ナブテスコ株式会社 Reducer using needle roller bearing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002120116A (en) * 2000-10-11 2002-04-23 Sumitomo Heavy Ind Ltd Manufacturing method of outer tooth gear
JP2005003144A (en) * 2003-06-13 2005-01-06 Koyo Seiko Co Ltd Rack spindle and rack-and-pinion type steering system
JP2009197819A (en) * 2008-02-19 2009-09-03 Sumitomo Heavy Ind Ltd Reduction gear

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104708287A (en) * 2013-12-11 2015-06-17 住友重机械工业株式会社 Eccentric swinging type speed reducer, and manufacturing method of bent axle and external gear thereof
JP2015113917A (en) * 2013-12-11 2015-06-22 住友重機械工業株式会社 Eccentric oscillation type speed reducer and method of manufacturing eccentric body shaft gear
JP2015129553A (en) * 2014-01-07 2015-07-16 住友重機械工業株式会社 Eccentric oscillation type reduction gear
JP2015197157A (en) * 2014-03-31 2015-11-09 住友重機械工業株式会社 Eccentric oscillation type speed reducer and process of manufacture for its pin member
US9903443B2 (en) 2016-05-20 2018-02-27 Denso Corporation Eccentric speed variator
DE102022134067A1 (en) 2022-01-04 2023-07-06 Sumitomo Heavy Industries, Ltd. ECCENTRIC OSCILLATING GEAR DEVICE

Also Published As

Publication number Publication date
CN103322132A (en) 2013-09-25
JP5816582B2 (en) 2015-11-18
CN103322132B (en) 2016-08-03

Similar Documents

Publication Publication Date Title
JP5816582B2 (en) Eccentric oscillation type speed reducer and manufacturing method of external gear
EP1712814B1 (en) Eccentric oscillating-type planetary gear device
KR100754995B1 (en) An outer gear of a planetary reduction gear having cycloid tooth type and the manufacturing thereof
US20030070297A1 (en) Method for fabricating external-tooth gears
JPWO2008041496A1 (en) Eccentric oscillating speed reducer and stabilizer shaft rotating device using the eccentric oscillating speed reducer
JP4747128B2 (en) Eccentric oscillation reduction device
JP2012057661A (en) Oscillation inscribed meshing type planetary gear device and method for manufacturing the same
JP2008304020A (en) Eccentrically oscillating speed reducer, its carrier, and method of supporting eccentric shaft
JP2015113916A (en) Eccentric oscillation type speed reducer and method of manufacturing eccentric body shaft gear
JP3009848B2 (en) Inner roller and outer roller of internal meshing planetary gear structure and method of manufacturing the same
JP4603668B2 (en) Manufacturing method of external gear
JP7068102B2 (en) Hypocycloid reducer
JP6275588B2 (en) Planetary gear device and method for manufacturing the internal gear
JP4554586B2 (en) Inner meshing planetary gear unit
JP3897924B2 (en) Inner meshing planetary gear unit
CN109838503A (en) The manufacturing method of transmission mechanism
JP6890563B2 (en) Eccentric swing type speed reducer
JP2015086898A (en) Series of gear devices
JP6175380B2 (en) Planetary reducer
JP7438665B2 (en) Eccentric rocking type reduction gear, manufacturing method of eccentric body
JPH11190403A (en) Inner roller and outer roller having internal gearing planetary gear structure and manufacture therefor
JP6178747B2 (en) Eccentric oscillation type speed reducer and method of manufacturing pin member thereof
JP2020094652A (en) Manufacturing method of eccentric body shaft
US20220196133A1 (en) Gear unit including a rotatably mounted toothed part, and process for manufacturing a gear unit including a toothed part
JPH09329203A (en) Internal roller of inscribed engaging planetary gear structure and manufacture of external roller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150928

R150 Certificate of patent or registration of utility model

Ref document number: 5816582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150