JP2013190375A - センサー基板およびその製造方法並びに検出装置 - Google Patents

センサー基板およびその製造方法並びに検出装置 Download PDF

Info

Publication number
JP2013190375A
JP2013190375A JP2012058319A JP2012058319A JP2013190375A JP 2013190375 A JP2013190375 A JP 2013190375A JP 2012058319 A JP2012058319 A JP 2012058319A JP 2012058319 A JP2012058319 A JP 2012058319A JP 2013190375 A JP2013190375 A JP 2013190375A
Authority
JP
Japan
Prior art keywords
sensor substrate
magnetic material
magnetic
nanoparticles
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012058319A
Other languages
English (en)
Other versions
JP5928025B2 (ja
Inventor
Yusuke Sakagami
裕介 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2012058319A priority Critical patent/JP5928025B2/ja
Publication of JP2013190375A publication Critical patent/JP2013190375A/ja
Application granted granted Critical
Publication of JP5928025B2 publication Critical patent/JP5928025B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】配列を形成するナノ粒子を有するセンサー基板を提供する。
【解決手段】センサー基板11では基体17の表面に磁性体材料層18が形成される。磁性体材料層18は磁性体材料で形成される。磁性体材料層18の表面にナノ粒子22の配列が固定される。ナノ粒子22は磁性体材料で形成される。ナノ粒子22には金属膜23が被さる。金属膜23は、照射光に共鳴振動する自由電子を有する材料から形成される。照射光の働きで金属膜23では局在表面プラズモン共鳴が引き起こされる。増強電場が形成される。
【選択図】図3

Description

本発明は、入射光に共鳴振動する自由電子を有する材料から形成される金属膜を備えるセンサー基板およびその製造方法、並びに、そうしたセンサー基板を利用した検出装置等に関する。
磁性ナノ粒子の配列は例えば特許文献1に記載される。特許文献1では基体の表面は不動態化される。不動態化された表面に磁性ナノ粒子は供給される。磁性ナノ粒子は無秩序に堆積する。その後、例えばレーザーで磁性ナノ粒子はピットまで運ばれる。こうして磁性ナノ粒子はピット内に閉じ込められる。
特表2004−502561号公報
特許文献1では磁性ナノ粒子の配列にあたって基体の表面に予めピットが形成されなければならない。ピットはいわゆるフォトリソグラフィ技術で形成される。フォトリソグラフィ技術では例えば電子ビーム露光装置が利用される。電子ビーム露光装置は一度に狭い範囲でしかフォトレジストを露光することができない。したがって、磁性ナノ粒子の配列には長時間が費やされてしまう。大量生産には向かない。しかも、磁性ナノ粒子の運搬にあたってレーザーが用いられると、さらに長時間が費やされてしまう。
本発明の少なくとも1つの態様によれば、配列を形成するナノ粒子を有するセンサー基板は提供されることができる。そうしたセンサー基板を比較的に短時間に製造することができるセンサー基板の製造方法は提供されることができる。
(1)本発明の一態様は、基体と、前記基体の表面に磁性体材料で形成された磁性体材料層と、前記磁性体材料層の表面に固定され、かつ配列された磁性体材料のナノ粒子と、前記ナノ粒子の表面に形成された、光に共鳴振動する自由電子を有する金属膜とを備えるセンサー基板に関する。
光の働きでナノ粒子では局在表面プラズモン共鳴が引き起こされる。増強電場が形成される。金属膜の表面で近接場光が生成される。こうした近接場光は表面増強ラマン散乱を誘引する。こうしてセンサー基板はラマンスペクトルの検出に利用されることができる。ここで、ナノ粒子は特定の配列を形成する。入射光の偏光に合わせて配列が設定されると、増強電場は強化されることができる。
(2)前記基体は円形に形成されることができる。このとき、前記配列は同心円パターンまたは螺旋円パターンであることができる。同心円または螺旋円の中心回りにセンサー基板が回転すると、同心円または螺旋円上のナノ粒子は特定の半径位置を通過することができる。したがって、照射光が特定の半径位置で固定されても、短時間に広い範囲にわたってナノ粒子は照射光に曝されることができる。
(3)前記磁性体材料層には、前記ナノ粒子に作用する磁界を形成する磁化パターンが書き込まれることができる。磁性体材料層には予め決められた配列に応じて磁化パターンが書き込まれることができる。ナノ粒子は、磁化パターンに従って磁性体材料層の表面で確実に配列を形成することができる。
(4)前記金属膜は前記ナノ粒子同士の間に空隙を区画することができる。金属膜はナノ粒子上で途切れる。ナノ粒子同士の間は金属膜の形成から除外される。こうした金属膜の空隙で増強電場が形成されると、ナノ粒子同士の間に金属膜が形成される場合に比べて、増強電番は強められることができる。
(5)前記センサー基板は、前記センサー基板を母材として複数に分割され、個片化した形状であることができる。こうして個片化されたセンサー基板は小型化された検出装置に比較的に簡単に組み込まれることができる。母材としての円形のセンサー基板から微小な領域が切り出されれば、ナノ粒子の配列は円形の曲率の影響から逃れることができる。
(6)前記金属膜は金、銀、またはこれらを含む合金であることができる。こうした金属膜によれば、近接場光は確実に生成されることができる。
(7)センサー基板は検出装置に組み込まれて利用されることができる。検出装置は、センサー基板と、前記センサー基板に向かって前記照射光を出力する光源と、前記照射光の照射に応じて前記金属膜から放射される光を検出する受光素子とを備えることができる。
(8)その他、検出装置の構築にあたって、前記基体はディスク形に形成され、前記配列は同心円パターンで規定されることができる。このとき、検出装置は、センサー基板と、前記同心円パターンの中心回りで前記センサー基板を回転駆動する駆動ユニットと、前記センサー基板に向かって前記照射光を出力する光源と、前記照射光の照射に応じて前記金属膜から放射される光を検出する受光素子とを備えることができる。
(9)本発明の他の態様は、磁性体材料で形成され基体の表面に広がる磁性体材料層に、予め決められた配列に応じて磁化パターンを書き込む工程と、前記磁性体材料層の表面に、磁性体材料で形成されるナノ粒子を供給し、前記磁化パターンに倣って前記ナノ粒子の配列を形成する工程と、前記磁化パターンの磁化で前記磁性体材料層の表面に保持される前記ナノ粒子に被さる金属膜を形成する工程とを備えるセンサー基板の製造方法に関する。
磁化パターンは磁性体材料層の表面から磁束の漏れ(流入や流出)を形成する。したがって、磁性体材料層の表面にナノ粒子が供給されると、ナノ粒子は磁束の漏れに倣って整列することができる。こうして予め決められた磁化パターンに応じてナノ粒子の配列が形成されることができる。ナノ粒子は磁束の漏れの働きで磁性体材料層の表面に保持されることができる。こうして整列したナノ粒子の表面に金属膜は付着することができる。こうした金属膜は照射光の働きで局在表面プラズモン共鳴を引き起こすことができる。
(10)前記磁化パターンの書き込みにあたって、前記磁性体材料層の表面に直交する回転軸回りで前記基体は回転することができ、前記磁性体材料層の表面に浮上ヘッドスライダーに搭載の電磁変換素子は向き合わせられることができる。こうした浮上ヘッドスライダーの採用によれば、磁性体材料層の表面には確実にナノオーダーの磁気潜像は形成されることができる。ナノオーダーでナノ粒子は配列されることができる。しかも、このような磁化パターンの書き込みにあたってハードディスク駆動装置(HDD)やHDD用のサーボトラックライターの技術が応用されることができる。センサー基板の製造にあたってHDD用の磁気記録ディスクが利用されることができる。こうした用途は今までのところ全く想定されていなかった。
(11)センサー基板の製造方法は、前記磁化パターンの書き込みにあたって、前記磁性体材料層の表面に、前記磁化パターンに倣って所定の間隔で磁性体を重ねる工程と、前記磁性体に磁束を作用させ、前記磁性体の漏れ磁界で前記磁性体材料層内に磁化を確立する工程とを備えることができる。こうした製造方法によれば、比較的に広い範囲で一度に磁気潜像は形成されることができる。その結果、磁気潜像の形成は効率化されることができる。
(12)前記ナノ粒子の供給にあたって磁気ブラシが用いられることができる。磁気ブラシが磁性体材料層の表面をなぞると、磁性体材料層の表面に重なりなくナノ粒子は供給されることができる。
(13)前記金属膜の形成にあたって斜め蒸着または斜めスパッタリングが用いられることができる。金属原子は磁性体材料層の表面に対して小さな傾斜角で進入することができる。ナノ粒子同士の間では金属原子の進入は回避されることができる。その結果、ナノ粒子上に金属膜が形成されることができる。ナノ粒子同士の間で金属膜の形成は排除されることができる。
第1実施形態に係るセンサー基板の外観を概略的に示す斜視図である。 同心円パターンの1環状線の構造を概略的に示すセンサー基板の拡大部分平面図である。 図2の3−3線に沿った断面図である。 磁化パターンの構成を概略的に示すセンサー基板の拡大部分平面図である。 磁気記録ディスクの構造を概略的に示す拡大部分断面図である。 図5に対応し、磁化および漏れ磁界の様子を示す磁気記録ディスクの拡大部分断面図である。 一具体例に係る磁気記録装置の構成を概略的に示す構成図である。 電磁変換素子に供給される電流の波形を概略的に示す概念図である。 図5に対応し、漏れ磁界で固定されるナノ粒子の様子を示す磁気記録ディスクの拡大部分断面図である。 現像器の構造を概略的に示す構成図である。 図5に対応し、斜め蒸着法を概略的に示す磁気記録ディスクの拡大部分断面図である。 一具体例に係る磁気転写装置の構成を概略的に示す拡大部分断面図である。 磁化の反転の様子を示す磁気転写装置の拡大部分断面図である。 第2実施形態に係るセンサー基板の外観を概略的に示す斜視図である。 一具体例に係る磁気転写装置の構成を概略的に示す拡大部分断面図である。 一実施形態に係る標的分子検出装置の構成を概略的に示す構成図である。 制御ユニットの講師を概略的に示すブロック図である。 センサーユニットの構成を概略的に示す標的分子検出装置の拡大部分断面図である。 他の実施形態に係る標的分子検出装置の構成を概略的に示す構成図である。
以下、添付図面を参照しつつ本発明の一実施形態を説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。
(1)第1実施形態に係るセンサー基板の構造
図1は第1実施形態に係るセンサー基板11を概略的に示す。センサー基板11は円形の輪郭すなわちディスク形に形成される。センサー基板11の表面には複数の金属ナノ構造体が配置される。金属ナノ構造体はセンサー基板11の表面で配列12を形成する。配列12は同心円パターンで規定される。同心円パターンは同心の環状線13を有する。環状線13は例えば均一なピッチで配置される。すなわち、環状線13同士は等間隔で分離される。センサー基板11の中心には取り付け用の円形開口14が形成される。こうした同心円パターンに代えて螺旋円パターンが配列に用いられてもよい。
図2に示されるように、1本の環状線13は金属ナノ構造体15の集合体で構成される。集合体は環状線13の線方向に並べられる複数列の金属ナノ構造体列16を含む。後述されるように、1本の環状線13は1本の磁気記録の記録トラックに対応する。したがって、金属ナノ構造体列16の長さすなわち環状線13の線幅は書き込み磁界の幅に相当する。
図3に示されるように、センサー基板11は基体17を備える。基体17はディスク形に形成される。基体17には例えばガラス基板が用いられる。基体17は、金属ナノ構造体15に照射されて局在表面プラズモン共鳴(LSPR)を引き起こす照射光に対して透過性を有することが望まれる。
基体17の表面には磁性体材料層18が広がる。磁性体材料層18は基体17の表面に満遍なく一様に広がればよい。磁性体材料層18は磁性体材料で形成される。磁性体材料には例えば白金コバルト(PtCo)やコバルト鉄(CoFe)といった高い保磁力を有する磁性物質が用いられることができる。磁性体材料層18は磁化されていてもよく磁化されていなくてもよい。磁化は例えばセンサー基板17の面内方向に確立されることができる。磁性体材料層18と基体17との間には例えばクロム(Cr)などの下地層19が挟まれてもよい。クロムは例えば磁性体材料層18内で磁性粒の界面に偏析することができる。磁性体材料層18の表面は保護層21で覆われてもよい。保護層21には例えば無電解のニッケルめっきやダイヤモンドライクカーボン膜が用いられることができる。
磁性体材料層18の表面には金属ナノ構造体15が固定される。金属ナノ構造体15はナノ粒子22および金属膜23を備える。ナノ粒子22は保護層21の表面に固着される。ナノ粒子22は磁性体材料で形成されることができる。ここでは、ナノ粒子22には鉄白金(FePt)微粒子や白金コバルト(PtCo)微粒子が用いられることができる。これらの微粒子は金属イオンの還元に基づきポリオール(多価アルコール)中で析出することができる。微粒子はfct(面心直方)構造の結晶構造を有することができる。その他、ナノ粒子22には、湿式合成反応から生成される粒状マグネタイト(Fe)や、粒状マグネタイトの熱処理で得られる粒状のヘマタイト(α−Fe)が用いられることができる。ナノ粒子22の粒径は例えば10nm〜200nm程度に設定されることができる。ナノ粒子22の粒径は、後述されるように、局在表面プラズモン共鳴(LSPR)との関連で決定されることができる。
個々のナノ粒子22の表面には金属膜23が被さる。金属膜23は、後述されるように、照射光に共鳴振動する自由電子を有する材料から形成されることができる。こうした材料には、例えば、金(Au)、銀(Ag)、アルミニウム(Al)、銅(Cu)、白金(Pt)、パラジウム(Pd)、ニッケル(Ni)、ロジウム(Rh)、ルテニウム(Ru)、タングステン(W)およびモリブデン(Mo)等が単体または合金または複合体で用いられることができる。
図3から明らかなように、金属膜23はナノ粒子22同士の間に空隙を区画する。金属膜23はナノ粒子22上で途切れる。すなわち、金属膜23はナノ粒子22上に留まる。ナノ粒子22同士の間では保護層21の表面が露出する。ナノ粒子22同士の間に金属膜23は形成されない。ナノ粒子22同士の間は金属膜23の形成から除外される。少なくともナノ粒子22の下半分同士の間は空間が占める。
図4に示されるように、磁性体材料層18には磁化パターン26が書き込まれる。磁化パターン26はナノ粒子22に作用する磁界を形成する。この磁界の働きでナノ粒子22は整列される。ここでは、磁化パターン26には環状線13に沿って連続的に均等な区域27が区画される。個々の区域27ごとに同一の磁化方向28の磁化が確立される。磁化方向28は環状線13に沿って交互に反転する。したがって、隣接する区域27同士で磁化が突き合うと、区域27同士の境界線から磁束は垂直方向に流出する。隣接する区域27同士で磁化が反対向きであれば、区域27同士の境界線に向かって垂直方向に磁束は流入する。こうした区域27同士の境界線上で金属ナノ構造体15が整列し金属ナノ構造体列16を形成する。
センサー基板11に照射光が照射されると、照射光の働きで金属ナノ構造体15の金属膜23では局在表面プラズモン共鳴が引き起こされる。隣接する金属ナノ構造体15同士の間で増強電場が形成される。金属膜23の表面で近接場光が生成される。ここで、金属ナノ構造体15は特定の配列を形成する。入射光の偏光に合わせて配列12が設定されると、増強電場は強化されることができる。
センサー基板11の円形開口14には例えば駆動軸が受け入れられることができる。センサー基板11は、センサー基板11の表面に直交しつつ環状線13の中心を通過する回転軸回りで回転することができる。環状線13の中心回りにセンサー基板11が回転すると、1本の環状線13上の金属ナノ構造体15は特定の半径位置を通過することができる。したがって、照射光が特定の半径位置で固定されても、短時間に広い範囲にわたって金属ナノ構造体15は照射光に曝されることができる。
前述のように、磁性体材料層18には予め決められた配列12に応じて磁化パターンが書き込まれることができる。ナノ粒子22は、磁化パターンに従って磁性体材料層18の表面で確実に配列を形成することができる。
金属膜23はナノ粒子22上で途切れる。ナノ粒子22同士の間は金属膜23の形成から除外される。こうした金属膜23の空隙で増強電場が形成されると、ナノ粒子22同士の間に金属膜23が形成される場合に比べて、増強電場は強められることができる。
(2)第1実施形態に係るセンサー基板の製造方法
次にセンサー基板11の製造方法を説明する。まず、図5に示されるように、磁気記録ディスク31が用意される。磁気記録ディスク31は基体17を備える。基体17の表面には、下地層19、磁性体材料層18および保護層21が順番に積層される。
図6に示されるように、磁気記録ディスク31の磁性体材料層18には磁化パターン26が書き込まれる。磁化パターン26の書き込みにあたって、例えば図7に示されるように、磁気記録ディスク31は磁気記録装置32に装着される。磁気記録装置32には例えばハードディスク駆動装置(HDD)用のサーボトラックライターが用いられることができる。
磁気記録装置32はスピンドルモーター33および浮上ヘッドスライダー34を備える。スピンドルモーター33の駆動軸に磁気記録ディスク31は固定される。スピンドルモーター34は回転軸35回りで磁気記録ディスク31を回転駆動する。磁気記録ディスク31の表面は回転軸35に直交する。浮上ヘッドスライダー34はヘッドサスペンション36の先端に固定される。浮上ヘッドスライダー34は浮上面で磁気記録ディスク31の表面に向き合わせられる。ヘッドサスペンション36は所定の押し付け力で磁気記録ディスク31に向かって浮上ヘッドスライダー34を押し付ける。磁気記録ディスク31が回転すると、磁気記録ディスク31の表面と浮上ヘッドスライダー34の浮上面との間に空気軸受けが形成される。こうして磁気記録ディスク31の回転中に浮上ヘッドスライダー34の浮上面は微小な間隔で磁気記録ディスク31の表面に向き合わせられる。
浮上ヘッドスライダー34には電磁変換素子が搭載される。電磁変換素子は浮上面から書き込み磁界を漏らすことができる。書き込み磁界は磁気記録ディスク31の磁性体材料層18に作用する。書き込み磁界の磁力が磁性体材料層18の保磁力を超えると、磁性体材料層18には書き込み磁界で磁化が確立される。電磁変換素子は、供給される電流の向きに応じて磁界の向きを反転させることができる。磁気記録ディスク31が1回転すれば、1本の環状線13が確立されることができる。
浮上ヘッドスライダー34は1半径線に沿って移動することができる。移動にあたってヘッドサスペンション36にはリニア変位機構37が連結される。リニア変位機構37は1直線上でヘッドサスペンション36を駆動する。ヘッドサスペンション36は例えば均一なピッチで間欠的に移動することができる。こうして磁性体材料層18には予め決められた配列12に応じて磁化パターン26が書き込まれることができる。なお、図8に示されるように、電磁変換素子に供給される電流の波形に応じて環状線13のピッチは適宜に調整されることができる。
磁気記録装置32はHDDであってもよい。この場合には、磁化パターンの書き込みに先立って予め磁気記録ディスク31の表面にトラッキングサーボセクターが形成されればよい。トラッキングサーボセクターの働きで浮上ヘッドスライダーは磁気記録ディスクの半径方向に位置決めされることができる。磁化の書き込みにあたって浮上ヘッドスライダーは高い精度で同心円を辿ることができる。
磁化パターン26が確立されると、磁性体材料層18の表面にはナノ粒子22が供給される。ナノ粒子22は、例えば図9に示されるように、磁化パターン26に倣って配列12を形成する。区域27同士の境界で磁化に応じて磁界の漏れ(流出および流入)が形成されることから、ナノ粒子22は区域27同士の境界線上で整列する。こうしたナノ粒子22の供給にあたって、例えば図10に示されるように、現像器38が利用されることができる。現像器38は容器39を備える。容器39内にはマグネットローラー41が収容される。マグネットローラー41はローラー軸回りで回転する。マグネットローラー41の外表面すなわちローラー面41aは円柱面を構成する。ローラー面41aは磁化される。容器39内のナノ粒子22は磁力でローラー面41aに付着する。ローラー面41aは部分的に容器39の開口39aから露出する。開口39aから露出するローラー面41aで磁気ブラシ42は形成される。磁気ブラシ42が磁気記録ディスク31の表面をなぞると、磁気記録ディスク31の表面に重なりなくナノ粒子22が供給されることができる。ナノ粒子22は磁界の漏れ(流出および流入)に引き寄せられる。ナノ粒子22は磁界の漏れの働きで磁性体材料層18の表面に保持されることができる。
こうしてナノ粒子22が整列すると、磁気記録ディスク31の表面で金属膜23が形成される。金属膜23の形成にあたって、図11に示されるように、例えば斜め蒸着法が用いられることができる。こうした斜め蒸着法によれば、金属原子43は保護層21の表面に対して小さな傾斜角で進入する。ナノ粒子22同士の間では金属原子43の進入は回避されることができる。その結果、ナノ粒子22上に金属膜23が形成される。ナノ粒子22同士の間で金属膜23の形成は排除されることができる。こうした金属膜23の形成にあたって斜め蒸着法に代えて斜めスパッタリング法が用いられてもよい。
浮上ヘッドスライダー34の採用によれば、磁性体材料層18の表面には確実にナノオーダーの磁気潜像は形成されることができる。ナノオーダーでナノ粒子22は配列されることができる。予め決められた配列12に従って金属膜23の配列は確立されることができる。しかも、このような磁化パターン26の書き込みにあたってHDD用のサーボトラックライターの技術が応用されることができる。センサー基板11の製造にあたってHDD用の磁気記録ディスク31が利用されることができる。こうした用途は今までのところ全く想定されていなかった。
その他、磁化パターン26の確立にあたって、図12に示されるように、例えば磁気転写装置44が用いられることができる。磁気転写装置44は着磁ユニット45を備える。着磁ユニット45は磁気記録ディスク31の磁性体材料層18を着磁することができる。着磁ユニット45はマスターディスク46および磁石47を備える。マスターディスク46は磁気記録ディスク31に重ね合わせられる。マスターディスク46は基体48を備える。基体48は例えば非磁性体のディスクで形成されることができる。基体48の表面には磁性体49が埋め込まれる。磁性体49はディスクの円周方向に一定の間隔で配列される。磁石47は基体48の表面に平行に磁界51aを形成する。磁石47には例えば電磁石が用いられることができる。磁石47からマスターディスク46に磁界51aが作用すると、磁性体49同士の間でマスターディスク46の表面から磁界52aが漏れ出る。図12に示されるように、磁気記録ディスク31の磁性体材料層18では円周方向に沿って一様に第1方向に連続する磁化53aが書き込まれる。こうした連続する磁化53aの書き込みにあたって例えばマスターディスク46は磁気記録ディスク31に対して相対的に回転すればよい。その後、図13に示されるように、磁石47の磁束の向きは反転される。磁石47からマスターディスク46に磁界51bは作用する。磁性体49同士の間では第1方向と反対向きの第2方向に磁性体材料層18に磁界52bが作用する。磁性体49同士の間で磁化53bは反転する。こうして磁化パターン26は書き込まれることができる。
(3)第2実施形態に係るセンサー基板
図14は第2実施形態に係るセンサー基板11aを概略的に示す。センサー基板11aは、前述のセンサー基板11と同様に、基体17、下地層19、磁性体材料層18、保護層21および金属ナノ構造体15を備える。ナノ粒子22の整列にあたって磁性体材料層18には磁化パターン26aが書き込まれる。ここでは、磁性体材料層18には垂直方向に沿って特定の磁化方向54に磁化が確立される。円周方向に特定の間隔で磁力のピーク値が現れる。こうしたピーク値上で金属ナノ構造体15が整列し金属ナノ構造体列16を形成する。その他、第1実施形態と均等な構成や構造には同一の参照符号が付され、重複する説明は割愛される。
センサー基板11aの製造にあたって、図15に示されるように、例えば磁気転写装置55が用いられることができる。磁気転写装置55は着磁ユニット56を備える。着磁ユニット56は磁気記録ディスク31の磁性体材料層18を着磁することができる。着磁ユニット56はマスターディスク57および磁石58を備える。マスターディスク57は磁気記録ディスク31に重ね合わせられる。マスターディスク57では、マスターディスク46と同様に、基体48の表面に磁性体49が埋め込まれる。磁石58は基体48の表面に垂直に磁界59を形成する。磁性体49の稜線49aでマスターディスク57の表面から磁界は漏れ出る。ここでは、磁気記録ディスク31の磁性体材料層18は垂直方向に磁化容易軸を有する。その結果、磁性体49の稜線49aに沿ってピーク値の磁化61は形成される。磁化パターン26aは書き込まれる。
(4)一実施形態に係る検出装置
図16は一実施形態に係る標的分子検出装置(検出装置)62を概略的に示す。標的分子検出装置62はセンサーユニット63を備える。センサーユニット63には導入通路64と排出通路65とが個別に接続される。導入通路64からセンサーユニット63に気体は導入される。センサーユニット63から排出通路65に気体は排出される。導入通路64の通路入口66にはフィルター67が設置される。フィルター67は例えば気体中の塵埃や水蒸気を除去することができる。排出通路65の通路出口68には吸引ユニット69が設置される。吸引ユニット69は送風ファンで構成される。送風ファンの作動に応じて気体は導入通路64、センサーユニット63および排出通路65を順番に流通する。こうした気体の流通経路内でセンサーユニット63の前後にはシャッター(図示されず)が設置される。シャッターの開閉に応じてセンサーユニット63内に気体は閉じ込められることができる。
標的分子検出装置62はラマン散乱光検出ユニット71を備える。ラマン散乱光検出ユニット71は、センサーユニット63に照射光を照射しラマン散乱光を検出する。ラマン散乱光検出ユニット71には光源72が組み込まれる。光源72にはレーザー光源が用いられることができる。レーザー光源は特定波長(単一波長)で直線偏光のレーザー光を放射することができる。
ラマン散乱光検出ユニット71は受光素子73を備える。受光素子73は例えば光の強度を検出することができる。受光素子73は光の強度に応じて検出電流を出力することができる。したがって、受光素子73から出力される電流の大きさに応じて光の強度は特定されることができる。
光源72とセンサーユニット63との間、および、センサーユニット63と受光素子73との間には光学系74が構築される。光学系74は光源72とセンサーユニット63との間に光路を形成すると同時にセンサーユニット63と受光素子73との間に光路を形成する。光学系74の働きで光源72の光はセンサーユニット63に導かれる。センサーユニット63の反射光は光学系74の働きで受光素子73に導かれる。
光学系74はコリメーターレンズ75、ダイクロイックミラー76、対物レンズ77、集光レンズ78、凹レンズ79、光学フィルター81および分光器82を備える。ダイクロイックミラー76は例えばセンサーユニット63と受光素子73との間に配置される。対物レンズ77はダイクロイックミラー76とセンサーユニット63との間に配置される。対物レンズ77はダイクロイックミラー76から供給される平行光を集光してセンサーユニット63に導く。センサーユニット63の反射光は対物レンズ77で平行光に変換されダイクロイックミラー76を透過する。ダイクロイックミラー76と受光素子73との間には集光レンズ78、凹レンズ79、光学フィルター81および分光器82が配置される。対物レンズ77、集光レンズ78および凹レンズ79の光軸は同軸に合わせ込まれる。集光レンズ78で集光された光は凹レンズ79で再び平行光に変換される。光学フィルター81はレイリー散乱光を除去する。ラマン散乱光は光学フィルター81を通過する。分光器82は例えば特定波長の光を選択的に透過させる。こうして受光素子73では特定波長ごとに光の強度が検出される。分光器82には例えばエタロンが用いられることができる。
光源72の光軸は対物レンズ77および集光レンズ78の光軸に直交する。ダイクロイックミラー76の表面はこれら光軸に45度の角度で交差する。ダイクロイックミラー76と光源72との間にはコリメーターレンズ75が配置される。こうしてコリメーターレンズ75は光源72に向き合わせられる。コリメーターレンズ75の光軸は光源72の光軸に同軸に合わせ込まれる。
標的分子検出装置62は制御ユニット83を備える。制御ユニット83に、光源72、分光器82、受光素子73、吸引ユニット69、センサー検出器84、その他の機器が接続される。制御ユニット83は、光源72、分光器82および吸引ユニット69の動作を制御するとともに、受光素子73およびセンサー検出器84の出力信号を処理する。センサー検出器84はセンサーユニット63の識別子を検出する。識別子でセンサーユニット63の種別が判別されることができる。センサーユニット63の種別に応じて照射光の波長は選択されることができる。制御ユニット83には信号コネクター85が接続される。制御ユニット83は信号コネクター85を通じて外部と信号をやりとりすることができる。
標的分子検出装置62は電源ユニット86を備える。電源ユニット86は制御ユニット83に接続される。電源ユニット86は制御ユニット83に動作電力を供給する。制御ユニット83は電源ユニット86から電力の供給を受けて動作することができる。電源ユニット86には例えば1次電池や2次電池が用いられることができる。2次電池は、例えば、充電用の電源コネクター87を有することができる。
図17に示されるように、制御ユニット83は信号処理制御部88を備える。信号処理制御部88は例えば中央演算処理装置(CPU)89と、RAM(ランダムアクセスメモリー)91やROM(リードオンリーメモリー)92といった記憶回路で構成されることができる。ROM92には例えば処理プログラムやスペクトルデータが格納されることができる。スペクトルデータでは標的分子のラマン散乱光のスペクトルが特定される。CPU89は、一時的にRAM91に処理プログラムやスペクトルデータを取り込みながら、処理プログラムを実行する。CPU89は、スペクトルデータに、分光器82および受光素子73の働きで特定される光のスペクトルを照らし合わせる。
信号処理制御部88には、光源駆動回路93、分光器駆動回路94、送風ファン駆動回路95、受光回路96、センサー検出回路97、その他の電子回路が構築される。光源駆動回路93は光源72に接続される。光源駆動回路93は信号処理制御部88の指令に基づき光源72を駆動する。分光器駆動回路94は分光器82の駆動機構に接続される。分光器駆動回路94は信号処理制御部88の指令に基づき駆動機構を制御する。例えば分光器82の水平移動に応じて透過光の帯域は変更されることができる。送風ファン駆動回路95は吸引ユニット69の送風ファンに接続される。送風ファン駆動回路95は信号処理制御部88の指令に応じて送風ファンの回転を駆動する。受光回路96は受光素子73に接続される。受光回路96は受光素子73の検出電流から光強度信号を生成する。光強度信号では例えば光の強度がデジタル値で特定される。センサー検出回路97はセンサー検出器84に接続される。センサー検出回路97はセンサーユニット63の識別番号を特定する。識別番号は信号処理制御部88に供給される。信号処理制御部88は識別番号に応じて光源72を制御する。
標的分子検出装置は操作パネル98といったユーザーインターフェイスやディスプレイユニット99を備えることができる。スペクトルの照合結果はディスプレイユニット99の画面上に映し出されることができる。ユーザーは、ディスプレイユニット99の画面に映し出される指示に従って操作パネル98から様々な情報を入力することができる。
図18に示されるように、センサーユニット63はセンサー基板100を備える。センサー基板100はセンサー基板11(11a)から切り出される。センサー基板100はセンサー基板11(11a)を母材として複数に分割され個片化される。センサー基板11(11a)から微小な領域が切り出されれば、センサー基板100上では金属ナノ構造体15の配列12は同心円の曲率の影響から逃れることができる。金属ナノ構造体15はマトリクスに限りなく近い形で配置されることができる。
センサー基板100は基板101に向き合わせられる。センサー基板100と基板101との間には気体室102が形成される。気体室102は一端で導入通路64に接続され他端で排出通路65に接続される。気体室102内に金属ナノ構造体15が配置される。光源72から放出される光はコリメーターレンズ75で平行光に変換される。直線偏光の光はダイクロイックミラー76で反射する。反射した光103は対物レンズ77で集光されてセンサーユニット63に照射される。このとき、光103はセンサー基板100の表面に直交する垂直方向に入射することができる。いわゆる垂直入射が確立されることができる。光103の偏光面はセンサー基板100の接線方向に合わせ込まれる。照射された光103の働きで金属ナノ構造体15では局在表面プラズモン共鳴が引き起こされる。金属ナノ構造体15同士の間で近接場光は強められる。いわゆるホットスポットが形成される。
このとき、ホットスポットで金属ナノ構造体15に標的分子が付着すると、標的分子からレイリー散乱光104およびラマン散乱光105が生成される。いわゆる表面増強ラマン散乱が実現される。その結果、標的分子の種類に応じたスペクトルで光は対物レンズ77に向かって放出される。
こうしてセンサーユニット63から放出される光は対物レンズ77で平行光に変換されダイクロイックミラー76、集光レンズ78、凹レンズ79および光学フィルター81を通過する。ラマン散乱光105は分光器82に入射する。分光器82はラマン散乱光105を分光する。こうして特定の波長ごとに受光素子73は光の強度を検出する。光のスペクトルはスペクトルデータに照らし合わせられる。光のスペクトルに応じて標的分子は検出されることができる。こうして標的分子検出装置62は表面増強ラマン散乱に基づき例えばアデノウィルスやライノウィルス、HIVウィルス、インフルエンザウィルスといった標的物質を検出することができる。
(5)他の実施形態に係る検出装置
図18は他の実施形態に係る標的分子検出装置(検出装置)111を概略的に示す。標的分子検出装置111は駆動ユニット112を備える。駆動ユニット112は例えばステップモーターで構成されることができる。ステップモーターにはセンサー基板11(11a)が装着される。ステップモーターは同心円パターンの中心回りでセンサー基板11(11a)を回転駆動する。センサー基板11(11a)の表面は回転軸に直交する。ステップモーターは一定の回転角で間欠的にセンサー基板11(11a)を回転させることができる。センサー基板11(11a)の表面には所定の中心角で均等にセクター領域113が区画されることができる。ステップモーターの回転角はセクター領域113の中心角に対応すればよい。
標的分子検出装置111は試料供給器115を備える。試料供給器115は例えばシリンジで構成されることができる。試料供給器115は例えば液状の試料を保持することができる。試料供給器115の供給口115aはセンサー基板11(11a)の表面に向き合わせられる。供給口115aからセンサー基板11(11a)の表面に向けて試料は供給されることができる。
標的分子検出装置111はラマン散乱光検出ユニット116を備える。ラマン散乱光検出ユニット116はセンサー基板11(11a)に向かって光源117から照射光を出力する。照射光は特定の照射域118に照射される。照射域118はステップモーターに対して特定の角位置で固定されればよい。光源117は光源72と同様に構成されることができる。図示例では光路の確立にあたって光源117および照射域118の間にミラー119が配置される。
ラマン散乱光検出ユニット116は受光素子121を備える。受光素子121は受光素子73と同様に構成されることができる。センサー基板11(11a)と受光素子121との間には光学系122が構築される。光学系122は、対物レンズ123、集光レンズ124、光ファイバー125、光学フィルター126および分光器127を備える。センサー基板11(11a)の反射光は対物レンズ123で平行光に変換され集光レンズ124で光ファイバー125に導かれる。光学フィルター126はレイリー散乱光を除去する。ラマン散乱光は光学フィルター126を通過する。分光器127は例えばグレーティングといった分光手段で光をスペクトルに分解する。こうして受光素子121では特定波長ごとに光の強度が検出される。
標的分子検出装置111は制御ユニット128を備える。制御ユニット128に、駆動ユニット112、試料供給器115、光源117、分光器127、受光素子121、その他の機器が接続される。制御ユニット128は、駆動ユニット112、試料供給器115、光源117および分光器127の動作を制御するとともに、受光素子121の出力信号を処理する。制御ユニット128は、制御ユニット83と同様に、信号処理制御部や光源駆動回路、受光回路を備えることができる。
標的分子検出装置111ではセンサー基板11(11a)の回転に応じて個々のセクター領域113ごとに個別に試料は供給されることができる。個々のセクター領域113ごとに個別にラマン散乱光は検出されることができる。センサー基板11(11a)の回転に応じて複数の試料は連続的に検査されることができる。
なお、上記のように本実施形態について詳細に説明したが、本発明の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。したがって、このような変形例はすべて本発明の範囲に含まれる。例えば、明細書または図面において、少なくとも一度、より広義または同義な異なる用語とともに記載された用語は、明細書または図面のいかなる箇所においても、その異なる用語に置き換えられることができる。また、センサー基板11、11a、100、磁気記録ディスク31、磁気記録装置32、磁気転写装置44、標的分子検出装置62、111等の構成および動作も本実施形態で説明したものに限定されず、種々の変形が可能である。
11 センサー基板、11a センサー基板、12 配列、17 基体、18 磁性体材料層、22 ナノ粒子、23 金属膜、26 磁化パターン、26a 磁化パターン、34 浮上ヘッドスライダー、49 磁性体、62 検出装置(標的分子検出装置)、72 光源、73 受光素子、100 センサー基板、111 検出装置(標的分子検出装置)、112 駆動ユニット、117 光源、121 受光素子。

Claims (13)

  1. 基体と、
    前記基体の表面に磁性体材料で形成された磁性体材料層と、
    前記磁性体材料層の表面に固定され、かつ配列された磁性体材料のナノ粒子と、
    前記ナノ粒子の表面に形成された、光に共鳴振動する自由電子を有する金属膜と
    を備えることを特徴とするセンサー基板。
  2. 請求項1に記載のセンサー基板において、前記基体は円形に形成され、前記配列は同心円パターンまたは螺旋円パターンであることを特徴とするセンサー基板。
  3. 請求項1または2に記載のセンサー基板において、前記磁性体材料層には、前記ナノ粒子に作用する磁界を形成する磁化パターンが書き込まれることを特徴とするセンサー基板。
  4. 請求項1〜3のいずれか1項に記載のセンサー基板において、前記金属膜は前記ナノ粒子同士の間に空隙を区画することを特徴とするセンサー基板。
  5. 請求項1〜4のいずれか1項に記載のセンサー基板において、前記センサー基板を母材として複数に分割され、個片化した形状であることを特徴とするセンサー基板。
  6. 請求項1〜5のいずれか1項に記載のセンサー基板において、前記金属膜が金、銀、またはこれらを含む合金であることを特徴とするセンサー基板。
  7. 請求項1〜6のいずれか1項に記載のセンサー基板と、
    前記センサー基板に向かって前記光を出力する光源と、
    前記光の照射に応じて前記金属膜から放射される光を検出する受光素子と
    を備えることを特徴とする検出装置。
  8. 請求項2に記載のセンサー基板と、
    前記同心円パターンの中心回りで前記センサー基板を回転駆動する駆動ユニットと、
    前記センサー基板に向かって前記照射光を出力する光源と、
    前記照射光の照射に応じて前記金属膜から放射される光を検出する受光素子と
    を備えることを特徴とする検出装置。
  9. 磁性体材料で形成され基体の表面に広がる磁性体材料層に、予め決められた配列に応じて磁化パターンを書き込む工程と、
    前記磁性体材料層の表面に、磁性体材料で形成されるナノ粒子を供給し、前記磁化パターンに倣って前記ナノ粒子の配列を形成する工程と、
    前記磁化パターンの磁化で前記磁性体材料層の表面に保持される前記ナノ粒子に被さる金属膜を形成する工程と
    を備えることを特徴とするセンサー基板の製造方法。
  10. 請求項9に記載のセンサー基板の製造方法において、前記磁化パターンの書き込みにあたって、前記磁性体材料層の表面に直交する回転軸回りで前記基体を回転駆動し、前記磁性体材料層の表面に浮上ヘッドスライダーに搭載の電磁変換素子を向き合わせることを特徴とするセンサー基板の製造方法。
  11. 請求項9に記載のセンサー基板の製造方法において、
    前記磁化パターンの書き込みにあたって、
    前記磁性体材料層の表面に、前記磁化パターンに倣って所定の間隔で磁性体を重ねる工程と、
    前記磁性体に磁束を作用させ、前記磁性体の漏れ磁界で前記磁性体材料層内に磁化を確立する工程と
    を備えることを特徴とするセンサー基板の製造方法。
  12. 請求項9〜11のいずれか1項に記載のセンサー基板の製造方法において、前記ナノ粒子の供給にあたって磁気ブラシが用いられることを特徴とするセンサー基板の製造方法。
  13. 請求項9〜12のいずれか1項に記載のセンサー基板の製造方法において、前記金属膜の形成にあたって斜め蒸着または斜めスパッタリングが用いられることを特徴とするセンサー基板の製造方法。
JP2012058319A 2012-03-15 2012-03-15 センサー基板およびその製造方法並びに検出装置 Expired - Fee Related JP5928025B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012058319A JP5928025B2 (ja) 2012-03-15 2012-03-15 センサー基板およびその製造方法並びに検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012058319A JP5928025B2 (ja) 2012-03-15 2012-03-15 センサー基板およびその製造方法並びに検出装置

Publications (2)

Publication Number Publication Date
JP2013190375A true JP2013190375A (ja) 2013-09-26
JP5928025B2 JP5928025B2 (ja) 2016-06-01

Family

ID=49390772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012058319A Expired - Fee Related JP5928025B2 (ja) 2012-03-15 2012-03-15 センサー基板およびその製造方法並びに検出装置

Country Status (1)

Country Link
JP (1) JP5928025B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015087299A (ja) * 2013-10-31 2015-05-07 富士電機株式会社 光増強素子および光増強素子の製造方法
JP2016099113A (ja) * 2014-11-18 2016-05-30 公立大学法人兵庫県立大学 表面増強ラマン測定方法および表面増強ラマン測定装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072980A (ja) * 2007-09-19 2009-04-09 Nippon Telegr & Teleph Corp <Ntt> 微細構造作製方法
JP2009109395A (ja) * 2007-10-31 2009-05-21 Fujifilm Corp 微細構造体の作製方法、微細構造体、ラマン分光用デバイス、ラマン分光装置、分析装置、検出装置、および質量分析装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072980A (ja) * 2007-09-19 2009-04-09 Nippon Telegr & Teleph Corp <Ntt> 微細構造作製方法
JP2009109395A (ja) * 2007-10-31 2009-05-21 Fujifilm Corp 微細構造体の作製方法、微細構造体、ラマン分光用デバイス、ラマン分光装置、分析装置、検出装置、および質量分析装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015087299A (ja) * 2013-10-31 2015-05-07 富士電機株式会社 光増強素子および光増強素子の製造方法
JP2016099113A (ja) * 2014-11-18 2016-05-30 公立大学法人兵庫県立大学 表面増強ラマン測定方法および表面増強ラマン測定装置

Also Published As

Publication number Publication date
JP5928025B2 (ja) 2016-06-01

Similar Documents

Publication Publication Date Title
JP6039951B2 (ja) 広エリア熱アシストのためのシングル書き込み方式および矩形光導波路を用いた磁気記録ディスクドライブ
US8097351B2 (en) Magnetic recording apparatus
JP2006048806A (ja) 磁気ヘッドとその製造方法
US20080141522A1 (en) Optical lapping guide for use in the manufacture of perpendicular magnetic write heads
JP5928025B2 (ja) センサー基板およびその製造方法並びに検出装置
US8050170B2 (en) Near field optical head and information recording and reproducing device
US20100054093A1 (en) Magnetic recording medium, magnetic recording/reproduction apparatus, and magnetic recording/reproduction method
US8335052B2 (en) Plasmon antenna for thermally assisted magnetic head
US20190096435A1 (en) Magnetic Recording Method
TW571303B (en) High-density optical recording medium, storage device thereof, and recording/reproducing method
US20060139805A1 (en) Magnetic disk and magnetic disk apparatus provided with the same
WO2011013219A1 (ja) パターンドメディア用原盤の製造方法及び磁気記録媒体の製造方法
US20070146932A1 (en) Circumferentially patterned disk for longitudinal and perpendicular recording and method of manufacturing same
JP4151747B2 (ja) 磁気記録装置及び磁気記録ヘッド駆動機構
JP2008090905A (ja) 磁気ヘッドの記録磁界強度分布の測定方法、その測定装置、および磁気ヘッドの製造方法
US7050248B1 (en) Method and apparatus for patterning magnetic media by contact printing
JP2008257753A (ja) 磁気転写方法及び磁気記録媒体
JP4738267B2 (ja) 情報記録装置
JP2006190446A (ja) 電磁場変換素子、電磁場発生ユニット、および記録装置
JP2010152942A (ja) 磁気ヘッド及びその製造方法並びに磁気記録装置
US20080024772A1 (en) Particle removal tool with integrated defect detection/analysis capability
US6985314B1 (en) Method and apparatus for fixed-gap, constant-field patterning of magnetic media by contact printing
JP2004039015A (ja) 再生装置及び記録再生装置
US20230368974A1 (en) Edge-milled magnetic wire and manufacture thereof
CN103930947B (zh) 信息记录介质用玻璃基板以及信息记录介质

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R150 Certificate of patent or registration of utility model

Ref document number: 5928025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees