JP2013190240A - Acceleration life test system for cooling fan - Google Patents

Acceleration life test system for cooling fan Download PDF

Info

Publication number
JP2013190240A
JP2013190240A JP2012055158A JP2012055158A JP2013190240A JP 2013190240 A JP2013190240 A JP 2013190240A JP 2012055158 A JP2012055158 A JP 2012055158A JP 2012055158 A JP2012055158 A JP 2012055158A JP 2013190240 A JP2013190240 A JP 2013190240A
Authority
JP
Japan
Prior art keywords
life
bearing
vibration
calculator
cooling fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012055158A
Other languages
Japanese (ja)
Inventor
Motoi Miyawaki
基 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012055158A priority Critical patent/JP2013190240A/en
Publication of JP2013190240A publication Critical patent/JP2013190240A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To estimate a life of a cooling fan in a short period.SOLUTION: An acceleration life test system comprises: vibration measurement means 100 for measuring bearing vibration of a cooling fan comprising a fan to be estimated; a vibration calculation device 200 for calculating degree of bearing damage of a bearing from the bearing vibration; and a life time calculation device 300 for calculating a life time of the fan to be estimated on the basis of the degree of the bearing damage during a plurality of acceleration life testing times different from each other calculated by the vibration calculation device 200.

Description

本発明は、インバータやパソコンのハードディスク等に使用される冷却ファンの加速寿命試験システムに関する。   The present invention relates to an accelerated life test system for a cooling fan used for an inverter or a hard disk of a personal computer.

電子機器に搭載される電子部品は小型化、高密度実装化などにより単位体積当たりの発熱が年々増大する傾向にあり、安定化・長寿命化が重要になっている。さらに、新機種開発のスピードアップにより機器の冷却ファンの選定では、信頼性を確保するための寿命試験、特に冷却ファンの故障で最大の要因であるベアリングの寿命試験を短期間で効率的に実施することが望まれている。   Electronic components mounted on electronic devices tend to increase in heat generation per unit volume year by year due to miniaturization and high-density mounting, and stabilization and longer life are important. In addition, when selecting a cooling fan for equipment by speeding up the development of new models, a life test to ensure reliability, especially a bearing life test, which is the biggest factor in cooling fan failure, is carried out efficiently in a short period of time. It is hoped to do.

従来、この種の寿命試験は、所要の試料(冷却ファン)を恒温槽内にセットして、外部から電源を供給し、使用温度以上の高温下や定格回転数以上の回転数で試料を回転させて、回転数が所要の比率まで低下したときの時間で寿命を推定する加速寿命試験が行われている。
但し、冷却ファンの場合、温度による加速寿命試験は、一般的に知られているアレニウスの10℃半減則ではなく、15℃半減時間を採用しており、回転数に関しては下記(1)式を基に寿命推定を行っている(非特許文献1参照)。
LogL50=−2.02×10−6V・・・(1)
ここで、L50は寿命(h)、VはdmN値[dm:ベアリングのピッチ円直径、N:回転速度(min−1)]
Conventionally, in this type of life test, a required sample (cooling fan) is set in a thermostatic chamber, power is supplied from the outside, and the sample is rotated at a temperature higher than the operating temperature or at a rotational speed higher than the rated speed. Thus, an accelerated life test is performed in which the life is estimated by the time when the rotational speed is reduced to a required ratio.
However, in the case of a cooling fan, the accelerated life test by temperature adopts a 15 ° C. half time instead of the commonly known Arrhenius 10 ° C. half law, and the rotational speed is expressed by the following equation (1). Life estimation is performed based on this (see Non-Patent Document 1).
LogL 50 = −2.02 × 10 −6 V (1)
Here, L 50 is the life (h), V is the dmN value [dm: pitch circle diameter of the bearing, N: rotational speed (min −1 )].

また、転がり軸受の余寿命を求める方法として、特許文献1では、軸受内の潤滑油中に含まれている磨耗粒子を定量フェログラフィ法で測定して異常磨耗指数を求め、この異常磨耗指数による軸受劣化曲線と、異常磨耗指数と軸受の振動加速度との相関曲線を求めている。これにより、同文献では、振動加速度を基準とした軸受劣化曲線を求め、2つの測定時点で測定した振動加速度から寿命を推定するようにしたものである。   Further, as a method for obtaining the remaining life of a rolling bearing, in Patent Document 1, the wear particles contained in the lubricating oil in the bearing are measured by a quantitative ferrography method to obtain an abnormal wear index. The bearing deterioration curve and the correlation curve between the abnormal wear index and the vibration acceleration of the bearing are obtained. Thus, in this document, a bearing deterioration curve based on vibration acceleration is obtained, and the life is estimated from vibration acceleration measured at two measurement points.

特許第4584085号公報Japanese Patent No. 4584085

NTNテクニカルレビューNo69(2001)NTN Technical Review No.69 (2001)

しかし、上述したような寿命試験の対象となる冷却ファンは、高寿命の小型ファンが多く、冷却ファンの構成部品としてはミニチュアベアリングなども採用され、また、樹脂材の軸受ハウジングもある。このため、むやみに高温下での加速寿命試験ができない。つまり、従来の寿命試験方法では、例えば50℃で6万時間の寿命を確認するためには、90℃の加速寿命試験であっても1年以上の試験時間が必要であった。また、ミニチュアベアリングはベアリング径が小さいので、回転数を2倍にしても10%程度の加速時間としかならず、そのため、数ヶ月程度の短期間では寿命試験を終了させることができないといった問題があった。   However, many of the cooling fans to be subjected to the life test as described above have a long life and a small fan, miniature bearings and the like are adopted as components of the cooling fan, and there is also a resin housing. For this reason, an accelerated life test cannot be performed at high temperatures. That is, in the conventional life test method, for example, in order to confirm a life of 60,000 hours at 50 ° C., a test time of 1 year or longer is required even for an accelerated life test at 90 ° C. In addition, since the bearing diameter of the miniature bearing is small, even if the number of revolutions is doubled, the acceleration time is only about 10%. Therefore, there is a problem that the life test cannot be completed in a short period of about several months. .

さらに、軸受の異常磨耗指数と軸受振動加速度の関係から寿命を推定する方法は、異常磨耗指数による寿命曲線および振動加速度との相関を得なければならず、寿命を推定するマスターカーブが短期間で求まらないといった問題があった。
そこで、本発明は、このような問題点に着目してなされたものであって、短期間で冷却ファンの寿命を推定することのできる加速寿命試験システムを提供することを課題とする。
Furthermore, the method for estimating the life from the relationship between the abnormal wear index of the bearing and the bearing vibration acceleration must obtain a correlation with the life curve and vibration acceleration due to the abnormal wear index, and the master curve for estimating the life can be obtained in a short period of time. There was a problem that I could not find it.
Therefore, the present invention has been made paying attention to such problems, and an object thereof is to provide an accelerated life test system capable of estimating the life of a cooling fan in a short period of time.

上記課題を解決するために、本発明の一態様に係る冷却ファンの加速寿命試験システムは、複数の冷却ファンを所要温度に加熱して回転させて加速寿命試験を行なう加速寿命試験システムであって、被試験ファンを含む冷却ファンの軸受振動を計測する振動計測手段と、前記軸受振動から軸受の軸受損傷度を演算する振動演算装置と、前記振動演算装置で演算された複数の異なる加速寿命試験時間での軸受損傷度に基づいて被試験ファンの寿命時間を演算する寿命時間演算装置とを備えていることを特徴とする。   In order to solve the above problems, an accelerated life test system for a cooling fan according to an aspect of the present invention is an accelerated life test system that performs an accelerated life test by heating a plurality of cooling fans to a required temperature and rotating them. Vibration measuring means for measuring bearing vibration of a cooling fan including a fan under test, vibration calculating device for calculating a bearing damage degree of the bearing from the bearing vibration, and a plurality of different accelerated life tests calculated by the vibration calculating device And a life time calculating device for calculating the life time of the fan under test based on the degree of bearing damage in time.

ここで、本発明の一態様に係る冷却ファンの加速寿命試験システムにおいて、前記振動演算装置が、前記振動計測手段で計測した軸受振動波形から所要の周波数帯域を通過させるバンドパスフィルタと、該バンドパスフィルタ通過後の波形を包絡線処理する包絡線化処理器と、該包絡線化処理器で処理された包絡線波形から最大値や平均値などで表される軸受損傷度を演算する損傷度演算器とを有することは好ましい。   Here, in the accelerated life test system for a cooling fan according to an aspect of the present invention, the vibration arithmetic device passes a required frequency band from a bearing vibration waveform measured by the vibration measuring means, and the band An envelope processor that processes the waveform after passing the pass filter, and a damage degree that calculates a bearing damage level represented by a maximum value or an average value from the envelope waveform processed by the envelope processor It is preferable to have an arithmetic unit.

また、本発明の一態様に係る冷却ファンの加速寿命試験システムにおいて、前記寿命時間演算装置が、前記振動演算装置で演算された軸受損傷度を記憶する記憶器と、該記憶器に記億された寿命試験時間と軸受損傷度との関係を数式化する近似式演算器と、該近似式演算器で演算された近似式から軸受損傷度の寿命判定値を算出する寿命判定値算出器と、該寿命判定値算出器で算出した判定値と前記近似式演算器で演算された近似式とから寿命時間を算出する寿命時間算出器と、該寿命時間算出器で算出された寿命時間を表示する出力表示器とを有することは好ましい。   Further, in the accelerated life test system for a cooling fan according to an aspect of the present invention, the life time calculation device stores a bearing damage degree calculated by the vibration calculation device and a storage device. An approximate expression calculator that formulates the relationship between the life test time and the bearing damage degree, a life determination value calculator that calculates a life determination value of the bearing damage degree from the approximate expression calculated by the approximate expression calculator, A life time calculator that calculates a life time from the determination value calculated by the life determination value calculator and the approximate expression calculated by the approximate expression calculator, and the life time calculated by the life time calculator are displayed. It is preferable to have an output indicator.

さらに、前記近似式演算器が、前記記憶器に記憶された複数の異なる寿命試験時間と軸受損傷度の関係を数式化することは好ましい。
また、前記寿命判定値算出器が、前記近似式演算器で演算された予め寿命時間が分かっている冷却ファンの近似式から軸受損傷度の寿命判定値を算出することは好ましい。
Furthermore, it is preferable that the approximate expression calculator formulates a relationship between a plurality of different life test times and bearing damage levels stored in the storage unit.
Further, it is preferable that the life determination value calculator calculates a life determination value of a bearing damage degree from an approximate expression of a cooling fan that is calculated in advance by the approximate expression calculator and whose life time is known in advance.

本発明によれば、冷却ファンの軸受振動を計測し、その軸受振動から軸受損傷度を演算し、演算された複数の異なる加速寿命試験時間での軸受損傷度から寿命時間を演算することにより、短期間で冷却ファンの寿命を推定することができる。   According to the present invention, the bearing vibration of the cooling fan is measured, the bearing damage degree is calculated from the bearing vibration, and the life time is calculated from the bearing damage degrees at a plurality of different accelerated life test times calculated, The lifetime of the cooling fan can be estimated in a short period.

本発明の一態様に係る加速寿命試験システムの一実施形態のシステム構成を説明するブロック図である。It is a block diagram explaining the system configuration | structure of one Embodiment of the accelerated life test system which concerns on 1 aspect of this invention. 本発明の一態様に係る加速寿命試験システムの一実施形態での試験手順を説明するフローチャートである。It is a flowchart explaining the test procedure in one Embodiment of the accelerated life test system which concerns on 1 aspect of this invention. 本発明の一態様に係る加速寿命試験システムの一実施形態での寿命時間判定方法の説明図である。It is explanatory drawing of the lifetime determination method in one Embodiment of the accelerated lifetime test system which concerns on 1 aspect of this invention. 加速寿命試験時に測定した軸受振動波形の例である。It is an example of the bearing vibration waveform measured at the time of an accelerated life test.

以下、本発明の一態様に係る加速寿命試験システムの一実施形態について、図面を適宜参照しつつ説明する。
図1に示すように、この加速寿命試験システムは、試験する冷却ファンとして、現在使用されている冷却ファン(以下、「現行ファン」ともいう)と、寿命試験の対象となる冷却ファン(以下、「被試験ファン」ともいう)の軸受振動をそれぞれ計測する加速度センサ1a,1bと、各出力信号を増幅するアンプ2a,2bとを有する振動計測手段100と、振動計測手段100で計測された軸受振動波形から軸受の軸受損傷度を求める振動演算装置200と、適宜の加速寿命試験過程における試験時間と軸受損傷度とから冷却ファンの寿命判定値QL(図3参照)を求め、被試験ファンの寿命時間Lt(図3参照)を算出する寿命時間演算装置300とを備えている。
Hereinafter, an accelerated life test system according to an embodiment of the present invention will be described with reference to the drawings as appropriate.
As shown in FIG. 1, this accelerated life test system includes a cooling fan currently used as a cooling fan to be tested (hereinafter also referred to as “current fan”) and a cooling fan to be subjected to a life test (hereinafter referred to as “fan”). Vibration measuring means 100 having acceleration sensors 1a and 1b that respectively measure bearing vibrations of “fans under test” and amplifiers 2a and 2b that amplify output signals, and bearings measured by the vibration measuring means 100 The vibration calculation device 200 for determining the bearing damage degree of the bearing from the vibration waveform, and the life judgment value QL (see FIG. 3) of the cooling fan from the test time and the bearing damage degree in an appropriate accelerated life test process are obtained. A lifetime calculating unit 300 for calculating the lifetime Lt (see FIG. 3).

上記振動演算装置200は、バンドパスフィルタ3a,3b、包絡線化処理器4a,4b、および損傷度演算器5を有する。包絡線化処理器4a,4bは、振動計測手段100で計測された軸受振動波形から、軸受に起因する高周波振動成分を抽出するものであり、例えば1kHz〜10kHzのバンドパスフィルタ3a,3bでフィルタ処理後の波形を包絡線化する。損傷度演算器5は、包絡線波形を一旦記億し、その記憶した包絡線波形から軸受の軸受損傷度を求める。なお、軸受損傷度は、最大値や軸受診断に使用される下記(2)式から求めたQ値などである。
Q=Vrms×Vp[|(Vp/Vrms)−5|+b]・・・(2)
但し、Vrmsは、振動包絡線波形の実効値,Vpは最大値,bは定数である。
The vibration calculation device 200 includes bandpass filters 3 a and 3 b, envelope processing units 4 a and 4 b, and a damage level calculator 5. Envelope processor 4a, 4b extracts the high frequency vibration component resulting from a bearing from the bearing vibration waveform measured by the vibration measurement means 100, for example, it filters by 1 kHz-10 kHz band pass filters 3a, 3b. Envelope the processed waveform. The damage degree calculator 5 temporarily stores the envelope waveform, and obtains the bearing damage degree of the bearing from the stored envelope waveform. The bearing damage degree is a maximum value or a Q value obtained from the following equation (2) used for bearing diagnosis.
Q = Vrms × Vp [| (Vp / Vrms) −5 | + b] (2)
However, Vrms is the effective value of the vibration envelope waveform, Vp is the maximum value, and b is a constant.

上記寿命時間演算装置300は、記憶器6、近似式演算器7、寿命判定値算出器8、寿命時間算出器9および出力表示器10を備えている。
記憶器6は、振動演算装置200で演算された軸受損傷度をその時の試験時間とともに記億する。近似式演算器7は、記憶器6に記億された適宜の試験時間における軸受損傷度と試験時間とからその関係の近似式を求める。寿命判定値算出器8は、近似式演算器7で求めた近似式から寿命時間での軸受損傷度を求める。寿命時間算出器9は、寿命判定値算出器8で求めた軸受損傷度の寿命判定値と前記近似式演算器7で求めた近似式とから寿命時間を算出する。出力表示器10は、寿命時間算出器9で算出された寿命時間を表示する。なお、近似式演算器7は、現在すでに使用されている現行ファンのように寿命時間が予め分かっている冷却ファンと被試験ファンのそれぞれの軸受振動波形から軸受損傷度を近似する演算器であり、寿命判定値算出器8は、予め寿命時間が分かっている現行ファンの寿命時間とその近似式から寿命判定値を算出するものである。
The life time calculation device 300 includes a storage device 6, an approximate expression calculator 7, a life determination value calculator 8, a life time calculator 9, and an output display 10.
The storage device 6 stores the bearing damage degree calculated by the vibration calculation device 200 together with the test time at that time. The approximate expression calculator 7 obtains an approximate expression of the relationship from the bearing damage degree and the test time at an appropriate test time stored in the storage device 6. The life judgment value calculator 8 obtains the bearing damage degree at the life time from the approximate expression obtained by the approximate expression calculator 7. The service life calculator 9 calculates the service life from the service life determination value of the bearing damage obtained by the service life determination value calculator 8 and the approximate expression determined by the approximate expression calculator 7. The output display 10 displays the lifetime calculated by the lifetime calculator 9. The approximate expression calculator 7 is a calculator that approximates the degree of bearing damage from the respective bearing vibration waveforms of the cooling fan and the fan under test whose lifetime is known in advance, such as current fans that are already in use. The lifetime determination value calculator 8 calculates the lifetime determination value from the lifetime of the current fan whose lifetime is known in advance and its approximate expression.

次に、軸受損傷度、つまりQ値を使用して50℃での寿命時間を求める場合を例に、上記実施形態の加速寿命試験システムでの加速試験の手順を、図2のフローチャートと図3に示す寿命時間判定方法の説明図を適宜参照して説明する。
この加速寿命試験システムで加速試験を行なうときは、まず、予め寿命時間が判っている現行ファンと被試験ファン複数個に対して、振動計測手段100で軸受振動をそれぞれ測定し、振動演算装置200で加速試験前の初期の軸受損傷度Qを求め、寿命時間演算装置300の記憶器6に記憶する(ステップS1)。
Next, the procedure of the accelerated test in the accelerated life test system of the above embodiment will be described with reference to the flowchart of FIG. 2 and FIG. The life time determination method shown in FIG.
When performing an accelerated test with this accelerated life test system, first, bearing vibration is measured by the vibration measuring means 100 for a current fan and a plurality of fans under test whose lifetimes are known in advance, and the vibration calculation device 200 is measured. Thus, the initial bearing damage degree Q before the acceleration test is obtained and stored in the storage unit 6 of the life time calculation device 300 (step S1).

その後、測定した現行ファンと被試験ファン複数個を、それぞれ80℃、90℃、100℃の試験温度の下に定格回転数で回転させる(ステップS2、S3、S4)。連続試験時間が適宜の時間経過した時点(ここでは1000時間)で、それぞれの軸受振動を振動計測手段100で測定してその時点でのQ値を求め、寿命時間演算装置300の記憶器6に記憶する(ステップS5)。なお、振動演算装置200は、不図示のカウンタやタイマーを備えており、設定したインターバルで自動的にQ値を求めるようになっている。以後同様に、適宜の時間経過した後(本実施形態の例では2000時間、3000時間)のQ値を求め記憶器6に記憶する(ステップS5)。   Thereafter, the measured current fan and a plurality of fans under test are rotated at the rated rotation speeds at test temperatures of 80 ° C., 90 ° C., and 100 ° C., respectively (steps S2, S3, and S4). When a continuous test time has passed for an appropriate time (here, 1000 hours), each bearing vibration is measured by the vibration measuring means 100 to obtain a Q value at that time, and stored in the storage unit 6 of the lifetime calculation unit 300. Store (step S5). The vibration calculation device 200 includes a counter and a timer (not shown), and automatically obtains the Q value at set intervals. Thereafter, similarly, a Q value after an appropriate time has elapsed (2000 hours and 3000 hours in the example of the present embodiment) is obtained and stored in the storage device 6 (step S5).

求めたQ値に初期値からの傾向変化が現れた時点で、現行ファンと被試験ファンに対し各試験温度の加速時間を50℃に換算し、試験時間と軸受損傷度Qの各近似式(現行ファン(a):図3に示す実線のグラフ参照および被試験ファン(b):図3に示す破線のグラフ参照)を、寿命時間演算装置300の近似式演算器7でそれぞれ求める(ステップS6)。   When a tendency change from the initial value appears in the obtained Q value, the acceleration time of each test temperature is converted to 50 ° C. for each of the current fan and the fan under test, and each approximate expression of the test time and the bearing damage degree Q ( The current fan (a): refer to the solid line graph shown in FIG. 3 and the fan under test (b): refer to the broken line graph shown in FIG. 3 are obtained by the approximate expression calculator 7 of the life time calculation device 300 (step S6). ).

次いで、50℃に換算時の、図3に示す寿命判定値QLおよび被試験ファンの寿命時間Ltを求める。つまり、求めた現行ファンの近似式(a)と予め設定した現行ファンの寿命時間Loとから寿命判定値QLを寿命判定値算出器8で算出するとともに(ステップS7)、算出した寿命判定値QLと被試験ファンの近似式(b)から被試験ファンの寿命時間Ltを寿命時間算出器9で算出する(ステップS8)。算出した寿命時間Ltは出力表示器10で表示する(ステップS9)。   Next, the life judgment value QL and the life time Lt of the fan under test shown in FIG. That is, the life judgment value QL is calculated by the life judgment value calculator 8 from the obtained approximate expression (a) of the current fan and the preset life time Lo of the current fan (step S7), and the calculated life judgment value QL. The life time Lt of the fan under test is calculated by the life time calculator 9 from the approximate expression (b) of the fan under test (step S8). The calculated lifetime Lt is displayed on the output display 10 (step S9).

図4の(a)〜(d)に、100℃で加速試験を行ったときに、試験前から3000時間経過後の軸受振動波形の例をそれぞれ示す。これらの図に示すように、時間経過と共に明らかに振動レベルが大きくなる傾向があることが分かる。ここで50℃に対する概略の加速時間倍率は、80℃、90℃、100℃においては2倍、6倍、10倍となる。そのため、1000時間で求めたそれぞれの試験温度(80℃、90℃、100℃)でのQ値は、2000時間、6000時間および10000時間でのQ値となる。   FIGS. 4A to 4D show examples of bearing vibration waveforms after 3000 hours have elapsed from before the test when the acceleration test was performed at 100 ° C., respectively. As shown in these figures, it can be seen that the vibration level tends to increase with time. Here, the approximate acceleration time magnification for 50 ° C. is 2 times, 6 times, and 10 times at 80 ° C., 90 ° C., and 100 ° C. Therefore, the Q value at each test temperature (80 ° C., 90 ° C., 100 ° C.) obtained in 1000 hours is the Q value at 2000 hours, 6000 hours, and 10000 hours.

したがって、この加速寿命試験システムによれば、現行ファンと被試験ファンの軸受振動をそれぞれ計測し、その軸受振動から軸受損傷度(Q値)を演算し、演算された複数の異なる加速寿命試験時間(本実施形態の例では1000時間、2000時間、3000時間)での軸受損傷度(Q値)に基づいて寿命判定値QLを求めて被試験ファンの寿命時間Ltを演算することにより、短期間で冷却ファン(被試験ファン)の寿命を推定することができる。   Therefore, according to this accelerated life test system, the bearing vibration of the current fan and the fan under test is measured, the bearing damage degree (Q value) is calculated from the bearing vibration, and a plurality of different accelerated life test times calculated are calculated. By calculating the life determination value QL based on the bearing damage degree (Q value) at 1000 hours, 2000 hours, 3000 hours in the example of this embodiment and calculating the life time Lt of the fan under test, a short period of time is obtained. Thus, the life of the cooling fan (fan under test) can be estimated.

なお、本発明に係る加速寿命試験システムの構成は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しなければ種々の変形が可能である。
例えば試験温度条件は1条件でもよいが、本実施例のように複数の異なる温度条件で試験をすると50℃で時間換算した時に、より多くのQ値データが得られるので、近似式の精度が向上する。また、図3では現行ファン1台でのデータを対比する例として示したが、複数台で測定したデータを対比する例として使用すれば、ばらつきの範囲も考慮した寿命時間を求めることができる。
The configuration of the accelerated life test system according to the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, the test temperature condition may be one condition, but if the test is performed under a plurality of different temperature conditions as in this embodiment, more time-converted data at 50 ° C. will yield more Q value data. improves. Further, although FIG. 3 shows an example in which data from one current fan is compared, if it is used as an example in which data measured by a plurality of units is compared, a lifetime in consideration of the range of variation can be obtained.

また、本実施形態の例では、所要のインターバルで求めた軸受損傷度で近似式を求めたが、連続して求めた軸受損傷度から近似式を求めてもよく、また、ある期間求めた軸受損傷度の平均値から近似式を求めてもよい。これにより、一層精度のよい試験時間と軸受損傷度Qの近似式を求めることができる。
また、現行ファンに基づいて事前に寿命判定値QLが判っている場合は、被試験ファンのみについて近似式を求めればよいことは勿論である。
In the example of the present embodiment, the approximate expression is obtained from the degree of bearing damage obtained at a required interval. However, the approximate expression may be obtained from the degree of bearing damage obtained continuously, or a bearing obtained for a certain period. An approximate expression may be obtained from the average value of the degree of damage. As a result, a more accurate approximate expression for the test time and the bearing damage degree Q can be obtained.
In addition, when the life judgment value QL is known in advance based on the current fan, it is needless to say that an approximate expression may be obtained only for the fan under test.

1a,1b・・・加速度センサ
2a,2b・・・アンプ
3a,3b・・・バンドパスフィルタ
4a,4b・・・包絡線化処理器
5・・・・・・損傷度演算器
6・・・・・・記憶器
7・・・・・・近似式演算器
8・・・・・・寿命判定値算出器
9・・・・・・寿命時間算出器
10・・・・・出力表示器
100・・・・振動計測手段
200・・・・振動演算装置
300・・・・寿命時間演算装置
1a, 1b... Acceleration sensors 2a, 2b... Amplifiers 3a, 3b... Band pass filters 4a, 4b. ································································································································· ... Vibration measuring means 200 ... Vibration calculation device 300 ... Life time calculation device

Claims (5)

複数の冷却ファンを所要温度に加熱して回転させて加速寿命試験を行なう加速寿命試験システムであって、
被試験ファンを含む冷却ファンの軸受振動を計測する振動計測手段と、前記軸受振動から軸受の軸受損傷度を演算する振動演算装置と、前記振動演算装置で演算された複数の異なる加速寿命試験時間での軸受損傷度に基づいて被試験ファンの寿命時間を演算する寿命時間演算装置とを備えていることを特徴とする冷却ファンの加速寿命試験システム。
An accelerated life test system for performing an accelerated life test by heating and rotating a plurality of cooling fans to a required temperature,
Vibration measurement means for measuring bearing vibration of a cooling fan including a fan under test, vibration calculation device for calculating a bearing damage degree of the bearing from the bearing vibration, and a plurality of different accelerated life test times calculated by the vibration calculation device An accelerated life test system for a cooling fan, comprising a life time calculation device for calculating the life time of a fan under test based on the degree of bearing damage at
前記振動演算装置は、前記振動計測手段で計測した軸受振動波形から所要の周波数帯域を通過させるバンドパスフィルタと、該バンドパスフィルタ通過後の波形を包絡線処理する包絡線化処理器と、該包絡線化処理器で処理された包絡線波形から最大値や平均値などで表される軸受損傷度を演算する損傷度演算器とを有することを特徴とする請求項1記載の冷却ファンの加速寿命試験システム。   The vibration calculation device includes a bandpass filter that passes a required frequency band from a bearing vibration waveform measured by the vibration measuring unit, an envelope processor that performs an envelope process on the waveform after the bandpass filter, The acceleration of the cooling fan according to claim 1, further comprising a damage degree calculator for calculating a bearing damage degree represented by a maximum value or an average value from an envelope waveform processed by the envelope processor. Life test system. 前記寿命時間演算装置は、前記振動演算装置で演算された軸受損傷度を記憶する記憶器と、該記憶器に記億された寿命試験時間と軸受損傷度との関係を数式化する近似式演算器と、該近似式演算器で演算された近似式から軸受損傷度の寿命判定値を算出する寿命判定値算出器と、該寿命判定値算出器で算出した判定値と前記近似式演算器で演算された近似式とから寿命時間を算出する寿命時間算出器と、該寿命時間算出器で算出された寿命時間を表示する出力表示器とを有することを特徴とする請求項1または2記載の冷却ファンの加速寿命試験システム。   The life time calculation device is a storage device that stores the bearing damage degree calculated by the vibration operation device, and an approximate expression calculation that formulates the relationship between the life test time and the bearing damage degree stored in the storage device. A life determination value calculator that calculates a life determination value of the bearing damage degree from the approximate expression calculated by the approximate expression calculator, a determination value calculated by the life determination value calculator, and the approximate expression calculator The life time calculator that calculates the life time from the calculated approximate expression, and the output display that displays the life time calculated by the life time calculator are provided. Cooling fan accelerated life test system. 前記近似式演算器は、前記記憶器に記憶された複数の異なる寿命試験時間と軸受損傷度の関係を数式化することを特徴とする請求項3記載の冷却ファンの加速寿命試験システム。   4. The accelerated life test system for a cooling fan according to claim 3, wherein the approximate expression calculator formulates a relationship between a plurality of different life test times stored in the storage device and a degree of bearing damage. 前記寿命判定値算出器は、前記近似式演算器で演算された予め寿命時間が分かっている冷却ファンの近似式から軸受損傷度の寿命判定値を算出することを特徴とする請求項3記載の冷却ファンの加速寿命試験システム。   The said life determination value calculator calculates the life determination value of a bearing damage degree from the approximate expression of the cooling fan by which the life time is known beforehand calculated by the said approximate expression calculator. Cooling fan accelerated life test system.
JP2012055158A 2012-03-12 2012-03-12 Acceleration life test system for cooling fan Pending JP2013190240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012055158A JP2013190240A (en) 2012-03-12 2012-03-12 Acceleration life test system for cooling fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012055158A JP2013190240A (en) 2012-03-12 2012-03-12 Acceleration life test system for cooling fan

Publications (1)

Publication Number Publication Date
JP2013190240A true JP2013190240A (en) 2013-09-26

Family

ID=49390675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012055158A Pending JP2013190240A (en) 2012-03-12 2012-03-12 Acceleration life test system for cooling fan

Country Status (1)

Country Link
JP (1) JP2013190240A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708889A (en) * 2019-01-09 2019-05-03 四川大学 The horizontal choosing method of accelerated stress of space grease lubrication bearing accelerated life test
JP2019161974A (en) * 2018-03-16 2019-09-19 東芝インフラシステムズ株式会社 Uninterruptible power supply system, deterioration prediction device for uninterruptible power supply, deterioration prediction program for uninterruptible power supply, and uninterruptible power supply deterioration prediction method
CN110645197A (en) * 2019-10-12 2020-01-03 苏州浪潮智能科技有限公司 Method and system for detecting service life of fan
CN112595953A (en) * 2020-11-25 2021-04-02 西安太乙电子有限公司 Detection and evaluation method suitable for accelerated storage life test of air-sealed circuit
CN117191311A (en) * 2023-08-14 2023-12-08 暨南大学 Accelerated vibration test method for product under non-stationary and non-Gaussian vibration of logistics

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019161974A (en) * 2018-03-16 2019-09-19 東芝インフラシステムズ株式会社 Uninterruptible power supply system, deterioration prediction device for uninterruptible power supply, deterioration prediction program for uninterruptible power supply, and uninterruptible power supply deterioration prediction method
JP7010739B2 (en) 2018-03-16 2022-01-26 東芝インフラシステムズ株式会社 Uninterruptible power supply system, uninterruptible power supply deterioration prediction device, uninterruptible power supply deterioration prediction program and uninterruptible power supply deterioration prediction method
CN109708889A (en) * 2019-01-09 2019-05-03 四川大学 The horizontal choosing method of accelerated stress of space grease lubrication bearing accelerated life test
CN110645197A (en) * 2019-10-12 2020-01-03 苏州浪潮智能科技有限公司 Method and system for detecting service life of fan
CN110645197B (en) * 2019-10-12 2021-02-02 苏州浪潮智能科技有限公司 Method and system for detecting service life of fan
CN112595953A (en) * 2020-11-25 2021-04-02 西安太乙电子有限公司 Detection and evaluation method suitable for accelerated storage life test of air-sealed circuit
CN112595953B (en) * 2020-11-25 2024-05-28 西安太乙电子有限公司 Detection and evaluation method suitable for accelerated storage life test of air-seal circuit
CN117191311A (en) * 2023-08-14 2023-12-08 暨南大学 Accelerated vibration test method for product under non-stationary and non-Gaussian vibration of logistics
CN117191311B (en) * 2023-08-14 2024-05-24 暨南大学 Accelerated vibration test method for product under non-stationary and non-Gaussian vibration of logistics

Similar Documents

Publication Publication Date Title
JP2013190240A (en) Acceleration life test system for cooling fan
JP5216903B2 (en) Sideband energy ratio method for detecting gear meshing faults
JP4373350B2 (en) Shaft vibration monitoring system
US10724995B2 (en) Viscosity estimation from demodulated acoustic emission
CN113312804B (en) Temperature early warning method, device, equipment and storage medium of transformer
US10895873B2 (en) Machine health monitoring of rotating machinery
US11488034B2 (en) State analysis apparatus, state analysis method, and program
KR101498527B1 (en) Diagnosis system using vibration frequency analysis program for rotation equipment of power plant
EP2345894A2 (en) Trending of vibration data taking into account torque effect
JPWO2014016914A1 (en) Abnormal sound detection system
JP2011252762A (en) Method and device for monitoring bearing state
BR102015009530A2 (en) method to determine rotary stall
JP2006125275A (en) Device and system for diagnosing performance of fluid machine
WO2018143404A1 (en) State analyzing device, display method, and program
JP2014222150A (en) Electric component monitoring apparatus and electric component monitoring method
JP4584085B2 (en) Degradation evaluation method for rolling bearings
TW201250221A (en) Inspection method for fan quality
Orman et al. Parameter identification and slip estimation of induction machine
US20120101768A1 (en) Diagnosis of stator thermal anomalies in an electrical machine
JP6459345B2 (en) Fluctuation data management system and its specificity detection method
JP2022157865A (en) Lubrication defect determination device for roller bearing, lubrication defect determination method, and program
Siew et al. Fault severity trending in rolling element bearings
JP2016057651A (en) Analysis method of time series data and abnormality monitoring device of time series data
JP2019086349A (en) Condition monitoring device and abnormality diagnostic method for bearing
JP2005188979A (en) Deterioration evaluation method for rolling bearing