JP4584085B2 - Degradation evaluation method for rolling bearings - Google Patents

Degradation evaluation method for rolling bearings Download PDF

Info

Publication number
JP4584085B2
JP4584085B2 JP2005259508A JP2005259508A JP4584085B2 JP 4584085 B2 JP4584085 B2 JP 4584085B2 JP 2005259508 A JP2005259508 A JP 2005259508A JP 2005259508 A JP2005259508 A JP 2005259508A JP 4584085 B2 JP4584085 B2 JP 4584085B2
Authority
JP
Japan
Prior art keywords
rolling bearing
vibration acceleration
value
curve
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005259508A
Other languages
Japanese (ja)
Other versions
JP2007071717A (en
Inventor
雅彦 川畑
賢司 高橋
隆一 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2005259508A priority Critical patent/JP4584085B2/en
Publication of JP2007071717A publication Critical patent/JP2007071717A/en
Application granted granted Critical
Publication of JP4584085B2 publication Critical patent/JP4584085B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、実機における転がり軸受の余寿命を求めるための転がり軸受の劣化評価方法に関する。   The present invention relates to a rolling bearing deterioration evaluation method for determining the remaining life of a rolling bearing in an actual machine.

従来、転がり軸受のうち玉軸受の定格疲れ寿命Lhは、下記式(1)で表される。 Conventionally, the rated fatigue life L h of a ball bearing among rolling bearings is expressed by the following formula (1).

h=(106/60n)・(C/P)3 (1)
(n:回転数(rpm)、C:基本動定格荷重、P:軸受荷重)
そして、実験結果をもとに軸受の異常認知から寿命(焼付きまたは破損)までの余寿命計算式を下記式(2)で表したものが知られている(非特許文献1参照)。
L h = (10 6 / 60n) · (C / P) 3 (1)
(N: rotational speed (rpm), C: basic dynamic load rating, P: bearing load)
Based on the experimental results, there is known a formula for calculating the remaining life from the recognition of the bearing abnormality to the life (seizure or breakage) by the following formula (2) (see Non-Patent Document 1).

dh=(0.032×106/60n)・(C/P)3.37 (2)
井上紀明著「現場の質問に答える 実践 振動法による設備診断」日本プラントメンテナンス協会出版
L dh = (0.032 × 10 6 / 60n) · (C / P) 3.37 (2)
Noriaki Inoue “Practice answering on-site questions: Practical equipment diagnosis by vibration method” published by Japan Plant Maintenance Association

しかし、上記式(1)は、軸受メーカーが安全サイドの見地から90%の軸受が寿命に至らない場合を想定して定められているため、上記式(1)を用いた転がり軸受の劣化評価方法は実用性に欠けるという問題がある。   However, the above formula (1) is determined assuming that 90% of bearings do not reach the end of their service life from the viewpoint of the safety side, and therefore the deterioration evaluation of the rolling bearing using the above formula (1). There is a problem that the method lacks practicality.

また、本発明者らは、試験条件に上記式(2)を当てはめ、異常認知後の軸受の余寿命を試験結果と比較したところ、下記表1に示すような対比結果が得られ、上記式(2)を用いた転がり軸受の劣化評価方法では、異常認知後の軸受の余寿命を十分に予測できるとはいえないことが判明した。   Further, the present inventors applied the above formula (2) to the test conditions and compared the remaining life of the bearing after recognizing the abnormality with the test results. As a result, a comparison result as shown in Table 1 below was obtained. It has been found that the rolling bearing deterioration evaluation method using (2) cannot sufficiently predict the remaining life of the bearing after the abnormality is recognized.

Figure 0004584085
そこで、本発明に先立ち、転がり軸受の余寿命を十分に予測することができる転がり軸受の劣化評価方法を提供することを目的として、次のような未公開の発明、つまり、試験用転がり軸受に定量フェログラフィ法を適用することによって求めたIs値から転がり軸受劣化評価曲線を作成する工程と、実機転がり軸受の異常発生後の任意の時点で定量フェログラフィ法を適用し、Is値を求める工程と、該求めたIs値を前記転がり軸受劣化評価曲線上に展開し、当該実機転がり軸受の余寿命を求める工程とからなることを特徴とする転がり軸受の劣化評価方法に係る発明がなされた。
Figure 0004584085
Therefore, prior to the present invention, for the purpose of providing a rolling bearing deterioration evaluation method capable of sufficiently predicting the remaining life of a rolling bearing, the following unpublished invention, that is, a test rolling bearing, is provided. A process for creating a rolling bearing deterioration evaluation curve from the Is value obtained by applying the quantitative ferrography method, and a process for obtaining the Is value by applying the quantitative ferrography method at any time after the occurrence of an abnormality in the actual rolling bearing. And a process of developing the calculated Is value on the rolling bearing deterioration evaluation curve and determining the remaining life of the actual rolling bearing.

この前提発明は、下記のような知見に基づいてなされたものである。   This prerequisite invention has been made on the basis of the following knowledge.

従来から、転がり軸受の劣化評価方法として、潤滑油診断法の中心技術をなすフェログラフィ法を用いた劣化評価方法が知られている。   2. Description of the Related Art Conventionally, as a deterioration evaluation method for rolling bearings, a deterioration evaluation method using a ferrography method, which is a central technology of a lubricant diagnosis method, is known.

フェログラフィ法は、潤滑油中に含まれている摩耗粒子を磁気勾配を有する強力な磁場で大きさの順に配列分離する。   In the ferrography method, wear particles contained in a lubricating oil are arranged and separated in order of magnitude by a strong magnetic field having a magnetic gradient.

そして、定量フェログラフィ法では、分離した摩耗粒子に対して光を照射し、光の透過量により例えば5μm以上の大摩耗粒子濃度PL及び例えば1〜2μm程度の小摩耗粒子濃度PSを測定し、摩耗の異常度PL−PSと全摩耗量WPC(=PL+PS)とから異常摩耗指数Isを下記式(3)により求め、このIs値から転がり軸受の劣化状態を診断している。   In the quantitative ferrography method, the separated wear particles are irradiated with light, and a large wear particle concentration PL of, for example, 5 μm or more and a small wear particle concentration PS of, for example, about 1-2 μm are measured according to the amount of transmitted light. The abnormal wear index Is is obtained by the following formula (3) from the wear abnormality degree PL-PS and the total wear amount WPC (= PL + PS), and the deterioration state of the rolling bearing is diagnosed from this Is value.

Is=(PL−PS)×(PL+PS)=PL2−PS2 (3)
このIs値に着目し、Is値と転がり軸受の余寿命との関係を検討したところ、多数の過去の診断データ及び新たな劣化加速試験による試験データから、Is値と余寿命との間に密接な関係があり、Is値が所定値まで増大すると転がり軸受の劣化が開始し、つまり転がり軸受に異常が発生し、その後、Is値がさらなる所定値まで増大すると転がり軸受が焼付きまたは破損を起こすことが判明した。さらに、転がり軸受の劣化開始時点(異常発生時点)から焼付きまたは破損が生じる時点(寿命時点)までのIs値の変化曲線は指数関数などで代表できることが判明した。
Is = (PL−PS) × (PL + PS) = PL 2 −PS 2 (3)
Focusing on this Is value, we examined the relationship between the Is value and the remaining life of the rolling bearing. From a lot of past diagnostic data and test data from a new deterioration acceleration test, the Is value is closely related to the remaining life. When the Is value increases to a predetermined value, the rolling bearing starts to deteriorate, that is, the rolling bearing becomes abnormal, and when the Is value further increases to a predetermined value, the rolling bearing seizes or breaks. It has been found. Furthermore, it was found that the change curve of the Is value from the rolling bearing deterioration start point (abnormal point of occurrence) to the point of seizure or breakage (life point) can be represented by an exponential function.

前提発明は、上記のような知見に基づいてなされたのである。   The premise invention was made based on the above knowledge.

前提発明によると、定量フェログラフィ法によるIs値から作成した転がり軸受劣化評価曲線は、転がり軸受の異常発生時点から寿命時点までのIs値の変化をほぼ正確に表しているため、実機転がり軸受に定量フェログラフィ法を適用して求めたIs値を転がり軸受劣化評価曲線上に展開することにより、実機転がり軸受の余寿命を十分に予測することができるようになる。   According to the base invention, the rolling bearing deterioration evaluation curve created from the Is value obtained by the quantitative ferrography method almost accurately represents the change in the Is value from the time when the abnormality occurred to the life of the rolling bearing. By developing the Is value obtained by applying the quantitative ferrography method on the rolling bearing deterioration evaluation curve, the remaining life of the actual rolling bearing can be sufficiently predicted.

しかし、フェログラフィ法を用いた転がり軸受の劣化評価方法は、実機の運転中に潤滑油のサンプリングが不可能なシールドタイプの転がり軸受に対して使用することができないという問題がある。   However, the rolling bearing deterioration evaluation method using the ferrography method has a problem that it cannot be used for a shield type rolling bearing that cannot sample the lubricating oil during operation of the actual machine.

本発明は、上記前提発明の問題点を解決し、シールドタイプの転がり軸受に対しても余寿命を求めることができる転がり軸受の劣化評価方法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the premise invention and to provide a deterioration evaluation method for a rolling bearing capable of obtaining a remaining life even for a shield type rolling bearing.

上記目的の下、本発明者らは、試験結果等から得られたIs値と振動加速度との相関をグラフで表したところ、図1に示すように、Is値と振動加速度とに十分な相関関係があることが分かった。   Under the above object, the present inventors have represented the correlation between the Is value obtained from the test results and the vibration acceleration with a graph, and as shown in FIG. 1, there is a sufficient correlation between the Is value and the vibration acceleration. I found that there was a relationship.

このようなIs値と振動加速度との相関関係に立脚し、シールドタイプの転がり軸受に対してもその振動加速度から余寿命を推定することが可能であるとの結論に達した。   Based on the correlation between the Is value and vibration acceleration, it was concluded that the remaining life can be estimated from the vibration acceleration of shield type rolling bearings.

本発明による転がり軸受の劣化評価方法は、Is値による無元量化した転がり軸受劣化曲線、及び、Is値と振動加速度との相関曲線をそれぞれ求める第1工程と、前記転がり軸受劣化曲線に対し前記相関曲線のIs値と振動加速度との関係を適用することにより、振動加速度を基準とした転がり軸受劣化曲線を求める第2工程と、実機転がり軸受の振動加速度を少なくとも2つの測定時点で測定し、各測定時点において測定された振動加速度を、前記振動加速度を基準とした転がり軸受劣化曲線上に展開することにより、各振動加速度値を示す無元量化した経過時間を求め、該求めた無元量化した経過時間と前記各測定時点とに基づいて当該実機転がり軸受の余寿命を求める第3工程とから構成されることを特徴とする。ここで、「無元量化」とは、全ての軸受劣化現象を同等に比較するために、初期状態から終末(限界)状態までの単位軸(時間軸)を便宜上「1」という無次元の単位量として表したものをいう。   The deterioration evaluation method for a rolling bearing according to the present invention includes a first step for obtaining a rolling bearing deterioration curve with an unweighted Is value and a correlation curve between the Is value and vibration acceleration, and the rolling bearing deterioration curve with respect to the rolling bearing deterioration curve. By applying the relationship between the Is value of the correlation curve and the vibration acceleration, the second step of determining the rolling bearing deterioration curve based on the vibration acceleration, and measuring the vibration acceleration of the actual rolling bearing at at least two measurement points, By developing the vibration acceleration measured at each measurement time point on the rolling bearing deterioration curve based on the vibration acceleration, the elapsed time indicating the vibrationless value indicating the vibration acceleration value is obtained, and the obtained weightlessness is obtained. And a third step of determining the remaining life of the actual rolling bearing based on the elapsed time and the measurement time points. Here, “no-quantity” means that the unit axis (time axis) from the initial state to the end (limit) state is a dimensionless unit of “1” for convenience in order to compare all bearing deterioration phenomena equally. This is expressed as a quantity.

本発明によると、振動加速度を情報とした軸受状態の正確かつ定量的な予測が可能になる。   According to the present invention, it is possible to accurately and quantitatively predict a bearing state using vibration acceleration as information.

本実施形態による転がり軸受の劣化評価方法は、Is値による無元量化した転がり軸受劣化曲線、及び、Is値と振動加速度との相関曲線をそれぞれ求める第1工程と、転がり軸受劣化曲線に対し相関曲線のIs値と振動加速度との関係を適用することにより、振動加速度を基準とした転がり軸受劣化曲線を求める第2工程と、実機転がり軸受の振動加速度を少なくとも2つの測定時点で測定し、各測定時点において測定された振動加速度を、振動加速度を基準とした転がり軸受劣化曲線上に展開することにより、各振動加速度値を示す無元量化した経過時間を求め、該求めた無元量化した経過時間と各測定時点とに基づいて当該実機転がり軸受の余寿命を求める第3工程とから構成される。   The rolling bearing deterioration evaluation method according to the present embodiment includes a first step for obtaining a rolling bearing deterioration curve in which the Is value is reduced and a correlation curve between the Is value and vibration acceleration, and correlation with the rolling bearing deterioration curve. By applying the relationship between the Is value of the curve and the vibration acceleration, the second step of determining the rolling bearing deterioration curve based on the vibration acceleration, and measuring the vibration acceleration of the actual rolling bearing at at least two measurement points, By developing the vibration acceleration measured at the time of measurement on the rolling bearing deterioration curve based on the vibration acceleration, the elapsed time indicating the vibrationless value indicating each vibration acceleration value is obtained, and the calculated flowlessness is obtained. And a third step of obtaining the remaining life of the actual rolling bearing based on the time and each measurement time point.

第1工程において、Is値による無元量化した転がり軸受劣化曲線(直線を含む。)の一例を図2に示す。図2において、経過時間「0」は、Is値が所定値例えば101になる劣化開始時点(異常発生時点)に対応しており、また、経過時間「1」は、Is値が所定値例えば103になる管理寿命時点に対応している。また、Is値と振動加速度との相関曲線は上述したように図1に示される。 FIG. 2 shows an example of a rolling bearing deterioration curve (including a straight line) that has been converted into an elementless quantity based on the Is value in the first step. In FIG. 2, the elapsed time “0” corresponds to a deterioration start point (abnormal point in time) at which the Is value becomes a predetermined value, for example, 10 1 , and the elapsed time “1” Corresponds to the control life point of 10 3 . The correlation curve between the Is value and the vibration acceleration is shown in FIG. 1 as described above.

第2工程において、図1及び図2から振動加速度を基準とした転がり軸受劣化曲線を求めると、図3に示す通りとなる。   In the second step, when the rolling bearing deterioration curve based on the vibration acceleration is obtained from FIGS. 1 and 2, it is as shown in FIG.

第3工程において、実機転がり軸受の測定データを図4に示す。この測定データは、測定時点がτ1、τ2で、各測定時点τ1、τ2で測定された振動加速度がG1、G2である。この測定された振動加速度G1、G2は図5に示すマスターカーブ(振動加速度を基準とした転がり軸受劣化曲線)上に展開され、振動加速度値G1、G2を示す無元量化した経過時間t1,t2を求める。なお、図5に示すマスターカーブは、図3に示した転がり軸受劣化曲線をイメージ化したものであり、図3と同一曲線である。そして、下記式(4)により実機転がり軸受の余寿命τ3を求める。 FIG. 4 shows measurement data of the actual rolling bearing in the third step. In this measurement data, the measurement time points are τ 1 and τ 2 , and the vibration accelerations measured at the respective measurement time points τ 1 and τ 2 are G 1 and G 2 . The measured vibration accelerations G 1 and G 2 are developed on the master curve shown in FIG. 5 (rolling bearing deterioration curve based on the vibration acceleration), and an unquantified course indicating the vibration acceleration values G 1 and G 2 is obtained. Times t 1 and t 2 are obtained. The master curve shown in FIG. 5 is an image of the rolling bearing deterioration curve shown in FIG. 3, and is the same curve as FIG. Then, the remaining life τ 3 of the actual rolling bearing is obtained by the following formula (4).

2−τ1)/(t2−t1)=(τ3−τ2)/(1−t2)
τ3=τ2+(τ2−τ1)(1−t2)/(t2−t1) (4)
以上説明したように、本実施形態によると、振動加速度を情報とした軸受状態の正確かつ定量的な予測が可能になる。
2 −τ 1 ) / (t 2 −t 1 ) = (τ 3 −τ 2 ) / (1−t 2 )
τ 3 = τ 2 + (τ 2 −τ 1 ) (1-t 2 ) / (t 2 −t 1 ) (4)
As described above, according to the present embodiment, it is possible to accurately and quantitatively predict the bearing state using vibration acceleration as information.

Is値と振動加速度との相関曲線図である。It is a correlation curve figure of Is value and vibration acceleration. Is値による転がり軸受劣化曲線図である。It is a rolling bearing deterioration curve figure by Is value. 振動加速度を基準とした転がり軸受劣化曲線図である。It is a rolling bearing deterioration curve figure on the basis of vibration acceleration. 実機データ図である。It is an actual machine data diagram. マスターカーブ図(振動加速度を基準とした転がり軸受劣化曲線図)である。It is a master curve figure (rolling bearing deterioration curve figure on the basis of vibration acceleration).

Claims (1)

Is値による無元量化した転がり軸受劣化曲線、及び、Is値と振動加速度との相関曲線をそれぞれ求める第1工程と、
前記転がり軸受劣化曲線に対し前記相関曲線のIs値と振動加速度との関係を適用することにより、振動加速度を基準とした転がり軸受劣化曲線を求める第2工程と、
実機転がり軸受の振動加速度を少なくとも2つの測定時点で測定し、各測定時点において測定された振動加速度を、前記振動加速度を基準とした転がり軸受劣化曲線上に展開することにより、各振動加速度値を示す無元量化した経過時間を求め、該求めた無元量化した経過時間と前記各測定時点とに基づいて当該実機転がり軸受の余寿命を求める第3工程と
から構成されることを特徴とする転がり軸受の劣化評価方法。
A first step for obtaining a rolling bearing deterioration curve obtained by the Is value and a correlation curve between the Is value and the vibration acceleration;
Applying a relationship between the Is value of the correlation curve and the vibration acceleration to the rolling bearing deterioration curve to obtain a rolling bearing deterioration curve based on the vibration acceleration;
The vibration acceleration of the actual rolling bearing is measured at at least two measurement time points, and the vibration acceleration values measured at each measurement time point are developed on the rolling bearing deterioration curve based on the vibration acceleration. And a third step of obtaining the remaining life of the actual rolling bearing based on the obtained elapsed time and the respective measurement time points. Degradation evaluation method for rolling bearings.
JP2005259508A 2005-09-07 2005-09-07 Degradation evaluation method for rolling bearings Active JP4584085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005259508A JP4584085B2 (en) 2005-09-07 2005-09-07 Degradation evaluation method for rolling bearings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005259508A JP4584085B2 (en) 2005-09-07 2005-09-07 Degradation evaluation method for rolling bearings

Publications (2)

Publication Number Publication Date
JP2007071717A JP2007071717A (en) 2007-03-22
JP4584085B2 true JP4584085B2 (en) 2010-11-17

Family

ID=37933277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259508A Active JP4584085B2 (en) 2005-09-07 2005-09-07 Degradation evaluation method for rolling bearings

Country Status (1)

Country Link
JP (1) JP4584085B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760266A (en) * 2018-05-31 2018-11-06 西安交通大学 The virtual degeneration index building method of mechanical key component based on learning distance metric

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998118B (en) * 2012-11-29 2015-07-08 西安交通大学 Bearing quantitative diagnosis method based on morphological filtering and complexity measure
JP2014222150A (en) * 2013-05-13 2014-11-27 Necプラットフォームズ株式会社 Electric component monitoring apparatus and electric component monitoring method
JP5990729B1 (en) * 2015-04-03 2016-09-14 トライボテックス株式会社 General-purpose deterioration curve creation method and machine life prediction method, and general-purpose deterioration curve creation program and machine life prediction program
CN113092115B (en) * 2021-04-09 2022-10-11 重庆大学 Digital twin model construction method of digital-analog combined drive full-life rolling bearing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202511A (en) * 1999-01-13 2000-07-25 Kawasaki Steel Corp Method for diagnosing spindle of rolling mill
JP2003344293A (en) * 2002-05-28 2003-12-03 Toribo Tex Kk Diagnostic method of lubricated part and diagnostic system of lubricated part
JP2005077111A (en) * 2003-08-29 2005-03-24 Tsukishima Techno Mente Service Kk Diagnostic support device for diagnosing condition of rotary equipment, program therefor, recording medium recorded with program, and condition diagnostic support method
JP2005188979A (en) * 2003-12-24 2005-07-14 Toribo Tex Kk Deterioration evaluation method for rolling bearing
JP2005345132A (en) * 2004-05-31 2005-12-15 Toribo Tex Kk Degradation evaluation method of roller bearing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164656A (en) * 1991-12-13 1993-06-29 Nkk Corp Method for diagnosing wear of spline

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202511A (en) * 1999-01-13 2000-07-25 Kawasaki Steel Corp Method for diagnosing spindle of rolling mill
JP2003344293A (en) * 2002-05-28 2003-12-03 Toribo Tex Kk Diagnostic method of lubricated part and diagnostic system of lubricated part
JP2005077111A (en) * 2003-08-29 2005-03-24 Tsukishima Techno Mente Service Kk Diagnostic support device for diagnosing condition of rotary equipment, program therefor, recording medium recorded with program, and condition diagnostic support method
JP2005188979A (en) * 2003-12-24 2005-07-14 Toribo Tex Kk Deterioration evaluation method for rolling bearing
JP2005345132A (en) * 2004-05-31 2005-12-15 Toribo Tex Kk Degradation evaluation method of roller bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760266A (en) * 2018-05-31 2018-11-06 西安交通大学 The virtual degeneration index building method of mechanical key component based on learning distance metric
CN108760266B (en) * 2018-05-31 2019-11-26 西安交通大学 The virtual degeneration index building method of mechanical key component based on learning distance metric

Also Published As

Publication number Publication date
JP2007071717A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
Ebersbach et al. The investigation of the condition and faults of a spur gearbox using vibration and wear debris analysis techniques
JP6397330B2 (en) Measure the remaining service life of rotating machinery such as drivetrains, gearboxes, and generators
JP4504065B2 (en) Rolling bearing remaining life diagnosis method
JP4787904B2 (en) Rolling bearing remaining life diagnosis method
JP4584085B2 (en) Degradation evaluation method for rolling bearings
JP5990729B1 (en) General-purpose deterioration curve creation method and machine life prediction method, and general-purpose deterioration curve creation program and machine life prediction program
Scott Debris examination—a prognostic approach to failure prevention
JP2008102107A (en) Method and system for assessing remaining life of rolling bearing using normal database, and computer program used for remaining life assessment
WO1999047904A1 (en) Devices for inspecting bearings of main motors of rolling stock
CN104641225A (en) Bearing part inspection method and bearing part inspection device
Harris The nature of industrial inspection
CN114026564A (en) System, apparatus and method for determining bearing condition
JP2009180722A (en) Support method for optimal maintenance time determination of object facility, computer program, and support device for optimal maintenance time determination of object facility
RU2013138125A (en) METHOD FOR RANKING TECHNICAL DEVICES OF TECHNOLOGICAL INSTALLATIONS OF CHEMICAL, OIL AND PETROCHEMICAL AND OIL REFINING COMPLEXES BASED ON THEIR EXPERT-BALL ASSESSMENT
JP4405316B2 (en) Degradation evaluation method for rolling bearings
JP4836773B2 (en) Lubrication state evaluation apparatus, lubrication state evaluation method, program, and recording medium
HU183572B (en) Method for testing the abrasion state of tribology system
JP4368674B2 (en) Degradation evaluation method for rolling bearings
Rustamov et al. METHODS OF DIAGNOSTICS OF METAL-CUTTING MACHINES
JP4706140B2 (en) Life estimation method for bearing steel
Siew et al. Fault severity trending in rolling element bearings
JPH01172621A (en) Detection of anomaly of roller bearing
Girodin et al. Statistical analysis of nonmetallic inclusions for the estimation of rolling contact fatigue range and quality control of bearing steel
RU2794164C1 (en) System, device and method for determining bearing state
Olabarrieta et al. New Approach for Bearing Life Cycle Estimation and Control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100901

R150 Certificate of patent or registration of utility model

Ref document number: 4584085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250