JP2013186078A - Escape gear, escape wheel including the same, anchor escapement, movement, mechanical watch, and torque transmission method - Google Patents

Escape gear, escape wheel including the same, anchor escapement, movement, mechanical watch, and torque transmission method Download PDF

Info

Publication number
JP2013186078A
JP2013186078A JP2012053551A JP2012053551A JP2013186078A JP 2013186078 A JP2013186078 A JP 2013186078A JP 2012053551 A JP2012053551 A JP 2012053551A JP 2012053551 A JP2012053551 A JP 2012053551A JP 2013186078 A JP2013186078 A JP 2013186078A
Authority
JP
Japan
Prior art keywords
escape
ankle
convex surface
pawl
curved convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012053551A
Other languages
Japanese (ja)
Other versions
JP5891076B2 (en
Inventor
Shigeo Suzuki
重男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2012053551A priority Critical patent/JP5891076B2/en
Priority to CH00519/13A priority patent/CH706224B1/en
Priority to CN201310076463.1A priority patent/CN103309224B/en
Publication of JP2013186078A publication Critical patent/JP2013186078A/en
Application granted granted Critical
Publication of JP5891076B2 publication Critical patent/JP5891076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/06Free escapements
    • G04B15/08Lever escapements
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Gears, Cams (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Transmission Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an escape gear capable of effectively transmitting torque when replacing an impulse face, an escape wheel including the escape gear, an anchor escapement having the escape wheel, a movement having the escape wheel, a mechanical watch, and a torque transmission method.SOLUTION: In an escape gear 1 of an escape wheel 2 of an anchor escapement of a mechanical watch, a locking corner 30 connecting a stop face 10 to an impulse face 20 forms a curved first curved convex surface part 31. A curved second curved convex surface 21 is formed on a portion continued to the first curved convex surface part 31 of the locking corner 30 out of the impulse face 20. The second curved convex surface part 21 may be expanded to the whole impulse face 20. A curvature radius R2 of a portion of the second curved convex surface part 21 may be increased in accordance with separation from the locking corner 30 of the impulse face 20. A portion continued to a portion of the second curved convex surface part 21 out of the impulse face 20 may be planar.

Description

本発明は、がんぎ歯、該がんぎ歯を備えたがんぎ車、該がんぎ車を有するアンクル脱進器、該がんぎ車を有するムーブメント、並びに機械式時計及びトルク伝達方法に係わる。   The present invention relates to a escape tooth, an escape wheel provided with the escape wheel, an ankle escapement having the escape wheel, a movement having the escape wheel, a mechanical timepiece, and torque transmission Related to the method.

機械式時計のアンクル脱進器では、がんぎ車のがんぎ歯がアンクルの入りつめや出つめに対して、(1)停止(ロック)され、(2)停止解除され、(3)衝撃を与え、(4)てんぷの振り石が再度アンクル(の入つめや出つめ)に衝撃を与えるところに戻るまで待機する動作を繰返して、ぜんまいのトルクないしエネルギを間欠的にてんぷに与える。   In the ankle escapement of a mechanical watch, the escape teeth of the escape wheel are (1) stopped (locked), (2) released from stopping, and (3) (4) Repeating the operation of waiting until the balance of the balance of the balance returns to the place where the impact is applied to the ankle (entrance and exit claw) again, and the torque or energy of the mainspring is intermittently applied to the balance.

以上において、(2)の停止解除から(3)の衝撃の完了までの間にがんぎ車とてんぷとの間において、がんぎ車からてんぷへのトルクの付与ないし回転エネルギの供給が効果的に行われることが望まれる。   In the above, between the escape wheel and the balance between the release of the stop in (2) and the completion of the impact in (3), it is effective to apply torque or supply rotational energy from the escape wheel to the balance. It is hoped that this will be done automatically.

しかしながら、本発明者は、アンクル脱進器において、現在一般的に用いられているがんぎ車(例えば、特許文献1)では、トルクの付与ないし回転エネルギの効果的供給が行われ難いことに気づいた。   However, the present inventor has found that it is difficult to provide torque or effectively supply rotational energy in an escape wheel escaper (for example, Patent Document 1) that is generally used at present. Noticed.

アンクル脱進器において現在一般的に用いられているがんぎ車101の各がんぎ歯102は、図8に示したように、直線状すなわち平面状の停止面110と、該停止面110に対して角度αをなす直線状すなわち平面状の衝撃面120とを備え、停止面110と衝撃面120との交差部分すなわちロッキングコーナーは角度α(所定の鈍角)の角のある角部130になっている。   As shown in FIG. 8, each hook tooth 102 of the escape wheel & pinion 101 currently generally used in the ankle escapement includes a linear or flat stop surface 110 and the stop surface 110. And an impact surface 120 of a straight line, that is, a plane, that forms an angle α with respect to the surface, and a crossing portion of the stop surface 110 and the impact surface 120, that is, a rocking corner, is formed in a corner portion 130 having an angle α (a predetermined obtuse angle) It has become.

一方、アンクル201の入つめ202や出つめも、同様で、例えば、図9の(a)等に入つめ202について示したように、一般的に、直線状すなわち平面状の停止面210と、該停止面210に対して角度βをなす直線状すなわち平面状の衝撃面220とを備え、停止面210と衝撃面220とのロッキングコーナーは角度β(所定の鈍角)の角部230になり、衝撃面220の他端側も実際上鋭角γの角部240になっている。   On the other hand, the input pawl 202 and the output pawl of the ankle 201 are the same. For example, as shown for the input pawl 202 in FIG. A straight or planar impact surface 220 that forms an angle β with respect to the stop surface 210, and a rocking corner between the stop surface 210 and the impact surface 220 becomes a corner portion 230 of an angle β (predetermined obtuse angle); The other end side of the impact surface 220 is actually a corner portion 240 having an acute angle γ.

従って、がんぎ車101とてんぷとのトルクないしエネルギのやりとりは、概ね図9の(a)〜(e)及び図10に示すようになる。   Accordingly, torque or energy exchange between the escape wheelchair 101 and the balance with hairspring is substantially as shown in FIGS. 9 (a) to 9 (e) and FIG.

がんぎ歯102が停止面110でアンクル201の入つめ202の停止面210と係合して停止せしめられていたがんぎ車101は、アンクル201がてんぷの振り石から受けるPW1方向回動力によりC2方向に押され、衝撃解除の直前においては、図9の(a)で示したように、がんぎ歯102は、停止面110のうちロッキングコーナー130の近傍部分でアンクル201の入つめ202の停止面210のうちロッキングコーナー230によって停止解除力を受ける状態PS1になる。   The escape wheel 101 that has been stopped by engagement of the escape teeth 102 with the stop surface 210 of the pawl 202 of the ankle 201 on the stop surface 110 is the PW1 direction turning force that the ankle 201 receives from the pallet of the balance. As shown in FIG. 9 (a), the escape tooth 102 is engaged with the ankle 201 in the vicinity of the locking corner 130 of the stop surface 110 immediately before the impact is released. Of the stop surface 210 of 202, it will be in state PS1 which receives stop cancellation | release force by the rocking corner 230. FIG.

この直後に、がんぎ車101の慣性によりがんぎ歯102が入つめ202から一旦C2方向に離れ、その後、直ちに、ぜんまいからの運針輪列を介したC1方向トルクの作用下でC1方向に回転して、ロッキングコーナー130において入つめ202の衝撃面220のうちロッキングコーナー230よりもある程度の長さΔLP1だけずれた部位PP2に当たって、アンクル201をPW1方向に回すべく、該入つめ202に対して、該入つめ202の衝撃面220に対して垂直な向きPF2の力を及ぼし、アンクル201を介しててんぷにトルクを与え始める(図9の(b)の状態PS2)。   Immediately after this, the escape tooth 102 is once separated from the engagement pawl 202 in the C2 direction due to the inertia of the escape wheel 101, and then immediately in the C1 direction under the action of the C1 direction torque from the mainspring through the train wheel train. To the portion PP2 of the impact surface 220 of the pawl 202 that is shifted by a certain length ΔLP1 from the rocking corner 230 at the rocking corner 130, and with respect to the pawl 202 to rotate the ankle 201 in the PW1 direction. Then, a force in a direction PF2 perpendicular to the impact surface 220 of the pawl 202 is applied, and torque is applied to the balance with the ankle 201 (state PS2 in FIG. 9B).

ここで、がんぎ歯102が一旦アンクル201の入つめ202のロッキングコーナー230から離れた後アンクル201の衝撃面220にぶつかる際に力が不連続に且つ大きく変化した向きでアンクルに伝わることになるので、がんぎ車101からアンクル201への動力伝達の効率が低下し、また、長さΔLP1に相当する期間だけアンクル201に対する動力伝達の空白期間ができアンクルの入つめの202の衝撃面220を有効に使えない点でもがんぎ車101からアンクル201への動力伝達の効率が低下する。   Here, when the escape tooth 102 is once separated from the locking corner 230 of the pawl 202 of the ankle 201 and hits the impact surface 220 of the ankle 201, the force is transmitted to the ankle in a discontinuous and greatly changed direction. As a result, the efficiency of power transmission from the escape wheel 101 to the ankle 201 is reduced, and there is a blank period for power transmission to the ankle 201 for a period corresponding to the length ΔLP1. The efficiency of power transmission from the escape wheel 101 to the ankle 201 also decreases in that the 220 cannot be used effectively.

がんぎ車101のC1方向回転に伴い、がんぎ車101のがんぎ歯102のロッキングコーナー130が入つめ202の衝撃面220にトルクを与える部位PPが衝撃面220に沿ってEP方向に移動し、図9の(c)の状態PS3で示した位置PP3を通って図9の(d)の状態PS4で示したリービングコーナー(インパルスビーク)240に達する。このとき、がんぎ車101のがんぎ歯102がアンクル201の入つめ202の衝撃面220に及ぼす力の向きPF4は、状態PS4において衝撃面220に垂直な向きである。   As the escape wheel 101 rotates in the C1 direction, the rocking corner 130 of the escape tooth 102 of the escape wheel 101 has a portion PP that applies torque to the impact surface 220 of the pawl 202 along the impact surface 220 in the EP direction. 9 and passes through the position PP3 indicated by the state PS3 in FIG. 9C to reach the leaving corner (impulse beak) 240 indicated by the state PS4 in FIG. 9D. At this time, the direction PF4 of the force exerted by the escape teeth 102 of the escape wheel 101 on the impact surface 220 of the pawl 202 of the ankle 201 is a direction perpendicular to the impact surface 220 in the state PS4.

この後、がんぎ車101の更なるC1方向回転に伴い、図9の(e)に示したように、がんぎ歯102がそのロッキングコーナー130で入つめ202の衝撃面220を押す代わりに、がんぎ車101のがんぎ歯102がその衝撃面120で、該衝撃面120に対して垂直な向きPF5に、入つめ202のリービングコーナー240を押す衝撃面交替の状態PS5になる。この衝撃面220から衝撃面120への衝撃面交替の際に、がんぎ歯102が入つめ202に加える力の向きがPF4(入つめ202の衝撃面220に垂直な向き)からPF5(がんぎ歯102の衝撃面120に垂直な向き)に急激に変わる。   Thereafter, as the escape wheel 101 further rotates in the C1 direction, the escape tooth 102 pushes the impact surface 220 of the pawl 202 at the locking corner 130 as shown in FIG. In addition, the escape tooth 102 of the escape wheel 101 has its impact surface 120 in an impact surface alternation state PS5 that pushes the leaving corner 240 of the pawl 202 in a direction PF5 perpendicular to the impact surface 120. . When the impact surface is changed from the impact surface 220 to the impact surface 120, the direction of the force applied to the pawl 202 by the escape teeth 102 changes from PF4 (direction perpendicular to the impact surface 220 of the pawl 202) to PF5 ( It suddenly changes to a direction perpendicular to the impact surface 120 of the toothpaste 102.

その結果、がんぎ車101からアンクル201へのトルクの伝達、すなわちがんぎ車101からアンクル201を介したてんぷへのトルクの伝達が効果的に行われ難い。すなわち、例えば、この衝撃面交替の際にがんぎ歯102と入つめ202とが一時的に離れたり又は離れようとしたりする等により、その間トルクないしエネルギ伝達が行われなかったり行われ難かったりする虞れもある。   As a result, transmission of torque from the escape wheel 101 to the ankle 201, that is, transmission of torque from the escape wheel 101 to the balance via the ankle 201 is difficult to be performed effectively. That is, for example, when the impact surface is changed, the escape tooth 102 and the pawl 202 are temporarily separated or are about to be separated, and thus torque or energy transmission is not performed or is difficult to be performed. There is also a risk of doing.

その後は、がんぎ車101のC1方向回転に応じて、入つめ202の角部240ががんぎ歯102の衝撃面120に沿ってHP方向に移動しつつがんぎ車101からアンクル201への又は該アンクル201を介したてんぷへのトルクの供給が行われる。   Thereafter, in accordance with the rotation of the escape wheel 101 in the C1 direction, the corner portion 240 of the pawl 202 moves in the HP direction along the impact surface 120 of the escape tooth 102, and then moves from the escape wheel 101 to the ankle 201. Torque is supplied to the balance or to the balance with the ankle 201.

以上の説明からわかるように、従来のがんぎ歯を備えた従来のがんぎ車を有する従来のアンクル脱進器では、図9の(e)における衝撃面交替の際におけるトルク伝達のロスLP1や、図9の(a)から(b)における衝撃開始までのトルク伝達のロスLP2等があって、がんぎ車101からアンクル201への又は該アンクル201を介したてんぷへのトルクの供給が効果的に行われ難い虞れがある。   As can be seen from the above description, in the conventional ankle escapement having the conventional escape wheel provided with the conventional escape teeth, the torque transmission loss at the time of impact surface replacement in FIG. LP1 and torque transmission loss LP2 from the start of impact in (a) to (b) of FIG. 9 and the like, and torque of the escape wheel 101 to the ankle 201 or to the balance with the ankle 201 There is a possibility that the supply is difficult to be performed effectively.

てんぷの回転角θに応じたトルク比ΔT(がんぎ車とてんぷとの間でのトルクの授受ないし出入り)を入つめの場合PJ1と出つめの場合PJ2についてグラフ化すると、図10のようになり、このグラフの状態PS1から状態PS2への変化及び状態PS4からPS5への変化がロスLP1,LP2の生じるところに対応する。以上のことは、入つめだけでなく、出つめの場合も同様である。   FIG. 10 is a graph of the torque ratio ΔT corresponding to the rotation angle θ of the balance with respect to PJ1 in the case of the insertion and PJ2 in the case of the extraction. In this graph, the change from the state PS1 to the state PS2 and the change from the state PS4 to PS5 correspond to the places where the losses LP1 and LP2 occur. The above is the same for the case of not only the infeed but also the exit.

なお、目的は異なるものの、入つめのロッキングコーナー230を凸状の湾曲部にしたり衝撃面を凹状の湾曲部にすることは、提案されている(特許文献2)。   In addition, although the object is different, it has been proposed that the locking corner 230 of the pawl is a convex curved portion or the impact surface is a concave curved portion (Patent Document 2).

しかしながら、この特許文献2に開示の入つめの凸状の湾曲部によっては、上述の衝撃面交替の際の力の向きの急激な変化は避けられず、トルク伝達のロスLP2は改善されない。   However, depending on the convex convex curved portion disclosed in Patent Document 2, a sudden change in the direction of the force when the impact surface is changed cannot be avoided, and the torque transmission loss LP2 is not improved.

特開2009−288083号公報JP 2009-288083 A スイス国特許702689号明細書Swiss patent No. 702689

本発明は、前記諸点に鑑みなされたものであって、その目的とするところは、衝撃面交替の際においてトルクの伝達を効果的に行い得るがんぎ歯、該がんぎ歯を備えたがんぎ車、該がんぎ車を有するアンクル脱進器、該がんぎ歯を有するムーブメント、並びに機械式時計及びトルク伝達方法を提供することにある。   The present invention has been made in view of the above-mentioned points, and an object thereof is to provide a brilliant tooth that can effectively transmit torque when the impact surface is changed, and the brilliant tooth. An escape wheel, an ankle escapement having the escape wheel, a movement having the escape wheel, a mechanical timepiece, and a torque transmission method.

本発明のがんぎ歯は、前記目的を達成すべく、停止面と衝撃面とをつなぐロッキングコーナーが湾曲した第一湾曲凸面部の形態である。   The escape tooth of the present invention is in the form of a first curved convex surface portion in which a rocking corner connecting the stop surface and the impact surface is curved in order to achieve the above object.

本発明のがんぎ歯では、「停止面と衝撃面とをつなぐロッキングコーナーが湾曲した第一湾曲凸面部の形態である」ので、がんぎ歯がそのロッキングコーナーでアンクルのつめ(入つめ又は出つめ)の衝撃面を押す状態からがんぎ歯がその衝撃面(より詳しくはがんぎ歯の衝撃面のうちのロッキングコーナーにつながる部位(換言すれば、がんぎ歯の第一湾曲凸面部の形態のロッキングコーナーのうち衝撃面につながる部位))でアンクルのつめのリービングコーナー(インパルスビーク)を押す状態への衝撃面の交替に際して、がんぎ歯がアンクルのつめに与える力の向きが極端に変化するのを避け、該力の向きの変化ないし変動を最低限に抑えられ得るから、アンクルのつめに対するトルクの伝達が効果的に行われ得る。   In the escape tooth according to the present invention, “the rocking corner connecting the stop surface and the impact surface is in the form of the first curved convex surface portion”. Or, from the state of pushing the impact surface of the protrusion, the escape tooth is connected to the impact surface (more specifically, the portion of the impact surface of the escape tooth that is connected to the rocking corner (in other words, the first of the escape tooth) The force exerted on the pawl of the ankle when the impact surface is changed to a state where the ankle pawl's leaving corner (impulse beak) is pushed in the rocking corner in the form of a curved convex surface portion. Since the change of the direction of the force can be avoided and the change or fluctuation of the direction of the force can be minimized, the torque can be effectively transmitted to the pawl of the ankle.

また、本発明のがんぎ歯では、「停止面と衝撃面とをつなぐロッキングコーナーが湾曲した第一湾曲凸面部の形態である」ので、停止解除に際して、がんぎ歯のロッキングコーナーを形成する第一湾曲凸面部がアンクルのつめの停止面から衝撃面に概ね連続的に接触し得るから、停止解除から衝撃開始に至るまでの間に、がんぎ歯がアンクルのつめから離れてトルク供給が行われなくなる空白期間が最小限に抑えられ且つアンクルのつめの衝撃面を有効に利用し得る。従って、アンクルのつめに対してトルクが効果的に伝達され得る。また、停止解除の後で衝撃開始の際の力の向きの変化も比較的小さく抑えられ得るので、がんぎ歯からアンクルのつめに対してトルクが効果的に伝達され得る。   Also, in the escape tooth according to the present invention, “the rocking corner connecting the stop surface and the impact surface is in the form of a curved first curved convex surface portion”, so that when the stop is released, the locking corner of the escape tooth is formed. Since the first curved convex surface portion that makes contact with the impact surface from the pawl stop surface of the ankle pawl can be contacted substantially continuously, the hook teeth move away from the pawl of the ankle and torque between the release of the stop and the start of the impact. The blank period during which the supply is not performed is minimized, and the impact surface of the nail of the ankle can be used effectively. Therefore, torque can be effectively transmitted to the pawl of the ankle. In addition, since the change in the direction of the force at the start of impact after the stop is released can be suppressed to be relatively small, torque can be effectively transmitted from the escape tooth to the pawl of the ankle.

本発明のがんぎ歯では、典型的には、衝撃面のうちロッキングコーナーの前記第一湾曲凸面部につづく部位に湾曲した第二湾曲凸面部がある。   In the escape tooth of the present invention, there is typically a second curved convex surface portion curved at a portion of the impact surface following the first curved convex surface portion of the rocking corner.

この場合、衝撃面交替の後、がんぎ歯の衝撃面のうちアンクルのつめのリービングコーナーに当接する部位の向きが第二湾曲凸面部の湾曲に応じてアンクルの回転中心軸から離れる向き変わるので、がんぎ歯の回転に応じてがんぎ歯から与えられるトルクの低下が抑制又は該トルクが増大せしめられ得る。従って、アンクルのつめに対してトルクが効果的に伝達され得る。なお、第一湾曲凸面部と第二湾曲凸面部とが実際上つながり得る限り、比較的短かければ、第一湾曲凸面部と第二湾曲凸面部との間に直線状(平面状)部分が介在していてもよい。   In this case, after the impact surface is changed, the direction of the portion of the impact surface of the escapement that contacts the reeving corner of the claw of the ankle changes away from the rotation center axis of the ankle according to the curvature of the second curved convex surface portion. Therefore, a decrease in the torque applied from the escape teeth according to the rotation of the escape teeth can be suppressed or the torque can be increased. Therefore, torque can be effectively transmitted to the pawl of the ankle. As long as the first curved convex surface portion and the second curved convex surface portion can be practically connected, a linear (planar) portion is provided between the first curved convex surface portion and the second curved convex surface portion as long as the length is relatively short. It may be interposed.

本発明のがんぎ歯では、典型的には、前記第二湾曲凸面部が衝撃面の全体にわたって拡がっている。   In the escape tooth of the present invention, typically, the second curved convex surface portion extends over the entire impact surface.

その場合、がんぎ車からアンクルを介しててんぷに加えるトルクが、衝撃の開始の後衝撃の全期間を通じて時間の経過と共に増加せしめられ得る。   In that case, the torque applied from the escape wheel to the balance via the ankle can be increased over time during the entire period of impact after the start of the impact.

本発明のがんぎ歯では、典型的には、衝撃面のうちロッキングコーナーから離れた部位ほど前記第二湾曲凸面部の部分の曲率半径が大きくなっている。   In the escape tooth of the present invention, typically, the radius of curvature of the portion of the second curved convex surface portion is larger in the portion of the impact surface that is away from the rocking corner.

その場合、がんぎ車からアンクルを介しててんぷに加えるトルクが、衝撃の終りの段階において徐々に低減せしめられ得る。   In that case, the torque applied from the escape wheel to the balance via the ankle can be gradually reduced at the end of the impact.

本発明のがんぎ歯において、衝撃面の全体に前記第二湾曲凸面部が形成されている場合、がんぎ車の径が4.85mmであるときには、典型的には、前記第二湾曲凸面部の曲率半径R2が0.4〜0.6mmである。   In the escape tooth of the present invention, when the second curved convex surface portion is formed on the entire impact surface, when the escape wheel has a diameter of 4.85 mm, typically, the second curve The curvature radius R2 of the convex portion is 0.4 to 0.6 mm.

その場合、衝撃面の第二湾曲凸面部の長所が効果的に得られる。なお、曲率半径R2が小さすぎる場合(下限値よりも小さい場合)には、衝撃面交替の後がんぎ歯の衝撃面がアンクルのつめのリービングコーナーに与える力の向きが急激に変わるのでトルクの増大が大きくなりすぎる虞れがある。一方、曲率半径R2が大きすぎる場合(上限値よりも大きい場合)には、がんぎ歯の衝撃面の第二湾曲凸面部が実際上ないに等しくなって、実際上、従来のがんぎ歯の衝撃面の如く平面状(横から見ると直線状)になるから、第二湾曲凸面部があることによる利点がほとんど失われる。   In this case, the advantage of the second curved convex surface portion of the impact surface can be obtained effectively. If the radius of curvature R2 is too small (smaller than the lower limit value), the direction of the force applied by the impact surface of the hook teeth after the impact surface change to the leaving corner of the pawl of the ankle will change abruptly. There is a possibility that the increase in the amount becomes too large. On the other hand, when the radius of curvature R2 is too large (when it is larger than the upper limit), the second curved convex surface portion of the impact surface of the escape tooth becomes practically equal to that of the conventional escape. Since it becomes flat like the impact surface of the tooth (straight when viewed from the side), the advantage of having the second curved convex surface is almost lost.

本発明のがんぎ歯では、衝撃面のうち前記第二湾曲凸面部の部分に続く部位が平面状であってもよい。   In the escape tooth of the present invention, the portion following the second curved convex surface portion of the impact surface may be planar.

その場合、がんぎ車からアンクルを介しててんぷに加えるトルクが、後衝撃の終りの段階において概ね直線的に低減せしめられ得る。   In that case, the torque applied from the escape wheel to the balance via the ankle can be reduced substantially linearly at the end of the after impact.

本発明のがんぎ歯において、衝撃面のうち前記第二湾曲凸面部の部分に続く部位が平面状である場合、がんぎ車の径が4.85mmであるときには、典型的には、前記第二湾曲凸面部の曲率半径R2が0.2〜0.5mmである。   In the escape tooth of the present invention, when the portion following the second curved convex surface portion of the impact surface is planar, when the escape wheel has a diameter of 4.85 mm, typically, The curvature radius R2 of the second curved convex surface portion is 0.2 to 0.5 mm.

衝撃面の全体に第二湾曲凸面部がある場合と比較して、第二湾曲凸面部の曲率半径R2の適切な範囲がR2の小さい側にずれるのは、第二湾曲凸面部の拡がりが短くなるので、該拡がりの範囲内での面の向きをより大きく変えるためである。   Compared to the case where the entire impact surface has the second curved convex surface portion, the appropriate range of the radius of curvature R2 of the second curved convex surface portion is shifted to the smaller side of R2, because the expansion of the second curved convex surface portion is short. This is because the orientation of the surface within the range of the expansion is greatly changed.

本発明のがんぎ歯では、典型的には、がんぎ車の径が4.85mmである場合に、前記第一湾曲凸面部の曲率半径R1が0.01〜0.05mmである。   In the escape tooth of the present invention, typically, when the diameter of the escape wheel is 4.85 mm, the radius of curvature R1 of the first curved convex surface portion is 0.01 to 0.05 mm.

その場合、ロッキングコーナーの第一湾曲凸面部の長所が効果的に得られる。なお、曲率半径R1が小さすぎる場合(下限値よりも小さい場合)には、がんぎ歯のロッキングコーナーの第一湾曲凸面部が実際上ないに等しくなって、実際上、従来のがんぎ歯のロッキングコーナーの如く角張った頂点のある角部になるから、第一湾曲凸面部があることによる利点がほとんど失われる。一方、曲率半径R1が大きすぎる場合(上限値よりも大きい場合)には、アンクルの出つめとの係合(出つめの停止)が適切に行われ難くなる虞れがある。   In this case, the advantage of the first curved convex surface portion of the rocking corner can be obtained effectively. If the radius of curvature R1 is too small (smaller than the lower limit value), the first curved convex surface portion of the locking corner of the hook tooth is practically not equal, and in fact, conventional Since the corner has an angular apex such as a tooth locking corner, the advantage of having the first curved convex surface is almost lost. On the other hand, when the radius of curvature R1 is too large (when it is larger than the upper limit value), there is a possibility that it is difficult to properly engage the pallet of the ankle (stopping the bulge).

本発明のがんぎ車は、前記目的を達成すべく、上述のようながんぎ歯を備える。   The escape wheel according to the present invention includes the escape teeth as described above in order to achieve the object.

また、本発明のアンクル脱進器は、前記目的を達成すべく、上述のようながんぎ車と、前記がんぎ車からトルクの授受を行うとともに、前記がんぎ車の回転を間欠的に規制して、ぜんまいのトルクをてんぷへ伝えるアンクルと、前記アンクルからのトルクを受けるとともに、前記アンクルに作用するてんぷと、を有する。
また、本発明のムーブメントは、前記目標を達成すべく、上述のようなアンクル脱進器を有する。
Moreover, the ankle escapement of the present invention performs the transfer of torque from the escape wheel and the escape wheel as described above, and intermittently rotates the escape wheel to achieve the object. And an ankle that transmits torque of the mainspring to the balance with the balance, and a balance that receives the torque from the ankle and acts on the ankle.
In addition, the movement of the present invention has the ankle escapement as described above in order to achieve the target.

更に、本発明の機械式時計は、前記目的を達成すべく、上述のようなムーブメント車と、前記ムーブメントを内包するケーと、を有する。
また、本発明のトルク伝達方法は、前記目的を達成すべく、停止面と衝撃面とをつなぐロッキングコーナーが湾曲した第一湾曲凸面部の形態であるがんぎ歯を備えたがんぎ車から、アンクルのつめへトルクを伝達するトルク伝達方法であって、前記がんぎ車の回転に伴って、前記衝撃面を前記アンクルのつめに当接差させて前記トルクを伝達させる際に、前記アンクルのつめを前記第一湾曲部に沿って前記衝撃面へ近づかせることにより、前記がんぎ歯が前記アンクルのつめに与える力の向きの変化ないし、変動を抑えながら、前記トルクを伝達することを特徴とする。
Furthermore, in order to achieve the object, the mechanical timepiece according to the invention includes a movement wheel as described above and a case containing the movement.
In addition, the torque transmission method of the present invention provides a escape wheel provided with a escape tooth in the form of a first curved convex surface portion in which a rocking corner connecting the stop surface and the impact surface is curved in order to achieve the above-mentioned object. A torque transmission method for transmitting torque to the pawl of the ankle, wherein the torque is transmitted by bringing the impact surface into contact with the pawl of the ankle as the escape wheel rotates. By moving the ankle pawl along the first curved portion toward the impact surface, the torque is transmitted while suppressing changes or fluctuations in the direction of the force applied to the pawl of the ankle by the escape tooth. It is characterized by doing.

本発明の好ましい一実施例のがんぎ歯を備えた本発明の好ましい一実施例のがんぎ車を有する本発明の好ましい一実施例のアンクル脱進器の平面説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory plan view of an ankle escapement of a preferred embodiment of the present invention having a escape wheel of a preferred embodiment of the present invention equipped with a escape tooth of a preferred embodiment of the present invention. 図1のがんぎ車の本発明の好ましい一実施例のがんぎ歯の部分を拡大して示した平面説明図。The plane explanatory view which expanded and showed the portion of the escape tooth of one desirable example of the present invention of the escape wheel of FIG. 図2のがんぎ歯を備えたがんぎ車を有するアンクル脱進器のがんぎ歯と入つめとのトルク授受の変化を示したもので、(a)は停止の解除が開始される状態を示した平面説明図、(b)は停止解除が進行している状態を示した平面説明図、(c)はがんぎ歯による入つめの衝撃が開始された状態を示した平面説明図、(d)はがんぎ歯による入つめの衝撃が進行している状態であってがんぎ歯の円弧状ロッキングコーナーが入つめの衝撃面に沿って途中まで移動した状態を示した平面説明図、(e)はがんぎ歯による入つめの衝撃が進行している状態であってがんぎ歯の円弧状ロッキングコーナーが入つめの衝撃面に沿ってリービングコーナーまで移動した状態を示した平面説明図、(f)衝撃面交替の状態を示した平面説明図。Fig. 2 shows a change in torque exchange between the escapement and the pawl of the ankle escapement having an escape wheel equipped with the escapement of Fig. 2. (B) is a plane explanatory diagram showing a state in which the stop release is progressing, (c) is a plane showing a state in which the impact of the claws by the escape tooth is started. Explanatory drawing, (d) shows a state in which the impact of the pawl is progressing, and the arcuate rocking corner of the goose tooth has moved halfway along the impact surface of the pawl (E) is a state in which the impact of the pawl is progressing, and the arcuate rocking corner of the hook is moved along the impact surface of the pawl to the leaving corner. Plan explanatory drawing which showed the state, (f) Plan explanatory drawing which showed the state of impact surface replacement. アンクルの入つめに関して、てんぷ回転角θに対するトルク比ΔTの変化を模式的に示したグラフであって、図3のアンクル脱進器についての変化と図8に示した従来のアンクル脱進器についての変化を示したグラフ。FIG. 9 is a graph schematically showing changes in the torque ratio ΔT with respect to the balance with respect to the balance with respect to the rotation angle θ of the ankle, and shows changes in the ankle escapement of FIG. 3 and the conventional ankle escapement shown in FIG. 8. The graph which showed change of. アンクルの出つめに関して、てんぷ回転角θに対するトルク比ΔTの変化を模式的に示したグラフであって、図3のアンクル脱進器についての変化と図8に示した従来のアンクル脱進器についての変化を示したグラフ。FIG. 9 is a graph schematically showing a change in the torque ratio ΔT with respect to the balance rotation angle θ with respect to the unloading of the ankle, and the change with respect to the ankle escapement of FIG. 3 and the conventional ankle escapement shown in FIG. 8. The graph which showed change of. 本発明の別の好ましい一実施例のがんぎ歯の部分を拡大して示した図2と同様な平面説明図。Plane explanatory drawing similar to FIG. 2 which expanded and showed the part of the escape tooth of another preferable one Example of this invention. 図6のがんぎ歯を備えたアンクル脱進器について、アンクルの入つめ及び出つめに関して、てんぷ回転角θに対するトルク比ΔTの変化を模式的に示したグラフ。The graph which showed typically the change of the torque ratio (DELTA) T with respect to the balance rotation angle (theta) regarding the ankle escapement of the ankle escapement provided with the escapement of FIG. 従来のアンクル脱進器の従来のがんぎ車の従来のがんぎ歯についての平面説明図。Plane explanatory drawing about the conventional escape tooth of the conventional escape wheel of the conventional ankle escapement. 図8の従来のがんぎ歯を備えた従来のがんぎ車を有する従来のアンクル脱進器のがんぎ歯と入つめとのトルク授受の変化を示したもので、(a)は停止の解除が開始される状態を示した平面説明図、(b)は停止解除後において一旦入つめから離れたがんぎ歯による入つめの衝撃が開始された状態を示した平面説明図、(c)はがんぎ歯による入つめの衝撃が進行している状態であってがんぎ歯のロッキングコーナーが入つめの衝撃面に沿って途中まで移動した状態を示した平面説明図、(d)はがんぎ歯による入つめの衝撃が進行している状態であってがんぎ歯のロッキングコーナーが入つめの衝撃面に沿ってリービングコーナーまで移動した状態を示した平面説明図、(e)衝撃面交替の状態を示した平面説明図。FIG. 8 shows a change in torque exchange between the hook and tooth of the conventional ankle escapement having the conventional escape wheel provided with the conventional escape tooth of FIG. An explanatory plan view showing a state in which the release of the stop is started, (b) is an explanatory plan view showing a state in which the impact of the pawl by the hook teeth once separated from the pawl after the stop is released, (C) is an explanatory plan view showing a state in which the impact of the pawl is proceeding, and the rocking corner of the escape tooth is moved partway along the impact surface of the pawl, (D) is an explanatory plan view showing a state in which the impact of the incisor by the hook teeth is in progress and the locking corner of the hook teeth has moved along the impact surface of the hook to the leaving corner. (E) Plane explanatory drawing which showed the state of impact surface replacement. 図8の従来のがんぎ歯を備えた従来のアンクル脱進器について、アンクルの入つめ及び出つめに関して、てんぷ回転角θに対するトルク比ΔTの変化を模式的に示したグラフ。The graph which showed typically the change of torque ratio (DELTA) T with respect to the balance rotation angle (theta) regarding the nail | claw in the ankle of the conventional ankle escapement provided with the conventional escape tooth of FIG.

本発明の好ましい一実施の形態を添付図面に示した好ましい実施例に基づいて説明する。   A preferred embodiment of the present invention will be described based on a preferred embodiment shown in the accompanying drawings.

図1には、本発明の好ましい一実施例のがんぎ歯1を備えた本発明の好ましい一実施例のがんぎ車2を有する本発明の好ましい一実施例のアンクル脱進器3を有する本発明の好ましい一実施例のムーブメント300であって、機械式時計4に組み込まれるもの示されている。がんぎ車2は、中心軸線CのまわりでC1,C2方向に回動可能で、(図示しない)ぜんまいのトルクを伝える。アンクル脱進器3において、70はアンクル、80はてんぷである。てんぷ80は、ひげぜんまい81の作用下で中心軸線AのまわりでA1,A2方向に往復回動可能で、振り石82においてアンクル70からのトルクを受けると共に該アンクル70に作用する。アンクル70は、アンクル軸71の中心軸線BのまわりでB1,B2方向に回動可能であり、ハコ先72で振り石82とトルクの授受を行うと共に、入つめ73及び出つめ74でがんぎ車2のC1方向回転を間欠的に規制して、ぜんまいのトルクを少しづつてんぷ80に伝える。ムーブメント300(駆動体)の一例としては、機械式時計4からいわゆる外装部分(ケース400、時針(不図示)等)を除いた部分であり、動力源の主ゼンマイ(不図示)、針を動かす駆動歯車(筒車(不図示)等)等、歯車の回転速度を制御するアンクル脱進器3(調速・脱進機構)、又は手巻機構(不図示)等を含んで構成されており、単体で流通可能なものである。   FIG. 1 shows an anchor escapement 3 according to a preferred embodiment of the present invention having a escape wheel 2 according to a preferred embodiment of the present invention provided with a escape tooth 1 according to a preferred embodiment of the present invention. A movement 300 of a preferred embodiment of the invention having a mechanical watch 4 is shown. The escape wheel 2 can be rotated in the directions of C1 and C2 around the central axis C, and transmits the torque of the mainspring (not shown). In the ankle escapement 3, 70 is an ankle and 80 is a balance. The balance with hairspring 81 can reciprocate in the directions of A1 and A2 around the central axis A under the action of the hairspring 81, receives the torque from the ankle 70 at the oscillating stone 82, and acts on the ankle 70. The ankle 70 can be rotated in the directions of B1 and B2 around the central axis B of the ankle shaft 71. The ankle 70 transmits and receives torque with the pallet stone 82 at the lever tip 72, and at the entrance pawl 73 and the exit pawl 74, cancer. By intermittently restricting the rotation of the wheel 2 in the C1 direction, the torque of the mainspring is transmitted to the balance 80 little by little. An example of the movement 300 (driving body) is a portion obtained by removing a so-called exterior portion (case 400, hour hand (not shown), etc.) from the mechanical timepiece 4, and moves the main spring (not shown) and hands of the power source. Drive gear (cylinder wheel (not shown), etc.), etc., including an ankle escapement 3 (speed control / escape mechanism) that controls the rotational speed of the gear, a manual winding mechanism (not shown), etc. It can be distributed by itself.

がんぎ車2の各がんぎ歯1では、図2に示したように、停止面10と衝撃面20との間のロッキングコーナー30が、滑らかに湾曲した第一湾曲凸面部31の形態である。より詳しくは、この例では、第一湾曲凸面部31は、半径R1の円弧面32になっていて、該第一湾曲凸面部31のうち停止面10側の端縁部33は該停止面10に連続的に且つ滑らかにつながっている。また、第一湾曲凸面部31のうち衝撃面20側の端縁部34は該衝撃面20に連続的に且つ滑らかにつながっている。   In each escape tooth 1 of the escape wheel 2, as shown in FIG. 2, the rocking corner 30 between the stop surface 10 and the impact surface 20 has a first curved convex surface portion 31 that is smoothly curved. It is. More specifically, in this example, the first curved convex surface portion 31 is an arc surface 32 having a radius R1, and the end edge portion 33 on the stop surface 10 side of the first curved convex surface portion 31 is the stop surface 10. Is connected continuously and smoothly. Further, the edge 34 on the impact surface 20 side of the first curved convex surface portion 31 is continuously and smoothly connected to the impact surface 20.

図2のがんぎ歯1では、また、衝撃面20も、なめらかに湾曲した第二湾曲凸面部21の形態である。より詳しくは、この例では、第二湾曲凸面部21は、半径R2の円弧面22になっていて、該第二湾曲凸面部21のうちロッキングコーナー30側の端縁部23は該ロッキングコーナー30を形成する第一湾曲凸面部31のうち近接する端縁部34に連続的に且つ滑らかにつながっている。また、第二湾曲凸面部21のうち反対側の端縁部24はリービングコーナーないしインパルスビーク40まで延びている。   In the escape tooth 1 of FIG. 2, the impact surface 20 is also in the form of a second curved convex surface portion 21 that is smoothly curved. More specifically, in this example, the second curved convex surface portion 21 is an arc surface 22 having a radius R <b> 2, and the end edge portion 23 on the locking corner 30 side of the second curved convex surface portion 21 is the rocking corner 30. Are connected continuously and smoothly to the adjacent edge portion 34 of the first curved convex surface portion 31. In addition, the end edge 24 on the opposite side of the second curved convex surface portion 21 extends to a leaving corner or impulse beak 40.

ここで、がんぎ車2の径が4.85mm程度である場合、ロッキングコーナー30を形成する第一湾曲凸面部31の円弧面32の半径(曲率半径)R1は、0.01mm〜0.05mm程度であり、衝撃面20を形成する第二湾曲凸面部21の円弧面22の半径(曲率半径)R2は、0.4mm〜0.6mm程度であることが好ましい。   Here, when the diameter of the escape wheel 2 is about 4.85 mm, the radius (curvature radius) R1 of the arc surface 32 of the first curved convex surface portion 31 forming the rocking corner 30 is 0.01 mm to 0.00 mm. The radius (curvature radius) R2 of the arc surface 22 of the second curved convex surface portion 21 that forms the impact surface 20 is preferably about 0.4 mm to 0.6 mm.

R1が上記の範囲内にある場合、ロッキングコーナーの第一湾曲凸面部の長所が効果的に得られる。   When R1 is within the above range, the advantages of the first curved convex surface portion of the rocking corner can be obtained effectively.

なお、曲率半径R1が小さすぎる場合(下限値よりも小さい場合)には、がんぎ歯のロッキングコーナーの第一湾曲凸面部が実際上ないに等しくなって、実際上、従来のがんぎ歯のロッキングコーナーの如く角張った頂点のある角部になるから、第一湾曲凸面部があることによる利点がほとんど失われる。一方、曲率半径R1が大きすぎる場合(上限値よりも大きい場合)には、アンクルの出つめとの係合(出つめの停止)が適切に行われ難くなる虞れがある。   If the radius of curvature R1 is too small (smaller than the lower limit value), the first curved convex surface portion of the locking corner of the hook tooth is practically not equal, and in fact, conventional Since the corner has an angular apex such as a tooth locking corner, the advantage of having the first curved convex surface is almost lost. On the other hand, when the radius of curvature R1 is too large (when it is larger than the upper limit value), there is a possibility that it is difficult to properly engage the pallet of the ankle (stopping the bulge).

また、R2が上記の範囲内にある場合、衝撃面の第二湾曲凸面部の長所が効果的に得られる。   Moreover, when R2 exists in said range, the advantage of the 2nd curved convex part of an impact surface is obtained effectively.

なお、曲率半径R2が小さすぎる場合(下限値よりも小さい場合)には、衝撃面交替の後がんぎ歯の衝撃面がアンクルのつめのリービングコーナーに与える力の向きが急激に変わるのでトルクの増大が大きくなりすぎる虞れがある。一方、曲率半径R2が大きすぎる場合(上限値よりも大きい場合)には、がんぎ歯の衝撃面の第二湾曲凸面部が実際上ないに等しくなって、実際上、従来のがんぎ歯の衝撃面の如く平面状(横から見ると直線状)になるから、第二湾曲凸面部があることによる利点がほとんど失われる。   If the radius of curvature R2 is too small (smaller than the lower limit value), the direction of the force applied by the impact surface of the hook teeth after the impact surface change to the leaving corner of the pawl of the ankle will change abruptly. There is a possibility that the increase in the amount becomes too large. On the other hand, when the radius of curvature R2 is too large (when it is larger than the upper limit), the second curved convex surface portion of the impact surface of the escape tooth becomes practically equal to that of the conventional escape. Since it becomes flat like the impact surface of the tooth (straight when viewed from the side), the advantage of having the second curved convex surface is almost lost.

以上の如く構成されたがんぎ車2のがんぎ歯1とアンクル70の入つめ73との相互作用を、がんぎ車2の外径が4.85mmで、第一湾曲凸面部31の円弧面32の曲率半径R1が0.02mmで、第二湾曲凸面部21の円弧面22の曲率半径R2が0.5mmである場合を例にとって、図1及び図2に加えて、図3の(a)〜(f)及び図4に基づいて説明する。図3の(a)〜(f)等において、入つめ73は、停止面75、衝撃面76、ロッキングコーナー77及びリービングコーナーないしインパルスビーク78を有する。停止面75及び衝撃面76は平面で、図3の(a)〜(f)のような正面説明図で示した場合には直線状になる。ロッキングコーナー77及びリービングコーナー78は、夫々、平面と平面とが交差している角部であって、実際上、頂点77a,78aがある。また、図4はてんぷの回転角θ(ひげぜんまいに往復回動方向の弾性ひずみがない中立位置をθ=0とする)に対するがんぎ車及びてんぷ間でのアンクルの入つめを介したトルクの出入(てんぷ/がんぎトルク比)ΔTを表し、太い実線J1は、がんぎ歯1とアンクル70とを備えたアンクル脱進器3におけるてんぷ回転角θとトルク比ΔTとの関係を表わし、破線PJ1は、図9の(a)〜(e)に示した従来のがんぎ歯102とアンクル201とを備えた従来のアンクル脱進器におけるてんぷ回転角θとトルク比ΔTとの関係を表わす。   The interaction between the escape tooth 1 of the escape wheel 2 configured as described above and the pawl 73 of the ankle 70 is the first curved convex surface portion 31 with the outer diameter of the escape wheel 2 being 4.85 mm. In addition to FIG. 1 and FIG. 2, the curvature radius R1 of the arc surface 32 is 0.02 mm and the curvature radius R2 of the arc surface 22 of the second curved convex surface portion 21 is 0.5 mm. (A) to (f) and FIG. 3 (a) to 3 (f) and the like, the pawl 73 has a stop surface 75, an impact surface 76, a rocking corner 77, and a leaving corner or impulse beak 78. The stop surface 75 and the impact surface 76 are flat surfaces, and are linear when shown in front explanatory views such as (a) to (f) of FIG. The rocking corner 77 and the leaving corner 78 are corner portions where the plane and the plane intersect, respectively, and actually have vertices 77a and 78a. FIG. 4 shows the torque through the hook of the ankle between the escape wheel and the balance with respect to the rotation angle θ of the balance (the neutral position where the balance spring has no elastic strain in the reciprocating rotation direction is set to θ = 0). The balance between the balance rotation angle θ and the torque ratio ΔT in the ankle escapement 3 provided with the escapement 1 and the ankle 70 is shown by a thick solid line J1. The broken line PJ1 represents the balance between the balance rotation angle θ and the torque ratio ΔT in the conventional ankle escapement including the conventional escapement 102 and the ankle 201 shown in FIGS. Represents a relationship.

図3の(a)には、がんぎ歯1が停止面10の端であってロッキングコーナー30をなす第一湾曲凸面部31の停止面10側の端縁33において、入つめ73のロッキングコーナー77の頂点77aと係合ないし当接した状態S1が示されている。   In FIG. 3A, the locking pawl 73 is locked at the end 33 on the stop surface 10 side of the first curved convex surface portion 31 where the escape tooth 1 is the end of the stop surface 10 and forms the rocking corner 30. A state S <b> 1 that is engaged or abutted with the apex 77 a of the corner 77 is shown.

この状態S1に入る前は、がんぎ歯1は、停止面10で入つめ73の停止面75と当接していて、A1方向に回転している振り石82によりB1方向に回動されているアンクル70が、入つめ73の停止面75でがんぎ歯1の停止面10をB1に押してがんぎ歯1をC2方向に短時間だけ押し戻す。この状態Saは、図4において、符号Saで示した状態である。   Before entering this state S1, the escape tooth 1 is in contact with the stop surface 75 of the pawl 73 at the stop surface 10 and is rotated in the B1 direction by the calculus 82 rotating in the A1 direction. The ankle 70 is pushed by the stop surface 75 of the pawl 73 against the stop surface 10 of the escape tooth 1 against B1 and pushes the escape tooth 1 back in the C2 direction for a short time. This state Sa is the state indicated by the symbol Sa in FIG.

図3の(a)の状態S1は、図4において、符号S1で示す状態である。この状態S1の後、入つめ73のB1方向回動に伴い該入つめ73のロッキングコーナー77の頂点77aに当接するがんぎ歯1の部位は、第一湾曲凸面部31に沿って滑らかに且つ徐々に衝撃面20に近付く。   A state S1 in FIG. 3A is a state indicated by reference numeral S1 in FIG. After this state S <b> 1, the portion of the escape tooth 1 that comes into contact with the apex 77 a of the locking corner 77 of the pawl 73 as the pawl 73 rotates in the B <b> 1 direction smoothly along the first curved convex surface portion 31. And gradually approaches the impact surface 20.

従って、図3の(b)に示したように、アンクル70が、入つめ73のロッキングコーナー77の頂点77aでがんぎ歯1を押す向き、換言すれば、がんぎ歯1の当接面部から入つめ73のロッキングコーナー77の頂点77aにかかる力の向きが徐々に変わり、入つめ73によって押されたがんぎ歯1がC2方向に入つめ73から離れる(図3の(b)及び図4の状態S2)。なお、第一湾曲凸面部31が入つめ73のロッキングコーナー77の頂点77aと当接している場合、該第一湾曲凸面部31の当接部位における接平面に垂直な向きF(状態S1では向きF1、状態S2では向きF2)の力がかかる。   Therefore, as shown in FIG. 3B, the direction in which the ankle 70 pushes the escape tooth 1 at the vertex 77 a of the locking corner 77 of the pawl 73, in other words, the contact of the escape tooth 1. The direction of the force applied to the apex 77a of the locking corner 77 of the pawl 73 from the surface portion gradually changes, and the escape tooth 1 pushed by the pawl 73 moves away from the pawl 73 in the C2 direction ((b) of FIG. 3). And state S2) of FIG. When the first curved convex surface portion 31 is in contact with the apex 77a of the locking corner 77 of the pawl 73, the direction F is perpendicular to the tangential plane at the contact portion of the first curved convex surface portion 31 (orientation in the state S1). In F1 and state S2, a force in the direction F2) is applied.

なお、図3の(b)に示した状態S2にある際の入つめ73及びこれを備えたアンクル70のB1方向回転角は、図9の(a)で示したように従来のアンクル201の入つめ202のロッキングコーナー230の頂点と従来のがんぎ歯102のロッキングコーナー130の頂点とが係合しがんぎ歯102が入つめ202から離れる状態(PS1)のアンクル201のPW1方向の回転角よりも小さい。すなわち、がんぎ歯1を備えたがんぎ車2は、図4の状態S2と状態PS1との比較からわかるように、てんぷ回転角がより大きい(振り石の戻りが少ない)うちに、入つめ73から比較的小さい加速状態で離れ得る。   Note that the rotation angle in the B1 direction of the fitting pawl 73 and the ankle 70 provided with the pawl 73 in the state S2 shown in FIG. 3B is the same as that of the conventional ankle 201 shown in FIG. The apex of the locking corner 230 of the pawl 202 and the apex of the locking corner 130 of the conventional escape tooth 102 are engaged with each other, and the ankle 201 in the PW1 direction in the state where the escape tooth 102 is separated from the entrance pawl 202 (PS1). Smaller than rotation angle. That is, the escape wheel 2 provided with the escape tooth 1 can be seen from the comparison between the state S2 and the state PS1 in FIG. The pawl 73 can be separated with a relatively small acceleration state.

C2方向の慣性により一旦入つめ73から離れたがんぎ歯1は、図3の(c)及び図4において状態S3で示したように、ぜんまいからのトルクの作用下で直ちに(短い空白期間の後に)C1方向回転に戻ってロッキングコーナー30をなす第一湾曲凸面部31のうち衝撃面20につながる端縁部34すなわち衝撃面20のうち第一湾曲凸面部31につながる部位23で、入つめ73の衝撃面76のうちロッキングコーナー77の近傍の部位75aに当たる。従って、入つめ73の衝撃面76を有効に利用し得る。   As shown in the state S3 in FIG. 3C and FIG. 4, the escape tooth 1 once separated from the pawl 73 due to the inertia in the C2 direction is immediately (short blank period) under the action of torque from the mainspring. After the rotation of the first curved convex surface portion 31 forming the rocking corner 30 after returning to the C1 direction rotation, the edge 34 connected to the impact surface 20, that is, the portion 23 connected to the first curved convex surface portion 31 of the impact surface 20 is entered. The impact surface 76 of the pawl 73 hits a portion 75 a in the vicinity of the rocking corner 77. Therefore, the impact surface 76 of the pawl 73 can be used effectively.

がんぎ歯1では、第一湾曲凸面部31の存在の故に、状態S2においててんぷ80の回転速度が小さいうちに入つめ73から離れたので、従来のがんぎ歯102と比較して、より早く、すなわち、入つめ73のロッキングコーナー75により近い部位75aにおいて入つめ73の衝撃面76と当接して、入つめ73(アンクル70)を介しててんぷ80にトルクを加え得る。   In the escape tooth 1, because of the presence of the first curved convex surface portion 31, the balance 80 is away from the pawl 73 while the rotation speed of the balance 80 is small in the state S <b> 2. Compared with the conventional escape tooth 102, Torque can be applied to the balance with hairs 80 through the pawl 73 (ankle 70) by contacting the impact surface 76 of the pawl 73 at a portion 75a closer to the locking corner 75 of the pawl 73 earlier.

図3の(c)から図3の(d)及び(e)並びに図4において、状態S4及びS5で示すように、この後、がんぎ歯1のC1方向回転に応じて、がんぎ歯1のロッキングコーナー30の第一湾曲凸面部31のうち衝撃面20側の端縁34(衝撃面20の第一湾曲凸面部31側の端縁23)が入つめ73の衝撃面76に当接する部位が、E1方向に移動しつつ、がんぎ歯1が第一湾曲凸面部31の端縁34で入つめ73の衝撃面76にトルクを与え続ける。なお、この段階は、がんぎ歯1のロッキングコーナー30の第一湾曲凸面部31のうち衝撃面20側の端縁34が入つめ73の衝撃面76の端にあるインパルスコーナーに達する状態S5に至るまで続く。   3 (c) to FIG. 3 (d) and 3 (e) and FIG. 4, as shown by the states S4 and S5, after this, depending on the rotation of the escape tooth 1 in the C1 direction, Of the first curved convex surface portion 31 of the locking corner 30 of the tooth 1, the edge 34 on the impact surface 20 side (the edge 23 on the first curved convex surface portion 31 side of the impact surface 20) contacts the impact surface 76 of the fitting 73. While the contacting portion moves in the E1 direction, the escape tooth 1 continues to apply torque to the impact surface 76 of the pawl 73 at the end edge 34 of the first curved convex surface portion 31. In this stage, the edge 34 on the impact surface 20 side of the first curved convex surface portion 31 of the locking corner 30 of the escape tooth 1 reaches the impulse corner at the end of the impact surface 76 of the pawl 73. It continues until.

以上の状態S3からS5までの間、がんぎ歯1は、ロッキングコーナー30の第一湾曲凸面部31のうち衝撃面20側の端縁34で、入つめ73の衝撃面76に当接して該衝撃面76に垂直な向きF(状態S3では向きF3、状態S4では向きF4、状態S5では向きF5)に力を加える。この力の向きF3,F4,F5は、入つめ73の衝撃面76に垂直な向きで概ね概ね一定であるので、図4に示すように、がんぎ歯1が入つめ73に加える1のトルクが概ね一定に保たれ得る。   Between the above states S3 to S5, the escape tooth 1 is in contact with the impact surface 76 of the fitting pawl 73 at the edge 34 on the impact surface 20 side of the first curved convex surface portion 31 of the rocking corner 30. A force is applied in the direction F (direction F3 in state S3, direction F4 in state S4, direction F5 in state S5) perpendicular to the impact surface 76. The direction F3, F4, F5 of this force is generally constant in the direction perpendicular to the impact surface 76 of the pawl 73, so that the escape tooth 1 is applied to the pawl 73 as shown in FIG. Torque can be kept approximately constant.

がんぎ車2が更にC1方向に回転すると、がんぎ歯1のロッキングコーナー30の第一湾曲凸面部31のうち衝撃面20側の端縁34が入つめ73の衝撃面76に当接した状態(S3,S4,S5)から、がんぎ歯1の衝撃面20に入つめ73のリービングコーナー(インパルスビーク)77が当接する状態(S6)に移る。すなわち、トルク伝達に係わる衝撃面が入つめ73の衝撃面76からがんぎ歯1の衝撃面20に移る衝撃面交替の状態S6になる。   When the escape wheel 2 further rotates in the C1 direction, the edge 34 on the impact surface 20 side of the first curved convex surface portion 31 of the locking corner 30 of the escape tooth 1 contacts the impact surface 76 of the fitting 73. The state (S 3, S 4, S 5) is shifted to a state (S 6) in which the leaving corner (impulse beak) 77 of the pawl 73 contacts the impact surface 20 of the escape tooth 1. That is, an impact surface change state S6 in which the impact surface related to torque transmission moves from the impact surface 76 of the pawl 73 to the impact surface 20 of the escape tooth 1 is obtained.

この衝撃面交替S6に際しては、図3の(f)に示したように、がんぎ歯1が入つめ73に加える1の力の向きすなわち当接面の接平面に垂直な向きFが図3の(e)の状態S5における想像線で示した向きF5(状態S5において入つめ73の衝撃面76に垂直な向き)から実線で示した向きF6(ロッキングコーナー30の端縁34につながる又は重なる衝撃面20の端縁23の接平面に垂直な向き)に替る。このがんぎ車2のがんぎ歯1のロッキングコーナー30には円弧面32の形態の第一湾曲凸面部31が形成されていて、この衝撃面交替が湾曲凸面部31の端縁34及びこれに隣接ないし重なる衝撃面20の端縁23で生じるので、この向きF5から向きF6への変化は、極めて小さい。従って、この衝撃面交替の状態S6において、がんぎ車2からアンクル70を介しててんぷ80に与えるトルク変動が最小限に抑えられ得、トルク伝達のロスが最低限に抑えられ得る。すなわち、この衝撃面交替の状態S6の際のトルク変動によってがんぎ歯1と入つめ73とが離れること又はその虞れを最低限に抑え得るので、トルク伝達が効果的に行われ得る。   In this impact surface change S6, as shown in FIG. 3 (f), the direction of the force 1 applied by the escape tooth 1 to the pawl 73, that is, the direction F perpendicular to the tangential plane of the contact surface is shown. 3 (e), the direction F5 indicated by the imaginary line in the state S5 (direction perpendicular to the impact surface 76 of the pawl 73 in the state S5) to the direction F6 indicated by the solid line (connected to the edge 34 of the locking corner 30 or (The direction perpendicular to the tangent plane of the edge 23 of the overlapping impact surface 20). A first curved convex surface portion 31 in the form of an arc surface 32 is formed at the rocking corner 30 of the escape tooth 1 of the escape wheel 2, and this impact surface replacement is performed by the edge 34 of the curved convex surface portion 31 and Since this occurs at the edge 23 of the impact surface 20 adjacent to or overlapping with this, the change from the direction F5 to the direction F6 is extremely small. Therefore, in this impact surface replacement state S6, torque fluctuations applied from the escape wheel 2 to the balance 80 via the ankle 70 can be minimized, and torque transmission loss can be minimized. That is, since the risk of the escape tooth 1 and the pawl 73 being separated or the risk of the change due to the torque fluctuation in the impact surface replacement state S6 can be minimized, torque transmission can be effectively performed.

なお、図4において破線の状態PS5により示し図9の(e)において示したように、従来のがんぎ歯及びアンクルからなるアンクル脱進器の場合、がんぎ歯102の角の尖ったロッキングコーナー130と入つめ202の角の尖ったリービングコーナー240とが当接する状態PS5において衝撃面交替が生じ、瞬間的にトルクの向きが比較的大きく変動する。従って、トルク変動が大きく、がんぎ歯1が入つめ73から一時的に離れる等によりトルク伝達効率が低下する虞れがある。なお、この状態PS5の衝撃面交替が起きるのは、入りつめ73の回転角が、状態S5の場合の入つめ73の回転角よりも小さい。   In addition, as shown by the broken line state PS5 in FIG. 4 and shown in FIG. 9 (e), in the case of an ankle escapement made up of a conventional escape tooth and ankle, the corner of the escape tooth 102 is sharp. In the state PS5 in which the locking corner 130 and the leaving corner 240 with the sharp corners of the pawl 202 are in contact with each other, the impact surface is changed, and the direction of the torque instantaneously fluctuates relatively greatly. Therefore, torque fluctuation is large, and there is a possibility that the torque transmission efficiency may decrease due to the temporary movement of the escape tooth 1 from the pawl 73 or the like. The impact surface change in this state PS5 occurs because the rotation angle of the pawl 73 is smaller than the rotation angle of the pawl 73 in the state S5.

図3の(f)の状態S6の後は、入つめ73のリービングコーナー78の頂点78aが、がんぎ歯1から離れるまで、がんぎ歯1の衝撃面20に沿ってH方向(図3の(f)及び図2参照)に移動する状態S6a(図4)に移る。該状態S6aは、リービングコーナー78の頂点78aが、衝撃面20を構成する第二湾曲凸面部21に当接している間、該第二湾曲凸面部21の当接部の接平面に垂直な向きに力が働く。この状態S6aの間、てんぷ80の回転と共にトルクが多少増す。   After the state S6 of FIG. 3 (f), the apex 78a of the leaving corner 78 of the pawl 73 is moved along the impact surface 20 of the escape tooth 1 in the H direction (see FIG. 3 (f) and move to the state S6a (see FIG. 4). In this state S6a, while the apex 78a of the leaving corner 78 is in contact with the second curved convex surface portion 21 constituting the impact surface 20, the orientation is perpendicular to the tangential plane of the contact portion of the second curved convex surface portion 21. Power works. During this state S6a, the torque slightly increases as the balance 80 rotates.

以上においては、アンクル脱進器3における入つめ73を介するトルクの伝達について説明したけれども、出つめ74においても、概ね同様である。   In the above description, transmission of torque via the entry pawl 73 in the ankle escapement 3 has been described, but the same applies to the exit pawl 74.

即ち、図5は、てんぷの回転角θに対するがんぎ車及びてんぷ間でのアンクルの出つめを介したトルクの出入(てんぷ/がんぎトルク比)ΔTを表し、太い破線J2は、がんぎ歯1とアンクル70とを備えたアンクル脱進器3におけるてんぷ回転角θとトルク比ΔTとの関係を表わし、細い破線PJ2は、従来のがんぎ歯102とアンクル201とを備えた従来のアンクル脱進器におけるてんぷ回転角θとトルク比ΔTとの関係を表わす。   That is, FIG. 5 shows the torque input / output (balance of balance / gull torque) ΔT through the union of the ankle between the escape wheel and the balance with respect to the rotation angle θ of the balance with a thick broken line J 2, The relationship between the balance rotation angle θ and the torque ratio ΔT in the ankle escapement 3 provided with the toothpaste 1 and the ankle 70 is shown, and the thin broken line PJ2 is provided with the conventional escape tooth 102 and the ankle 201. The relationship between the balance rotation angle θ and the torque ratio ΔT in the conventional ankle escapement is shown.

がんぎ車2の外径が4.85mmで、R1=0.02mm及びR2=0.5mmの場合、太い破線J2と細い破線PJ2との差異は、図4の実線J1と破線PJ1との差異と概ね一致し、入つめ73に関して説明した説明は、出つめ74についても、当てはまる。   When the outer diameter of the escape wheel 2 is 4.85 mm and R1 = 0.02 mm and R2 = 0.5 mm, the difference between the thick broken line J2 and the thin broken line PJ2 is the difference between the solid line J1 and the broken line PJ1 in FIG. The description that is generally consistent with the difference and described with respect to the entry pawl 73 also applies to the exit pawl 74.

以上のようながんぎ歯1を備えたがんぎ車2を有するアンクル脱進器3では、トルクの伝達効率を3%程度高め得る。このようながんぎ歯1は例えば特開平2010−91544号公報に記載の如く半導体集積回路技術を応用した微細加工技術(例えば、MEMSその他の微細加工技術)を利用して形成され得る。   In the anchor escapement 3 having the escape wheel 2 having the escape tooth 1 as described above, the torque transmission efficiency can be increased by about 3%. Such escape teeth 1 can be formed by utilizing a microfabrication technology (for example, MEMS or other microfabrication technology) to which semiconductor integrated circuit technology is applied, as described in, for example, Japanese Patent Application Laid-Open No. 2010-91544.

以上においては、がんぎ歯の衝撃面の全体にわたって第二湾曲凸面部を形成する例について説明したけれども、がんぎ車2Aのがんぎ歯1Aは、図6に示したように、衝撃面20Aのうちロッキングコーナー30の第一湾曲凸面部31の円弧部32の端縁部34Aに直接的につながる部位23Aから衝撃面20Aの半分程度までの領域ないし部分25に第二湾曲凸面部21Aを備え、該部分25の端26(すなわち、第二湾曲凸面部21Aの端縁部26)からがんぎ歯1Aのリービングコーナー40Aまでの領域ないし部分27に直線状部(平面状部)28を有していてもよい。部分(領域)25と部分(領域)27との割合は、典型的には、1対1程度であるけれども、第二湾曲凸面部21Aの方が直線状部28よりも長くても、その逆に、直線状部28の方が第二湾曲凸面部21Aよりも長くてもよい。   In the above description, the example in which the second curved convex surface portion is formed over the entire impact surface of the escape tooth is described. However, the escape tooth 1A of the escape wheel 2A has an impact as shown in FIG. Of the surface 20A, the second curved convex surface portion 21A extends from a region 23A directly connected to the edge portion 34A of the arc portion 32 of the first curved convex surface portion 31 of the rocking corner 30 to about half of the impact surface 20A. And a linear portion (planar portion) 28 in a region or portion 27 from the end 26 of the portion 25 (that is, the end edge portion 26 of the second curved convex surface portion 21A) to the reeving corner 40A of the escape tooth 1A. You may have. The ratio between the portion (region) 25 and the portion (region) 27 is typically about 1: 1, but the second curved convex surface portion 21A may be longer than the linear portion 28, but vice versa. In addition, the linear portion 28 may be longer than the second curved convex surface portion 21A.

図6のがんぎ車2Aの要素のうち図2のがんぎ車2の要素と同一の要素には同一の符号が付され、対応するけれども異なるところのある要素には、同一の符号の後に添字Aが付されている。   Of the elements of the escape wheel 2A of FIG. 6, the same elements as those of the escape wheel 2 of FIG. 2 are denoted by the same reference numerals, and corresponding but different elements have the same reference numerals. Subscript A is added later.

この場合でも、がんぎ車2Aの外径が4.85mm程度である場合、第一湾曲凸面部31の円弧部32の曲率半径R1=0.01〜0.05mmであることが好ましく、第二湾曲凸面部21Aの円弧部22Aの曲率半径R2=0.2〜0.5mmであることが好ましい。なお、第二湾曲凸面部21Aの円弧部22Aの曲率半径R2を第一湾曲凸面部21の円弧部22の曲率半径R2よりも多少小さい範囲にするのは、その延在範囲が短いので面の向きの変化をより大きくするためである。   Even in this case, when the outer diameter of the escape wheel 2A is about 4.85 mm, the radius of curvature R1 of the arc portion 32 of the first curved convex surface portion 31 is preferably 0.01 to 0.05 mm. It is preferable that the radius of curvature R2 of the arc portion 22A of the two curved convex surface portions 21A is 0.2 to 0.5 mm. The reason why the radius of curvature R2 of the arc portion 22A of the second curved convex surface portion 21A is set to be slightly smaller than the radius of curvature R2 of the arc portion 22 of the first curved convex surface portion 21 is because the extension range is short. This is to make the change in direction larger.

図7では、がんぎ車2Aにおいて、がんぎ歯1Aの第一湾曲凸面部31の円弧部32の曲率半径R1が0.04mmで、第二湾曲凸面部21Aの円弧部22Aの曲率半径R2が0.34mmの場合について、てんぷの回転角θに対するトルク比ΔTを入つめ73及び出つめ74の夫々に関して、実線J1A及び破線J2Aで示した。   In FIG. 7, in the escape wheel 2A, the curvature radius R1 of the arc portion 32 of the first curved convex surface portion 31 of the escape tooth 1A is 0.04 mm, and the curvature radius of the arc portion 22A of the second curved convex surface portion 21A. In the case where R2 is 0.34 mm, the torque ratio ΔT with respect to the rotation angle θ of the balance is indicated by the solid line J1A and the broken line J2A for the input pawl 73 and the output pawl 74, respectively.

入つめ73を例にとって具体的に説明すれば、この場合も、がんぎ歯1Aのロッキングコーナー30に円弧部32の形態の第一湾曲凸面部31があるが故に、状態S1A,S2A,S3Aのトルク比ΔTの変化からわかるように、停止状態から衝撃開始に入る際の力の変化が連続的になるので、がんぎ歯1Aと入つめ73との間におけるジャンプが最低限に抑えられ得る。   Specifically, the engagement pawl 73 will be described as an example. Also in this case, the first curved convex surface portion 31 in the form of the arc portion 32 is provided in the rocking corner 30 of the escape tooth 1A, so that the states S1A, S2A, S3A. As can be seen from the change in the torque ratio ΔT, the change in force at the start of impact from the stop state becomes continuous, so that the jump between the escape tooth 1A and the pawl 73 can be minimized. obtain.

なお、このがんぎ歯2Aの場合、第一湾曲凸面部31の円弧部32の曲率半径R1が0.04mmであって、がんぎ歯2の第一湾曲凸面部31の円弧部32の曲率半径R1=0.02mmよりも大きいので、状態S3の後に長い傾斜部S3aがあって衝撃開始後の力の変化がよりなめらかである。   In the case of the escape tooth 2A, the radius of curvature R1 of the arc portion 32 of the first curved convex surface portion 31 is 0.04 mm, and the arc portion 32 of the first curved convex surface portion 31 of the escape tooth 2 Since the radius of curvature R1 is larger than 0.02 mm, there is a long inclined portion S3a after the state S3, and the change in force after the start of impact is smoother.

また、状態S5A,S6Aにおけるトルク比ΔTの変化からわかるように、衝撃面交替の際における力の向きの変化が小さく抑えられ得るので、がんぎ歯1Aと入つめ73との間におけるジャンプが最低限に抑えられ得る。   Further, as can be seen from the change in the torque ratio ΔT in the states S5A and S6A, the change in the direction of the force when changing the impact surface can be suppressed, so that the jump between the escape tooth 1A and the pawl 73 can be prevented. Can be kept to a minimum.

更に、この場合、衝撃面交替の後、入つめ73のリービングコーナーが、曲率半径R2の第二湾曲凸面部21Aの円弧部22Aのある部分(領域)25からトルクを受ける状態S6aの後、がんぎ歯1Aの衝撃面20Aのうち端部26からリービングコーナー40Aに位置する端部24Aまで延びる直線状部28からトルクを受ける状態S7にかわるので、てんぷ回転角θの増大に伴ってトルク比ΔTが下がっていくようになる。   Further, in this case, after the impact surface is changed, after the state S6a in which the leaving corner of the pawl 73 receives torque from a portion (region) 25 of the arc portion 22A of the second curved convex surface portion 21A having the curvature radius R2, Since the state changes to the state S7 in which the torque is received from the linear portion 28 extending from the end portion 26 to the end portion 24A located at the leaving corner 40A in the impact surface 20A of the toothpick 1A, the torque ratio is increased as the balance rotation angle θ increases. ΔT begins to decrease.

なお、破線J2Aで示した出つめ74の場合も、実線J1Aで示した入つめ73の場合と概ね同様であるので、その説明は省く。   Note that the case of the protruding pawl 74 indicated by the broken line J2A is substantially the same as the case of the pawl 73 indicated by the solid line J1A, and the description thereof is omitted.

以上においては、がんぎ歯1,1Aのロッキングコーナー30の第一湾曲凸面部31が単一の円弧面32からなる例について説明したけれども、第一湾曲凸面部31は、端縁33と端縁34,34Aとの間において、外向きに凸に滑らかに湾曲している限り、端縁33と端縁34,34Aとの間において曲率半径が異なる複数の領域からなっていても曲率半径が連続的に変動していてもよい。衝撃面20,20Aの第二湾曲凸面部21,21Aについても同様である。   In the above description, the example in which the first curved convex surface portion 31 of the rocking corner 30 of the escape tooth 1, 1 </ b> A is composed of the single circular arc surface 32 has been described. As long as it is smoothly curved outward and convex between the edges 34 and 34A, the radius of curvature is not limited even if it is composed of a plurality of regions having different curvature radii between the edge 33 and the edges 34 and 34A. It may vary continuously. The same applies to the second curved convex surface portions 21 and 21A of the impact surfaces 20 and 20A.

以上においては、入つめ73や出つめ74のロッキングコーナーが角張っていて頂点がある例について説明したけれども、所望ならば、入つめ73や出つめ74のロッキングコーナーにがんぎ歯1,1Aの湾曲凸面部31のような湾曲凸面部が形成されていてもよい。ここで、湾曲凸面部は、典型的には円弧面からなる。   In the above description, an example in which the locking corners of the entry pawl 73 and the exit pawl 74 are angular and have apexes has been described. A curved convex surface portion such as the curved convex surface portion 31 may be formed. Here, the curved convex surface portion is typically an arc surface.

1,1A がんぎ歯
2,2A がんぎ車
3 アンクル脱進器
4 機械式時計
10 停止面
20 衝撃面
21,21A 第二湾曲凸面部
22,22A 円弧面
23,23A 端縁部
24 端縁部
25 部分(領域)
26 端(端縁部)
27 部分(領域)
28 直線状部
30 ロッキングコーナー
31 第一湾曲凸面部
32 円弧面
33 端縁部
34,34A 端縁部
40,40A (がんぎ歯の)リービングコーナー(インパルスビーク)
70 アンクル
71 アンクル軸
72 ハコ先
73 入つめ
74 出つめ
75 停止面
75a 部位
76 衝撃面
77 ロッキングコーナー
77a 頂点
78 リービングコーナー(インパルスビーク)
78a 頂点
80 てんぷ
82 振り石
300 ムーブメント
400 ケース
A,B,C 中心軸線
A1,A2,B1,B2,C1,C2 回転(回動)方向
E1,H1 移動方向
F,F1,F2,F3,F4,F5,F6 力の向き
J1,J1A 入つめのθ−ΔT曲線
J2,J2A 出つめのθ−ΔT曲線
R1 がんぎ歯のロッキングコーナーの第一湾曲凸面部の円弧面の曲率半径
R2 がんぎ歯の衝撃面の第二湾曲凸面部の円弧面の曲率半径
S1,S1A,S2,S2A,S3,S3a,S3A,S4,S4A,S5,S5A,S6,S6A,S6a,S6aA,S7,Sa, 状態
θ てんぷ回転角
ΔT トルク比
1, 1A escape teeth 2, 2A escape wheel 3 ankle escapement 4 mechanical timepiece 10 stop surface 20 impact surface 21, 21A second curved convex surface portions 22, 22A arcuate surfaces 23, 23A end edge 24 end Edge 25 part (area)
26 End (edge)
27 part (area)
28 Linear portion 30 Rocking corner 31 First curved convex surface portion 32 Arc surface 33 End edge portions 34, 34A End edge portions 40, 40A Relief corner (impulse beak)
70 Ankle 71 Ankle shaft 72 Scale point 73 Inlet pawl 74 Out pawl 75 Stop surface 75a Site 76 Impact surface 77 Rocking corner 77a Vertex 78 Reeve corner (impulse beak)
78a Vertex 80 Balance 82 Rolling stone 300 Movement 400 Case A, B, C Center axis A1, A2, B1, B2, C1, C2 Rotation (rotation) direction E1, H1 Movement direction F, F1, F2, F3, F4 F5, F6 Force direction J1, J1A Incoming θ-ΔT curve J2, J2A Outgoing θ-ΔT curve R1 Curvature radius of curvature R2 of the first curved convex surface of the locking corner of the escape tooth R2 Curvature radius S1, S1A, S2, S2A, S3, S3a, S3A, S4, S4A, S5, S5A, S6, S6A, S6a, S6aA, S7, Sa, of the second curved convex surface portion of the tooth impact surface State θ Balance rotation angle ΔT Torque ratio

Claims (13)

停止面と衝撃面とをつなぐロッキングコーナーが湾曲した第一湾曲凸面部の形態であるがんぎ歯。   The escape tooth which is the form of the 1st curve convex surface part where the rocking corner which connects a stop surface and an impact surface curved. 前記衝撃面のうち前記ロッキングコーナーの前記第一湾曲凸面部につづく部位に湾曲した第二湾曲凸面部がある請求項1に記載のがんぎ歯。   The escapement tooth according to claim 1, wherein a curved second convex surface portion is provided at a portion of the impact surface that continues to the first curved convex surface portion of the rocking corner. 前記第二湾曲凸面部が前記衝撃面の全体にわたって拡がっている請求項2に記載のがんぎ歯。   The escapement tooth according to claim 2, wherein the second curved convex surface portion extends over the entire impact surface. 前記衝撃面のうち前記ロッキングコーナーから離れた部位ほど前記第二湾曲凸面部の部分の曲率半径が大きくなっている請求項2に記載のがんぎ歯。   The escape tooth according to claim 2, wherein the radius of curvature of the portion of the second curved convex surface portion is larger as the portion of the impact surface is farther from the rocking corner. がんぎ車の径が4.85mmである場合に、前記第二湾曲凸面部の曲率半径R2が0.4〜0.6mmである請求項3又は4に記載のがんぎ歯。   The escape tooth according to claim 3 or 4, wherein the radius of curvature R2 of the second curved convex surface portion is 0.4 to 0.6 mm when the diameter of the escape wheel is 4.85 mm. 前記衝撃面のうち前記第二湾曲凸面部の部分に続く部位が平面状である請求項2に記載のがんぎ歯。   3. The escapement tooth according to claim 2, wherein a portion of the impact surface following the second curved convex surface portion is planar. 前記がんぎ車の径が4.85mmである場合に、前記第二湾曲凸面部の曲率半径R2が0.2〜0.5mmである請求項6に記載のがんぎ歯。   The escape tooth according to claim 6, wherein a radius of curvature R2 of the second curved convex surface portion is 0.2 to 0.5 mm when the diameter of the escape wheel is 4.85 mm. 前記がんぎ車の径が4.85mmである場合に、前記第一湾曲凸面部の曲率半径R1が0.01〜0.05mmである請求項1から7までのいずれか一つの項に記載のがんぎ歯。   The curvature radius R1 of said 1st curve convex surface part is 0.01-0.05mm when the diameter of said escape wheel is 4.85mm, The statement as described in any one of Claim 1-7 Stubborn teeth. 請求項1から8までのいずれか一つの項に記載のがんぎ歯を備えたがんぎ車。 A escape wheel provided with the escape tooth according to any one of claims 1 to 8. 請求項9に記載のがんぎ車と、
前記がんぎ車からトルクの授受を行うとともに、前記がんぎ車の回転を間欠的に規制して、ぜんまいのトルクをてんぷへ伝えるアンクルと、
前記アンクルからのトルクを受けるとともに、前記アンクルに作用するてんぷと、
を有するアンクル脱進器。
The escape wheel according to claim 9,
An ankle that transmits and receives torque from the escape wheel and intermittently regulates the rotation of the escape wheel and transmits the torque of the mainspring to the balance.
With the balance that receives torque from the ankle and acts on the ankle,
Ankle escapement.
請求項10に記載のアンクル脱進器を有するムーブメント。   A movement comprising the ankle escapement according to claim 10. 請求項11に記載のがんぎ車と、前記ムーブメントを内包するケースと、を有する機械式時計。   A mechanical timepiece having the escape wheel according to claim 11 and a case containing the movement. 停止面と衝撃面とをつなぐロッキングコーナーが湾曲した第一湾曲凸面部の形態であるがんぎ歯を備えたがんぎ車から、アンクルのつめへトルクを伝達するトルク伝達方法であって、
前記がんぎ車の回転に伴って、前記衝撃面を前記アンクルのつめに当接させて前記トルクを伝達させる際に、
前記アンクルのつめを前記第一湾曲部に沿って前記衝撃面へ近づかせることにより、前記がんぎ歯が前記アンクルのつめに与える力の向きの変化ないし、変動を抑えながら、前記トルクを伝達することを特徴とするトルク伝達方法。
A torque transmission method for transmitting torque from an escape wheel provided with escape teeth in the form of a first curved convex surface with a curved rocking corner connecting the stop surface and an impact surface to an ankle pawl,
With the rotation of the escape wheel, when the impact surface is brought into contact with the nail of the ankle to transmit the torque,
By moving the ankle pawl along the first curved portion toward the impact surface, the torque is transmitted while suppressing changes or fluctuations in the direction of the force applied to the pawl of the ankle by the escape tooth. A torque transmission method characterized by:
JP2012053551A 2012-03-09 2012-03-09 Spur tooth, escape wheel provided with the hook tooth, ankle escapement, movement, mechanical timepiece, and torque transmission method Active JP5891076B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012053551A JP5891076B2 (en) 2012-03-09 2012-03-09 Spur tooth, escape wheel provided with the hook tooth, ankle escapement, movement, mechanical timepiece, and torque transmission method
CH00519/13A CH706224B1 (en) 2012-03-09 2013-02-28 Exhaust tooth, escape wheel comprising this exhaust tooth, anchor escapement, movement, mechanical timepiece, and method of transmitting torque
CN201310076463.1A CN103309224B (en) 2012-03-09 2013-03-11 Escapement tooth, the escape wheel for possessing the escapement tooth, anchor escapement, movement and mechanical clock and torque transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012053551A JP5891076B2 (en) 2012-03-09 2012-03-09 Spur tooth, escape wheel provided with the hook tooth, ankle escapement, movement, mechanical timepiece, and torque transmission method

Publications (2)

Publication Number Publication Date
JP2013186078A true JP2013186078A (en) 2013-09-19
JP5891076B2 JP5891076B2 (en) 2016-03-22

Family

ID=49118204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012053551A Active JP5891076B2 (en) 2012-03-09 2012-03-09 Spur tooth, escape wheel provided with the hook tooth, ankle escapement, movement, mechanical timepiece, and torque transmission method

Country Status (3)

Country Link
JP (1) JP5891076B2 (en)
CN (1) CN103309224B (en)
CH (1) CH706224B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033688A1 (en) * 2015-08-25 2017-03-02 シチズン時計株式会社 Watch escapement
JP2019536031A (en) * 2016-11-17 2019-12-12 リシュモン アンテルナシオナル ソシエテ アノニム Escapement for watches with optimized torque transmission
JP2020020728A (en) * 2018-08-03 2020-02-06 セイコーエプソン株式会社 Ankle, movement, clock
JP2021117182A (en) * 2020-01-29 2021-08-10 セイコーウオッチ株式会社 Escapement governor, timepiece movement and timepiece

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3667432B1 (en) 2018-12-13 2022-05-11 ETA SA Manufacture Horlogère Suisse Timepiece resonator comprising at least one flexible guide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2676454A (en) * 1951-01-15 1954-04-27 Straumann Reinhard Clockwork escapement
US3538705A (en) * 1968-11-07 1970-11-10 Hamilton Watch Co Escapement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2359716Y (en) * 1998-06-29 2000-01-19 白寅明 Heat-resistant timer
CN2388623Y (en) * 1999-09-01 2000-07-19 余杭市福来登电器制造有限公司 Escape wheel
TWI461865B (en) * 2006-06-23 2014-11-21 Omega Sa "sprung balance regulating system for a mechanical timepiece movement and timepiece having such a system
DE602007004447D1 (en) * 2007-04-18 2010-03-11 Eta Sa Mft Horlogere Suisse Anchor escapement for watches
DE602007008077D1 (en) * 2007-05-30 2010-09-09 Omega Sa Anchor escapement for watches
EP2336832B1 (en) * 2009-12-21 2020-12-02 Rolex Sa Swiss lever escapement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2676454A (en) * 1951-01-15 1954-04-27 Straumann Reinhard Clockwork escapement
US3538705A (en) * 1968-11-07 1970-11-10 Hamilton Watch Co Escapement

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033688A1 (en) * 2015-08-25 2017-03-02 シチズン時計株式会社 Watch escapement
US10534319B2 (en) 2015-08-25 2020-01-14 Citizen Watch Co., Ltd. Escapement for timepiece
JP2019536031A (en) * 2016-11-17 2019-12-12 リシュモン アンテルナシオナル ソシエテ アノニム Escapement for watches with optimized torque transmission
JP7016360B2 (en) 2016-11-17 2022-02-21 リシュモン アンテルナシオナル ソシエテ アノニム Escapement for watches with optimized torque transmission
JP2020020728A (en) * 2018-08-03 2020-02-06 セイコーエプソン株式会社 Ankle, movement, clock
JP7103041B2 (en) 2018-08-03 2022-07-20 セイコーエプソン株式会社 Ankles, movements, watches
US11480924B2 (en) 2018-08-03 2022-10-25 Seiko Epson Corporation Escape lever, movement, and timepiece
JP2021117182A (en) * 2020-01-29 2021-08-10 セイコーウオッチ株式会社 Escapement governor, timepiece movement and timepiece

Also Published As

Publication number Publication date
JP5891076B2 (en) 2016-03-22
CH706224A2 (en) 2013-09-13
CH706224B1 (en) 2017-10-13
CN103309224A (en) 2013-09-18
CN103309224B (en) 2017-05-31

Similar Documents

Publication Publication Date Title
JP5891076B2 (en) Spur tooth, escape wheel provided with the hook tooth, ankle escapement, movement, mechanical timepiece, and torque transmission method
EP2199875B1 (en) Detent escapement
JP6210535B2 (en) Escapement, watch movement and watch
JP2008003086A (en) Movable element of fine machine controlled in rotation by collision
JP6968814B2 (en) Clock escape device and how such device works
JPWO2017033688A1 (en) Watch escapement
US20040013046A1 (en) Escapement for timekeeper
JP2010197393A (en) Direct impulse escapement, especially of detent type, for timepiece movement
JP2017161511A (en) Wheel train correcting mechanism, movement, and mechanical timepiece
CN102859179A (en) Starter system
JP2013512427A (en) High efficiency escapement
JP4849998B2 (en) Mechanical watch escapement
CN104011608A (en) Escapement mechanism
JP7076445B2 (en) Escapement for watches with optimized pull-in
JP2014202604A (en) Escapement, movement, and watch
JP2019138654A (en) Escapement of timepiece
JP2013101036A (en) Self-winding mechanism and self-winding watch including the same
JP2016075701A (en) Barrel for automatically winding timepiece
JP7016360B2 (en) Escapement for watches with optimized torque transmission
JP6040209B2 (en) Escape mechanism for timer movement
CN110794663B (en) Escapement fork, movement, clock
JP6120322B2 (en) Swing seat, escapement, watch movement and watch
JP6548113B2 (en) Self-winding watch
JP2021531479A (en) Escapement system and measuring device equipped with it
JPWO2020015889A5 (en)

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R150 Certificate of patent or registration of utility model

Ref document number: 5891076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250